平行四边形的性质课堂设计

合集下载

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案一、教学目标1. 知识目标:了解平行四边形的定义、判定方法和性质。

2. 技能目标:能够熟练运用平行四边形的性质解决相关问题。

3. 情感目标:培养学生对数学知识的兴趣,提高其学习成绩。

二、教学内容平行四边形的性质三、教学重点和难点1. 教学重点:平行四边形的概念、判定方法和性质。

2. 教学难点:平行四边形的性质运用。

四、教学方法板书讲解法、演示法、讨论法、练习法等。

五、教学过程1. 掌握平行四边形的定义和判定方法向学生介绍平行四边形的图像,即四边形的对边是平行的,并要求学生观察和辨认课桌、书架、地板等日常生活中出现的平行四边形。

讲解平行四边形的判定方法:(1) 两对对边分别相等;(2) 一组对边既相等又平行;(3) 对角线互相平分。

2. 确定平行四边形的性质接着,将平行四边形的每个性质都列举出来,并逐一讲解、证明和举例,包括:(1) 对边相等;(2) 对角线相交于中点;(3) 相邻角互补,对角线上的角互补;(4) 同底角相等;(5) 高相等。

3. 如何运用平行四边形的性质解决问题让学生通过练习来掌握平行四边形的应用方法。

设计一些实际问题,如:(1) 已知平行四边形的底边长和高,求其面积;(2) 在平行四边形中连接一对对角线,若交点到底边的距离为3,求对角线的长度;(3) 在平行四边形中,两条对角线的长度分别为6和12,求平行四边形的周长。

六、教学总结通过本节课的学习,学生掌握了平行四边形的定义、判定方法和性质,并能够熟练运用其性质解决相关问题。

这不仅提高了学生的数学水平,而且激发了他们对数学知识的兴趣。

七、教学反思本节课采用了多种教学方法,如板书、演示、讨论和练习,充分调动了学生的积极性和主动性,使他们更好地理解和掌握了平行四边形的性质。

课堂互动也很活跃,体现了学生的主体性和学习能力。

但仍需注意语言表述、演示效果和练习难度的合理性,保证教学的具体效果。

平行四边形的性质(教学设计)

平行四边形的性质(教学设计)

一、教材分析1.教材的地位与作用:本课是华师大版教科书八年级下册第十八章的第一课时,其主要内容是平行四边形的概念、平行四边形的边、角的相关性质和平行线间的距离。

平行四边形是“空间与图形”领域中最基本的几何图形之一,它不仅具有丰富的几何性质,而且在日常生产与生活中具有广泛的应用。

本节课是对四边形的初步认识,综合了平行线和三角形的相关知识,突出演绎推理,是训练学生思维的良好平台,是全等三角形的知识延续和深化,也为后续学习矩形、菱形、正方形等知识奠定了基础。

对边分别平行是平行四边形的本质特征,这一定义既给出了平行四边形的一条性质,又为判定一个四边形是平行四边形提供了重要的理论依据,也为证明两直线平行提供了新的方法。

平行四边形的性质的探究,经历了观察、猜想、度量、证明等学习过程。

性质的证明,应用了将四边形问题转化为三角形问题的思想方法,这些思想和方法在今后的学习中经常用到。

初中几何研究的一般思路是:先概括一类几何对象的共同本质特征,得到定义,然后研究其性质与判定。

这种思路贯穿本章的学习内容。

平行四边形性质的教学不仅要关注相关知识及其形成过程,还应引导学生进一步体会几何研究的一般思路与方法,体会对性质的研究就是对其构成要素特征的揭示。

2.学生学情分析:学生在小学对平行四边形的形象已经有了初步的认识。

但对平行四边形的定义的理解不够透彻,本节课让学生在原有知识的基础上加深理解。

另外,八年级学生已具备平行线及全等三角形证明的技能,为本节课探究平行四边形的性质作好铺垫。

对于性质的探究,学生证明平行四边形性质的主要困难是在证明过程中添加辅助线,构造三角形。

二、目标分析1.分析学习目标学生经历从现实情景中抽象出平行四边形的过程,发展学生的形象思维与抽象思维。

经历观察、实验、猜想、验证、推理、应用等数学活动,培养学生的观察能力、概括能力和演绎推理能力。

发展合作交流与应用意识,使学生从中体验数学活动的探索性和创造性,感受探究成功的乐趣,从而激发学习兴趣.通过性质的应用,培养学生独立思考的习惯,熟悉几何研究的一般方法与思路,掌握几何证明的步骤。

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。

教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。

教学重点掌握平行四边形和梯形的特征。

教学难点理解平行四边形、长方形、正方形的关系。

教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。

教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。

2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。

3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。

比赛开始!(学生活动:画四边形)4、学生展示画图的结果。

师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。

本节课我们一起来研究平行四边形和梯形。

【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。

二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。

[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。

学生操作学具探究,同时教师巡视指导。

【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。

认识平行四边形的教学设计(推荐12篇)

认识平行四边形的教学设计(推荐12篇)

认识平行四边形的教学设计(推荐12篇)认识平行四边形的教学设计第1篇教学目标:(一)知识与技能1、理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等;知道平行四边形容易变形的特性。

2、认识平行四边形的高和底,能正确测量和画出它的高。

3、培养学生的实践能力、观察能力和分析能力。

(二)过程与方法1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

2、在观察、操作、比较、判断的过程中,了解平行四边形的特性和其中的变化规律,形成平行四边形的空间观念。

(三)情感态度与价值观让学生感受图形与生活的密切联系,感受平面图形的学习价值,使学生体会平行四边形在生活中的广泛应用,培养数学应用意识,进一步发展对“空间与图形”的学习兴趣,发展空间观念。

教学重点:认识平行四边形的特征。

教学难点:正确测量和画出平行四边形的高课时安排:1课时教学过程:一、引入课题:1、复习旧知师:同学们,在前两节课的学习中,我们知道了在同一平面内两条直线的位置关系有平行和相交,那么你们认识平行线吗?请看屏幕,这里面哪一组是平行线?(课件出示)2、揭示课题:师:我们来看这三组平行线,请同学们仔细观察。

两组平行线相交得到了这样的一个四边形,你们认识这个四边形吗?(课件动态依次演示三组平行线分别交叉成两个平行四边形)师:通过以前的学习,对平行四边形我们已经有了简单的了解,今天我们就深入研究一下平行四边形。

(板书课题:平行四边形的认识)二、认识平行四边形的特征1、找一找生活中的平行四边形师:你在哪些地方见过平行四边形?师:除了刚才大家说到的这些,在很多的生活场景中我们都能找到平行四边形的影子,我们一起来欣赏一下。

(出示课件:门口的电动门、教学楼的楼梯、花园的篱笆)那么你能找到上面的平行四边形吗?(叫生上前来指,同时课件抽象出图片里的平行四边形)师:这些平行四边形有什么共同特征呢?这就是我们接下来要研究的问题。

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。

二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。

但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。

在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。

三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:平行四边形的性质及其应用。

2.难点:对角线的性质和判定平行四边形的方法。

五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。

六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。

2.课件:平行四边形的性质及其应用。

七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。

2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。

设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。

3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。

学生互相检查,教师巡回指导。

设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。

设计意图:巩固所学知识,提高学生的判断能力。

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。

2. 培养学生的观察力、思维能力和空间想象能力。

3. 通过实践操作,提高学生的动手能力和合作学习的能力。

二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。

2. 教学难点:理解和应用平行四边形的性质。

三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。

2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。

3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。

4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。

5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。

四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。

鲁教版数学八年级上册5.1《平行四边形的性质》教学设计1

鲁教版数学八年级上册5.1《平行四边形的性质》教学设计1

鲁教版数学八年级上册5.1《平行四边形的性质》教学设计1一. 教材分析《平行四边形的性质》是鲁教版数学八年级上册第五章第一节的内容。

本节内容主要介绍了平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过本节内容的学习,学生能够理解平行四边形的性质,并能够运用这些性质解决实际问题。

二. 学情分析学生在学习本节内容前,已经学习了矩形、菱形等特殊平行四边形的性质,对平行四边形有一定的了解。

但学生对于一般平行四边形的性质认识还不够深入,需要通过本节内容的学习来进一步掌握。

同时,学生需要具备一定的观察、分析、推理能力,以便能够发现平行四边形的性质并能够运用到实际问题中。

三. 教学目标1.知识与技能目标:学生能够理解平行四边形的性质,并能够运用这些性质解决实际问题。

2.过程与方法目标:学生通过观察、分析、推理等方法,发现平行四边形的性质,培养学生的逻辑思维能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。

四. 教学重难点1.教学重点:平行四边形的性质及其运用。

2.教学难点:平行四边形性质的推理和证明。

五. 教学方法1.情境教学法:通过创设情境,引导学生观察、分析、推理平行四边形的性质。

2.问题驱动法:通过提出问题,激发学生的思考,引导学生自主探索平行四边形的性质。

3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.教具准备:平行四边形的模型、图片等。

2.学具准备:学生自带平行四边形的模型、图片等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的矩形、菱形等特殊平行四边形的性质,激发学生的学习兴趣,引出本节内容。

2.呈现(10分钟)教师通过展示平行四边形的模型、图片等,引导学生观察平行四边形的特点,提出问题,让学生思考平行四边形有哪些性质。

3.操练(10分钟)学生分组讨论,共同探索平行四边形的性质。

教师巡回指导,解答学生的疑问。

《平行四边形的性质(第一课时)》教学设计

《平行四边形的性质(第一课时)》教学设计

《平行四边形的性质(第一课时)》教学设计一、教学分析(一)教学内容分析《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容,它是在学生学过平移和旋转等几何知识的基础上学习的,学习它不仅是对已学平行线、三角形等知识的综合应用和深化,同时对后面学习的矩形、菱形、正方形及梯形等特殊的平行四边形起到引领作用;其次,平行四边形性质在实际生产和生活中有广泛的应用,如:小区的伸缩门、庭院的竹篱笆等制造时都需要用到平行四边形的性质;第三:从培养学生的逻辑思维能力来说,学生已经初步掌握了推理论证方法,需要进一步巩固和提高,本节课及至本章都是为达到这个目标而设置的.(二)教学对象分析由于学生在“第七章三角形”中已经学过多边形的概念以及多边形内角和、外角和的相关知识,且平行四边形的定义也在小学学过,对它们并不陌生,但对于概念的本质属性的理解并不深刻,需加深理解.在认知过程中,对平行四边形通过辅助线与三角形相联系,加以引导,在学生自主探究的学习过程中,不仅要完成对平行四边形性质的认知,还需有效引导学生的探究欲与成就感.(三)教学环境分析本节教学内容是平行四边形的性质,针对数学学科培养学生逻辑思维与理性探究的学科特点,概念与性质的揭示需要一个渐进的探究过程,不适宜通过网络查阅查询,所以本课选择多媒体教室环境,而多媒体课件的作用,应体现在认知过程中,对学生认知前期的引导,和学生认知后期的验证,应避免以动画的过程替代学生大脑中推演的过程.二、教学目标(一)知识与技能理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和证明,解决生活中的实际问题.(二)过程与方法在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想.(三)情感态度与价值观引导学生观察、发现,激发学生的好奇心和求知欲,并且引导学生在应用数学知识解决实际问题的活动中体验成功,树立学习的自信心.三、教学重点难点(一)教学重点:让学生亲历平行四边形性质定理的“观察——猜想——验证”过程,理解定理内容,并学会用它们进行有关的论证和计算.(二)教学难点:通过性质定理的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.四、教学方法定理推导上采用引导探索法;设置疑问,引导学生通过观察、猜想、论证、应用等环节积极思考,勇于探索,较好地理解和掌握本节课的学习内容,体验解决问题的方法和乐趣,增强数学学习兴趣.在教学手段方面,利用PPT制作的课件,增大教学容量和直观性,提高教学质量和效率.五、教学过程。

平行四边形的认识优秀教学设计(精选9篇)

平行四边形的认识优秀教学设计(精选9篇)

平行四边形的认识优秀教学设计平行四边形的认识优秀教学设计(精选9篇)作为一位杰出的老师,有必要进行细致的教学设计准备工作,借助教学设计可以让教学工作更加有效地进行。

如何把教学设计做到重点突出呢?以下是小编精心整理的平行四边形的认识优秀教学设计,希望能够帮助到大家。

平行四边形的认识优秀教学设计篇1教材分析这部份内容是在原有的平面几何知识基础上,继续学习四边形问题,这里要求学生通过观察和学生之间的个体交流,使学生认识四边形;通过四边形的认识,培养小学生比较分析概括的能力,让学生充分感到数学就在。

学情分析以前学习了一些简单的平面几何图形,不过没有进行归类,在老师的引导下,大部份同学都能掌握这部份的知识。

教学目标1、通过观察和学生之间的个体交流,使学生认识四边形。

2、通过四边形的认识,培养小学生比较分析概括的能力,让学生充分感到数学就在。

教学重点和难点教学重点:使学生装知道什么样的图形叫做四边形。

教学难点:四边形所具备的特征。

教学过程一、创设生活情境,导入新课。

1、教师:(1)这幅图画的是什么地方?请同学们用自己的话说说。

(2)图中画了许多图形,谁能告诉老师你认识了哪些图形?2、请学生尝试画一两个图形,可以在图上描。

3、观察:把主题图中的所有四边形用红笔描出来。

提问:这些图形都有么共同特点?以四个人为一小组进行进行讨论,然后再汇报讨论结果。

小结:这些图形都是由四条线段围成的图形,我们把这样的图形,叫做“四边形。

二、探索新知。

(1)教学例题1①出示。

提问:把你认为是四边形的图形涂上颜色。

并说一说你的根据。

为什么不是四边形?(因为它不是由四条线段围成的,所以它不是四边形)②想一想:四边形有什么特点?(学生讨论)小结:四边形它有四条边,并且都有四个角。

(2)教学例2。

出示:提问:这是什么图形?(四边形)请大家给这6个四边形分分类,并说一说你分几类,根据什么来分的?教学反思这节课的设计意图有两个。

其一,以教材为依托,利用教材提供的素材,结合生活实际,为学生创设探究数学问题的情境,鼓励学生根据已有信息提出想要解决的问题,目的是想激起他们发现问题、提出问题的兴趣和欲望,进而促使学生根据已有信息和提出的数学问题去探究解决问题的方法,从而使学生能以一种数学的眼光去看待生活,学会用数学去解决生活中的实际问题。

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案一、教学目标1.了解平行四边形的定义。

2.掌握平行四边形的性质。

3.能够应用平行四边形的性质解决相关问题。

二、教学内容1.平行四边形的定义2.平行四边形的性质3.平行四边形的相关问题三、教学步骤步骤一:引入1.引出本节课的主题:平行四边形的性质。

2.提问学生:你们对平行四边形有什么了解?步骤二:定义平行四边形1.讲解平行四边形的定义:平行四边形是具有两对平行边的四边形。

2.对比展示平行四边形与其他四边形的特点。

3.引导学生说出一些例子并判断是否为平行四边形。

步骤三:平行四边形的性质1.讲解平行四边形的性质:–两对对边分别相等。

–相邻的内角互补,即相邻的内角之和为180度。

–对角线相交于一点,二对角线互相平分。

步骤四:例题讲解1.根据平行四边形的性质,解决一些与平行四边形相关的几何问题。

2.提供例题并与学生一起讨论解题方法和过程。

步骤五:练习与巩固1.布置练习题,让学生独立完成。

2.针对难点和常见错误进行指导和讲解。

步骤六:拓展与应用1.提供一些拓展问题,引导学生思考并解决。

2.鼓励学生应用平行四边形的性质解决实际问题或其他相关数学题目。

四、教学工具1.教材:包含平行四边形的相关知识点和例题。

2.黑板和粉笔:辅助讲解和演示。

3.讲义和练习题:供学生使用和完成练习。

五、教学评估方式1.课堂参与:观察学生对问题的回答与讨论。

2.练习题成绩:评估学生对平行四边形性质的理解和应用能力。

3.拓展问题解答:评估学生拓展思维和解决问题的能力。

六、教学反馈与调整1.及时反馈学生对平行四边形性质的掌握情况。

2.根据学生的学习情况调整教学内容和节奏。

七、教学延伸1.鼓励学生独立探索和学习其他四边形的性质。

2.引导学生拓展应用几何学知识的能力,解决实际生活中的问题。

以上是关于平行四边形的性质教案,希望能够帮助学生理解和掌握平行四边形的定义和性质,并能够应用到实际问题中。

通过教学的引入、讲解、讨论和练习,学生将能够更好地理解和运用平行四边形的性质,提高数学思维和解决问题的能力。

平行四边形的性质第一课时教学设计

平行四边形的性质第一课时教学设计

《平行四边形的性质》第一课时教学设计
教材分析
平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用。

本节课所学内容是平行线、全等三角形知识的延伸,也是后续学习矩形、菱形、正方形等知识的坚实基础。

此外,本课是在学生掌握平移、旋转和中心对称知识的基础上来探究平行四边形的性质,在培养学生的合情推理水平、发散思维水平以及探索、体验数学思维规律方面起着重要作用。

教学目标
知识目标:理解平行四边形的定义及相关概念,能根据定义探究平行四边形的性质特,并能使用平行四边形的对边相等、对角相等的性质实行相关推理和计算。

水平目标:通过操作、观察、猜测、验证、推理等过程,提升学生用数学知识解决问题的水平,培养学生的演绎推理水平和发散思维水平。

情感、态度、价值观目标:在自主探索、观察、发现的过程中培养学生的探索精神,体会探索的乐趣。

教学重点难点
重点:理解并掌握平行四边形的概念及其性质,应用平行四边形的性质解决简单的推理和计算问题
难点:通过图形的变换探索平行四边形的性质及平行四边形性质的应用。

教学方法与手段
在课堂教学中表达教师是主导、学生是主体的地位,引导学生自主探索、观察、发现。

在教学中应用多媒体和自制教具,增强教学的直观性和实效性。

教与学互动设计。

平行四边形的性质一教学设计

平行四边形的性质一教学设计

平行四边形的性质一教学设计一、教学目标1. 知识目标:了解平行四边形的定义及其性质。

2. 能力目标:能够判断给定的四边形是否为平行四边形,并应用平行四边形的性质解决相关问题。

3. 情感目标:培养学生对几何形状的兴趣,提高解决几何问题的能力。

二、教学重难点1. 教学重点:掌握平行四边形的定义及其性质。

2. 教学难点:能够应用平行四边形的性质解决相关问题。

三、教学准备1. 教材:几何教材、教学课件。

2. 工具:黑板、彩色粉笔。

3. 实物:平行四边形模型、四边形纸片。

四、教学过程导入:1. 教师出示一张纸片,上面画有一个四边形,请学生观察并讨论这个四边形的特点。

2. 引导学生发现并总结出四边形的性质。

新课讲解:3. 教师向学生介绍平行四边形的概念,并给出其定义:“如果一个四边形的对边是平行的,那么它就是平行四边形。

”4. 教师和学生一起观察几个实物模型,验证其是否为平行四边形,并引导学生发现对边平行是平行四边形的特征。

讨论与实践:5. 教师给出一些案例,要求学生判断是否为平行四边形,并解释原因。

6. 学生分组进行讨论,互相提问和解答案例问题,共同探讨平行四边形的性质。

7. 教师提供一些实际问题,引导学生运用平行四边形的性质解决问题,如计算面积、寻找未知边长等。

示范与练习:8. 教师通过具体案例示范如何运用平行四边形的性质解题,并解释解题思路。

9. 学生进行练习,解决一些简单的平行四边形问题,教师及时给予指导和反馈。

拓展与归纳:10. 教师总结平行四边形的性质,并与学生共同归纳记录在黑板上,形成学生的思维导图。

11. 教师提供一些拓展问题,让学生运用已学知识进行思考和解决。

五、课堂小结通过本节课的学习,我们了解了平行四边形的定义及其性质。

平行四边形的对边平行是其最重要的特征,我们可以根据这个性质判断一个四边形是否为平行四边形,并运用其性质解决相关的几何问题。

六、课后作业1. 完成课堂练习题。

2. 思考并解决一个平行四边形相关的问题,并写出解题过程。

平行四边形的性质教案

平行四边形的性质教案

平行四边形的性质教案生:升降机,楼梯上的扶手,伸缩衣架,梯子师:所以在生活中我们可以找到许多平行四边形的形状。

师:小学我们就学习过平行四边形,那大家还记得平行四边形的定是什么吗?生:有两组对边分别平行的四边形叫做平行四边形.师:如图1,如何用符号语言来描述平行四边形的定义?生:、AB∥CD, BC∥AD,所以四边形ABCD是师:表达方法是什么?图1生:口ABCD师:口ABCD的高是?对边,对角有哪些?生:口ABCD的高有AE,AF.对边:AD与BC,AB与CD.对角有∠BAC与∠C,∠B与∠D.(师生问答)设计意图:使学生回忆出平行四边形定义,表达方式及相关概念、,从而使学生融融入本节课的学习氛围中,增强学生学习兴趣。

(二)、合作探究:1、动手操作: (约8分钟)师:根据定义画一个平行四边形,观察它,除了“两组对边分别平行”外它的边之间有什么关系?它们的角之间有什么关系,动手量一量,测一测,是不是和自己猜测的一样?(独立操作)师:根据图1,大家测量以后有什么发现? (举手回答)生1: AB=CD, AD=BC,生2: ∠A=∠C ,∠B二∠D师:大家都找到了它们之间的联系,怎么用语言来表达呢?生:平行四边形的对边相等。

生:平行四边形的对角相等。

(先让同学动测量发现平行四边形之间的联系,再让学生归纳用语言方式表达出来。

)设计意图:加强学生的动于能力,语言根概述能力,使全体学生都参与到课堂情境中。

2、师生交流,推理论证。

(约10分钟)师: 通过观察和度量,我们猜想:平行四边形的对边相等;平行四边形的对角相等,下而我们对它进行证明。

例1:如图2,在口ABCD 中,求证:AB=CD ,BC=DA, ∠B 二∠D, ∠A=∠C 。

师:上述猜想涉及线段相等、角相等.我们知道.利用三角形全等得出全等三角形的对应边边、对应角都相等,是证明线段相等、角相等的一种重要的方法,为此,我们通过添加辅助线,构造两个三角形,通过三角形全等进行证明。

《平行四边形的性质》教学设计

《平行四边形的性质》教学设计

《平行四边形的性质》教学设计一、教学目标1.知识目标:学习平行四边形的定义及性质,包括平行四边形的对边相等、对角线互相平分、同、异位角等。

2.能力目标:能够辨别和应用平行四边形的性质解决问题。

3.情感目标:培养学生对几何学的兴趣,培养学生观察能力、抽象思维能力和逻辑推理能力。

二、教学重点、难点1.教学重点:平行四边形的定义及性质的教学,培养学生的几何直观形象观察能力。

2.教学难点:平行四边形的应用题,培养学生的综合运用能力。

三、教学过程1.导入新知识(10分钟)通过展示一幅平行四边形图片,引发学生对平行四边形的认识,并激发学生的兴趣。

2.学习平行四边形的定义(20分钟)a.分析展示的平行四边形图片,引导学生观察四边形边与边的关系。

b.引导学生总结平行四边形的定义:“四边形的对边分别相等,并且相对的两边平行。

”c.通过展示不同的平行四边形图片,让学生找出其中的特征并进行描述。

3.探究平行四边形的性质(30分钟)a.结合学生已掌握的知识,引导学生观察平行四边形的对角线特点,并引导学生总结:“平行四边形的对角线相交于一点,并且互相平分。

”b.引导学生观察平行四边形的同位角和异位角特点,并引导学生总结:“平行四边形的内角之和为360°,同位角相等,异位角相等。

”c.指导学生通过几何工具绘制平行四边形,并验证以上性质。

4.总结归纳(10分钟)a.引导学生回顾平行四边形的定义和性质,并进行总结。

b.提问学生关于平行四边形的问题,鼓励学生主动回答。

5.拓展应用(30分钟)a.提供一些平行四边形的应用题,引导学生运用所学知识解决问题。

b.布置一些课后练习题,巩固所学知识。

四、板书设计平行四边形的定义:四边形的对边分别相等,并且相对的两边平行。

平行四边形的性质:1.对边相等。

2.对角线互相平分。

3.同位角相等,异位角也相等。

4.内角之和为360°。

五、教学方法和教具准备教学方法:情景教学法、讨论教学法、示范教学法教具准备:电子白板、PPT、平行四边形图片、几何工具六、课堂检查与评价通过课堂提问、练习题、小组讨论等形式对学生进行评价,检查学生对平行四边形的理解和应用能力。

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

全国初中数学优质课一等奖《平行四边形的性质》教学设计

全国初中数学优质课一等奖《平行四边形的性质》教学设计

18.1.1平行四边形的性质(1)教学内容解析:本节内容是人教版八年级(下)第十八章的第一课时,它不仅是对已学的平行线、三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形的必备知识,在教材中起着承上启下的作用。

平行四边形的性质还为证明线段相等、角相等、线平行提供了新的方法和依据,拓宽了学生的解题思路。

教学目标:①知识与技能目标:理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和推理证明,解决生活中的实际问题。

②过程与方法目标:通过观察、猜想、验证、交流等数学活动,培养学生的观察能力及逻辑推理论证能力,培养学生主动探究的习惯,养成与他人合作学习的习惯,渗透"转化"的数学思想。

③情感与价值目标:引导学生观察、发现,激发学生的好奇心和求知欲,通过获得成功的体验和克服困难的经历,增进数学学习的信心,在探究过程中,培养学生的合作交流意识和探索精神。

学生学情分析:学生在小学已经学习过平行四边形,对平行四边形已经有了直观的感知和初步认识。

另外八年级学生已具有通过观察、操作等活动过程探索图形性质的活动经验,已经形成了良好的自主探讨、合作学习的习惯。

教学问题诊断与策略分析:本节课分为探索平行四边形的性质和平行四边形性质的简单应用两部分,这样安排能很好地体现知识结构的完整性和系统性。

但是学生在数学说理和一些重要的思想方法上还不够成熟,认知只停留于事物表象,尤其是对于平行四边形性质的推理论证,可能存在一定的困难,于是我设计了猜、量、剪的过程,目的是为学生证明性质奠定思想方法,以求达到解决学生可能出现的困难。

基于以上可能遇到的障碍,在教法上,采用在教师的组织引导下,学生自主探究、合作交流等教学方式,让学生通过实践操作,发现问题,思考问题,发表见解,获取知识,掌握方法,培养学生动手、动口、动脑的能力,充分发挥学生学习的主动性,使学生真正成为学习的主体。

教学重点:平行四边形的性质的探究和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的性质课堂设计武彦玲一、指导思想与理论依据:奥苏贝尔的认知接受理论认为:为了使学生有效的进行有意义的学习,学习过程应该遵循逐渐分化和整合协调的教案原则。

其中整合协调原则是指对认知结构的已有知识重新加以组合,通过类推、分析、比较、综合,明确新旧知识间的区别与联系,使所学知识能综合贯通。

鉴于这一教案原则,本节课采取类比三角形的性质,探究平行四边形的性质,及渗透把平行四边形问题转化为三角形问题进行解决的转化思想,力求使学生的新旧知识联系起来,以便建立紧密的、综合贯通的知识体系。

版新课标要求通过经历特殊四边形性质的探索过程,丰富学生从事数学活动的经2011验和体验,进一步培养学生合情推理能力;探索并掌握平行四边形的性质定理的证明,培养和发展学生的逻辑思维能力和推理论证能力。

因此本节课安排拼图探索平行四边形的性质并证明性质定理。

并安排了相应的例题和练习题进行应用练习,巩固对平行四边形性质定理的掌握和灵活运用。

二、教案内容分析:课时的内容。

在学习这节课之前,学生1本节课要研究的是“平行四边形的性质”第已在小学阶段初步了解了平行四边形的概念,此外还研究了三角形、一般的凸四边形的概念和性质。

平行四边形是四边形的一种延伸和发展,是最基本的几何图形之一,也是“空间与图形”领域中的主要研究对象。

它在生活中有着十分广泛的应用。

另外它又为我们接下来类比学习矩形、菱形等特殊四边形奠定了重要基础。

并且平行四边形的性质还是证明线段相等和角相等的重要依据和方法。

因此平行四边形在本章中起着承上启下的作用。

本节课中,由于学生已经研究过三角形性质,一方面探索平行四边形的性质要类比三角形的研究方法,从角和边入手进行探索;另一方面其性质的论证又要通过将平行四边形问题转化为三角形问题解决,所以通过本节课的学习可以渗透类比和转化的思想方法;在动手实践的过程中培养学生分析问题的能力和探索图形性质并运用知识解决问题的能力。

三、学生情况分析:本节课的授课班级学生思维活跃,有一定的动手实践能力和逻辑推理能力,有合作探究学习的经验,并且大部分学生能够自主学习。

这些特点适合探索活动的开展。

本节课之前学生已经学习了平行线的性质、三角形的性质、全等三角形、四边形的性质等几何知识,这些知识为本节课提供了认知基础。

由于学生经过前一段时间的学习,能够熟练运用三角形的知识解决问题,而对平行四边形却处于新接触的阶段,平行四边形的问题需转化为三角形的问题来解决,学生对这种转化不熟悉。

因此通过动手拼图从图形变换角度正确认识平行四边形,为这种转化做铺垫,并通过性质定理的证明及实例应用让学生获得平行四边形问题转化为三角形问题的体验和方法。

四、教案目标及重难点教案目标:知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.
过程与方法:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的分析问题能力和演绎推理能力.体会转化的数学思想,利用所学的三角形知识解决四边形问题.
情感态度:通过动手拼图和讨论,培养学生独立思考的习惯与合作交流的意识,逐步1 / 5
提高识图能力、观察能力和推理能力,激发学生探索数学的兴趣,体验探索成功后的快乐.重点:平行四边形的概念及其性质.难点:将平行四边形问题转化为三角形问题.五、教案过程:
激发好奇心与求知
欲,提高学生的应
用意识。

同时归纳
概念。

学生画图,用定义画图,亲身感悟平行四明确相关概念,明边形.教师画图
2.画一画:确平行四边形的符示范.结合图形请根据定义画出一个平行四边形,指出这个号表达,为进一步介绍平行四边形平行四边形的对边、邻边、对角、邻角、对角探索研究平行四边对边、对角、对线。

角线等元素及平形作铺垫。

行四边形的记法、读法.
、图学生认经过对比选择3. 认一认:分类认识平行四边形的下列图形哪些是平行四边形?外和内概念的涵延。

为探索平行四铺边形的做性质垫。

操动学生手二、探索性质
观师留意,教作目教出案突问题1.拼一拼:
拼,请察同学将实标手生。

学动用两张全等的三角形纸片(一般三角形)拼不的六出种形状践,再讨论分析,成一个四边形,试试看,你能拼成怎样的四边示同的四边形展经历和体验图形的形?有几种拼法?其中,拼成平行四边形的拼法按黑板在上.并变化过程,在操作有几种?
非边形和行四平中体会平行四边形问题2.议一议:
分四行平形边与三角形之间的相在拼出的每一个平行四边形中有哪些相等的四,探类索平行互联系,为证明性线段、哪些相等的角?任意一个平行四边形,是并性质,形的边质时将四边形转化否都可以由两个全等三角形拼接而成?
认变换用的观点为三角形难点作铺如果能,你能对其中一个三角形通过适当的识拼图的过程。

2 / 5
3 / 5
.求证:AF=CE的角。

提高学生综式性质,可得等合分析问题的能BE=DF.由“边角
力。

边”可得出所需要的结论.平行四边形的性质.它为我们得到线段相小结:用平行四运等、角相等提供了新的方法和依据.巩固本课重进形的性质,边
点。

学生联系刚学行计算和证明.五、巩固练习过的定义和性质,师生共完同 1.填空:并结合方程的思想,并重点成此题,中,若周长为40,AB=12(1)在ABCD
进行计算。

这样,形调平行四边强CD= ____.
,,则BC= ___ AD=___ 及时地将理论用于何性质的几表:AB,且ABCD的周长为28cm(2)如果
实践,既发现和弥述。

,,
BC=____ cm,那么BC=2∶5AB=____ cm补教与学的不足为 CD=___cmCD=____ cm,.学生独立完成课后,则∠A—∠B=240中,∠(3)如果ABCD
练习中的计算题和 D=B=A=度,∠度,∠C=度,∠度.证明题,作了必要;又达的铺垫,为对角如图:在平行四边形ABCD 中,AC2.到了逐步突破难点求AE=CF,ACE线,、F分别为对角线上的两点,的目的。

BE=DF
证:
思分类渗透难维。

提分画学生图升思想度。

师引导点析,教六、深化提高:播。

-坐直平已例3.知面角标A三系中点(),以这三点为顶点B)、(0,1C2,0)、(1,0 训练学生用画出一个平行四边形,求第四个顶点D的坐标。

通过小结回顾表格的形式总结了本节课的重点内平行四边形的性七、课堂小结:容,培养学生的总质引导学生自己讨论总结本节课的收获结概括能力通过表理知使识条,格化、系统化,便于
.
理解、记忆
)
(300-500字数六、本教案设计与以往或其他教案设计相比的特点本节课的设计,以问题为载体,以学生的动手实践、自主探索、合作交流为主要的1.学习方式.创设民主、宽松的教案氛围,最大限度地调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题.采取“拼一拼”“议一议”及归纳证明等系列环节开放性的探索平行四边形的性2.质,真实的让学生体会到知识的发现、分析、归纳、证明、应用。

使学生自然生成新的认识。

在探索过程中渗透了类比、分类、转化、图形变换等思想和方法,使学生思维得到较高层次的锻炼提高。

版新课标对本章要求“探索并证明平行四边形、矩形、菱突出新课标要求,20113.形、正方形的性质定理、判定定理,以及三角形的中位线定理”。

本节课对平行四边形的性质定理进行了规范的证明。

是本节课思维的为本节课的思维训练提供练习与例题呼应,有利于落实基础。

例34. 了制高点。

5 / 5。

相关文档
最新文档