人教版七年级数学下册第五章第1节相交线 教案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漯河二中师生共用教学案1
年级:七年级下期 科目:数学 执笔:孙辉 审核:七年级备课组
内容:相交线 课型:新授 时间: 2020-02
教学目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题. 重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用. 难点:理解对顶角相等的性质的探索. 教学过程
一、 自主学习:
1. 学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
(1)
O D
C
B A
学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,
2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,
4.概括形成邻补角、对顶角概念. (1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线, 那么这两个角叫对顶角.
1.例:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.
b a
4
3
21
二、 合作交流:
1.如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
F E O
D C
B
A F
E
O
D C B A
O D C
B
A
(1) (2) (3)
2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.
3、如图3,直线AB 、CD 相交于点O.(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.
三、探究提高:
1.如图所示,∠1和∠2是对顶角的图形有( )
1
2
1
2
1
2
2
1
A.1个
B.2个
C.3个
D.4个
2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )
A.150°
B.180°
C.210°
D.120°
O
F E D C
B
A O D
C
B
A
3
4D
C
B
A
1
2 O
E
D C
B
A
(1) (2) (3) (4)
3.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的
度数为( ) A.62° B.118° C.72° D.59°
4.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
5.如图4所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.
6、如图5所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
O
F
E
D
C
B
A 1
2
O E
C
B
A
(5) (6) 7、如图6所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.
教(学)后感想: