第四章气体分子动理论
理想气体的分子动理论气体分子的运动与理想气体定律
理想气体的分子动理论气体分子的运动与理想气体定律理想气体的分子动理论与气体分子的运动气体是一种物质的形态,也是我们生活中经常接触到的物质。
了解气体分子的运动和理论,能够帮助我们更好地理解气体的性质和行为。
本文将介绍理想气体的分子动理论,并探讨气体分子在空间中的运动方式以及与理想气体定律的关系。
一、理想气体的分子动理论理想气体的分子动理论是描述气体分子运动行为的理论模型。
根据分子动理论,气体分子是以高速无规则的方式在空间中运动的。
以下是气体分子的运动特征:1. 气体分子运动无规则性:气体分子在空间中以高速运动,并且没有固定的运动轨迹。
分子之间相互碰撞,这种碰撞是弹性碰撞,没有能量的损失。
2. 气体分子间的相互作用力可忽略不计:气体分子之间的相互作用力非常微弱,可以忽略不计。
这个假设的前提是气体分子之间的距离相对较远,而且气体分子体积相对较小。
3. 气体分子的速度服从麦克斯韦速度分布定律:根据麦克斯韦速度分布定律,气体分子的速度符合高斯分布(也称为正态分布),其中大多数分子具有平均速度,速度分布呈现钟形曲线。
二、气体分子的运动方式理想气体分子的运动方式可以通过分子运动学理论进行研究。
以下是气体分子的运动方式:1. 直线运动:气体分子在空间中以直线的方式运动。
当碰撞到容器壁或其他分子时,会发生反弹,继续直线运动。
2. 碰撞运动:由于气体分子之间的无规则运动,分子之间会发生碰撞现象。
这种碰撞是弹性碰撞,即碰撞后没有能量损失。
3. 自由平均路径:气体分子在碰撞之间的平均路径称为自由平均路径。
自由平均路径受气体分子的浓度和温度的影响。
三、气体分子的运动与理想气体定律的关系理想气体定律是描述理想气体状态的数学表达式,包括波义耳定律、查理定律和盖-吕萨克定律。
这些定律可以通过气体分子的运动来解释。
1. 波义耳定律:波义耳定律描述了气体压强与温度之间的关系。
根据理论分析,当气体分子碰撞容器壁时会产生压力,而压强与温度成正比。
气体分子动理论与理想气体状态方程的内在联系
气体分子动理论与理想气体状态方程的内在联系在研究气体行为时,气体分子动理论和理想气体状态方程是两个关键概念。
气体分子动理论是研究气体微观结构和性质的理论基础,而理想气体状态方程则是描述气体宏观性质的数学表达式。
尽管它们从不同角度对气体进行描述,但实际上它们之间存在着内在的联系。
气体分子动理论气体分子动理论是基于气体分子的微观运动而建立的理论。
根据这一理论,气体是由大量微小的分子组成,这些分子不断地做着高速、无规则的热运动。
气体分子间的碰撞引起了气体的压力、温度和体积等宏观性质。
气体分子动理论提供了解释气体行为的微观机制。
当气体受热时,气体分子的平均速度增加,从而导致气体的压力增大。
而当气体受冷时,气体分子的平均速度减小,气体的压力也相应减小。
因此,气体的温度和压力是密切相关的,这种微观与宏观之间的联系正是气体分子动理论的核心。
理想气体状态方程理想气体状态方程是描述气体宏观性质的经验性方程,通常表示为PV=nRT。
在这个方程中,P代表气体的压力,V代表气体的体积,n代表气体的摩尔数,R代表气体常数,T代表气体的温度。
理想气体状态方程表达了气体的状态参数之间的定量关系。
通过这个方程,我们可以计算气体在不同条件下的压力、体积和温度。
在实际应用中,理想气体状态方程为我们提供了方便的工具,可以用来解决各种气体相关的问题。
内在联系尽管气体分子动理论和理想气体状态方程是从不同角度对气体进行描述的,但它们之间存在着密切的联系。
首先,理想气体状态方程可以通过气体分子动理论来解释。
方程中的PV表示气体分子对容器壁的冲击,n表示气体分子的数量,T表示气体分子的平均动能,这些都可以从气体分子动理论中得到解释。
此外,气体分子动理论还可以解释理想气体状态方程中气体的压力与温度之间的关系。
气体分子的平均速度随温度的增加而增加,这导致气体的压强也随之增加,这正是理想气体状态方程中压力与温度之间的关系所体现的。
综上所述,气体分子动理论和理想气体状态方程之间存在着内在的联系。
第四章气体动理论总结
第四章⽓体动理论总结第四章⽓体动理论单个分⼦的运动具有⽆序性布朗运动⼤量分⼦的运动具有规律性伽尔顿板热平衡定律(热⼒学第零定律)实验表明:若 A 与C 热平衡 B 与C 热平衡则 A 与B 热平衡意义:互为热平衡的物体必然存在⼀个相同的特征--- 它们的温度相同定义温度:处于同⼀热平衡态下的热⼒学系统所具有的共同的宏观性质,称为温度。
⼀切处于同⼀热平衡态的系统有相同的温度。
理想⽓体状态⽅程: 形式1:mol M PV =RT =νRTM形式2:222111T V p T V p =形式3: nkT P =n ----分⼦数密度(单位体积中的分⼦数) k = R/NA = 1.38*10 –23 J/K----玻⽿兹曼常数在通常的压强与温度下,各种实际⽓体都服从理想⽓体状态⽅程。
§4-2 ⽓体动理论的压强公式VNV N n ==d d 1)分⼦按位置的分布是均匀的2)分⼦各⽅向运动概率均等、速度各种平均值相等kj i iz iy ix iv v v v ++=分⼦运动速度单个分⼦碰撞器壁的作⽤⼒是不连续的、偶然的、不均匀的。
从总的效果上来看,⼀个持续的平均作⽤⼒。
2213212()323p nmvp n mv n ω===v----摩尔数R--普适⽓体恒量描述⽓体状态三个物理量: P,V T 压强公式122ω=mv理想⽓体的压强公式揭⽰了宏观量与微观量统计平均值之间的关系,说明压强具有统计意义;压强公式指出:有两个途径可以增加压强 1)增加分⼦数密度n 即增加碰壁的个数2)增加分⼦运动的平均平动能即增加每次碰壁的强度思考题:对于⼀定量的⽓体来说,当温度不变时,⽓体的压强随体积的减⼩⽽增⼤(玻意⽿定律);当体积不变时,压强随温度的升⾼⽽增⼤(查理定律)。
从宏观来看,这两种变化同样使压强增⼤,从微观(分⼦运动)来看,它们有什么区别?对⼀定量的⽓体,在温度不变时,体积减⼩使单位体积内的分⼦数增多,则单位时间内与器壁碰撞的分⼦数增多,器壁所受的平均冲⼒增⼤,因⽽压强增⼤。
分子动理论气体分子的运动和理想气体的性质
分子动理论气体分子的运动和理想气体的性质分子动理论: 气体分子的运动和理想气体的性质气体是物质存在的三种基本状态之一,其分子动理论是解释气体性质和行为的重要理论基础。
本文将探讨分子动理论对气体分子的运动和理想气体的性质的解释。
一、分子动理论的基本假设分子动理论基于以下几个基本假设:1. 气体由大量微观粒子组成,这些粒子被称为分子。
2. 分子之间相互独立,它们之间的相互作用力可以忽略不计。
3. 分子具有质量,具有热运动,它们的运动是无规则的,遵循统计规律。
4. 分子之间碰撞时,它们之间的碰撞是弹性碰撞,能量和动量得以守恒。
5. 气体体积与分子体积相比可以忽略。
基于这些假设,分子动理论提供了解释气体性质的理论框架。
二、气体分子的运动根据分子动理论,气体分子的运动是无规则的,并且具有以下几个特点:1. 分子的热运动速度分布是高斯分布,也称作麦克斯韦分布。
即大多数分子的速度接近平均速度,而极端高速和低速分子的数量相对较少。
2. 分子之间碰撞时,它们的碰撞是弹性碰撞。
在碰撞过程中,动能和动量得到守恒,但碰撞后的运动方向和速度可能发生改变。
3. 分子间的相互作用力可以忽略不计。
这是因为气体的分子间距相对较大,在气体的条件下,分子间的吸引或斥力相对较弱。
4. 分子的运动决定了气体的压力。
分子撞击容器壁产生的压力对应于分子的平均动能,而与分子的质量和速度分布有关。
三、理想气体的性质在分子动理论的基础上,我们可以推导出理想气体的性质。
理想气体是指完全符合分子动理论假设的气体,在实际中不存在。
1. 状态方程:理想气体的状态方程可以用理想气体定律描述,即PV = nRT。
其中,P表示气体的压力,V表示气体的体积,n表示气体的物质量,R表示理想气体常数,T表示气体的温度。
2. 温度和压力的关系:根据理想气体定律,温度和压力成正比。
当气体的温度升高时,其压力也会增加。
3. 等温过程和绝热过程:理想气体的等温过程和绝热过程可以用分子动理论解释。
大学物理气体动理论
气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和
热力学中的理想气体分子动理论
感谢您的观看
汇报人:XX
分子平均转动动能计算
分子转动动能公式:Erot=1/2Iω2 分子转动动能与温度的关系:随着温度的升高,分子转动动能增大 理想气体分子转动动能计算公式:Erot=1/2Iω2=1/2kT 理想气体分子平均转动动能计算公式:Erot=1/2kT
理想气体分子的 分布律
麦克斯韦分布律
定义:描述理想气体分子在平衡态 下速度分布的规律
分子碰撞与平均自由程
分子碰撞:气体分子间的相互碰撞, 是气体分子动理论的基本概念。
分子动理论:基于分子碰撞和平均 自由程的理论,解释了气体的一些 基本性质和行为。
添加标题
添加标题
添加标题
添加标题
平均自由程:分子在连续两次碰撞 之间所走的平均距离,是气体分子 动理论中的重要参数。
理想气体:在分子动理论中,理想气 体被视为无相互作用的单个分子的集 合,其行为可以通过分子动理论来描 述。
理想气体分子动 能的计算
分子平均动能计算
分子平均动能的概念:分子在运动过程中所具有的动能的总和除以分子的数目。
分子平均动能的影响因素:温度和物质的种类。
分子平均动能与温度的关系:温度越高,分子平均动能越大。
分子平均动能的计算公式:E=3/2*k*T,其中E为分子平均动能,k为玻尔兹曼常数,T为热力学温 度。
热力学中的理想气体分 子动理论
汇报人:XX
目录
理想气体模型
理想气体分子动能的计算
01
04
分子动理论
02
热力学定律与分子动理论
03
理想气体分子的分布律
05
理想气体分子的速率分布 和能量分布的实验验证
06
理想气体模型
理想气体定义
气体分子动理论
气体分子动理论气体分子动理论是物理学中研究气体行为的理论框架。
它基于原子和分子在气体中的微观运动,试图解释和预测气体的宏观性质。
本文将介绍气体分子动理论的基本原理和相关概念。
分子运动和气体行为气体由大量分子组成,这些分子在气体容器中不断运动,并与容器和其他分子发生碰撞。
气体的宏观性质,如温度、压力和体积,可以从分子的运动状态推导出来。
气体分子动理论通过研究分子之间的相互作用和运动规律,解释了气体的行为。
分子运动规律根据气体分子动理论,分子具有以下运动规律:1.分子无规则运动:分子在气体容器中呈现无规则、自由的运动状态。
它们在容器内沿不同方向高速运动,并不断改变运动方向和速度。
2.分子之间的弹性碰撞:分子之间发生弹性碰撞,碰撞后能量和动量守恒,但在碰撞中的分子可能会发生运动速度和方向的改变。
3.平均运动速度:分子的速度服从Maxwell-Boltzmann分布,即分子的速度呈现连续分布,平均速度与温度相关。
4.分子间距和碰撞:分子之间的距离很大,相对于分子的体积而言,分子之间的相互作用可以忽略不计。
然而,当分子靠近时,它们之间的碰撞会对气体的性质产生影响。
气体宏观性质的解释气体分子动理论通过分子的运动规律,解释了气体的一些宏观性质:1.压力:气体分子运动产生的碰撞力对容器壁施加压力,压力与分子速度和碰撞频率有关。
2.温度:气体分子的平均动能与其速度平方成正比,因此温度可以视为分子的平均运动速度的度量。
3.体积:气体分子之间的距离较大,在碰撞时每个分子所占的体积可以忽略不计,因此气体没有固定的形状和体积,可以完全填满容器。
气体状态方程气体状态方程描述了气体的状态和性质。
根据气体分子动理论,可以推导出理想气体状态方程:PV = nRT其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的温度。
这个方程表明,在一定温度下,气体的压力和体积成正比,与摩尔数成正比。
该方程也可以用来推导气体的其他性质。
4-4 麦克斯韦气体分子速率分布定律
1)
v
vp
Nf
(v)dv
2)
vp
1 2
mv 2
Nf
(v)dv
4 – 4 麦克斯韦气体分子速率分布率
第四章气体动理论
例 如图示两条 f (v) ~ v 曲线分别表示氢气和
氧气在同一温度下的麦克斯韦速率分布曲线, 从图
上数据求出氢气和氧气的最概然速率 .
f (v)
vp
2kT m
m(H2 ) m(O2 )
射线中速率v在: v v 区间的分子。
当圆盘以不同的角速度转动时,从屏上可以测量出每次
所沉积的金属层的厚度,各次沉积的厚度对应于不同速
率区间内的分子数。比较这些厚度的比率,就可以知道
在分子射线中,不同速率区间内的分子数与总分子数之
比。
下面看气体分子的速率分布:
4 – 4 麦克斯韦气体分子速率分布率
0N
dN N
0
f
(v)dv
1
4 – 4 麦克斯韦气体分子速率分布率
第四章气体动理论
三 三种统计速率
f (v)
v 1)最概然速率 p fmax
df (v) 0 dv vvp
o
vp
v
根据分布函数求得
M mNA , R NA k
vp
2kT 1.41 kT
m
m
vp 1.41
RT M
物理意义
气体在一定温度下分布在最概然
速率 v p 附近单位速率间隔内的相对
分子数最多 .
4 – 4 麦克斯韦气体分子速率分布率
第四章气体动理论
2)平均速率 v
v v1dN1 v2dN2 vidNi vndNn
大学物理课后答案第四章
第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
气体定律和气体分子动理论
气体定律和气体分子动理论气体是我们日常生活中常见的物质状态之一。
在物理学和化学领域中,研究气体的行为和性质非常重要。
气体定律和气体分子动理论是解释和预测气体行为的基础理论。
本文将介绍气体定律和气体分子动理论的基本概念和应用。
一、气体定律气体定律是描述气体行为的数学关系。
通过实验和观察,科学家总结出了几条重要的气体定律,包括波义尔定律、查理定律和盖-吕萨克定律。
1. 波义尔定律波义尔定律又称压强定律,描述了气体的压强与体积的关系。
根据波义尔定律,当气体的温度不变时,气体的压强与体积成反比。
即压强乘以体积等于常数。
P1V1 = P2V22. 查理定律查理定律又称温度定律,描述了气体的体积与温度的关系。
根据查理定律,当气体的压强不变时,气体的体积与温度成正比。
即体积与温度的比值等于常数。
V1/T1 = V2/T23. 盖-吕萨克定律盖-吕萨克定律又称摩尔定律,描述了气体的压强与温度和摩尔数的关系。
根据盖-吕萨克定律,当气体的体积不变时,气体的压强与温度和摩尔数成正比。
即压强与温度和摩尔数的乘积等于常数。
P1/T1n1 = P2/T2n2二、气体分子动理论气体分子动理论是描述气体微观结构和行为的理论。
根据气体分子动理论,气体由大量微小的分子组成,这些分子不断地以高速运动,与容器壁碰撞并产生压强。
1. 分子速度气体分子的速度与温度有关。
根据麦克斯韦-玻尔兹曼分布定律,气体分子的速度服从高斯分布。
高温下,分子的平均速度更高。
2. 分子碰撞气体分子之间发生弹性碰撞。
碰撞的频率和力量取决于气体的密度和温度。
气体分子碰撞使得气体均匀分布在容器内。
3. 分子间距气体分子之间存在一定的间距。
相比固体和液体,气体的分子间距更大,分子之间几乎没有吸引力。
4. 气体压强气体的压强是由分子对容器壁的碰撞造成的。
气体分子动理论解释了气体压强与分子速度、碰撞频率和分子数密度之间的关系。
总结:气体定律和气体分子动理论共同解释了气体的宏观和微观行为。
第四章 气体动理论
§4-1
分子动理论的基本观点
一、物质微观结构的物理图象 1、物质是由大量的微观粒子——原子或分子组 成的; 2、分子在作永不停息的无规则运动; 3、分子之间有相互作用力。 综上所述,一切宏观物体(不论它是气体、 液体、还是固体)都是由大量的原子或分子组 成的;所有分子都在不停的、无规则运动中; 分子之间有相互作用力。这就是关于物质微观 结构的三个基本观点。
(s t )
C2 引力: f1 t , C2、t均 0 r 斥力: f C 1 , C 、s均 0 2 1 s r t:4 ~ 7 s : 9 ~ 13
2、图线
(f—r图线)
三、分子间的势能曲线(Ep—r图线)
1、分子间的势能: dE p fdr
C1 C2 E p fdr ( s t )dr r r C1 C2 s 1 t 1 ( s 1)r (t 1)r
N pV RT NA
p nkT
温度 T 的物理意义
1 2 3 平 m v kT 2 2
1) 温度是分子平均平动动能的量度 平 T (反映热运动的剧烈程度).
2)温度是大量分子的集体表现,个别分子无意义.
3)在同一温度下,各种气体分子平均平动动能均 相等。 注意 热运动与宏观运动的区别:温度所反 映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有 分子的一种有规则运动的表现.
由于热力学方法的局限性,我们对平衡态下系统内 部的情况不了解,从而对温度和理想 气体的理解 也很肤浅,对气体的压强更是一无所知,因此,为 了全面了解平衡态下的基本热学信息,我们必须用 分子物理学的方法从微观本质上加以认识。
• 气体动理论是统计物理学的基础; • 气体动理论是从微观的观点来研究气体的热学 性质; • 解释气体的温度、压强、热容、内能等的微观 本质; • 建立统计的概念。
第四章分子动力学方法
第四章 分子动力学方法§4.1 分子动力学方法第四章 分子动力学方法分子动力学(Molecular Dynamics,简称MD)是模拟大量粒子集合体系(固 体、气体、液体)中单个粒子的运动的一种手法,其关键的概念是运动,即要计 算粒子的位置、速度和取向随时间的演化。
分子动力学中的质点可以是原子、分 子、或更大的粒子集合,只有在研究分子束实验等情况下,粒子才是真正的分子。
与“分子动力学”相类似的名词还有“晶格动力学”(研究固体中原子的振动)和 “分子力学”(分子结构的量子力学),而分子动力学限于模拟经典粒子的运动。
分子动力学简单来说就是用数值方法求解经典力学中的 N 体问题。
自 Newton时代起, N 体问题就被认为是很重要的物理问题,解析求解或质点轨道 的混沌分析是数理力学中的关注点。
但时至今日,该问题重要性的原因已经进化 成,将单粒子动力学与系统的集体状态相联系,人们试图通过考察单个粒子的运 动来解释大量粒子集合系统的行为。
例如,绕过一物体的流体是怎样产生湍流尾 迹的?蛋白质分子中的原子是怎样相互运动从而折叠成生命支撑形态的?流体 气旋怎样产生如木星上的大红斑那样的长寿旋涡的?溶液中的长链分子怎样自 组装成一些特殊结构?等等。
因此,分子动力学在凝聚态物理、材料科学、高分 子化学和分子生物学等许多研究领域都有广泛的应用。
§4.1 分子动力学方法4.1.1 基本概念4.1.1.1 分子动力学分子动力学现已成为分子尺度上模拟的典型方法之一。
它起源于上世纪50 年代,在70年代中开始受到广泛关注。
分子动力学源于自Newton时代以来的古 老概念,即只要知道了系统组分的初始条件和相互作用力,整个系统的行为就可 以计算出来并可以预测。
该自然的决定性力学解释长期左右了科学界。
Laplace 于1814年曾写到:“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of beings who compose it-an intelligence sufficiently vast to submit these data to analysis-it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atoms; for it, nothing would be uncertain and the future, as the past, would be present to its eyes”(现在的 分子动力学模拟中, Laplace的 “intelligence”由计算机实现,“respective situation”即为给定的一组初始条件, “same formula”为算法程序)。
气体分子动理论
气体分子动理论教学目的1、知道气体分子运动的特点.2、知道分子沿各个方向运动的机会均等,分子速率按一定规律分布,这种规律是一种统计规律.3、知道气体压强的微观解释以及气体实验定律的微观解释.能力要求通过用微观解释宏观,提出统计规律,渗透统计观点,以提高学生分析、综合、归纳能力.重点·难点1、重点:气体压强的产生和气体实验定律的微观解释.2、难点:用统计的方法分析气体分子运动的特点.教学过程1、气体分子运动特点(播放动画进行模拟演示),得出结论:①气体分子间距较大②气体分子充满整个容器空间③气体分子运动频繁碰撞④气体分子向各个方向运动的机会均等分析气体分子运动特点及联系实验得出:①气体分子间距大,作用力小(可认为没有),所以气体没有一定的形态和体积(由容器决定).②分子沿各个方向运动的机会均等.③速率分布是中间大两头小的规律.其速率分布与分子数的关系如图所示.2、气体压强的微观解释大量气体分子对器壁频繁碰撞,就对器壁产生一个持续的均匀的压强.器壁单位面积上受到的压力,就是气体的压强.例如:雨滴撞击雨伞的例子.再比如:用一小把针刺手心,当针刺的频率很高时,手心的感觉就不是痛一下,而是成为一种连续的均匀的痛感了.气体的压强与气体的密度和气体分子的平均功能有关.经过实验和理论计算得出:为气体单位体积内的分子数,E为气体分子的平均动能.3、对气体实验定律的微观解释(1)玻意耳定律(2)查理定律(3)盖·吕萨克定律4、总结、扩展(1)气体分子运动有什么特点?(2)气体的压强是怎样产生的?它的大小由什么因素决定?(3)怎样从微观的方法解释气体三实验定律?板书设计气体分子动理论1、气体分子运动特点①②③2、对气体压强的微观解释3、对气体实验定律的微观解释。
气体分子动理论
P F S
F L2
m L3
v12x v22x ... vN2x
N m v12x v22x ... vN2x
V
N
n m vx2
根据第4条:
v2
vx2
vy2
vz2
vx2
v
2 y
vz2
1 v2 3
P 1 nmv2 2 n 1 mv2 理想气体压强公式
3
3 2
物理意义:P:气体分子碰 撞的平均冲力的体现,正比于 n 和 1 mv2
内部没有化学和核能的转换 t1 t2: 各处(ρ. T .P)均匀:平衡态
某一平衡态准平衡态过程 另一平衡态
一定质量气体: V P T 标准状态下: P0 1.03105 Pa T0 273.15k V0 22.41103 m3
1mol气体标准状态下占有容积
一定质量气体: P. V. T 三个状态参量之间存在一定关系
xyz xy x
3个自由度
2个自由度 1个自由度
b) 刚体
质心位置:由x,y,z决定: 3个自由度
y
A
质心转轴位置:由α.β.γ 决定:
B
2个自由度
o
x
转θ: 决定刚体对起始位置转过的角度:
1个自由度
z
若α、β、θ不变,则刚体不转动 刚体运动受限制:自由度将减少
例:绕定轴转动的刚体 只有1个自由度
能量按自由度均分原则:
气体分子无规则运动,某一运动形式在运动中不占优势。 每一个自由度都具有相同的平均动能 1 kT
2
例:某气体分子,i个自由度,则每一个分子的总能量为
i kT 2
动能 振动
势能
? i = 平动+转动+振动
第四章气体动理论
第四章 气体动理论2-4-1选择题:1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。
以下说法正确的是:(A )它们的温度、压强均不相同。
(B )它们的温度相同,但氦气压强大于氮气压强。
(C )它们的温度、压强都相同。
(D) 它们的温度相同,但氦气压强小于氮气压强。
2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1::222=C B A v v v ,则其压强之比C B A p p p ::为:(A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 13、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2xv =m kT 3 (B) 2x v = m kT331 (C) 2xv = m kT 3 (D) 2x v = m kT4、关于温度的意义,有下列几种说法:(1) 气体的温度是分子热运动平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子热运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度.上述说法中正确的是(A ) (1)、(2)、(4) (B ) (1)、(2)、(3)(C ) (2)、(3)、(4) (D) (1)、(3)、(4)5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的方均根速率相等.(D) 两种气体的内能相等.6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A)⎪⎭⎫ ⎝⎛++kT kT N N 2523)(21 (B) ⎪⎭⎫ ⎝⎛++kT kT N N 2523)(2121(C)kT N kT N 252321+ (D) kT N kT N 232521+7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为:(A ) kg 161 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了:(A) 0.5% (B) 4% (C) 9% (D) 21%9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。
气体分子动理论
气体分子动理论气体分子动理论是指根据分子动力学原理来描述气体分子的运动和行为的理论。
它的提出和发展对于解释气体的物理性质和行为具有重要的意义。
本文将就气体分子动理论的起源、基本假设和应用等方面进行探讨。
一、气体分子动理论的起源气体分子动理论的起源可以追溯到19世纪。
在那个时候,科学家们对气体的行为和性质提出了许多疑问。
为了解释这些现象,克劳修斯和麦克斯韦等科学家开始研究气体分子的运动规律,并提出了气体分子动理论。
二、气体分子动理论的基本假设气体分子动理论的基本假设有以下几点:1. 气体分子是微小的无质量的粒子,它们之间没有相互作用。
2. 气体分子的运动是完全混乱的,没有任何规律性。
3. 气体分子之间的碰撞是弹性碰撞,即在碰撞过程中能量守恒、动量守恒。
4. 气体分子之间的平均距离远大于分子本身的大小。
这些假设为描述气体的性质和行为提供了基础。
三、气体分子动理论的应用气体分子动理论在许多方面都有广泛的应用,下面将就几个重要的应用领域进行介绍。
1. 描述气体的物态变化:根据气体分子动理论,当气体受到加热时,分子的平均动能增加,分子之间的碰撞频率和力量都会增加,从而导致气体的压强增加。
当气体受到冷却时,则相反。
2. 热力学理论的基础:气体分子动理论为热力学的发展提供了理论基础。
根据理论的推导,可以得到诸如理想气体状态方程和分子平均动能与温度的关系等重要的热力学性质。
3. 涨落理论:根据气体分子动理论,气体分子的运动是混乱的,因此气体在微观尺度上会存在一定的涨落。
这种涨落现象不仅在气体中存在,在固体和液体中也同样适用。
4. 扩散和输运现象:气体分子动理论对于扩散和输运现象的研究有很大的帮助。
通过分析气体分子的速度和运动方式,可以更好地理解扩散和输运的原理和机制。
总结:气体分子动理论是对气体分子运动和行为进行描述的理论。
它的起源可以追溯到19世纪,科学家们根据气体的性质和行为提出了基本假设,并在许多领域中得到了应用。
第04章 气体的热力性质
dh = du + d (p v)= d u+ R g dT cp0dT = cv0dT + RgdT cp0 = cv0 + Rg
(4(4-22)
17
4-3 气体的热力性质
式 (4-22)称为迈耶公式。它建立了理想气体比定容热容 (4-22)称为迈耶公式。 和比定压热容之间的关系。 和比定压热容之间的关系。无论比热容是定值或是变量 (随温度变化),只要是理想气体,该式都成立。 随温度变化),只要是理想气体,该式都成立。 将式 (4-22) 乘以摩尔质量,则得 Mcp0 = Mcv0 + MRg (4乘以摩尔质量, 或写为 Cp0,m = Cv0,m + R
(4-14) (413
(4-15) (4-
4-3 气体的热力性质
它们对应的特定过程分别是定容过程和定压过程 对无摩擦内平衡过程, 对无摩擦内平衡过程,热力学第一定律的表达式可写为:
因而得
(4-16) (4-
(4-14 (4-17)
4-3 气体的热力性质
文字表述为: 文字表述为: 比定容热容是单位质量的物质,在比体积不变的条件下, 比定容热容是单位质量的物质,在比体积不变的条件下, 作 单位温度变化时相应的热力学能变化; 比定压热容是单位质量的物质, 比定压热容是单位质量的物质,在压力不变的条件下, 作单位温度变化时相应的焓变化。 作单位温度变化时相应的焓变化。
(4(4-29)
(4(4-30)
21
4-3 气体的热力性质
利用平均比热容表中数据求0 利用平均比热容表中数据求0 C到t之间的热量
(4(4-31) (4(4-32)
。
利用平均比热容表中数据求t 利用平均比热容表中数据求t1到t2之间的热量
第4章气体动理论
小球每次落入哪个狭槽是不
完全相同的,这表明在一次
实验中小球落入哪个狭槽中 是偶然的。 尽管一个小球落入哪个槽中 是偶然的,但大量小球的分 布规律则是确定的,即遵从
统计分布规律。
7
统计规律:当小球数N 足够大时小球的分布具有统计规律。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
子,如果分子有 t 个平动自由度,r 个转动自由度,则气体分 子的平均动能为
1 i ( t r ) kT kT 2 2
单原子分子
双原子分子
多原子分子
3 kT 2
5 kT 2
6 kT 2
27
★ 理想气体的内能 实际气体的内能 气体分子热运动的各种形式的动能和势能的总和。 平动动能 分子动能 转动动能 振动动能 分子振动势能
i i
于1,称为概率的归一化条件。
6
小球在伽尔顿板中的分布规律
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
单位: 8.31J · mol-1 · K-1
4
★ 统计规律
一定条件下,大量偶然随机事件的整体具有确定的规律
性,这种规律称为统计规律。
对单个分子运用力学规律,对大量分子求统计平均值, 从而建立大量分子微观量的统计平均值与系统宏观量之 间的关系。这种关系就是所要寻求的统计规律。
化学教案:气体的性质与分子动理论
化学教案:气体的性质与分子动理论一、气体的性质气体是物质存在的一种形态,具有以下几个特点:无定形、无固定体积、无固定形状、可压缩性和扩散性。
了解气体的这些性质对于深入理解气体的分子动理论具有重要意义。
1.1 无定形气体没有固定的形状和体积。
由于气体分子自由运动,并且分子之间的相互作用力较小,所以气体可以充满容器的整个空间。
1.2 无固定体积气体具有可变的体积。
当气体受到外界压力时,其体积会发生变化。
根据波义耳定律,气体的体积与其压力成反比,即当气体受到压缩时,体积减小;当气体受到膨胀时,体积增大。
1.3 可压缩性气体具有可压缩性,即可以通过增加压力使气体体积减小。
这是因为气体分子之间的距离较大,分子之间的相互作用力主要是弱引力力和排斥力,当增加压力时,分子之间的距离变小,体积减小。
1.4 扩散性气体在容器中可以自由移动,具有扩散性。
这是由于气体分子间相互碰撞引起的运动,分子在容器中以高速度运动,相互碰撞并散布到空间的各个角落。
二、分子动理论分子动理论是解释气体性质的重要理论之一。
它认为气体是由大量微小的分子组成,分子之间具有独立运动的能力,并且分子间存在相互碰撞。
以下是关于分子动理论的几个重要观点。
2.1 分子无限小根据分子动理论,分子被认为是无限小的,没有体积,只有质点的性质。
这是因为分子的尺寸相比于一般物质来说非常微小,可忽略不计。
2.2 分子运动快速气体分子具有高速运动的特点。
根据分子动理论,分子在气体状态下的平均速率与温度相关,温度越高,分子的平均速率越快。
2.3 分子间相互碰撞气体分子间存在相互碰撞的现象。
分子动理论认为,气体分子间的相互作用力主要由弱引力力和排斥力组成,当分子碰撞时,它们之间会互相转移动能、动量等。
2.4 动能和温度的关系根据分子动理论,气体分子的动能与温度有直接关系。
当温度升高时,分子动能增加,此时气体分子的平均速率也会增加。
2.5 压力与分子撞击的关系分子动理论解释了气体压力的产生机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子力半经验公式:分子之间相互作用的关系很复杂,严格 的分析还无法做到,只能给出半经验公式
F(r) rs rt (s t)
r 为两个分子的中心距离,、为正常数,s、t为正指数,一般地 s≈12,t≈6,其值由实验确定。
常见的简化的分子相互作用模型:
①钢球模型:
F
, F 0,
和Δh
有关,用Δh去除 Nh
N
得到一个新的关系
Nh
N h
当Δh →0时候,增量变为微分,上式与h无关, 仅是h 的连续函数
lim Nh 1 dN f (h) h0 Nh N dh
1.15kg.m3 , 28 103 kg, n氮 2.47 1019 /cm3
2、分子热运动 观点:分子(或原子)总是处于永不停止的无规运动中 , 温度越 高,运动越剧烈。 实验证据:
①扩散: 由于分子无规则运动而产生的物质迁移;
实例:墨水在水中的扩散;两物质粘贴时间较长时的相互渗透
1摩尔氧 1摩尔氮
每个分子在任意两次碰撞之间所行自由路程的长短
v 1 kT Z 2 d 2n 2 d 2 p
对空气分子 : d ~ 3.5 10-10 m 标准状态下 : Z ~ 6.5 109 s-1 , ~ 6.9 10-8 m
§4.2统计规律与统计平均
分子运动论在研究大量分子组成的系统的热运动性质时发现,每 一个分子的运动一般都是无规则的,有很大的偶然性。但从整体 上却有确定的规律性。物理学上把这种支配大量粒子综合性质和 集体行为的规律称为统计规律性。即统计规律是对大量偶然事件 整体起作用的稳定的规律。
v
Z
1 2 d 2n
推导(如图):
设想一个分子A以平均速率运动 v ,其他气体分子静止不动。
单位时间内分子A走过的曲折圆柱体
体积为 v ,圆柱体的横截面积 叫 碰撞截面 d 2 ,则一个分子单位 时间内与其它分子平均碰撞次数为
Z nv
_
v dA d
d
统计理论计算
Z 2 vn 2 d 2vn
很多物质的分子引力作用半径约为分子直径的2-4倍左右, 超过这一距离,分子间相互作用力已很小,可予忽略。
(2)排斥力
存在证据:对固体、液体的压缩较困难,说明分子之间不仅存 在引力,还存在排斥力。
作用距离:只有两分子相互“接触”、“挤压”时才呈现出 排斥力。可简单认为排斥力作用半径就是两分子刚好“接触” 时两质心间的距离。
1.伽尔顿板实验和统计规律
伽尔顿板
粒子数按空间 位置分布曲线
粒子落入其中一格是一个随机事件,大量粒子在空间的分布服从 统计规律。
概率:在相同条件下重复进行同一试验,在总次数N 足够多的情 况下,出现某一事件的次数为Ni ,则这一事件占总次数的百分比
称为该事件的概率,即
Pi
lim (
N
Ni N
)
Pi 1
氧氮混合气体
②布朗运动:悬浮粒子不停地作无规则的杂乱运动。
代表人物:布朗,英国植物学家。 研究对象:花粉在液体中的表现(1827年)。 研究材料:鲜花粉、300年前的花粉、无机物微粒。 研究结论:温度越高,布朗运动越剧烈;微粒越小,
布朗运动越明显。
这是每隔30秒布朗粒子所处的平面位置的点依次联结后得到的图, 它并不是布朗粒子的运动轨迹。
特征:
①因为吸引力出现在两分子相互分离时,故排斥力作用半径比 吸引力半径小。 ②从液体、固体很难压缩这一点可说明排斥力随分子质心间距 的减小而剧烈地增大。 ③分子力是本质上是分子和原子内的电荷之间相互作用的电磁 力,故它是一种保守力,有分子作用力势能。
(3)分子作用力曲线
两分子相互“接触并且被压缩”时排斥力占优势,相互分离时分 子间吸引力占优势。两分子质心间应存在某一平衡距离r0,在该 距离处分子间相互作用力将达平衡。
石墨的表面原子结构
硅单晶的表面原子结构
量化方法: 阿伏伽德罗常数:1 mol 物质所含的分子(或原子)的数目均相同。
NA 6.0221367(36) 1023 mol 1
分子数密度(n):单位体积内的分子数目
n
பைடு நூலகம்
NA
例: 常温常压下
103 kg.m3, 18 103 kg, n水 3.30 1022 / cm3
排斥力
平衡位置
吸引力
r =r0 时分子力为零,斥力=引力,F=0,分子受力平衡,r0称为 平衡位置; r<r0 时,两分子受到“挤压”过程中产生强斥力,斥力>引力,分
子力表现为斥力, F(r)>0, 且随r 减少而剧烈增大; r>r0 时,斥力 < 引力,分子力表现为吸引力,F(r)<0, 且随r 的增
i
统计平均值: u N1u1 N2u2
Ni
i
2.分布函数与平均值
Niui
i
N
Pi ui
i
研究人口统计规律的一个方法 ①分间隔
身高分布
h h h
Nh
工龄分布
t t t
Nt
资产分布
m m m
Nm
②定义相应物理量的分布函数
以身高分布函数为例
分间隔
h h h
h
概率
Nh N
与h
r r0 r r0
r0
r
②苏则朗(Sutherland)分子力模型
F
F
A
r0 r
6
r r0 r r0
r r0
4.热运动的混乱无序性
混乱与无序是大量分子热运动的基本特征。一个孤立系统,其内 部大量分子热运动的状态,总是趋向于最无序最混乱的状态。
气体分子在运动中常与其他分子碰撞. 气体动理论中常用平均自由程 和 平均碰撞频率 Z 两个概念来描述。
第四章 气体分子动理论
§4.1热运动与热现象的微观理论
1、物质由大数分子组成
观点:宏观物体是由大量不连续的分子(或原子、离子)组成的。
实验: ①气体易被压缩; ②水在40 000 atm 的压强下,体积减为原来的1/3; ③以20 000 atm 压缩钢筒中的油,油可透过筒壁渗出。
石墨和硅单晶材料表面的 STM(扫描隧道显微镜)图像:
3、分子间的吸引力与排斥力 固体、液体保持一定的体积或形状说明分子之间存在某种力的作用。 (1)吸引力
能说明分子间存在吸引力的现象: ① 汽化热; ② 锯断的铅柱加压可黏合; ③ 玻璃熔化可接合; ④ 胶水、浆糊的黏合作用;
结论:分子间存在吸引力,而且只有当分子质心相互接近到某 一距离内,分子间相互吸引力才较显著,把这一距离称为分子 吸引力作用半径。