传热学 第三章 非稳态导热
传热学第三章-非稳态导热-1
t0
t0
t 2
1/h<</
t0
t
t
2
2
/<<1/h
1/h~/
把导热热阻与换热热阻相比可得到一个无因次的数,
称之为毕奥数,即
Bi / h
1/ h
那 么 , 上 述 三 种 情 况 则 分 别 对 应 着 Bi<<1 、 Bi1 和
Bi>>1。
毕奥数是导热分析中的一个重要的无因次准则,它表 征了给定导热系统内的导热热阻与其和环境之间的换 热热阻的对比关系。
这也是正常的第三类边界条件
(b) (c) t t∞
曲线(c)表示平板外环境的换热
热阻 1/ h 远小于平板内的导热 热阻 / , 即 1/ h /
(a)
x
0
x
从曲线上看,物体内部温度变化比较大,而环境与物体
边界几乎无温差,此时可用认为 tw t 。那么,
边界条件就变成了第一类边界条件,即给定物体边界上
(3)表面换热Biblioteka 数很小。3-2-2 温度分布
一个集总参数系统,其体积为V、表面积为A、密度为、 比热为c以及初始温度为t0,突然放入温度为t、换热系 数为h的环境中。
根据能量守恒要求,单位时间物体热力学能的变化量应
该等于物体表面与流体之间的对流换热量
Vc dt d
hA(t
t)
A
引入过余温度: t t
3-1-1 温度分布
一平壁初始温度为t0 ,令其左侧表面的温度突然升 高到t1,右侧与温度为 t0 的空气接触。
首先,物体紧挨高温表面的部分温度上升很快,经 过一定时间后内部区域温度依次变化,最终整体温度分 布保持恒定,当为常数时,最终温度分布为直线。
传热学第3章非稳态导热PPT课件
x x h Bi
2)毕渥数Bi对温度分布的影响
O( / Bi, 0)
2)毕渥数Bi对温度分布的影响
§3.2 集中参数法分析导热问题
当物体内部导热热阻远小于其表面的换热热阻, 也就是物体内部温度分布几乎趋于一致,可以近似 认为物体内部在同一瞬间均处于同一温度下。 此时 Bi h 0
对于任意形状的物体当Bi<0.1, 0.95 物体内部的过余温度与其表面的过m 余温度之比为 0.95。其内部热阻就可忽略,从而采用集中参数 法。
物体的温度随时间的变化关系是一条负 自然指数曲线,或者无因次温度的对数
0
与时间的关系是一条负斜率直线。
e
A cV
e
(V
A
)•(VaA
)2
e Bi •Fo
0
其中V/A具有长度的量纲,称为特征长度。
(2)导热量的计算
cV hA 称为系统的时间常数,记为s。
时间常数是反应物体对流体温度变动响应快慢的指标。它 取决于自身的热容量ρcv及表面换热条件hA。热容量越大, 温度变化得越慢;表面换热条件越好单位时间内传递的热 量越多,则越能使物体自身温度迅速接近流体温度。
突然把两侧介质温度降低 为 t并保持不变;壁表 面与介质之间的表面传热 系数为h。
两侧冷却情况相同、温度 分布对称。中心为原点。
3.3 无限大平壁非稳态导热
导热微分方程:
t 2t
a x2
初始条件: 0, t t 0
边界条件: (第三类)
x 0, t x 0
x
,
- t
x
h(t
t )
对于圆柱体和球体在第三类边界条件下的一维非
稳态导热问题,也可以求得温度分布的分析解。
03传热学第三章非稳态热传导
cV
dt
d
cV (t0
t )(
hA
cV
)
exp(
hA
cV
)
hA0
exp(
hA
cV
)
※0~ 时间内传给流体的总热量:
Q 0 d
0
h
A
0
e
xp(
hA
cV
)d
2021/1/14
0 cV
1
exp
hA
cV
15
(2) 时间常数
令
c
cV
hA
ቤተ መጻሕፍቲ ባይዱ
e c
0
※当 时
0 0
即t t
※当
时
c
与几何参数、物理性 质、换热条件有关
(, ) m ( )
cos(1)
f
( Bi , )
则平板中任意点过余温度比 m 0 m 0
2021/1/14
31
相当于第一 类边界条件
2021/1/14
32
2021/1/14
任意时刻平板 内温度均匀
33
书中的诺谟图仅适用一维平板第一类边界条件下的加热及冷却
过程以及具有恒温介质的第三类边界条件,并且Fo>0.2
Q0
cV (t0 t )
0
τ时刻的平均 过余温度
当Fo>0.2时,正规状况阶段温度场与导热量的计算式可统一表示为:
( , 0
)
A exp(
12 Fo)
f
( 1 )
Q Q0
1
A exp(12Fo)B
其中,A、B、f(μ1η)的表达示见表3-1。
2021/1/14
30
传热学第三章
θ (x,τ ) = θ (x,τ ) ⋅ θm (τ ) ;
θ (x,τ ) = f (Bi,
x )
θ0
θm (τ ) θ0
θm (τ )
δ
传热学 Heat Transfer
3-4 二维及三维非稳态导热的求解
在二维和三维非稳态导热问题中,几种典型几何 形状物体的非稳态导热问题可以利用一维非稳态导 热分析解的组合求得。无限长方柱体、短圆柱体及 短方柱体就是这类典型几何形状的例子。
华北电力大学
∂θ ∂τ
=
a
∂ 2θ ∂x 2
τ = 0,θ = θ0
x = 0,τ > 0,θ = 0
x → ∞,τ > 0,θ = θ0
刘彦丰
传热学 Heat Transfer
三、解的结果
Θ
=
θ θ0
=
t − tw t0 − tw
=
erf
(
式中:
η=
2
x aτ
x 4aτ
)
=
erf
(η
)
erf (η) 称为误差函数 ,查图 3-12和附录17计算。
华北电力大学
刘彦丰
华北电力大学
刘彦丰
传热学 Heat Transfer
矩形截面的无限长方柱体是由两个无限大平壁 垂直相交而成;短圆柱是由一个无限长圆柱和一个 无限大平壁垂直相交而成 ;短方柱体(或称垂直六 面体)是由三个无限大平壁垂直相交而成;
华北电力大学
刘彦丰
传热学 Heat Transfer
对于无限长方柱体
Fo
=
aτ l2
称为傅立叶数
FoV
=
aτ (V / A)2
传热学第三章 非稳态导热
时、物体中最大与最小的过余温度之差小于5%,对于一 般工程计算,此时已经足然特确地可以认为整个物体温度 均匀。按照这样要求,由于l=V/A对圆柱有球分别是半轻 的1/2与1/3、因而如果以l作为Bi数的特征长度,则该Bi数 对平板、国柱与球应该分别小于0.1、0.05和0. 033。
方程中指数的量纲:
hA
W m2K
m2
w1
Vc
kg m3
Jkg K
[
m3
]
J
s
第三章 非稳态导热
9
即与 1 的量纲相同,当 Vc 时,则
hA
hA
1 Vc
此时,
e1 36.8%
0
称
Vc
hA
为时间常数,用 c 表示。
第三章 非稳态导热
10
如果导热体的热容量( Vc )小、换热条件好(h大),
有一直径为 5cm 的钢球,初始温度为 450 ℃,将其突然置 于温度为 30 ℃空气中。设钢球表面与周围环境间的总换热 系数为 24w/(m2 . K),试计算钢球冷却到 300 ℃所需的 时间。已知钢球的 c=0.48kJ/(kg·K ) , ρ =7753kg/m3 , λ =33w/(m. K ).
Fo
l2
a
换热时间 边界热扰动扩散到l 2面积上所需的时间
无量纲 热阻
Fo越大,热扰动就能越深入地传播到物体 内部,因而,物体各点地温度就越接近周
围介质的温度。
无量纲 时间
第三章 非稳态导热
12
对于平板、圆柱、球的一维非稳态第三类边界条件条件下 的导热问题,当按特征长度
l= 、厚度为2 的平板,
l=R、圆柱 l=R.球 定义的Bi数满足
3第三章 非稳态导热
Bi
n
2.一维非稳态导热的分析解
(2)总传热量
设从初始时刻至某一时刻τ所传递的热量为Q,则有:
分离变量积分并代入初始条件得:
hA
=e cV
0
思考:上述结果是对物体被冷却 的情况导出的,如果要用于被加 热的场合,该怎么办?
6.集总参数系统的分析解
hA hV cV A
A2 cV 2
h(V / A) a (V / A)2
BiV FoV
Bi hl l= 物体内部导热热阻 1 h 物体表面对流换热热阻
• 在某厂生产的测温元件说明书上,标明该元件的 时间常数为1s。你怎么看待这个值?
cV
c hA
——根据定义式,时间常数中物性参数ρ、c、V、A可 以看作是常数,但表面传热系数h却是与具体过程 有关的量。
——说明书上的标明的时间常数需要具体分析,不能 盲目相信。
【内容小结】
• 集总参数系统的分析 • 时间常数的导出和意义 • 时间常数对测温系统的指导
一个集总参数系统,其体积
为V、表面积为A、密度为、 比热为c、初始温度为t0,突 然放入温度为tf (设t0> tf )、 对流换热系数为h的环境中,
求系统温度变化。
A h, tf
ΔE
Qc
ρ, c, V, t0
——表面对流换热对其过程有着重要影响,如何处理?
4. 微分方程
-
t n
ht
t
f
集总参数系统内部没有温差, 不能用第三类边界条件。
不断减小,在其它各截面上,其
截面温度开始升高之前通过该截
面的热流量是零,温度开始升高
A
之后,热流量才开始增加。
BC D 3
传热学非稳态导热
第三章非稳态导热Transient Conduction第五讲13.1 非稳态导热的基本概念一、非稳态导热的概念非稳态导热:物体内的各点温度随时间而变化的导热过程。
稳态导热:物体内各点温度随时间而温度不变的导热过程。
对于非稳态导热,物体内各点的热流密度随时间改变不?第五讲2二、应用背景•加热炉、连铸、连轧,加热时间和工件质量•改变材料的力学特性热处理(淬火、正火、回火);•机加工,零件的热应力、热变形;•微电子器件,瞬态、交变工作状态下的寿命、热应力;•热力设备的启动与停机;•表面处理、光盘的读写;•航天器的升空与降落过程;•子弹出膛时的升温过程;•。
第五讲3第五讲4工程上典型温度变化率的数量级第五讲6第五讲7第五讲8第五讲9无限大平板的初始温度为t 0。
τ= 0时刻,其左边温度突然上升为t 1并保持不变,右侧与温度为t 0的空气接触。
平板内温度变化过程?三、非稳态导热过程的特点第五讲10该阶段的温度变化规律是讨论的主要内容11二、非稳态导热问题作集总参数处理的条件•物体的尺寸比较小;•材料的热导率比较大;•表面传热系数比较小。
上述三条均为相对概念,并不能严格说明何时可以采用集总参数法。
那么应该用什么参数来作为判断准则呢?第五讲13第五讲16•Bi →∞导热热阻起决定作用,对流热阻极小,t w →t ∞, 第一类边界条件的瞬态问题•Bi →0 导热热阻极小,内部温度趋于一致•Bi 有限大小,内外热阻都起作用不同Bi数平板内温度变化(初温t 0、环境温度t ∞)第五讲24ρcV /hA 具有时间的量纲,称为时间常数τc.0/0.368θθ=用集总参数法分析时物体过余温度的变化曲线当τ=τc 时,第五讲26M :与物体的几何形状有关的常数平板:M=1圆柱:M=1/2球:M=1/3四、集中参数法的适用范围当Bi V <0.1M时,物体内各点间的过余温度的偏差将小于5%。
五、多集总系统由两个或两个以上子系统构成的系统(如两个接触良好的固体或盛在容器中的液体),集总参数法可以应用于其子系统。
《传热学》第3章_非稳态热传导分析
第3章 非稳态热传导
3.2 零维问题的分析法——集中参数法
定义: 固体内部的导热热阻远小于其表面的换热热阻时,任何时刻 固体内部的温度都趋于一致,以致可以认为整个固体在同一 瞬间均处于同一温度下。(类比质心) 特点: 温度仅是时间τ的一元函数 Bi ,而与空间坐标无关 0 t f (。 ) 应用: 物体导热系数极大;几何尺寸极小;表面传热系数极低。 方法: 忽略物体内部导热热阻的简化方法——集中参数法
p
笛卡尔、圆柱和圆球坐标系下的导热微分方程可以统一表示为 t cP div grad t
初始条件 t x, y, z,0 f x, y, z
t x, y, z,0 t0
(第三类边界条件,n为换热表面外法 t 边界条件 ( n ) w h(t w t f ) t 线,h,tf已知,tw, 未知) n w
由此解得
570 s 0.158 h
17
第3章 非稳态热传导
3.3 典型一维物体非稳态导热的分析解
内容:介绍平板、圆柱与球的一维非稳态导热温度场的分析解。
重点:分析解的应用,了解求解过程,掌握公式中各部分表示的含义
3.3.1 三种几何形状物体的温度场分析解 1. 平板
厚度为2δ的无限大平板, 初始温度为t0,外部温度为t∞, 平板关于中心截面对称,因此 只研究x≥0的半块平板
导热微分方程变为
导热微分方程
零维问题完整数学描述
初始条件
d
hA d Vc
11
第3章 非稳态热传导
导热微分方程求解:
d
从0到τ积分 hA d Vc
0
d
第三章非稳态导热_传热学
tm m tf 9 8= 17c C
m 2 0.9064 exp 1.1347 2 0.22 0.9 0 1.1347 0.9064 0.4224
平壁表面处 x 的过余温度为:
w 2sin 1 cos 1 exp 12 Fo 0 1 sin 1 cos 1
(2)在垂直于热量传递的方向上,每个截面上热流量不相等; (3)温度随时间变化,热流也随时间变化。
3.讨论非稳态导热问题的目的:
(1)在加热和冷却时,物体内部某一点温度达到预定温度 时所需要的时间,以及该时间内物体吸收和放出的热量;
(2)对物体加热或冷却之后,物体内部温度分布以及物体 温度随时间的变化率
1 0
1 d a d
c1 exp a
c1 exp a
2
1 d2 X 2 2 X dx
X c2 cos x c3 sin x
x, X x
第三章 非稳态导热
§3-1 §3-2 §3-3 §3-4 §3-5 非稳态导热的基本概念 无限大平壁的瞬态导热 半无限大物体的瞬态导热 其他形状物体的瞬态导热 周期性非稳态导热(自学)
• • • •
1.加热冷却过程 2.动力机械中的开关车
应用背景
3.地球的气候变化
4.医疗中激光技术(控制温度范围)
x, 2sin 1 x cos 1 exp 12 Fo 0 1 sin 1 cos 1
查表3-1,当Bi=2.5时, 1 1.1347
180 sin 1 sin 1.1347 0.9064
x A sin 0 B cos 0 exp a 2 0
《传热学》第3章_非稳态热传导分析
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。
《传热学》第三章 非稳态导热
令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响
对
进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:
《传热学》第3章-非稳态导热
特殊多维非稳态导热的简易求解方法
在第一类边界条件(初始温度均匀)或第三类边界条件(表面 传热系数h为常数)下的二维或三维的非稳态导热问题,在数学 上已经证明,它们的无量纲过余温度的解等于构成这些物体的 两个或三个物体在同样边界条件下一维非稳态导热问题解的连 乘。
特殊多维非稳态导热的简易求解方法
对于无限长方柱 θ (x, y,τ ) = θ (x,τ ) ⋅ θ (y,τ )
该问题的解可以由3块相应的无限大平板的 解得出。最低温度发生在钢锭的中心,即3 筷无限大平板中心截面的交点上,最高温度 发生在钢锭的顶角,即3块大平板表面的公 共点上。
4
例题3 θ
m/B则θi x0钢==锭hλδ(1θ中=m心3/ 4θ温840×0度).05x.2⋅5(θ=
2.14
m/θ 0
)
y
⋅ (θ
无限大平板的非稳态导热
当Fo ≥ 0.2时,可取
θ (x,τ )
θ0
=
β1
2 sin β1 + sin β1 cos β1
cos
β
1
x δ
e − β12 ⋅Fo
只与Bi、x/δ有关, 与时间无关
lnθ
=
−mτ
+ lnθ 0
β1
2sin β1 + sinτ β1 cos β1
cos
= 0.36
短圆柱的中心温度为
查图3-6得 θ
再讨论直径为
m2R/θ=600=0m0m.8的无θ限m长/ θ圆0柱=:0.13
×
0.8
=
0.104
Bi = hR = 232 × 0.3 = 1.72 λ 40.5
tm = 0.104θ0 + t∞ 查附=2图0.11得04θ×m(3/θ00−=103.0103) +1300
《传热学》第3章_非稳态热传导
0
hAexp
hA
cV
d
t0
t
cV
1
exp
hA
cV
2. 时间常数
导热量
过余温度随时间呈指数曲线关系,即:开始温度变化快,后来变化较慢
0
t t t0 t
exp
hA
Vc
cV /hA
热扰动就能越深入地传播到物体内部。
14
第3章 非稳态热传导
3.2.3 集中参数法的适用范围及应用举例
毕渥数越小,越适合应用集中参数法,小到什么程度?
如果特征长度
l ,
l R,
厚度为2的平板
圆柱
那么Bi hl
0.1最大最小
l R, 圆球
过余温度之差小于5%。
如果特征长度lc
第3章 非稳态热传导
3-1 非稳态导热基本概念 3-2 零维问题的分析法——集中参数法 3-3 典型一维非稳态导热的分析解 3-4 半无限大物体的非稳态导热 3-5 简单几何形状物体多维非稳态导热的分析解
1
第3章 非稳态热传导
3.1 非稳态导热的基本概念
定义:物体的温度随时间而变化的导热过程称为非稳态导热 分类:物体温度随时间推移逐渐趋近于恒定的值(金属热处理)
3
第3章 非稳态热传导
非稳态导热问题定性分析:
左金属、右保温,初始t0,左边升高至t1, 温度变化情况。
第一阶段:P-B-L
第二阶段:P-D-L
第三阶段:P-E-L
第四阶段:P-H-M (HM斜率大于PH斜率)
传热学-第三章 非稳态导热
[J ]
当物体被加热时(t<t∞),将上两式中的θ0=t0-t∞ 改为θ0=t∞-t0,其余计算式相同(为什么?)
4. BiV·FoV的物理意义
Bi
=
hl
λ
=
l
λ=
物体内部导热热阻
1 物体表面对流换热热阻
h
无量纲 热阻
BiV数越小,计算结果越接近实际情况。比如热电
偶测温,其BiV数只有0.001。
=
h ⋅ 4(l + d
cp dl
/ 2)
=
140× 4× (0.3 + 0.05 / 2)
0.48×103 × 7753× 0.05× 0.3
=
0.326
×10−2
s -1
θ θ0
=
t − t∞ t0 − t∞
= exp⎜⎜⎝⎛ −
hA
ρcV
⋅τ ⎟⎟⎠⎞
⇓
( ) 800 −1200 = exp − 0.326×10−2 ×τ
解:① 建立非稳态导热数学模型
方法一:椐非稳态有内热源的导热微分方程:
∂t
∂τ
=
λ ⎜⎛ ∂2t ρc ⎜⎝ ∂x 2
+
∂2t ∂y 2
+
∂2t ∂z 2
⎟⎟⎠⎞ +
Φ&
ρc
∵ 物体内部导热热阻很小,忽略不计。
∴ 物体温度在同一瞬间各点温度基本相等,即t仅是τ
的一元函数,而与坐标x、y、z无关,即:
例 一 直 径 为 5cm , 长 为 30cm 的 钢 圆 柱 体 , 初 始 温 度 为 30℃ , 将 其 放 入 炉 温 为 1200℃ 的 加 热 炉 中 加 热 , 升 温 到 800℃时方可取出。已知钢圆柱体与烟气间的表面传热系数 为 140w/(m2K) , 钢 球 的 比 热 c=0.48kJ/(kgK) , 密 度 ρ=7753kg/m3,导热系数λ=33w/(mK)。问需要多少时间才 能达到加热要求? 解:首先检验是否可以采用集总参数法。为此计算Biv数:
传热学-第三章非稳态导热问题分析解
单位时间 0, t t0
物体内能 的减少(或 增加)
Φ hAt t
Φ cV dt d
当物体被冷却时(t 0 >t),由能量守恒可
知
hA(t t ) -Vc dt
d
令: t t — 过余温度,则有
hA
-Vc
d d
( 0) t0 t 0
控制方程 初始条件
方程式改写为:d hA d 分离变量法 Vc
由于表面对流换热热阻与导热热阻相对大小的不同, 平板中温度场的变化会出现以下三种情形:
(1) 1/ h / Bi
(2) / 1/ h Bi 0
(3) δ/ λ 与1/h 的数值比较接近 0 Bi
Bi 准则对温度分布的影响
1/ h /
/ 1/ h δ/ λ 与1/h的数值接近
是一种理想化模型; 物体内导热热阻忽略不计; 物体内温度梯度忽略不计,认为整个物体具有相
同的温度;
通过表面传递的热量立即使整个物体的温度同时 发生变化; 把一个有分布热容的物体看成是一个集中热容的物体;
只考虑与环境间的换热不考虑物体内的导热。
问题的提出:
2 温度分布 如图所示,任意形状的物体,参数均为已知。
0.049 0.05 可采用集总参数法。
F cp V
cp
dl 2d 2 d 2l 4
4
cp
4(l d dl
2)
140 4 (0.3 0.025) 480 7753 0.05 0.3
0.326102
t tf 800 1200 0.342
0 t0 tf 30 1200
由式(3-1)得:
???
§3-2 集总参数法
基本思想:对任意形状的物体,忽略物体内部的导热 热阻,认为物体温度均匀一致。
传热学课件-第3章-非稳态导热分析解法精选全文
是与物体几何形状 有关的无量纲常数
对厚为2δ的 无限大平板
M 1
对半径为R的无 限长圆柱
M
1 2
对半径为R的 球
M 1 3
V A
AA
V R2 R
A 2R 2
V A
4 R3
3
4R 2
R 3
Biv Bi
Biv
Bi 2
Biv
Bi 3
对于一个复杂形体的形状修正系数时,可以将
修正系数M取为1/3,即 BiV 0.0333
由此可见,上述两个热阻的 相对大小对于物体中非稳态导热 的温度场的变化具有重要影响。 为此,我们引入表征这两个热阻 比值的无量纲数毕渥数。
Bi h 1h
1)毕渥数的定义:
Bi h 1h
毕渥数属特征数(准则数)。
2)Bi 物理意义: 固体内部单位导热面积上的导 热热阻与单位表面积上的换热热阻之比。Bi的大小
0
1
τ/τs
工程上认为= 4τc时导热体已达到热平衡状态
3 Bi F物o 理意义
hl l
Bi =
物体内部导热热阻
1 h 物体表面对流换热热阻
换热时间
Fo l2 a 边界热扰动扩散到l2面积上所需的时间
无量纲 热阻
无量纲 时间
Fo越大,热扰动就能越深入地传播到物体内部物体, 各点地温度就越接近周围介质的温度。
t(x, ) t — 过余温度
2
a
x2
0, t -t
0
0
x 0, 0
x , - x h x
采用分离变量法求解:
(, 0
)
n 1
Cn
exp(n2Fo) cos(n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
800 C 1000 C e 0.019FoV 20 C 1000 C
可解得 Fov=83.6
83.6R 3
R 3
a
2
83.6
2
c p
83.6 0.05m 3m 1968s 32.8 min 43.2W/(m K) 7790kg/m 3 470J/(kg K)
=e 1 0.386 0
0.386 0 1 τ /τ
r
τ=4τr,
=e 4.6 0.01 工程上认为 =4τr时导热 0 体已达到热平衡状态
College of Energy & Power Engineering
瞬态热流量:
Φ ( ) hA(t ( ) t ) hA hA 0 e
College of Energy & Power Engineering
反映了系统处于一定的环境中所表现出来的传热动 态特征,与其几何形状、密度及比热有关,还与环 境的换热情况相关。可见,同一物质不同的形状其 时间常数不同,同一物体在不同的环境下时间常数 也是不相同。 θ /θ 0 当物体冷却或加热过程所 1 经历的时间等于其时间常 数时,即 τ=τr,
College of Energy & Power Engineering
一、集总参数法分析
一个集总参数系统,其体积 为V、表面积为A、密度为、 比热为c以及初始温度为t0, 突然放入温度为t、换热系 数为h的环境中。
热平衡关系为: 内热能随时间的变化率ΔΕ=通过表面与外界交 换的热流量Qc
A Qc
College of Energy & Power Engineering
集总参数法的判定依据
如何去判定一个任意的系统是集总参数系统 ?
h (V ) A a (V )2 A
e 0
尺寸。
hA cV
e
e
BiV FoV
V/A具有长度的因次,称为集总参数系统的特征
BiV 0.1M 为判定系统是否为集总参数系统 , M为形状修正系数。
物体内部最大温差及其所产生的热应力和热变 形是否会造成安全问题。
College of Energy & Power Engineering
通过上面的学习,我们知道非稳态导热过程是 在外界流体表面传热和物体内部导热下进行的,事
实上外界流体表面传热与内部导热进行时的相对强
弱程度对物体内部温度随时间变化影响非常大。有
3.1 非稳态导热的基本概念 3.1.1 定义
物体的温度随时间而变化的导热过程称非稳 态导热,它的温度场可表示为:
t f x、y、z、
3.1.2 分类
周期性非稳态导热: 物体的温度随时间而作周期 性的变化 瞬态非稳态导热: 物体的温度随时间的推移逐 渐趋近于恒定的值
College of Energy & Power Engineering
解: 首先判断能否用集总参数法求解:
毕渥数为
BiV hR 3 50W/(m 2 K) 0.05m 3 0.1 0.019 43.3W/nergy & Power Engineering
可以用集总参数法求解。
t t e Bi Fo 0 t0 t
两种极端情况之间。
College of Energy & Power Engineering
3.1.6 求解方法
解析解法:
建立导热微分方程和定解条件求 出温度分布 一种近似解法,它适用于 Bi 0 的情形 极限情形
集总参数法
工程判据:
Bi 0.1
College of Energy & Power Engineering
ΔΕ
ρ , c, V, t0
h, t∞
College of Energy & Power Engineering
当物体被冷却时(t >t),由能量守恒可知
令: t t — 过余温度,则有
控制方程 hA - Vc d d ( 0) t t 初始条件 0 0
Biv 和 Fov 物理意义
l 物体内部导热热阻 Bi = 1 h 物体表面对流换热热阻 hl
换热时间 Fo 2 l a 边界热扰动扩散到l 2面积上所需的时间
无量纲 热阻
Fo越大,热扰动就能越深入地传播到物 体内部,因而,物体各点地温度就越接 近周围介质的温度。
无量纲 时间
3.2 集总参数法 3.1.1 定义
忽略内部的导热热阻,近似认为这个物体内 的温度分布与空间无关,仅随时间发生变化,这 样便可以用物体内任一点的温度表示整个物体的 温度,同时也把质量热容量也集中到一点,这种 研究非稳态导热的方法,人们称之为集总参数法。 当 Bi 0.1 时,采用集总参数法进行简化计算 时,其误差不会大于5%,所以只要 Bi 0.1,便 可以大胆的去用这种方法。
了热阻的概念,我们会想到这两个过程的相对强弱
会反映在外部对流换热热阻和内部导热热阻之比上,
基于此,人们定义了Bi数。
College of Energy & Power Engineering
3.1.5
Bi 数
定义:
Bi数是物体内部导热热阻与外部对流换热热 阻之比,即:
h le Bi 1
h(V A)
a Fov (V A) 2
物体中的温度 呈指数分布
Fov
是傅立叶数
hA Vc
e 0
e
Biv Fov
方程中指数的量纲:
W 2 2 m hA w 1 m K Vc J s kg Jkg 3 3 K [m ] m
hA Vc
W
总热量:
导热体在时间 0~ 内传给流体的总热量:
Q 0 Φ ( )d Vc 0 (1 e
当物体被加热时(t<t),计算式相同(为什么?)
hA Vc
) J
College of Energy & Power Engineering
College of Energy & Power Engineering
即与
1
的量纲相同,当
Vc
hA
时,则
hA 1 Vc
此时, e 1 36.8% 0
Vc
上式表明:当传热时间等于 hA 时,物体 的过余温度已经达到了初始过余温度的36.8%。 Vc 称 为时间常数,用 r 表示。
College of Energy & Power Engineering
传
热
Heat Transfer
主讲教师:潘振华
Email: lstpzh@
学
College of Energy & Power Engineering
学习内容
第一章 绪
论
第二章 导热基本定律和稳态导热
第三章 非稳态导热
dt hA(t t ) Vc d
方程式改写为:
d
hA d Vc
College of Energy & Power Engineering
d
hA d Vc
积分
hA 0 d Vc
0
d
hA ln 0 Vc
第四章 对流换热原理 第五章 单相流体对流换热特征数关联式 第六章 热辐射基本定律 第七章 辐射换热计算
College of Energy & Power Engineering
第三章
3.1 3.2 3.3
非稳态导热
非稳态导热的基本概念 集总参数法 一维非稳态导热的分析解
College of Energy & Power Engineering
举例:
内燃机活塞中的温度每分钟波动几百次; 回转式空气预热器蓄热元件温度的变化 ; 建筑物外墙和屋顶温度的变化; 钢件在炉内加热,铸件在空气或水中的淬火冷 却;
锅炉等动力设备的启动、停机过程 。
College of Energy & Power Engineering
由上可知,非稳态导热过程中导热体内部温 度逐渐升高,热传递区域逐渐扩大,整个过程归 纳起来,可划为三个阶段: 初始阶段:指 0 ~ 3 时间段,物体内部温度变 化受初始温度分布影响; 正规阶段:指 3 以后至新稳定之前的时间段 ; 稳定阶段:指经历无限长时间内,导热体内、 外达到新的稳定状态。
College of Energy & Power Engineering
(2) 1/ h /
/
这时,平板内部导热热阻 几乎可以忽略, 因而任一时刻平板中各点的温度接近均匀,并随 t 着时间的推移,整体地下降,逐渐趋近于 。
(3)
/ 与 1/ h 的数值比较接近
这时,平板中不同时刻的温度分布介于上述
h
式中:
le
V le 称为定型尺寸 ; A
对于无限大平壁:
le
2
College of Energy & Power Engineering
物理意义:
反映了物体内部温度分布的特征:
不同Bi数下平壁内部温度变化情况
College of Energy & Power Engineering
(1) / 1/ h 由于表面对流换热热阻 1/ h 几乎可以忽略,因而 过程一开始平板的表面温度就被冷却到 t 。并随 着时间的推移,整体地下降,逐渐趋近于 t 。