高三数学(文科)考试答案
【高三数学试题】高三数学试题2(文科)及参考答案
8题图高三数学试题2(文科)参考公式: 棱锥的体积公式13V Sh=,其中S 是底面面积,h 是高. 一、选择题:1.设全集{|15}U x Z x =∈-≤≤,{1,2,5}A =,}41|{<<-∈=x N x B ,则U BC A =A .{}3B .{}0,3C .{}0,4D .{}0,3,42.已知i 为虚数单位,则复数2(1)(1)i i -+等于 A .22i -+ B .22i -- C .22i + D .22i - 3.若||1,||2,a b c a b ===+且c a ⊥,则向量a 与b 的夹角为A. 030B. 060C. 0120D. 0150 4.到定点(0,)(p 其中0)p >的距离等于到定直线y p =-的距离的轨迹方程为A. px y 22=B. py x 22=C.px y 42= D.py x 42= 5.已知下列四个命题:① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直; ④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直; 其中真命题的序号是A .①②B .②③C .②④D .③④6.若函数2()f x x bx c =++的图象的对称轴为2x =,则函数()f x 的导函数()f x '的图象不经过 A .第一象限 B .第二象限 C .第三象限 D .第四象限7. 下列说法错误的是A. 命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”B. “1x >”是“0x >”的充分不必要条件C. 若p q ∨为真命题,则p 、q 均为真命题D. 若命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥”. 8.右图是一个几何体的三视图,根据图中的数据,可得该几何体的表面积是A. 32πB. 16πC. 12πD. 8π第16题图第11题9.在△ABC 中,角C B A ,,的对边分别为c b a ,,,已知0,453A aB π===则b =A. 2B. 3C. D. 410.若干个球中含有至少3个红球和3个黑球,从中摸出3个球,其中含有红球的概率为0.5,含有黑球的概率为0.8,问摸到的3个球中既有红球也有黑球的概率为A. 0.2B. 0.3C. 0.4D. 0.5 二、填空题:11. 一个算法的程序框图如右图所示,则该程序输出的结果为_________.12.设等比数列{}n a 的公比21=q ,前n 项和为n S ,则 44a S = .13.若点Q P ,分别是圆22221,(3)(2)1x y x y +=-++= 上的动点,则PQ的最大值为14.不等式组260300x y x y x +-≤⎧⎪+-≥⎨⎪≥⎩所表示的平面区域的面积为 .三、解答题: 15.已知函数()2()sin cos cos 2f x x x x =++,x R∈.(Ⅰ) 求()f x 的最小正周期以及()f x 的值域; (Ⅱ) 函数()21g x x =+的图象经过怎样的变换得到函数()x f 的图象?16.从某学校高三年级800名学生中 随机抽取50名测量身高,据测量被 抽取的学生的身高全部介于155cm 和 195cm 之间,将测量结果按如下方式 分成八组:第一组[)155,160.第二组[)160,165;…第八组[]190,195,1C1B1A1DCBADFE第17题图右图是按上述分组方法得到的条形图. (Ⅰ) 根据已知条件填写下面表格:组别 1 2 3 4 5 6 7 8 样本数 (Ⅱ) 估计这所学校高三年级800名学生中身高在180cm 以上(含180cm )的人数;(Ⅲ) 在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少? 17.在棱长为a 的正方体1111ABCD A B C D -中,E 是线段11A C 的中点,AC BD F =.(Ⅰ) 求证:CE ⊥BD ;(Ⅱ) 求证:CE ∥平面1A BD;21世纪教育网 (Ⅲ) 求三棱锥1D A BC-的体积.18. 已知{}n a 是等比数列,12a =,318a =;{}n b 是等差数列,12b =,1234b b b b +++=12320a a a ++>.(Ⅰ) 求数列{}n a 的前n 项和nS 的公式;(Ⅱ) 求数列{}n b 的通项公式;(Ⅲ) 设14732n n P b b b b -=++++,10121428n n Q b b b b +=++++,其中1,2,3,n =,试比较nP 与nQ 的大小,并证明你的结论.19.已知点P 是函数y =.(Ⅰ) 是否存在两个定点,使P 到它们的距离之和为常数,若存在,求出这两个定点的坐标; (Ⅱ) 设点Q 的坐标为()0,1-,求PQ 最大值.20.已知定义在()0,+∞的函数()ln ()af x x a R x =-∈,当1=a 时,()f x 在区间()2,1上有一个零点;现给出下面参考数据:x1 1.25 1.375 1.5 1.75 ()f x 1- 0.58-0.44-0.26- 0.012-x1.76573 1.78125 1.81251.875 2 ()f x 0.0020.020.0430.0950.193请你回答下列问题(Ⅰ)求出函数x x x f 1ln )(-=在区间(1,2)上的零点(要求误差不超过0.1);(Ⅱ)若方程0)(=x f 恰有2个不同的实数解,求实数a 的取值范围.高三数学试题2(文科)参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案BDCDDBCCCB二、填空题11.45 12.15 1314.92三、解答题: 15.解: ()sin 2cos 21)14f x x x x π=++=++(Ⅰ)函数()f x 的最小正周期22T ππ==值域为[1;(Ⅱ)函数()21g x x =+图象向左平移8π个单位得到函数()x f 的图象16.(本题满分12分)解: (Ⅰ)由条形图得第七组频率为:1(0.0420.0820.220.3)0.06,0.06503-⨯+⨯+⨯+=⨯=∴第七组的人数为3人组别 1 2 3 4 5 6 7 8 样本中人数 2 4 10 10 15 4 3 2 (Ⅱ)由条形图得前五组频率为 (0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三组频率为1-0.82=0.18估计这所学校高三年级身高在180cm 以上(含180cm )的人数800×0.18=144(人)(Ⅲ)第二组四人记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组三人记为1、2、3, 其中1、2为男生,3为女生,基本事件列表如下:a b c d 1 1a 1b 1c 1d 2 2a 2b 2c 2d 3 3a 3b 3c 3d所以基本事件有12个恰为一男一女的事件有1b ,1c ,1d ,2b ,2c ,2d ,3a ;共7个1C1B1A1DCBADFE因此实验小组中,恰为一男一女的概率是712.17.(本题满分14分)解: (Ⅰ)证明:根据正方体的性质BD AC ⊥, 因为1AA ABCD BD ABCD⊥⊂平面,平面,所以1BD AA ⊥,又1ACAA A=所以11BD ACC A ⊥平面,11CE ACC A ⊂平面,所以CE ⊥BD ;(Ⅱ)证明:连接1A F,因为111111////AA BB CC AA BB CC ==,,所以11ACC A 为平行四边形,因此1111//AC AC AC AC=,由于E 是线段11A C 的中点,所以1//CE FA ,因为1FA ⊂面1A BD,CE ⊄平面1A BD,所以CE ∥平面1A BD(Ⅲ)1131136D A BC A BCDBCD a V V S A A --∆==⋅⋅=18.(本题满分14分)解:(Ⅰ)设{}n a 的公比为q ,由231a a q =得2319a q a ==,3q =± 当3q =-时,12326181420a a a ++=-+=<,这与12320a a a ++>矛盾,故舍去;当3q =时,12326182620a a a ++=++=>,故符合题意.从而数列{}n a 的前n 项和()2133113n n n S -==--(Ⅱ)设数列{}n b 的公差为d ,由123426b b b b +++=,得14626b d +=,又12b =解得3d =,所以31n b n =-;(Ⅲ)14732,,,,n b b b b -组成以3d 为公差的等差数列,所以()211953222n n n P nb d n n -=+⋅=-10121428,,,,n b b b b +组成以2d 为公差的等差数列,1029b =,所以()210123262n n n Q nb d n n -=+⋅=+,22953()(326)(19)222n n P Q n n n n n n -=--+=-所以对于任意正整数n ,当20n ≥时,n nP Q >; 当19n =时,n nP Q =; 当18n ≤时,n nP Q <.19.(本题满分14分)解:(Ⅰ)由y =221(0)4x y y +=≥所以P是半个椭圆上的动点,这个椭圆的焦点坐标为())根据椭圆的定义P 到这两个焦点的距离之和为4,所以存在两个定点使P 到它们的距离之和为常数,这两个定点的坐标分别为());(Ⅱ)设P 点坐标为(),x y ,则2PQ =()221x y ++因为y =2244x y =-,2PQ =()221x y ++=2325y y -++ 当[]10,13y =∈时,2PQ 取最大值163,PQ20.(本题满分14分)解:(Ⅰ)假设x x x f 1ln )(-=在区间()2,1上的零点为0x ,因为(1)10,(2)0.1930,(1.5)0.260f f f =-<=>=-<,所以0x(1.5,2)∈ 因为(1.75)0.0120f =-<,所以0x(1.75,2)∈, 因为(1.875)0.0950f =>,所以0x(1.75,1.875)∈因为1.875 1.750.06250.12-=<,所以可以取0 1.8125x =函数x x x f 1ln )(-=在区间()2,1上的零点近似值是:1.8125(说明:由于(1.8125)0.0430f =>,所以区间(1.75,1.85)内的数均可以是合乎要求的解)(Ⅱ)∵21()a f x x x '=+, ∴当0a ≥时,()0(0,)f x x '>∈+∞,即),0(ln )(+∞+=在x ax x f 为单调增函数,故),0(0)(+∞=在x f 不可能有两实根, ∴0a <,令()0f x '=,解得x a =-当0x a <<-时,()0,()f x f x '<递减,当x a >-时,()0()f x f x '>,递增,∴()f x 在x a =-处取到极小值1)ln(+-a 又当0()x f x →→+∞,,当,()x f x →+∞→+∞要使0x >时,()f x 与x 轴有两个交点当且仅当ln()10a -+<.解得01<<-a e ,故实数a 的取值范围⎪⎭⎫ ⎝⎛-0,1e。
高三文科数学试题带答案
2020届湖北省部分重点高中高三11月期中联考数学(文科)试题命题学校:钟祥一中命题人:苏军阳审题人:董若冰王成钧本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2z=1-i(i 为虚数单位),则复数z 的虚部为()A .-1B .1C .iD .i-2.已知集合{}M=1,0,1-,N=cos ,M 2π⎧⎫=∈⎨⎬⎩⎭x y y x ,则集合M N=⋂()A .{}101,,-B .{}01,-C .{}01,D .{}11,-3.已知122211222,(),()a b c --===-,则()A.a b c <<B.a c b<< C.c b a<< D.c a b<<4.已知等比数列{}n a 中,262,8a a ==,则345a a a =()A .128B .64C .32D .165.若变量,x y 满足约束条件02202-≤⎧⎪-+≥⎨⎪≥-⎩x y x y x ,则目标函数z x y =+的最小值为()A .6-B .2-C .4-D .46.已知命题:p 若∀∈x R ,21+>x x ;命题:q 存在,αβ,使得sin()sin sin αβαβ+=-,则下列命题为真命题的是()A .()p q ∧⌝B .()()p q ⌝∧⌝C .p q∧D .()p q⌝∧7.已知平行四边形ABCD ,54(,)AB = ,12(,)BC = ,则BD =()A .24(,)--B .42(,)--C .24(,)D .42(,)8.为了得到函数sin(2)4π=-y x 的图象,可以将函数cos 2=y x 的图象()A .向右平移38π个单位B .向左平移38π个单位C .向右平移34π个单位D .向左平移34π个单位9.已知函数()f x 的部分图象如图所示,则()f x 的解析式可以是()A .()2sin 2=x f x x B .()2cos 2=xf x x C .()2cos 2=xf x xD .()cos 2=x f x x 10.已知双曲线()222210,0x y a b a b-=>>的两条渐近线分别为12,l l ,经过右焦点F 垂直于1l 的直线分别交12,l l 于,A B 两点.若FA AB =,则该双曲线的离心率为()A .2B .3C .5D .5211.已知,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且222334a b c ab +-=,则下列不等式一定成立的是()A .sin cos ≤A BB .sin sin ≤A BC .cos sin ≤A BD .cos cos ≤A B12.已知函数{32410,()log ,x x x x f x x -+≤=>,则[]1()y f f x =-的零点个数为()A.7B.8C.10D.9二、填空题:本题共4小题,每小题5分,共20分.13.若直线210x y -+=与直线410ax y +-=平行,则a 的值为__________..14.已知抛物线2:4=M y x ,过焦点的直线l 交抛物线M 于,A B 两点,且12AB =,则弦AB 的中点到抛物线M 的准线的距离为__________.15.已知圆224210:C x y x y +--+=,直线340:l x y k -+=,若圆C 上有且仅有两点到直线l 的距离为1,则实数k 的取值范围为_________.16.已知定义在R 上的连续函数()f x 满足2()()cos f x f x x +-=-,且0x ≥时,()sin f x x '<恒成立,则不等式33()()cos()f x f x x ππ--≤-+的解集为__________.三、解答题:本题共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)已知n S 是正项等差数列{}n a 的前n 项和,且满足241()n n S a =+.(Ⅰ)求数列{}n a 通项公式;(Ⅱ)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.(本小题满分12分)已知直角梯形ABCP ,AB AP ⊥,//AP BC ,2222CP AB BC ===,D 是AP 的中点。
高三期末文科数学试题及答案
高三期末文科数学试题及答案数学试卷(文史类) 202X.1(考试时间120分钟满分150分)本试卷分为挑选题(共40分)和非挑选题(共110分)两部分第一部分(挑选题共40分)一、挑选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A{1,0,1},B{x1x1},则AIB=A.{0,1}B.{1,0} C.{0} D.{1,0,1}2. 下列函数中,既是奇函数又存在零点的是A.f(x) 3. 实行如图所示的程序框图,则输出的i值为A.3 B.4 C.5 D.6第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果以下面的频率散布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 B.f(x) 1 C.f(x)ex D.f(x)sinx x1A.30辆B.300辆C.170辆 D.1700辆频率 km/h)第 4题图5. 已知m,n表示两条不同的直线,,表示两个不同的平面,且m,n,则下列说法正确的是A.若//,则m//n B.若m,则C.若m//,则// D.若,则m n6.设斜率为2的直线l过抛物线y ax(a0)的焦点F,且与y轴交于点A,若OAF(O为坐标原点)的面积为4,则抛物线方程为A.y24x B. y24x C. y28x D.y28x7. 已知A,B为圆C:(x m)(y n)9(m,n R)上两个不同的点(C为圆心),且满足|CA CB|,则AB 222A. 23 B. C. 2 D. 48. 设函数f(x)的定义域为D,如果存在正实数m,使得对任意x D,当x m D时,都有f(x m)f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x0时,f(x)x a a(a R),若f(x)为R上的“20型增函数”,则实数a的取值范畴是A. a0 B.a20 C. a10 D. a5第二部分(非挑选题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.运算:i(1i) (i为虚数单位).y210. 双曲线x1的渐近线方程为3111. 在ABC中,若BC1,AC2,cosC,则AB sinA. 422xy0112.已知正数x,y满足束缚条件,则z()2x y的最小值为. 2x3y5013.某四棱锥的三视图如图所示,则该四棱锥的体积是.俯视图侧视图第13题图14. 在ABC中,AB AC,D为线段AC的中点,若BD的长为定值l,则ABC 面积的值为(用l表示).三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明进程.15. (本小题满分13分)已知数列{an}是等差数列,数列{bn}是各项均为正数的等比数列,且a1b13,a2b214,a3a4a5b3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn an bn,n N*,求数列{cn}的前n项和.16. (本小题满分13分)已知函数f(x)cos2xxcosx a的图象过点(,1).(Ⅰ)求实数a的值及函数f(x)的最小正周期;(Ⅱ)求函数f(x)在[0,]上的最小值. 617. (本小题满分13分)某中学从高一年级、高二年级、高三年级各选1名男同学和1名女同学,组成社区服务小组.现从这个社区服务小组的6名同学中随机选取2名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的2人都是女同学的概率;(Ⅱ)设“选出的2人来自不同年级且是1名男同学和1名女同学”为事件N,求事件N产生的概率.18. (本小题满分14分)如图,在四棱锥P ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA AD,且平面PAD平面ABCD,试证明AF平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点 AM,使得EM平面PCD?(直接给出结论,不需要说明理由)19. (本小题满分13分)k2x,k R. x(Ⅰ)当k1时,求曲线y f(x)在点(1,f(1))处的切线方程;(Ⅱ)当k e时,试判定函数f(x)是否存在零点,并说明理由;(Ⅲ)求函数f(x)的单调区间. 已知函数f(x)(2k1)lnx20. (本小题满分14分)已知圆O:x y1的切线l与椭圆C:x3y4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA OB;(Ⅲ)求OAB面积的值.2222北京市朝阳区2015-202X学年度第一学期期末高三年级统一考试数学答案(文史类) 202X.1一、挑选题:(满分40分)4二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ)设等差数列an的公差为d,等比数列bn的公比为q,且q0.依题意有,a1d b1q14, 23(a3d)bq.11由a1b13,又q0,解得q3, d 2.所以an a1(n1)d32(n1)2n1,即an2n1,n N.bn b1qn133n13n,n N. ………………………………………7分(Ⅱ)由于cn an bn2n13n,所以前n项和Sn(a1a2an)(b1b2bn)(352n1)(31323n)n(32n1)3(13n) 2133 n(n2)(3n1). 2所以前n项和Sn n(n2)16. (本小题满分13分)解:(Ⅰ)由f(x)cos2xxcosx a3n(31),n N*.………………………………13分 21cos2x a25sin(2x)61 a. 2611所以f()sin(2)a 1.解得a.66622函数f(x)的最小正周期为. …………………………………………………………7分由于函数f(x)的图象过点(,1),(Ⅱ)由于0x,所以2x. 2则sin(2x).1所以当2x,即x时,函数f(x)在[0,]上的最小值为. ……………13分2217.(本小题满分13分)解:从高一年级、高二年级、高三年级选出的男同学分别记为A,B,C,女同学分别记为X,Y,Z.从6名同学中随机选出2人参加活动的所有基本事件为:{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z}, {C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15个.……………4分(Ⅰ)设“选出的2人都是女同学”为事件M,则事件M包含的基本事件有{X,Y},{X,Z},{Y,Z},共3个,所以,事件M产生的概率 P(M)(Ⅱ)事件N包含的基本事件有{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6个,所以,事件N产生的概率P(N)31.……………………………………8分15562.……………………………………13分 15518. (本小题满分14分)(Ⅰ)证明:由于底面ABCD是正方形,所以AB∥CD.又由于AB平面PCD,CD平面PCD,所以AB∥平面PCD.又由于A,B,E,F四点共面,且平面ABEF平面PCD EF,所以AB∥EF.……………………5分(Ⅱ)在正方形ABCD中,CD AD.6第6 / 10页又由于平面PAD平面ABCD,且平面PAD平面ABCD AD,所以CD平面PAD.又AF平面PAD 所以CD AF.由(Ⅰ)可知AB∥EF,又由于AB∥CD,所以CD∥EF.由点E是棱PC中点,所以点F是棱PD中点.在△PAD中,由于PA AD,所以AF PD.又由于PD CD D,所以AF平面PCD........................................11分(Ⅲ)不存在. (14)分19. (本小题满分13分)解:函数f(x)的定义域:x(0,).2k1k2x2(2k1)x k(x k)(2x1)f(x)22 . 22xxxx12x. x(x1)(2x1)f(x). 2x(Ⅰ)当k1时,f(x)lnx有f(1)ln1123,即切点(1,3),k f(1)(11)(21) 2. 21所以曲线y f(x)在点(1,f(1))处切线方程是y32(x1),即y2x 1.………………………………………………………………………4分(Ⅱ)若k e,f(x)(2e1)lnx f(x)e2x.x(x e)(2x1).x2令f(x)0,得x1e(舍),x2 1. 7第7 / 10页11e1则f(x)min f()(2e1)ln22(1ln2)e ln210.22122所以函数f(x)不存在零点. ………………………………………………………8分(x k)(2x1).x2当k0,即k0时,(Ⅲ) f(x)当0k11,即k0时,当k,即k时, 22 当k11,即k时,228第8 / 10页综上,当k0时,f(x)的单调增区间是(,);减区间是(0,).1212111k0时,f(x)的单调增区间是(0,k),(,);减区间是(k,). 2221当k时,f(x)的单调增区间是(0,);211当k时,f(x)的单调增区间是(0,),(k,);221减区间是(,k). ……………………………13分2当20. (本小题满分14分)2解:(Ⅰ)由题意可知a4,b248222,所以c a b. 33所以e c.所以椭圆C的离心率为…………………………3分a33(Ⅱ)若切线l的斜率不存在,则l:x1.x23y21中令x1得y1.在44不妨设A(1,1),B(1,1),则OA OB110.所以OA OB.同理,当l:x1时,也有OA OB.若切线l的斜率存在,设l:y kx m1,即k21m2.由y kx m222,得(3k1)x6kmx3m40.明显0. 22x3y46km3m24设A(x1,y1),B(x2,y2),则x1x22,x1x2.3k13k21所以y1y2(kx1m)(kx2m)kx1x2km(x1x2)m.2222所以OA OB x1x2y1y2(k1)x1x2km(x1x2)m9第9 / 10页3m246km(k1)2km2m23k13k12(k21)(3m24)6k2m2(3k21)m223k14m24k244(k21)4k240. 223k13k1所以OA OB.综上所述,总有OA OB成立.………………………………………………9分(Ⅲ)由于直线AB与圆O相切,则圆O半径即为OAB的高. 当l的斜率不存在时,由(Ⅱ)可知AB2.则S OAB 1. 当l的斜率存在时,由(Ⅱ)可知,AB23k14(1k2)(9k21)4(9k410k21)4k2所以AB4(14)(3k21)29k46k219k6k212k21641644416419k6k213329k26k(当且仅当k时,等号成立).所以ABmax, (S OAB)max.时,OAB面积的值为.…………14分 33综上所述,当且仅当k。
四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题(含解析)
四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题学校:___________姓名:___________班级:___________考号:___________. .. ..已知实数,x y 满足x a ,则下列关系式恒成立的是(.221111x y >++ln 2(1)x +>ln 2(yA .14B .128.已知函数()sin(4)(0f x A x ϕ=+<于直线π24x =-对称,将()f x 图象上所有点的纵坐标保持不变,得到函数()g x 的图象,则()g x 在区间A .12B .1二、填空题三、解答题(1)求证:AP CP ⊥;(2)求三棱锥P ADE -的体积.19.已知某绿豆新品种发芽的适宜温度在究温度x (℃)与绿豆新品种发芽数其中24y =,71()()70i i i x x y y =--=∑(1)运用相关系数进行分析说明,是否可以用线性回归模型拟合参考答案:8.C【分析】根据已知条件求得求法求得正确答案.sin πA ϕ⎧=⎪因为M 为双曲线右支上一点,设12,MF m MF n ==,则m -故222224,m n mn a m +-=∴+在12F MF △中,2121|||F F MF =15.0【分析】设()()1122,,,A x y B x y ,联立直线与抛物线方程可得积的坐标运算公式求MA MB ⋅的值【详解】解:如图,设()11,,A x y B y y -317.(1)见解析(2)n T =【详解】试题分析:(1)题中所给的递推关系整理可得:{}n a n -是首项为2,公比为19.(1)可以用线性回归方程模型拟合(2)5722ˆyx =-,种子的发芽颗数为【分析】(1)根据已知数据代入相关系数公式计算即可作出判断;。
2022-2023学年江西省部分学校2023届高三上学期1月联考数学(文)试卷含答案
高三数学考试(文科)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2280A x x x =--<,{}4,2,1,1,2,4B =---,则A B = ()A .{}1,1,2-B .{}2,1,1,2,4--C .{}2,1,1--D .{}4,2,1,1,2---2.已知复数z 满足i 212i z +=+,则z =()A .2i--B .2i-+C .2i-D .2i+3.要得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象()A .向左平移6π个单位长度B .向右平移6π个单位长度C .向左平移12π个单位长度D .向右平移12π个单位长度4.函数()2cos 31xx f x x =+的部分图象大致为()A .B .C .D .5.若α是第二象限角,且5sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭()A .3-B .3C .13-D .136.某数学兴趣小组的学生为了了解会议用水的饮用情况,对某单位的某次会议所用矿泉水饮用情况进行调查,会议前每人发一瓶500ml 的矿泉水,会议后了解到所发的矿泉水饮用情况主要有四种:A .全部喝完;B .喝剩约13;C .喝剩约一半;D .其他情况.该数学兴趣小组的学生将收集到的数据进行整理,并绘制成所示的两幅不完整的统计图.根据图中信息,本次调查中会议所发矿泉水全部喝完的人数是()A .40B .30C .22D .147.在四棱雉P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是正方形,PA AB =,2PH HC = ,E ,F 分别是棱CD ,PA 的中点,则异面直线BH 与EF 所成角的余弦值是()A .13B .33C .63D .2238.已知抛物线2:4C y x =的焦点为F ,过点()2,0A 的直线l 与抛物线C 交于,P ,Q 两点,则4PF QF +的最小值是()A .8B .10C .13D .159.当光线入射玻璃时,表现有反射、吸收和透射三种性质.光线透过玻璃的性质,称为“透射”,以透光率表示.已知某玻璃的透光率为90%(即光线强度减弱10%).若光线强度要减弱到原来的125以下,则至少要通过这样的玻璃的数量是(参考数据:lg 20.30≈,lg 30.477≈)A .30块B .31块C .32块D .33块10.已知()f x 是定义在()(),00,-∞+∞ 上的奇函数,()f x '是()f x 的导函数,当0x >时,()()20xf x f x '+>.若()20f =,则不等式()30x f x >的解集是()A .()(),20,2-∞-B .()(),22,-∞-+∞ C .()()2,02,-+∞ D .()()2,00,2- 11.数学中有许多形状优美、寓意独特的几何体,图1所示的礼品包装盒就是其中之一.该礼品包装盒可以看成是一个十面体,其中上、下底面为全等的正方形,所有的侧面是全等的等腰三角形.将长方体1111ABCD A B C D -的上底面1111A B C D 绕着其中心旋转45︒得到如图2所示的十面体ABCD EFGH -.已知2AB AD ==,AE =,则十面体ABCD EFGH -外接球的球心到平面ABE 的距离是()A .(51248π-B .364312+C .(81248π+D .(81212π+12.已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x --=-,()()23g x f x ++=.若()f x 的图象关于直线1x =对称,且()33f =-,则()221k g k ==∑()A .80B .86C .90D .96二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知向量(),2AB m = ,()1,3AC = ,()4,2BD =--,若B ,C ,D 三点共线,则m =________.14.已知实数x ,y 满足约束条件230301x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩,则z x y =-的最大值为________.15.在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,cos 14B =,且ABC △的周长和面积分别是10和215b =________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,过1F 作圆222x y a +=的切线交双曲线C 的右支于点P ,切点为M .若13PM MF = ,则双曲线C 的离心率为________.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)公差不为0的等差数列{}n a 的前n 项和为n S ,且满足310a =,2a ,4a ,7a 成等比数列.(1)求{}n a 的前n 项和n S ;(2)记26n n b S =+,求数列{}n b 的前n 项和n T .18.(12分)某商场在周年庆举行了一场抽奖活动,抽奖箱中所有乒乓球都是质地均匀,大小与颜色相同的,且每个小球上标有1,2,3,4,5,6这6个数字中的一个,每个号都有若干个乒乓球.抽奖顾客有放回地从抽奖箱中抽取小球,用x 表示取出的小球上的数字,当5x ≥时,该顾客积分为3分,当35x ≤<时,该顾客积分为2分,当3x <时,该顾客积分为1分.以下是用电脑模拟的抽芕,得到的30组数据如下:131163341241253126316121225345(1)以此样本数据来估计顾客的抽奖情况,分别估计某顾客抽奖1次,积分为3分和2分的概率:(2)某顾客抽奖3次,求该顾客至多有1次的积分大于1的概率.19.(12分)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1A CE .(2)求点1C 到平面1A CE 的距离.20.(12分)已知椭圆()2222:10x y C a b a b+=>>的离心率是22,点()0,2M 在椭圆C 上.(1)求椭圆C 的标准方程.(2)已知()0,1P ,直线():0l y kx m k =+≠与椭圆C 交于A ,B 两点,若直线AP ,BP 的斜率之和为0,试问PAB △的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.21.(12分)已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)若4a ≥,证明:对于任意[)1,x ∈+∞,()2323f x x ax >-+恒成立.(参考数据:ln10 2.3≈)(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 22sin x y αα=-+=+⎧⎨⎩(α为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos 2sin 40ρθρθ-+=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知()4,0P -,设直线l 和曲线C 交于A ,B 两点,线段AB 的中点为Q ,求PQ 的值.23.[选修4—5:不等式选讲](10分)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.高三数学考试参考答案(文科)1.A 【解析】本题考查集合的运算,考查数学运算的核心素养.由题意可得{}24A x x =-<<,则{}1,1,2A B =- .2.D 【解析】本题考查复数,考查数学运算的核心素养.设(),z a bi a b =+∈R ,则()2212a bi i ai b i ++=+-=+,即221a b =⎧⎨-=⎩,解得2a =,1b =,故2z i =+.3.C【解析】本题考查三角函数的图象,考查数学运算的核心素养.因为2sin 22sin 23126y x x πππ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以要得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度.4.B【解析】本题考查函数的图象,考查数学抽象的核心素养.当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,则排除A ,D ;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <,则排除C .故选B .5.D【解析】本题考查三角恒等变换,考查函数与方程的数学思想.因为α是第二象限角,且sin 5α=,所以cos 5α=-,所以1tan 2α=-,故11tan 112tan $141tan 312πααα-++⎛⎫+=== ⎪-⎛⎫⎝⎭-- ⎪⎝⎭.6.C【解析】本题考查统计图表,考查数据分析的核心素养.由题中统计图可知参加这次会议的总人数为4040%100÷=,则所发矿泉水喝剩约一半的人数为10030%30⨯=,故会议所发矿泉水全部喝完的人数为1004030822---=.7.A 【解析】本题考查异面直线所成角,考查直观想象的核心素养.如图,分别取PB ,PH 的中点M ,N ,连接MF ,CM ,MN .易证四边形CEFM 是平行四边形,则CM EF ∥,CM EF =.因为M ,N 分别是PB ,PH 的中点,所以MN BH ∥,则CMN ∠是异面直线BH 与EF 所成的角(或补角).设6AB =,则CM EF ==,12PM PB ==,2CN PN ==,MN ==,故1cos 3CMN ==∠.8.C 【解析】本题考查抛物线的性质,考查数学运算的核心素养.设直线:2l x my =+,()11,P x y ,()22,Q x y ,联立224x my y x=+=⎧⎨⎩,整理得2480y my --=,则128y y =-,故()21212416y y x x ==.因为11PF x =+,21QF x =+,所以122244454513PF QF x x x x +=++=++≥,当且仅当21x =时,等号成立.9.B【解析】本题考查指数、对数的运算,考查数学建模的核心素养.设原来的光线强度为()0a a >,则要想通过n 块这样的玻璃之后的光线强度()190%25na a ⨯<,即0.1925n <,即1lg 0.9lg25n <,即()21lg 22lg522033042lg312lg3..1247.071n ----+⨯>==≈--⨯-,故至少要通过31块这样的玻璃,才能使光线强度减弱到原来的125以下.10.B【解析】本题考查导数的运用,考查化归与转化的数学思想.设()()2g x x f x =,则()()()22g x xf x x f x ''=+.当0x >时,因为()()20xf x f x '+>,所以()0g x '>,所以()g x 在()0,+∞上单调递增.因为()f x 是奇函数,所以()()f x f x -=-,所以()()()()()22g x x f x x f x g x -=--=-=-,则()g x 是奇函数.()30x f x >,即()0xg x >.因为()20f =,所以()()220g g -=-=,则()0xg x >等价于()00x g x ⎧>>⎪⎨⎪⎩或()00x g x ⎧<<⎪⎨⎪⎩,解得2x <-或2x >.11.B 【解析】本题考查多面体的外接球,考查直观想象的核心素养.由题中数据可知)221114A E =+=-,则11AA ==+.因为十面体ABCD EFGH -是由长方体1111ABCD A B C D -的上底面1111A B C D 绕着其中心旋转45︒得到的,所以长方体1111ABCD A B C D -的外接球就是十面体ABCD EFGH -的外接球.设十面体ABCD EFGH -外接球的半径为R ,则211224R +=.因为AE BE ==,2AB =,所以42sin7BAE =∠=.设ABE △外接圆的半径为r ,则22492sin 24BAE BE r ⎛⎫==⎪∠ ⎝⎭,则该十面体ABCD EFGH -外接球的球心到平面ABE的距离是364312=.12.C【解析】本题考查函数的基本性质,考查逻辑推理的核心素养.因为()y f x =的图象关于直线1x =对称,所以()()2f x f x =-,所以()()2f x f x +=-.因为()()25f x g x --=-.所以()()225f x g x ---=-,所以()()5f x g x ---=-.因为()()23g x f x ++=,所以()()3g x f x +-=,所以()()8g x g x +-=,则()g x 的图象关于点()0,4对称,且()04g =.因为()()25f x g x --=-,所以()()25f x g x --+=-,所以()()28g x g x ++=,所以()()248g x g x +++=,则()()4g x g x =+,即()g x 的周期为4.因为()33f =-,且()()23g x f x ++=,所以()16g =.因为()()28g x g x ++=,所以()32g =.因为()04g =,所以()24g =,则()()()()()()()22151234125161090k g k g g g g g g ==+++++=⨯+=⎡⎤⎣⎦∑.13.1-【解析】本题考查平面向量,考查数学运算的核心素养.由题意可得()1,1BC AC AB m =-=-.因为B ,C ,D 三点共线,所以BC BD ∥,所以()2140m --+=,解得1m =-.14.4【解析】本题考查线性规划,考查数形结合的数学思想.画出可行域(图略),当直线z x y =-经过()1,5A --时,z 取得最大值,最大值为4.15.3【解析】本题考查余弦定理,考查数学运算的核心素养.因为cos 14B =,所以sin 154B =,所以1158sin 2a ac B c ==16ac =.因为10a b c ++=,所以10a c b +=-,所以222210020a c ac b b ++=-+,所以2226820a c b b +-=-.由余弦定理可得2222cos b a c ac B =+-,即2228b a c =+-,所以2228a c b +-=,则68208b -=,解得3b =.16.53【解析】本题考查双曲线的性质,考查数形结合的数学思想.如图,取1PF 的中点N ,连接ON .由题意可知1OM NF ⊥,OM a =,1OF c =.则1MF b =,ON c =.因为13PM MF =,所以14PF b =.因为O ,N 分别是线段11F F ,1PF 的中点,所以222PF ON c ==.由双曲线的定义可知12422PF PF b c a -=-=,即2b a c =+,即22242b a ac c =++.因为222b c a =-,所以223250c ac a --=,即23250e e --=,解得53e =.17.解:(1)设数列{}n a 的公差为d ,由题意可得()()()1211121036a d a d a d a d +=+=++⎧⎪⎨⎪⎩,即121210330a d d a d +=-=⎧⎨⎩,2分因为0d ≠,所以16a =,2d =,4分则()21152n n n dS na n n -=+=+.6分(2)由(1)可知22211265623n n b S n n n n ⎛⎫===- ⎪+++++⎝⎭,9分则1211111111234455623n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,10分故11223339n n T n n ⎛⎫=-=⎪++⎝⎭.12分评分细则:(1)第一问中,也可以将2a ,4a ,7a 用3a 和d 表示,从而求出d ,再根据前n 项和公式求出n S ;(2)第二问中,求出2233n T n =-+,不扣分;(3)若用其他解法,参照评分标准按步骤给分.18.解:(1)由题意可知某顾客抽奖1次,积分为3分的频率是61305=,则估计某顾客抽奖1次,积分为3分的概率为15.2分某顾客抽奖1次,积分为2分的频率是933010=,则估计某顾客抽奖1次,积分为2分的概率为310.4分(2)由(1)可知某顾客抽奖1次,积分为1分的概率是12,则某顾客抽奖1次,所得积分是1分和所得积分大于1分是等可能事件.6分设某顾客抽奖1次,积分为1分,记为A ,积分大于1分,记为a ,则某顾客抽奖2次,每次所得积分的情况为aaa ,aaA ,aAA ,aAa ,AAa ,AAA ,AaA ,Aaa ,共8种,8分其中符合条件的情况有aAA ,AAa ,AAA ,AaA ,共4种,10分故所求概率4182P ==.12分评分细则:(1)第一问中,直接求出概率,不予扣分;(2)第二问中,也可以先求出有2次和3次的积分大于1的概率,再由对立事件的概率计算公式求出该顾客至多有1次的积分大于1的概率;(3)若用其他解法,参照评分标准按步骤给分.19.(1)证明:由正三棱柱的性质,易证1BCE D CC △≌△,则1BCE D CC ∠∠=,因为1190CC C D DC ∠∠+=︒,所以190C BCE C D ∠=∠+︒,即1CE C D ⊥.1分因为AB AC =,D 是棱BC 的中点,所以AD BC ⊥.由正三棱柱的定义可知1CC ⊥平面ABC ,则1CC AD ⊥.2分因为BC ,1CC ⊂平面11BCC B ,且1BC C CC = ,所以AD ⊥平面11BCC B .3分因为CE ⊂平面11BCC B ,所以AD CE ⊥.4分因为AD ,1C D ⊂平面1AC D ,且1AD D C D = ,所以CE ⊥平面1AC D .5分因为CE ⊂平面1A CE ,所以平面1AC D ⊥平面1A CE .6分(2)解:连接1EC .因为12AA AB ==,所以1E CC △的面积112222S =⨯⨯=.由正三棱柱的性质可知1AA ∥平面11BCC B ,则点1A 到平面11BCC B 的距离为AD .因为ABC △是边长为2的等边三角形,所以AD =故三棱锥11A CC E -的体积11233V =⨯=.8分因为12AA AB ==,E 是1BB的中点,所以1A E CE ==,1A E =,则1E A C △的面积212S =⨯=设点1C 到平面1A CE 的距离是d ,则三棱锥11C A CE -的体积21633V d ==.10分因为12V V =,所以62333d =,解得d =12分评分细则:(1)第一问中,证出1CE D C ⊥,得1分,证出AD ⊥平面11BCC B ,得2分;(2)第二问中,也可以记1CE F C D = ,连接1A F ,过1C 作1A F 的垂线,垂足为H ,则1C F 是点1C 到平面1A CE 的距离;(3)若用其他解法,参照评分标准按步骤给分.20.解:(1)由题意可得222222c a b c a b ===-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得28a =,24b =.3分故椭圆C 的标准方程为22184x y +=.4分(2)设()11,A x y ,()22,B x y ,联立22184y kx mx y ⎧=++=⎪⎨⎪⎩,整理得()222214280k x kmx m +++-=,则122421kmx x k +=-+,21222821m x x k -=+.5分设直线AP ,BP 的斜率分别是1k ,2k ,()()()121212121221212122121111124kx x m x x km m y y kx m kx m k k k x x x x x x m +-+---+-+-+=+=+=--.因为120k k +=,所以()221204km m k m --=-,解得4m =,7分则12AB x =-=,8分因为点P到直线l的距离d=,所以PAB△的面积2112221S AB dk===+.9分设t=,则2223k t=+,从而2626232442St t=≤=+,当且仅当24t=,即2234k-=,即272k=时,等号成立.11分经验证当272k=时,直线l与椭圆C有两个交点,则PAB△的面积存在最大值322.12分评分细则:(1)第一问中,求出b的值得1分,求出a的值得2分;(2)第二问中,没有检验直线l与椭圆C的位置关系,扣1分;(3)若用其他解法,参照评分标准按步骤给分.21.(1)解:由题意可得()xf x e a'=-.1分当0a≤时,()0f x'>,则()f x在R上单调递增;2分当0a>时,由()0f x'>,得lnx a>,由()0f x'<,得lnx a<,则()f x在()ln,a-∞上单调递减,在()ln,a+∞上单调递增.4分综上,当0a≤时,()f x在R上单调递增;当0a>时,()f x在()ln,a-∞上单调递减,在()ln,a+∞上单调递增.5分(2)证明:因为4a≥,且1x≥,所以4ax x≥,则要证()2323f x x ax>-+对于任意[)1,x∈+∞恒成立,即证233x e x ax>-+对于任意[)1,x∈+∞恒成立,即证2343x e x x>-+对于任意[)1,x∈+∞恒成立,即证23431xx xe-+<对一切[)1,x∈+∞恒成立.7分设()2343xx xg xe-+=,则()()()23713107x xx xx xg xe e----+-'==.8分当71,3x⎛⎫∈ ⎪⎝⎭时,()0g x'>,当7,3x⎛⎫∈+∞⎪⎝⎭时,()0g x'<,则()g x在71,3⎛⎫⎪⎝⎭上单调递增,在7,3⎛⎫+∞⎪⎝⎭上单调递减.9分故()213777max33773437101000333g x g e e e ⎛⎫⨯-⨯+ ⎪⎛⎫⎛⎫⎝⎭==== ⎪ ⎪⎝⎭⎝⎭.10分因为ln1023.≈,所以ln100067.9≈<,即71000e <,所以710001e<,则()max 1g x <.11分故23431xx x e-+<对一切[)1,x ∈+∞恒成立,即()2323f x x ax >-+对一切[)1,x ∈+∞恒成立.12分评分细则:(1)第一问中,正确求导得1分,判断出0a ≤的单调性,得1分,判断出0a >的单调性,得2分;(2)第二问中,构造出函数()g x 得1分,直接得出()137max 10001g x e ⎛⎫=< ⎪⎝⎭,扣1分;(3)若用其他解法,参照评分标准按步骤给分.22.解:(1)由12cos 22sin x y αα=-+=+⎧⎨⎩,(α为参数),得()()22124x y ++-=,故曲线C 的普通方程为()()22124x y ++-=.3分由cos 2sin 40ρθρθ-+=,得240x y -+=,故直线l 的直角坐标方程为240x y -+=.5分(2)由题意可知点P 在直线l 上,则直线l 的参数方程为254555x y =-+=⎧⎪⎪⎨⎪⎪⎩,(t 为参数),6分将直线l 的参数方程代入曲线C 的普通方程,整理得25450t -+=.7分设A ,B 对应的参数分别为1t ,2t,则125t t +=,8分故128525t t PQ +==.10分评分细则:(1)第一问中,曲线C 的普通方程写成222410x y x y ++-+=,不予扣分;(2)第二问中,也可以由点到直线的距离公式求出圆心C 到直线l 的距离d ,再由两点之间的距离公式求出CP 的值,最后根据勾股定理求出PQ 的值;(3)若用其他解法,参照评分标准按步骤给分.23.解:(1)()82f x x ≤-+,即3182x x -+≤-+,等价于23182x x x <--++≤++⎧⎨⎩或232831x x x --++≤-≤-≤⎧⎨⎩或33182x x x >-+≤--⎧⎨⎩,3分解得34x -≤≤,即不等式()82f x x ≤-+的解集是[]3,4-.5分(2)当03x <<时,()f x ax ≥恒成立等价于()31a x x --+≥恒成立,6分则41a x ≤-在()0,3上恒成立,故13a ≤;7分当3x ≥时,()f x ax ≥恒成立等价于31x ax -+≥恒成立,8分则21a x ≤-在[)3,+∞上恒成立,故13a ≤.9分综上,a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦.10分评分细则:(1)第一问中,也可以按2x <-,23x -≤≤和3x >这三种情况分别求出x 的取值范围,再求它们的并集,即不等式的解集,只要计算正确,不予扣分:(2)第二问中,最后结果没有写成集合或区间的形式,扣1分;(3)若用其他解法,参照评分标准按步骤给分.。
高三文科数学试卷(含答案)经典题
高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。
高三文科数学题试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,无理数是()A. √4B. 2πC. 3.14D. -2/32. 已知函数f(x) = x² - 4x + 3,则f(2)的值为()A. -1B. 1C. 3D. 53. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 20,则公差d为()A. 2B. 3C. 4D. 54. 若log2x + log2(x + 2) = 3,则x的值为()A. 2B. 4C. 8D. 165. 下列函数中,奇函数是()A. f(x) = x²B. f(x) = x³C. f(x) = x⁴D. f(x) = |x|6. 已知复数z = 1 + i,则|z|的值为()A. √2B. 2C. √3D. 37. 若sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/28. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°9. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a/c > b/cD. 若a > b,则ac > bc(c > 0)10. 已知等比数列{an}的前n项和为Sn,若a1 = 1,S3 = 9,则公比q为()A. 2B. 3C. 4D. 611. 若sinα = 1/3,cosα = 2√2/3,则tanα的值为()A. 2√2B. √2/2C. √2/6D. 2/√212. 下列函数中,有界函数是()A. f(x) = x²B. f(x) = sinxC. f(x) = |x|D. f(x) = x³二、填空题(本大题共6小题,每小题5分,共30分)13. 已知函数f(x) = 2x - 3,若f(x) > 1,则x的取值范围是__________。
高三文科数学高考复习试题(附答案)
高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
(完整版)高三文科数学试题
高三文科数学试题(考试时间为120 分钟,共150 分)第Ⅰ卷一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1. 已知会集M x ( x 2)(x 1)0 , N x x 10 ,则 M N =()A .(1,2)B.(11), C .(2,1) D .(2, 1)2..复数5i()2i1A .2 iB .1 2i C.2 i D .1 2i3. 在独立性检验中,统计量K 2有两个临界值: 3.841 和 6.635 ;当K2> 3.841 时,有 95%的掌握说明两个事件有关,当K2> 6.635时,有 99% 的掌握说明两个事件有关,当K 2 3.841时,认为两个事件没关 .在一项打鼾与患心脏病的检查中,共检查了2000 人,经计算的 K 2=20.87,依照这一数据解析,认为打鼾与患心脏病之间()A .有 95%的掌握认为两者有关B .约有 95% 的打鼾者患心脏病C .有 99%的掌握认为两者有关D .约有 99% 的打鼾者患心脏病4.已知椭圆x2y2F 1、 F2, M 是椭圆上一点, N 是 MF 1的中点,161 的左右焦点分别为12若 ON1,则 MF1的长等于()A 、 2B、 4C、 6 D 、 5x+ y≥05. 在平面直角坐标系中,不等式组x- y+ 4≥0表示的平面地域面积是()x≤19A . 3B . 6C .2D. 96. l 是某 参加 2007 年高考的学 生身高条形 , 从左到右的各 条 形 表 示的 学 生 人 数 依 次A 1 ,、 A 2 、 ⋯ 、 A 10 。
(如 A 2表示身高 ( 位: cm) 在 [150 ,155) 内的学生人数 ) . 2 是 l 中身高在必然范 内学生人数的一个算法流程 . 要 身高在160 ~ 180cm( 含 160cm ,不含 180cm) 的 学生人数,那么在流程 中的判断 框内 填写的条件是A.i<9B.i<8C.i<7D.i<6()7.一个几何体的三 如 所示,其中正 是一个正三角形, 个几何体的 ( )A .外接球的半径3B .表面731331 11C .体3D .外接球的表面 4163正视图 侧视图8.一个球的表面 等于,它的一个截面的半径,球心到 截面的距离( )A .3B .C . 1D . 31俯视图225π 5π9.已知角 α的 上一点的坐sin6 ,cos 6, 角 α的最小正()5π2π5π11πA. 6B. 3C. 3D. 610 . 双曲 x2y 21(a 0, b 0) 的左焦点 F ( c,0)( c 0)作 x 2y 2 a 2 的切a 2b 24 ,切点 E ,延 FE 交双曲 右支于点P ,若 OFOP2OE , 双曲 的离心率()A .2B .10C . 10D . 105211.a1 , 关于 x 的不等式 a( x a)( x1) 0 的解集是 ()a(A) { x | xa ,或 x 1}(B) { x | x a}(C) { x | xa ,或 x 1 }(D) { x | x 1}aaa 12. 已知 a n3( n N * ) , 数列 { a n } 的前 n 和 S n ,即 S na 1 a 2a n ,2n5使 S n0 的 n 的最大()第Ⅱ卷本卷包括必考和考两部分。
高三文科数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。
2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。
3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。
点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。
4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。
5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。
6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。
7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。
河南省十市2023届高三下学期开学考试数学(文)试题及答案(含解析)
高三文科数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上,选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本试卷主要命题范围:高考范围.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2M x y x ==+,{}53N x x =-<<,则MN =()A.{}23x x -<≤B.{}5x x >- C.{}3x x < D.{}52x x -<-≤ 2.复数312ii z -=在复平面内对应的点位于() A.第一象限B.第二象限 C.第三象限D.第四象限3.已知函数()2ln f x ax x =-的图象在点()()1,1f 处的切线与直线3y x =-平行,则该切线的方程为()A.210x y ++=B.330x y +-=C.320x y +-=D.210x y +-=4.我国传统剪纸艺术历史悠久,源远流长,最早可追潮到西汉时期.下图是某一窗花的造型,在长为3,宽为2的矩形中有大小相同的两个圆,两圆均与矩形的其中三边相切,在此矩形内任取一点,则该点取自两圆公共(图中阴影)部分的概率为()A.31824π-B.31216π-C.3912π- D.368π-5.古代名著《九章算术》中记载了求“方亭”体积的问题,方亭是指正四棱台,今有一个方亭型的水库,该水库的下底面的边长为20km ,上底面的边长为40km ,若水库的最大蓄水量为932810m 3⨯,则水库深度(棱台的高)为() A.10m B.20m C.30m D.40m6.已知抛物线C :()220y px p =>,过焦点F 的直线4340x y +-=与C 在第四象限交于M 点,则MF =() A.3B.4C.5D.67.执行如图所示的程序框图,则输出的k 的值为()A.14B.15C.16D.178.某部门统计了某地区今年前7个月在线外卖的规模如下表: 月份代号x1 2 3 4 5 6 7 在线外卖规模y (百万元)111318★28★35其中4、6两个月的在线外卖规模数据模糊,但这7个月的平均值为23.若利用回归直线方程y bx a =+来拟合预测,且7月相应于点()7,35的残差为-0.6,则ˆˆab -=() A.1.0B.2.0C.3.0D.4.09.已知等比数列{}n a 的前4项和为30,且54314a a a =-,则9a =() A.14B.18C.116D.13210.记函数()()2cos 0,2f x x b πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为T ,若24T f ⎛⎫=-⎪⎝⎭,且函数()f x 的,36π⎛⎫- ⎪⎝⎭对称,则当ω取得最小值时,8f π⎛⎫= ⎪⎝⎭() A.2B.1C.-1D.-211.已知双曲线C :()222210,0x y a b a b-=>>的左焦点为F ,过F 的直线与C 的两条渐近线分别交于A ,B 两点,与C 交于P ,Q 两点,若P ,F ,Q 四等分线段AB ,则C 的离心率为()A.33D.12.已知球O 的半径为2,四棱锥的顶点均在球O 的球面上,当该四棱锥的体积最大时,其高为() A.53B.2C.73D.83二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()1,2m a a =-+-,()3,4n a a =-+,若()m n m +∥,则实数a =___________.14.记n S 为等差数列{}n a 的前n 项和,已知1233a a a +-=,34511a a a +-=,则n S =___________.15.写出与圆()2211x y -+=和()()22134x y -+-=都相切的一条直线的方程___________. 16.已知函数()3ln22a f x x b x ⎛⎫=-- ⎪-⎝⎭(a ,b ∈R 且0a ≠)是偶函数,则a =___________,b =___________.(本题第1问2分,第2问3分)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,()sin tan sin sin B C A B C -=. (1)若A B =,求2sin A 的值;(2)证明:222a b c +为定值.18.(12分)青少年近视问题备受社会各界广泛关注,某研究机构为了解学生对预防近视知识的掌握情况,对某校学生进行问卷调查,并随机抽取200份问卷,发现其得分(满分:100分)都在区间[]50,100中,并将数据分组,制成如下频率分布表:(1)估计这200份问卷得分的平均值(同一组中的数据用该组区间的中点值代表);(2)用分层抽样的方法从这200份问卷得分在[)70,80,[)80,90,[]90,100内的学生中抽取6人,再从这6人中随机抽取3人进行调查,求这3人来自不同组(3人中没有2人在同一组)的概率.19.(12分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,AB AD ⊥,4AB =,2AD =,23BC =,6CD =.(1)证明:平面PCD ⊥平面PBC ; (2)若4PD =,求三棱锥P -ABC 的体积. 20.(12分)已知函数()33xf x xe x x =-+.(1)求函数()f x 的单调区间; (2)当13x ≥时,()26f x ax x +≥恒成立,求实数a 的取值范围. 21.(12分)已知椭圆E 的中心为坐标原点O ,对称轴分别为x 轴、y 轴,且过A (-1,0),212B ⎛⎫- ⎪ ⎪⎝⎭两点. (1)求E 的方程;(2)设F 为椭圆E 的一个焦点,M ,N 为椭圆E 上的两动点,且满足0MN AF ⋅=,当M ,O ,N 三点不共线时,求△MON 的面积的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为11323133t t t t x y ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=-⎪⎩(t 为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos sin 10m ρθρθ+-=. (1)求曲线C 的普通方程;(2)若l 与C 有两个不同公共点,求m 的取值范围.23.[选修4-5:不等式选讲](10分) 已知函数()112f x x x =-++. (1)求不等式()3f x ≤的解集;(2)设函数()2g x x a x =-+-,若对任意1x ∈R ,都存在2x ∈R ,使得()()12f x g x =成立,求实数a 的取值范围.高三文科数学参考答案、提示及评分细则1.B {}{}22,{53}M xy x x x N x x ==+=-=-<<∣∣∣,所以{5}M N x x ⋃=>-∣.故选B.2.A 312i 12i 2i i i z --===+-,所以复数312i iz -=在复平面内对应的点为()2,1.故选A. 3.C ()12f x ax x'=-,则()1213f a -'==-,解得1a =-,所以()11f =-,则该切线的方程为()131y x +=--,即320x y +-=.故选C.4.C 如图所示,设两圆的圆心分别为12,O O ,两圆相交于,A B 两点,则两圆互过圆心,连接111222,,,,,,O A O B O O O A O B AB AB 与12O O 交于C ,则12111,1,2O O AB O A O C ⊥==,所以160AO C ∠=,则21120AO B AO B ∠∠==,所以弓形2AO B 的面积为211131332234S ππ=⨯⨯-⨯⨯=-,在矩形内任取一点,该点取自两圆公共部分的概率为3234332912p ππ⎛⎫⨯- ⎪⎝⎭==-⨯.故选C.5.A 设水库深度为km h ,由题意,(22221282040204033h ++⨯⋅=,解得0.01km h =,即10m h =.故选A.6.C 由题意可知,F 的坐标为()1,0,则12p=,所以2p =,则抛物线C 的方程为24y x =,设(00,2M x x -,由00243MF x k -==-,解得04x =,所以052p MF x =+=.故选C.7.B 由题知111111,152231S k k k ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭时,111111514122315161615S ⎛⎫⎛⎫⎛⎫=-+-++-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,开始出现1415S >,故输出的k 的值为15.故选B. 8.B ()112345674,237x y =++++++==,所以ˆˆ423b a +=.因为相应于点()7,35的残差为0.6-,则点()7,35.6在回归直线ˆˆˆy bx a =+上,即ˆˆ735.6b a +=,解得ˆˆ 6.2, 4.2ab ==,则ˆˆ 2.0ab -=.故选B. 9.C 设等比数列{}n a 的公比为q ,前n 项和为n S ,由54314a a a =-,得214q q =-,解得12q =,由414112112a S ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦==-30,解得116a =,所以891116216a ⎛⎫=⨯= ⎪⎝⎭.故选C. 10.D 由题意可知,2,3T b πω==-,由24T f ⎛⎫=- ⎪⎝⎭,得2cos 322πϕ⎛⎫+-=- ⎪⎝⎭,所以1sin 2ϕ=-,因为2πϕ<,所以6πϕ=-,又函数()f x 的图象关于点,36π⎛⎫- ⎪⎝⎭对称,所以,662k k ωππππ-=+∈Z ,所以64,k k =+∈Z ,因为0ω>,所以当0k =时,ω取得最小值4,则()2cos 436f x x π⎛⎫=-- ⎪⎝⎭,故2cos 32826f πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.故选D. 11.A 不妨设交点的顺序自上而下为,,,A P Q B ,则AP PF FQ QB ===,由对称性可知,AB x ⊥轴,则AB 的方程为x c =-,代入b y x a =-,求得,bc A c a ⎛⎫- ⎪⎝⎭,代入22221x ya b -=,求得2,b P c a ⎛⎫- ⎪⎝⎭,则22,bc b b AP PF a a-==,所以22bc b b a a -=,所以2c b =,则a =,所以C 的离心率为3c e a ===.故选A. 12.D 四棱锥的底面内接于圆,当底面为正方形时,底面面积最大(论证如下:设底面四边形ABCD 的外接圆半径为r ,AC 与BD 的夹角为α,则四边形ABCD 的面积2111sin 222222S AC BD AC BD r r r α=⋅⋅⨯⨯=,当且仅当四边形ABCD 是正方形时,四边形ABCD 的面积取到最大值22r ).要使四棱锥的体积最大,则从顶点作底面的垂线过球心O ,该四棱锥为正四棱锥,设底面的边长为a ,四棱锥的高为h ,底面外接圆的半径为2r a ==,由题意可知,22(2)4r h +-=,即221(2)42a h +-=,所以()2224a h h =-,则04h <<,四棱锥的体积为()22312433V a h h h =⨯=-,令()234(04)f x x x x =-<<,则()283f x x x -'=,由()0f x '=,得83x =,由80,3x ⎛⎫∈ ⎪⎝⎭,得()0f x '>,由8,43x ⎛⎫∈ ⎪⎝⎭,得()0f x '<,所以()f x 在80,3⎛⎫⎪⎝⎭上单调递增,在8,43⎛⎫ ⎪⎝⎭上单调递减,则当83x =时,()f x 取得极大值,也就是最大值,此时83h =.故选D. 13.54()2,6m n +=,由()m n m +∥,得()()61220a a -+--=,解得54a =. 14.225n n +设等差数列{}n a 的公差为d ,由1233453,11a a a a a a +-=+-=两式相减得28d =,解得4d =,由(()111)23a a d a d ++-+=,得17a =,故()2174252n n n S n n n -=+⨯=+.15.3y =--或3y =--+或1y =(答案不唯一,3个中任填一个即可)易知圆22(1)1x y -+=和22(1)(3)4x y -+-=外切,显然1y =与这两圆都相切.设直线y kx b=+与圆22(1)1x y -+=和22(1)(3)4x y -+-=1=2=,所以23k b k b +=+-,令k b t +=,则2230t t +-=,解得1t =或3t =-,当1t =时,解得0k =,此时1b =,直线方程即为1y =;当3t =-3=,解得k =±,当k =3b =--;当k =-3b =-+,所以直线方程为3y =--或3y =--+.16.8ln2易知3y x =是奇函数,因为函数()3ln22af x x b x ⎛⎫=-- ⎪-⎝⎭是偶函数,所以()ln22ag x b x=---是奇函数,又知2x ≠,根据奇函数的定义域关于原点对称,则2x ≠-,当2x =-时,204a-=,所以8a =,所以()824ln 2ln 22x g x b b x x +=--=---,则()040ln020g b +=-=-,解得ln2b =.经检验,8,ln2a b ==时符合题意. 17.(1)解:由A B =及已知,得()sin sin sin sin cos AA C A C A-=, 又sin 0A ≠,所以()sin cos sin A C A C -=,即sin cos cos sin cos sin A C A C A C -=, 所以sin cos 2cos sin A C A C =,又2C A π=-,则()()sin cos 22cos sin 2A A A A ππ-=-,所以-sin cos22cos sin2A A A A =,则()22sin 2cos 14cos sin A A A A --=, 所以-222cos 14cos A A +=,解得21cos 6A =, 故225sin 1cos 6A A =-=. (2)证明:由题意知,(sin sin cos cos sin )sin sin cos AB C B C B C A-=, 所以()sin sin cos sin sin cos cos sin A B C C B A B A =+, 则()2sin sin cos sin sin sin A B C C A B C =+=,由正弦定理,得2cos ab C c =,由余弦定理,得22222a b c ab c ab+-⨯=,整理,得2222223,3a b c a b c +=+=,故222a b c+为定值,得证. 18.解:(1)由频率分布表可知,10.150.250.300.100.20m =----=.这200份问卷得分的平均值估计为550.15650.25750.20850.30950.1074.5⨯+⨯+⨯+⨯+⨯=. (2)由分层抽样的方法可知,抽取的6人中,成绩在[)70,80内的有2人,分别记为12,A A ; 成绩在[)80,90内的有3人,分别记为123,,B B B ;成绩在[]90,100内的有1人,记为1C ,则从这6人中随机抽取3人的所有基本事件为{}{}{}{}{}121122123121112,,,,,,,,,,,,,,A A B A A B A A B A A C A B B ,{}{}{}{}{}{}{}{}113111123121131212213211,,,,,,,,,,,,,,,,,,,,,,,A B B A B C A B B A B C A B C A B B A B B A B C ,{}{}{}{}{}{}{}223221231123121131231,,,,,,,,,,,,,,,,,,,,A B B A B C A B C B B B B B C B B C B B C ,共20个,记这3人来自不同组为事件A ,其基本事件有{}{}{}{}{}111121*********,,,,,,,,,,,,,,A B C A B C A B C A B C A B C ,{}231,,A B C ,共6个,故这3人来自不同组的概率为()632010P A ==. 19.(1)证明:连结BD ,因为PD ⊥底面,ABCD BC ⊂平面ABCD ,所以PD BC ⊥.因为,4,AB AD AB AD ⊥==22218BD AD AB =+=.又BC CD ==222,BD CD BC BC CD =+⊥.又,PD CD D PD ⋂=⊂平面,PCD CD ⊂平面PCD ,所以BC ⊥平面PCD , 又BC ⊂平面PBC ,故平面PCD ⊥平面PBC .(2)解:法一:由(1),得BD =所以()sin sin sin cos cos sin ABC ABD DBC ABD DBC ABD DBC ∠∠∠∠∠∠∠=+=+3==,则ABC 的面积为11sin 422ABCSAB BC ABC ∠=⨯=⨯⨯=故三棱锥P ABC -的体积为11433ABCP ABC V S PD -=⨯⨯=⨯=三校倠法二:因为,AB AD BC CD ⊥⊥,所以ABC ADC ∠∠π+=, 所以cos cos ABC ADC ∠∠=-.在ABC 与ADC 中, 由余弦定理得222222cos 2cos AC AB BC AB BC ABC AD CD AD CD ADC ∠∠=+-⋅⋅=+-⋅⋅,因此22224242ABC ABC ∠∠+-⨯⨯=++,解得cos ABC ∠=,所以sin ABC ∠=则ABC 的面积为11sin 422ABC S AB BC ABC ∠=⨯⋅=⨯⨯=,故三棱锥P ABC -的体积为114333ABC P ABC V S PD -=⨯⨯=⨯=三校倠. 20.解:(1)()()()()21e 331e 33x x f x x x x x =+-+=+-+', 设()e 33x h x x =-+,则()e 3xh x '=-, 当(),ln3x ∞∈-时,()0h x '<,当()ln3,x ∞∈+时,()0h x '>,所以()h x 在(),ln3∞-上单调递减,在()ln3,∞+上单调递增,所以()()ln363ln30h x h =->,则e 330x x -+>,所以当(),1x ∞∈--时,()0f x '<,当()1,x ∞∈-+时,()0f x '>,故()f x 的单调递减区间为(),1∞--,单调递增区间为()1,∞-+.(2)当13x 时,()26f x ax x +恒成立,等价于e 3x a x x x --在1,3∞⎡⎫+⎪⎢⎣⎭上恒成立. 设()e 313x g x x x x x ⎛⎫=-- ⎪⎝⎭,则()()()22221e 1e 331x x x x x g x x x x---+=-+'=, 设()()211e 33x x x x x ϕ⎛⎫=--+ ⎪⎝⎭,则()()e 2x x x ϕ'=-, 当1,ln23x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()ln2,x ∞∈+时,()0h x '>, 所以()x ϕ在1,ln23⎛⎫ ⎪⎝⎭上单调递减,在()ln2,∞+上单调递增,则()()()()()22ln22ln21(ln2)32ln21(ln2)2ln22ln20x ϕϕ=--+>--+=->, 所以()0g x '>,则()g x 在1,3∞⎡⎫+⎪⎢⎣⎭上单调递增,故()g x 的最小值为12833g ⎛⎫= ⎪⎝⎭,所以3283e 3a-,所以实数a 的取值范围为283∞⎛⎤- ⎥⎝⎦. 21.解:(1)设E 的方程为221(0,0,)sx ty s t s t +=>>≠,由题意,1,1,2s s t =⎧⎪⎨+=⎪⎩解得11,2s t ==, 故E 的方程为2212y x +=. (2)由椭圆的对称性,不妨设F 为下焦点,则()0,1F -,所以()1,1AF =-, 因为0MN AF ⋅=,所以直线MN 的斜率为1,设直线MN 的方程为()()()11220,,,,y x m m M x y N x y =+≠,由221,2,y x y x m ⎧+=⎪⎨⎪=+⎩消去y 并整理得223220x mx m ++-=,则()()222Δ4432830m m m =-⨯⨯-=->,所以23m <且0m ≠.2121222,33m m x x x x -+=-=所以12MN x =-=== 原点O 到直线MN的距离为d =, 则MON的面积为)()223112223322MON m mS MN d +-=⨯⨯=⨯=⨯=, 当且仅当232m =,即2m =±时,MON 的面积最大, 显然2m =±满足23m <且0m ≠,所以MON22.解:(1)因为113123t t x ⎛⎫=+ ⎪⎝⎭,且22222211132,32433t t t t x y ⎛⎫=++=+- ⎪⎝⎭, 所以2244x y -=,则曲线C 的普通方程为()22114y x x -=. (2)由cos sin 10m ρθρθ+-=,化为直角坐标方程为10mx y +-=. 由2210,1,4mx y y x +-=⎧⎪⎨-=⎪⎩消去y 并整理得()224250m x mx -+-=. 则()2222240,Δ42040,20,450,4m m m m m m ⎧-≠⎪=+->⎪⎪⎨->⎪-⎪-⎪>-⎩解得2m <<, 故m的取值范围为(. 23.解:(1)()12,1,231,1,22112,,22x x f x x x x ⎧--<-⎪⎪⎪=-⎨⎪⎪+>⎪⎩当1x <-时,由1232x --,得714x -<-; 当112x -时,()3f x 恒成立; 当12x >时,由1232x +,得1524x <. 综上,()3f x 的解集为7544xx ⎧⎫-⎨⎬⎩⎭∣. (2)因为对任意1x ∈R ,都存在2x ∈R ,使得()()12f x g x =,所以(){}(){}yy f x y y g x =⊆=∣∣. 又()()()11311,22222f x x x x x g x x a x a =-++--+==-+--,等号都能取到,所以322a -,解得1722a , 所以实数a 的取值范围是17,22⎡⎤⎢⎥⎣⎦.。
高三文科数学试卷答案
一、选择题1. 答案:C解析:本题考查函数的定义。
函数是定义在集合D上的映射,对于D中的任意一个元素x,按照一定的法则f,都有唯一确定的值y与之对应。
因此,正确答案是C。
2. 答案:B解析:本题考查数列的通项公式。
根据数列的定义,第n项是第n-1项加上公差,即an = an-1 + d。
所以,正确答案是B。
3. 答案:A解析:本题考查三角函数的性质。
由题意可知,sin(α + β) = sinαcosβ +cosαsinβ,sin(α - β) = sinαcosβ - cosαsinβ。
因此,sin(α + β) + sin(α - β) = 2sinαcosβ。
所以,正确答案是A。
4. 答案:D解析:本题考查向量数量积的性质。
由题意可知,向量a与向量b的数量积为0,即a·b = 0。
根据向量数量积的性质,如果两个非零向量的数量积为0,则这两个向量垂直。
所以,正确答案是D。
5. 答案:B解析:本题考查函数的极值。
首先,求出函数的一阶导数f'(x),令f'(x) = 0,得到x的值。
然后,求出函数的二阶导数f''(x),判断x处的二阶导数的正负。
如果f''(x) > 0,则x是函数的极小值点;如果f''(x) < 0,则x是函数的极大值点。
根据题意,f''(x) > 0,所以x是函数的极小值点。
因此,正确答案是B。
二、填空题6. 答案:-1解析:本题考查指数函数的值。
由题意可知,2^x = 1/2,两边同时取对数,得到x = log2(1/2) = -1。
7. 答案:3解析:本题考查对数函数的值。
由题意可知,log3(27) = 3,因为27是3的立方。
8. 答案:π解析:本题考查三角函数的值。
由题意可知,sin(π/2) = 1,cos(π/2) = 0。
9. 答案:5解析:本题考查二次方程的解。
2024届高三12月大联考(全国乙卷)文科数学及答案
绝密★启用前2024届高三12月大联考(全国乙卷)文科数学本卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}0,1,2,3,4U =,集合{}{}0,1,4,0,3,4M N ==,则()U M N ⋂=ð( )A.{}3B.{}0,2,3,4C.{}0,1,2,4D.{}0,1,2,3,42.若复数z 满足216i z z =+-(i 为虚数单位),则z =( )3.已知实数,x y 满足不等式组202406120x y x y x y -≥⎧⎪+-≥⎨⎪--≥⎩,则3z x y =-的最小值是( )A.1B.2C.3D.64.已知α为第二象限角,且终边与单位圆的交点的横坐标为45-,则5cos 4πα⎛⎫-= ⎪⎝⎭()A.C.5.已知P 是抛物线2:2(0)C y px p =>上一点,它在抛物线C 的准线l 上的射影为点,Q F 是抛物线C 的焦点,若FPQ 是边长为2的等边三角形,则抛物线C 的准线l 的方程为( )A.14x =-B.12x =-C.1x =- D.2x =-6.某班举办趣味数学活动,规则是:某同学从分别写有1至9这9个整数的9张卡片中随机抽取两张,将卡片上较大的数作为十位数字,较小的数作为个位数字组成一个两位数.若这个两位数与将它的个位数字与十位数字调换后得到的两位数的差为45,就视为该同学获奖.若该班同学A 参加这项活动,则他获奖的概率为( )A.172 B.136C.118D.197.已知函数()()cos (0,0)f x x ωϕωϕπ=+><<在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,且63f f ππ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭2,则ϕ=( )A.6πB.3πC.4πD.23π8.某校为庆祝建校60周年,有奖征集同学们设计的文创作品.王同学设计的一款文创水杯获奖,其上部分是圆台(多功能盖),下部分是正六棱台(水杯),圆台与棱台的高之比为0.382:0.618,寓意建校60周年,学校发展步入黄金期.这款水杯下部分的三视图如图所示,则这款水杯下部分的容(体)积约为()A.B.C.D.9.已知函数()()[)2log ,43,4,3x x f x x x ∞⎧∈⎪=⎨∈+⎪-⎩,则满足()13f x ≤≤的x 的取值范围为( )A.][0,24,6⎡⎤⋃⎣⎦B.[]11,4,682⎡⎤⋃⎢⎥⎣⎦C.[]11,2,482⎡⎤⋃⎢⎥⎣⎦D.[]11,2,682⎡⎤⋃⎢⎥⎣⎦10.在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知()sin cos2A Cb B C a ++=,且ABC的面积为,则22a c b+的最小值为()A.2C.4D.11.已知双曲线2222:1(0,0)y x E a b a b-=>>,过点(),0M b -的两条直线12,l l 分别与双曲线E 的上支、下支相切于点,A B .若MAB 为锐角三角形,则双曲线E 的离心率的取值范围为()A.⎛ ⎝B.⎛ ⎝C.∞⎫+⎪⎪⎭ D.∞⎫+⎪⎪⎭12.已知323sin ,,ln 232a b c ===,则,,a b c 的大小关系是( )A.b a c >> B.a b c>>C.a c b>> D.b c a>>二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,,2,1a m b ==-.若()2a b + ∥()2a b - ,则实数m 的值为__________.14.在三棱锥P ABC -中,PA ⊥平面,2,ABC AB AC BC PA ====,则三棱锥P ABC -的内切球的表面积等于__________.15.已知数列{}n a 的前n 项和为n S ,且3220,21n n S na n S -+==-,则数列{}n a 的通项公式为n a =__________.16.设函数()f x 是定义域为R 的奇函数,且x ∀∈R ,都有()()20f x f x --=.当(]0,1x ∈时,()ln 21f x x x =+-,则函数()f x 在区间19,22⎡⎤⎢⎥⎣⎦上有__________个零点.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某社区为了解居民生活垃圾分类的投放情况,对本社区10000户居民进行问卷调查(满分:100分),并从这10000份居民的调查问卷中,随机抽取100份进行统计,绘制成如图所示的频率分布直方图.(1)估计该社区10000份调查问卷得分的平均数(同一组中的数据用该组区间的中点值为代表)和这10000户居民中调查问卷得分不低于85分的居民户数;(2)该社区从调查问卷得分为满分的居民中随机挑选了6户,其中两户为,A B ,并将这6户居民随机分配到社区两个宣传点,每个宣传点3户,且每户居民只能去一个宣传点,帮助社区工作人员开展宣传活动,求,A B 两户居民分在不同宣传点的概率.18.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,4,2,,PA PD AD AB M N ====分别为,PD AB 的中点.(1)求证:AM ⊥平面PCD ;(2)求证:MN ∥平面PBC ;(3)求三棱锥A CMN -的体积.19.(12分)已知数列{}n a 是各项均为正数的等比数列,n S 为数列{}n a 的前n 项和,且1328,327a a ==,213n n nn b a -=.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T .20.(12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为())12,F F ,点P 在椭圆E 上,且满足2PF x ⊥轴,12tan PF F ∠=.(1)求椭圆E 的标准方程;(2)设椭圆E 的右顶点为A ,左顶点为B ,是否存在异于点A 的定点(),0(0)Q m m >,使过定点(),0Q m 的任一条直线l 均与椭圆E 交于()()1122,,,M x y N x y (异于,A B 两点)两点,且使得直线AN 的斜率为直线BM 的斜率的2倍?若存在,求出m 的值;若不存在,请说明理由.21.(12分)已知函数()eexax f x x +=+,其中a ∈R ,e 为自然对数的底数.(1)当1a =-时,求函数()f x 的最值;(2)当(]0,e a ∈时,讨论函数()f x 的极值点个数.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为4334x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线M 的极坐标方程为8cos 6sin ρθθ=+.(1)求直线l 的极坐标方程;(2)设直线l 与曲线M 交于,A B 两点,求AOB 的面积.23.[选修4-5:不等式选讲](10分)已知函数()|1|||f x x x m =--+.(1)当1m =时,求不等式()1f x ≥的解集;(2)若()3f x ≤恒成立,求实数m 的取值范围.2024届高三12月大联考(全国乙卷)文科数学·全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 【解析】因为全集{}0,1,2,3,4U =,集合{}0,1,4M =,所以{}U 2,3M =ð.又{}0,3,4N =,所以(){}U3M N ⋂=ð.故选A.2.A 【解析】设()i ,z a b a b =+∈R ,则()i 2i 16i a b a b +=-+-,所以21,26a a b b =+=--,解得1,2a b =-=-,所以z ==,故选A.3.C 【解析】作出不等式组202406120x y x y x y -≥⎧⎪+-≥⎨⎪--≥⎩所表示的可行域,如图中阴影部分所示.3z x y =-,即3y x z =-.当直线3y x =自左上向右下平移时,z -逐渐减小,z 逐渐增大,所以当直线3y x z =-经过直线20x y -=与直线6120x y --=的交点()3,6C 时,z 取得最小值,最小值为3363⨯-=.故选C .4.D 【解析】由题意,得43cos ,sin 55αα=-=,所以5333cos cos cos cos sin sin 4444ππππαααα⎛⎫⎛⎫-=+=- ⎪⎪⎝⎭⎝⎭,故选D.5.B 【解析】不妨设点P 的坐标为()()1111,0,0x y x y >>,依题意,得FQ PQ =,即12p x =+①.又2112y px =②,联立①②,解得113,2p x y ==.22p ==,得1p =,所以抛物线C 的准线l 的方程为122p x =-=-,故选B .6.D 【解析】设同学A 随机抽取得到的两位数的十位数字为x ,个位数字为()y x y >.依题意,若2x =,则1y =,有1种情况;若3x =,则1,2y =,有2种情况⋅ 若9x =,则1,2,,8y = ,有8种情况,共计有12836+++= 种情况,其中满足获奖的情况是()()101045x y y x +-+=,即5x y -=,也即获奖情况只有6,1;7,2;8,3;9,4x y x y x y x y ========,这4种情况,所以该班同学A 参加这项活动获奖的概率为41369=.故选D.7.B 【解析】因为()()cos (0)f x x ωϕω=+>在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,且263f f ππ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的最小正周期2,1366T f ππππ⎡⎤⎛⎫⎛⎫=--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2,cos 13πωϕ⎛⎫=-+= ⎪⎝⎭,所以()23k k πϕπ=+∈Z .又0ϕπ<<,所以3πϕ=,故选B.8.A 【解析】由三视图,知这款水杯的下部分是上底边长为4,下底边长为3,高为6的正六棱台,226364S S ====下底上底,所以这款水杯下部分的容(体)积约为(11633V S S h =++⨯=⨯⨯=下底上底.故选A.9.D 【解析】令()1f x =,则()()2log 10,4xx =∈∣或[)()314,3x x ∞=∈+-,解得12x =或2x =或6x =.令()3f x =,则()()2log 30,4xx =∈∣或[)()334,3x x ∞=∈-,解得18x =或4x =.画出函数()f x 图象的草图(如图),得满足()13f x ≤≤的x 的取值范围为[]11,2,682⎡⎤⋃⎢⎥⎣⎦.故选D.10.B 【解析】由正弦定理和()sin cos 2A Cb B C a ++=,得sin sin sin sin 2B B A A ⋅=⋅.因为sin 0,sin02B A >>,所以1cos 22B =.因为0,22B π⎛⎫∈ ⎪⎝⎭,所以23B π=.又ABC1sin 2ac B =,所以4ac =.由余弦定理,得222222cos 312b a c ac B a c ac ac =+-=++≥=,当且仅当a c =时取等号,所以b ≥,所以22244a cb b b b b+-==-.因为函数4y b b =-在)∞⎡+⎣上单调递增,所以当b =时,22a c b +故选B.11.D 【解析】如图,设过点(),0M b -的直线()1:(0)l y k x b k =+>,联立()22221y k x b y x ab ⎧=+⎪⎨-=⎪⎩,整理,得()()222232222220b k axb k x b b k a -++-=,依题意,得()2642222Δ440b k bb ka=--=,所以2222a k b=.由双曲线的对称性,得201k <=<,所以()2222a c a <-,整理,得双曲线E的离心率c e a =>故选D.12.B 【解析】方法一:因为sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增,所以32sin sin 233a b π=>=>=.设()1ln g x x x =--,则()111x g x x x -=-=',当[)1,x ∞∈+时,()10x g x x-=≥',所以()3111ln102g g ⎛⎫>=--= ⎪⎝⎭,所以331ln 22->,即13ln 22>,所以213ln 322b c =>>=.综上,得a b c >>,故选B .方法二:因为sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增,所以32sin sin 233a b π=>=>=.又213ln 322b c =>=>==.综上,得a b c >>,故选B.二、填空题:本题共4小题,每小题5分,共20分.13.12-【解析】因为()()1,,2,1a m b ==- ,所以()()24,21,23,2a b m a b m +=--=-+ .又()2a b + ∥()2a b - ,所以()()423210m m ++-=,解得12m =-.故填12-.14.1225π【解析】如图,由已知,得ABC 的面积为112⨯=三棱锥P ABC -在底面ABC 上的高为PA =,等腰三角形PBC 底边BC 上的高为2,所以三棱锥P ABC -的表面积1122222S =⨯⨯+⨯⨯=,体积113V ==.又三棱锥P ABC -的体积13V Sr =(其中r 为三棱锥P ABC -内切球的半径),所以r =,所以三棱锥P ABC -的内切球的表面积为212425r ππ=.故填1225π.15.53n -+ 【解析】方法一:当1n =时,11220S a -+=,解得12a =-.又220n n S na n -+=,所以()()1222n n n n a n a a S -+==,所以数列{}n a 为等差数列.又321S =-,所以()313212a a +=-,解得312a =-,所以数列{}n a 的公差3152a a d -==-,所以数列{}n a 的通项公式为53n a n =-+.故填53n -+.方法二:*,220n n n S na n ∀∈-+=N 恒成立,当1n =时,11220S a -+=,解得12a =-.当3n =时,332360S a -+=,且321S =-,解得312a =-.当2n ≥时,()()1121210n n S n a n ----+-=①,又220n n S na n -+=②,①-②,得()()12120n n n a n a -----=③,所以()1120n n n a na +---=④.④-③,得()()11120n n n n a a a +---+=.因为2n ≥,所以1120n n n a a a +--+=,即11n n n n a a a a +--=-.又132,12a a =-=-,所以数列{}n a 是首项为-2,公差为-5的等差数列,所以数列{}n a 的通项公式为53n a n =-+.故填53n -+.16.6 【解析】如图,因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-,且()00f =.又()()20f x f x --=,即()()2f x f x =-,所以函数()f x 的图象关于直线1x =对称,且()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以4是函数()f x 的一个周期,所以()()()0240f f f ===.易知函数()ln 21f x x x =+-在(]0,1上单调递增,且()11ln 11ln20,1ln1211022f f ⎛⎫=+-=-<=+-=>⎪⎝⎭,所以函数()f x 在区间()0,1上仅有1个零点,且零点在区间1,12⎛⎫⎪⎝⎭上.由对称性,知函数()f x 在区间()1,2上有且仅有1个零点.因为()f x 是定义域为R 的奇函数且是4是它的一个周期,所以()()40f x f x -+=,所以函数()f x 的图象关于点()2,0中心对称,所以函数()f x 在区间()2,4上有且仅有2个零点.因为函数()f x 在区间10,2⎛⎫ ⎪⎝⎭上没有零点,所以函数()f x 在区间94,2⎛⎫⎪⎝⎭上没有零点.结合()()240f f ==,得函数()f x 在区间19,22⎡⎤⎢⎥⎣⎦上有6个零点.故填6.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)【解析】(1)由频率分布直方图,得样本平均数为()550.008650.012750.024850.040950.01610x =⨯+⨯+⨯+⨯+⨯⨯79.4=,所以估计该社区10000份调查问卷得分的平均数为79.4.因为这10000户居民中调查问卷得分不低于85分的频率为()90850.0400.016100.36-⨯+⨯=,所以估计该社区这10000户居民中调查问卷得分不低于85分的居民户数为100000.363600⨯=.(2)将6户居民分别记为,,,,,A B c d e f ,依题意,6户居民被随机分到两个宣传点的所有情况有(),ABc def ,()()()()()()()(),,,,,,,,,,,,,,,ABd cef ABe cdf ABf cde Acd Bef Ace Bdf Acf Bde Ade Bcf Adf Bce ,()()()()()()()(),,,,,,,,,,,,,,,Aef Bcd Bcd Aef Bce Adf Bcf Ade Bde Acf Bdf Ace Bef Acd cde ABf ,()()(),,,,,cdf ABe cef ABd def ABc ,共20种,其中,A B 两户居民分在不同宣传点的情况有()()()()(),,,,,,,,,Acd Bef Ace Bdf Acf Bde Ade Bcf Adf Bce ,()()()()()()(),,,,,,,,,,,,,Aef Bcd Bcd Aef Bce Adf Bcf Ade Bde Acf Bdf Ace Bef Acd ,共12种,所以,A B 两户居民分在不同宣传点的概率123205P ==.另解:若采用排列组合解答酌情给分:6户居民均分到两个宣传点共有36C 种情况,其中,A B 两户居民分在相同宣传点有142C 种情况,所以,A B 两户居民分在不同宣传点的概率14362C 31C 5P =-=.18.(12分)【解析】(1)因为底面ABCD 为矩形,所以AD CD ⊥.又平面PAD ⊥平面ABCD ,平面PAD ⋂平面,ABCD AD CD =⊂平面ABCD ,所以CD ⊥平面PAD .又AM ⊂平面PAD ,所以CD AM ⊥.因为在PAD 中,,PA PD AD M ==为PD 的中点,所以AM PD ⊥.又,CD PD D CD ⋂=⊂平面,PCD PD ⊂平面PCD ,所以AM ⊥平面PCD .(2)如图,取PC 的中点E ,连接,ME BE .因为M 为PD 的中点,所以ME ∥CD ,且12ME CD =.又N 为AB 的中点,底面ABCD 为矩形,所以BN∥CD ,且12BN CD =,所以BN ∥EM ,且BN EM =,所以四边形NBEM 为平行四边形,所以BE ∥NM .又BE ⊂平面,PBC MN ⊄平面PBC ,所以MN∥平面PBC .(3)如图,因为,4,2A CMN M ACN V V PA PD AD AB --=====,平面PAD ⊥平面ABCD ,所以点P 到平面ABCD 的距离即为等边三角形PAD 的高,所以点P 到平面ABCD 的距离为4=.又M 为PD 的中点,所以点M 到平面ANC 又11422ANC S =⨯⨯= ,所以123M ACN V -=⨯=A CMN -.19.(12分)【解析】(1)设等比数列{}n a 的公比为(0)q q >.由1328,327a a ==,得228327q =,解得249q =.因为{}n a 的各项均为正数,所以23q =,所以数列{}n a 是以23为首项,23为公比的等比数列,所以数列{}n a 的通项公式为1222333n nn a -⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.(2)由(1)得21212132233n nn n n n n n n b a ---===⎛⎫⋅ ⎪⎝⎭,所以1221321222n n n n T b b b -=+++=+++ ,231113212222n n n T +-=+++ ,两式相减,得23111111212222222n n n n T +-⎛⎫=++++- ⎪⎝⎭ 1111112142212212n n n -+⎛⎫- ⎪-⎝⎭=+⨯--1323,22n n ++=-所以2332n nn T +=-.20.(12分)【解析】(1)因为2PF x ⊥12tan PF F ∠,解得21,2PF =所以172PF ==.根据椭圆的定义,得12712422a PF PF =+=+=,解得2a =.又c =,所以2221b a c =-=,所以椭圆E 的标准方程为2214x y +=.(2)假设存在满足题意的定点(),0Q m .依题意,设直线l 的方程为,0x ty m m =+>,联立2214x ty m x y =+⎧⎪⎨+=⎪⎩,消去x 并整理,得()2224240t y tmy m +++-=,由()()()22222Δ(2)4441640tm t mt m =-+-=-+>,得224m t <+.由根与系数的关系,得212122224,44tm m y y y y t t -+=-=++.由()()2,2,0,2,0ANBM k k A B =-,得2121222y y x x =⋅-+,所以2121222y y ty m ty m =⋅+-++,即()()1212222m y m y ty y --++=,所以()()()212242224t m m y m y t ---++=+,所以()()()21221224222424t m m y m y t tm y y t ⎧-⎪--++=⎪+⎨⎪+=-⎪+⎩,所以()()()()()21212222222224m y m y tm m m y m y t ⎧⎪--++=⎪⎨+⎪+++=-⎪+⎩②,②-①,得()()()12232324t m m m y t -+--=+,当320m -≠时,解得()()12222424t m y t t m y t ⎧-+=⎪⎪+⎨--⎪=⎪+⎩,所以()()22122244t m y y t-=+.又212244m y y t -=+,所以()()2222224444t m mt t --=++.因为上式在t 变化时恒成立,所以240m -=.又0m >,所以2m =.此时点Q 与点A 重合,不合题意,舍去;所以320m -=,即23m =,此时点2,03Q ⎛⎫⎪⎝⎭在椭圆E 的内部,满足直线l 均与椭圆E 交于,M N 两点,所以存在定点2,03Q ⎛⎫⎪⎝⎭满足题意,23m =.21.(12分)【解析】(1)当1a =-时,()e e x x f x x -+=+,则()e 1e e 11e ex x xx x f x '--+--=+=.令()e e 1xx x ϕ=+--,则()x ϕ在R 上单调递增,且()1e 1e 10ϕ=+--=,所以当(),1x ∞∈-时,()0x ϕ<,即()0f x '<;当()1,x ∞∈+时,()0x ϕ>,即()0f x '>,所以()f x 在(),1∞-上单调递减,在()1,∞+上单调递增,所以函数()f x 在1x =处取得极小值()112ef =-,即()f x 有最小值12e-,没有最大值.(2)因为()e e x ax f x x +=+,其中(]0,e a ∈,所以()()()2e e e e e 1e ex x x x x a ax ax a f x -+⋅'-+-=+=.令()e e xg x ax a =-+-,则()e xg x a '=-.因为0a >,令()e 0xg x a =-=',则ln x a =,所以当(),ln x a ∞∈-时,()0g x '<;当()ln ,x a ∞∈+时,()0g x '>,所以()g x 在(),ln a ∞-上单调递减,在()ln ,a ∞+上单调递增,所以()min ()ln 2ln e g x g a a a a ==--.设()2ln e h a a a a =--,其中(]0,e a ∈,则()1ln h a a =-'.令()1ln 0h a a =-=',解得e a =.当(]0,e a ∈时,()0h a '≥,所以()h a 在(]0,e 上单调递增,所以()max ()e 2e elne e 0h a h ==--=.所以当()0,e a ∈时,min ()2ln e 0g x a a a =--<;当e a =时,min ()0g x =.①当e a =时,min ()0g x =,即()0g x ≥,也即()0f x '≥,所以()f x 在R 上单调递增,所以()f x 没有极值点.②当()0,e a ∈时,()ln 1,a g x <在(),ln a ∞-上单调递减.设()e e ln ln t a a a a a ⎛⎫=--=+ ⎪⎝⎭,则当()0,e a ∈时,()221e e 0a t a a a a '-=-=<,所以()()e 20t a t >=>,即当()0,e a ∈时,eln a a-<.又()g x 在(),ln a ∞-上单调递减,所以()g x 在e ,a ∞⎛⎫--⎪⎝⎭上单调递减,且在e ,ln a a ⎡⎫-⎪⎢⎣⎭上单调递减,所以当e ,x a ∞⎛⎫∈-- ⎪⎝⎭时,()e ee e e e e 0aa g x g a a a --⎛⎫>-=++-=+> ⎪⎝⎭,所以()g x 在e ,a ∞⎛⎫--⎪⎝⎭上没有零点,且()e ln 0g g a a ⎛⎫-⋅< ⎪⎝⎭.又()g x 在e ,ln a a ⎡⎫-⎪⎢⎣⎭上单调递减,所以在e ,ln a a ⎡⎫-⎪⎢⎣⎭内存在唯一0x ,使()00g x =,所以当()0,x x ∞∈-时,()0g x >;当()0,ln x x a ∈时,()0g x <,也即当()0,x x ∞∈-时,()0f x '>;当()0,ln x x a ∈时,()0f x '<,所以0x 为()f x 的一个极大值点.又()()10,g g x =在()ln ,a ∞+上单调递增,ln 1a <,所以当()ln ,1x a ∈时,()0g x <;当()1,x ∞∈+时,()0g x >,即当()ln ,1x a ∈时,()0f x '<;当()1,x ∞∈+时,()0f x '>,所以1为()f x 的一个极小值点,所以当()0,e a ∈时,()f x 有2个极值点.综合①②,当()0,e a ∈时,()f x 有2个极值点;当e a =时,()f x 没有极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)【解析】(1)直线l 的参数方程为4334x ty t=+⎧⎨=+⎩(t 为参数),消去参数t 并整理,得4370x y --=.因为cos ,sin x y ρθρθ==,所以直线l 的极坐标方程为4cos 3sin 70ρθρθ--=.(2)由(1)知直线l 的普通方程为4370x y --=.曲线M 的极坐标方程为8cos 6sin ρθθ=+,化为直角坐标方程为22(4)(3)25x y -+-=,所以曲线M 是圆心为()4,3,半径为5的圆.又直线l 过圆心()4,3,所以10AB =,所以原点O 到直线l的距离75d ,所以AOB 的面积1710725AOB S =⨯⨯= .23.[选修4-5:不等式选讲](10分)【解析】(1)当1m =时,()2,1112,11,2,1x f x x x x x x -≥⎧⎪=--+=--<<⎨⎪≤-⎩所以()1f x ≥可化为211x ≥⎧⎨≤-⎩,或2111x x -≥⎧⎨-<<⎩,或211x -≥⎧⎨≥⎩,解得1,2x ≤-所以不等式()1f x ≥的解集为1,2∞⎛⎤-- ⎥⎝⎦.(2)()3f x ≤恒成立,即13x x m --+≤恒成立.因为||1|||||1|x x m m --+≤+恒成立,所以13m +≤,解得42m -≤≤,所以实数m 的取值范围是[]4,2-.。
高三数学文科模拟考试 (含答案)
高三数学文科模拟考试 (含答案)高三模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页,满分150分,考试时间120分钟。
考生作答时,请将答案涂在答题卡上,不要在试题卷和草稿纸上作答。
考试结束后,请将答题卡交回。
第Ⅰ卷(选择题,共60分)注意事项:请使用2B铅笔在答题卡上涂黑所选答案对应的标号。
第Ⅰ卷共12小题。
1.设集合A={x∈Z|x+1<4},集合B={2,3,4},则A∩B的值为A.{2,4}。
B.{2,3}。
C.{3}。
D.空集2.已知x>y,且x+y=2,则下列不等式成立的是A.x1.D.y<-113.已知向量a=(x-1,2),b=(x,1),且a∥b,则x的值为A.-1.B.0.C.1.D.24.若___(π/2-θ)=2,则tan2θ的值为A.-3.B.3.C.-3/3.D.3/35.某单位规定,每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。
某职工某月缴水费55元,则该职工这个月实际用水为()立方米。
A.13.B.14.C.15.D.166.已知命题p:“存在实数x使得e^x=1”,命题q:“对于任意实数a和b,如果a-1=b-2,则a-b=-1”,下列命题为真的是A.p。
B.非q。
C.p或q。
D.p且q7.函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。
若函数y=f(x)的图象与函数y=log_a(x)(a>0且a≠1)的图象有且仅有4个交点,则a的取值集合为A.(4,5)。
B.(4,6)。
C.{5}。
D.{6}8.已知函数f(x)=sin(θx)+3cos(θx)(θ>0),函数y=f(x)的最高点与相邻最低点的距离是17.若将y=f(x)的图象向右平移1个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是A.x=1.B.x=2.C.x=5.D.x=6删除了格式错误的部分,对每段话进行了简单的改写,使其更流畅易懂。
高三数学试卷(文科)
高三数学试卷(文科).2022年高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设全集U={某∈R|某>0},函数f(某)=的定义域为A,则UA为()A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=()A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)4.(5分)若m=0.52,n=20.5,p=log20.5,则()A.n>m>pB.n>p>mC.m>n>pD.p>n>m5.(5分)执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.226.(5分)已知p:某≥k,q:(某﹣1)(某+2)>0,若p是q的充分不必要条件,则实数k的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.(1,+∞)D.[1,+∞)A.056,080,104B.054,078,102C.054,079,104D.056,081,1068.(5分)若直线某=π和某=π是函数y=in(ωx+φ)(ω>0)图象的两条相邻对称轴,则φA.B.C.D.9.(5分)如果实数某,y满足约束条件,则z=的最大值为()A.B.C.2D.310.(5分)函数f(某)=的图象与函数g(某)=log2(某+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A.a>1B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知直线l:某+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为.12.(5分)某几何体三视图如图所示,则该几何体的体积为.13.(5分)在[0,a](a>0)上随机抽取一个实数某,若某满足<0的概率为,则实数a的值为.14.(5分)已知抛物线y2=2p某(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为.15.(5分)已知f(某),g(某)分别是定义在R上的偶函数和奇函数,且f(某)+g(某)=2某,.三、解答题(共6小题,满分75分)16.(12分)已知向量=(in某,﹣1),=(co某,),函数f(某)=(+).(1)求函数f(某)的单调递增区间;(2)将函数f(某)的图象向左平移个单位得到函数g(某)的图象,在△ABC中,角A,B,C所对边分别a,b,c,若a=3,g()=,inB=coA,求b的值.17.(12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:物理及格物理不及格合计数学及格28836数学不及格162036合计442872(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.附:某2=.P(某2≥k)0.1500.1000.0500.010k2.0722.7063.8416.63518.(12分)在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC..19.(12分)已知等差数列{an}的首项a1=2,前n项和为Sn,等比数列{bn}的首项b1=1,且a2=b3,S3=6b2,n∈N某.(1)求数列{an}和{bn}的通项公式;(2)数列{cn}满足cn=bn+(﹣1)nan,记数列{cn}的前n项和为Tn,求Tn.20.(13分)已知函数f(某)=e某﹣1﹣,a∈R.(1)若函数g(某)=(某﹣1)f(某)在(0,1)上有且只有一个极值点,求a的范围;(2)当a≤﹣1时,证明:f(某)<0对任意某∈(0,1)成立.21.(14分)已知椭圆E:+=1(a>b>0)的离心率是,点P(1,)在椭圆E上.(1)求椭圆E的方程;(2)过点P且斜率为k的直线l交椭圆E于点Q(某Q,yQ)(点Q异于点P),若0<某Q<1,求直线l斜率k的取值范围;(3)若以点P为圆心作n个圆Pi(i=1,2,…,n),设圆Pi交某轴于点Ai、Bi,且直线PAi、PBi分别与椭圆E交于Mi、Ni(Mi、Ni皆异于点P),证明:M1N1∥M2N2∥…∥MnNn...2022年高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)设全集U={某∈R|某>0},函数f(某)=的定义域为A,则UA为()A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)【分析】先求出集合A,由此能求出CUA.【解答】解:∵全集U={某∈R|某>0},函数f(某)=的定义域为A,∴A={某|某>e},∴UA={某|0<某≤e}=(0,e].故选:A.【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=()A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:(1+i)z=﹣2i,则z===﹣i﹣1.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,)【解答】解:=(3,4).∴与反方向的单位向量=﹣=﹣=.故选:C.【点评】本题考查了向量的坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于基础题.4.(5分)若m=0.52,n=20.5,p=log20.5,则()A.n>m>pB.n>p>mC.m>n>pD.p>n>m【分析】利用指数函数对数函数的运算性质即可得出.【解答】解:m=0.52=,n=20.5=>1,p=log20.5=﹣1,则n>m>p.故选:A.【点评】本题考查了指数函数对数函数的运算性质,考查了推理能力与计算能力,属于基础题.5.(5分)执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22【分析】模拟执行如图所示的程序框图知该程序的功能是.【解答】解:模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+3+…+n≥210时n的最小自然数值,由S=≥210,解得n≥20,∴输出n的值为20.故选:B.【点评】本题考查了程序框图的应用问题,是基础题.6.(5分)已知p:某≥k,q:(某﹣1)(某+2)>0,若p是q的充分不必要条件,则实数k的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.(1,+∞)D.[1,+∞)【分析】利用不等式的解法、充分不必要条件的意义即可得出.【解答】解:q:(某﹣1)(某+2)>0,解得某>1或某<﹣2.又p:某≥k,p是q的充分不必要条件,则实数k>1.故选:C.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.A.056,080,104B.054,078,102C.054,079,104D.056,081,106【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到006号,以后每隔=25个号抽到一个人,故选:D.【点评】本题主要考查系统抽样方法的应用,解题时要认真审题,是基础题..8.(5分)若直线某=π和某=π是函数y=in(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为()A.B.C.D.【分析】根据直线某=π和某=π是函数y=in(ωx+φ)(ω>0)图象的两条相邻对称轴,可得周期T,利用某=π时,函数y取得最大值,即可求出φ的取值.【解答】解:由题意,函数y的周期T==2π.∴函数y=in(某+φ).当某=π时,函数y取得最大值或者最小值,即in(+φ)=±1,可得:φ=.∴φ=kπ,k∈Z.当k=1时,可得φ=.故选:D.【点评】本题考查了正弦型三角函数的图象即性质的运用,属于基础题.9.(5分)如果实数某,y满足约束条件,则z=的最大值为()A.B.C.2D.3【分析】作出不等式组对应的平面区域,z=的几何意义是区域内的点到定点(﹣1,﹣1)的斜率,利用数形结合进行求解即可..【解答】解:作出约束条件所对应的可行域(如图阴影),z=的几何意义是区域内的点到定点P(﹣1,﹣1)的斜率,由图象知可知PA的斜率最大,由,得A(1,3),则z==2,即z的最大值为2,故选:C.【点评】本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.10.(5分)函数f(某)=的图象与函数g(某)=log2(某+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A.a>1B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣【分析】作出f(某)的图象和g(某)的图象,它们恰有一个交点,求出g(某)的恒过定点坐标,数形结合可得答案..【解答】解:函数f(某)=与函数g(某)的图象它们恰有一个交点,f(某)图象过点(1,1)和(1,﹣2),而,g(某)的图象恒过定点坐标为(1﹣a,0).从图象不难看出:到g(某)过(1,1)和(1,﹣2),它们恰有一个交点,当g(某)过(1,1)时,可得a=1,恒过定点坐标为(0,0),往左走图象只有一个交点.当g(某)过(1,﹣2)时,可得a=,恒过定点坐标为(,0),往右走图象只有一个交点.∴a>1或a≤﹣.故选:D.【点评】本题考查了分段函数画法和对数函数性质的运用.数形结合的思想.属于中档题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知直线l:某+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(某﹣2)2+(y﹣2)2=8.【分析】根据题意,求出直线与坐标轴的交点坐标,分析可得经过O、A、B三点的圆的直径为|AB|,圆心为AB的中点,求出圆的半径与圆心,代入圆的标准方程即可得答案.【解答】解:根据题意,直线l:某+y﹣4=0与坐标轴交于(4,0)、(0,4)两点,即A、B的坐标为(4,0)、(0,4),经过O、A、B三点的圆,即△AOB的外接圆,.则有2r=|AB|=4,即r=2,圆心坐标为(2,2),其该圆的标准方程为(某﹣2)2+(y﹣2)2=8,故答案为:(某﹣2)2+(y﹣2)2=8.【点评】本题考查圆的标准方程,注意直角三角形的外接圆的性质.12.(5分)某几何体三视图如图所示,则该几何体的体积为.【分析】由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.【解答】解:由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.∴该几何体的体积V==.故答案为:.【点评】本题考查了正方体与四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.13.(5分)在[0,a](a>0)上随机抽取一个实数某,若某满足<0的概率为,则实数a的值为4..【解答】解:由<0,得﹣1<某<2.又某≥0,∴0≤某<2.∴满足0≤某<2的概率为,得a=4.故答案为:4.【点评】本题考查几何概型,考查了分式不等式的解法,是基础的计算题.14.(5分)已知抛物线y2=2p某(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为2.【分析】设M点到抛物线准线的距离为d,由已知可得p值,由双曲线的一条渐近线与直线AM平行,则=,解得实数a的值.【解答】解:设M点到抛物线准线的距离为d,则丨MF丨=d=1+=5,则p=8,所以抛物线方程为y2=16某,M的坐标为(1,4);又双曲线的左顶点为A(﹣a,0),渐近线为y=±,直线AM的斜率k==,由=,解得a=3.∴a的值为3,故答案为:3.【点评】本题考查的知识点是抛物线的简单性质,双曲线的简单性质,是抛物线与双曲线的综合应用,属于中档题..若存在某0∈[1,2]使得等式af(某0)+g(2某0)=0成立,则实数a的取值范围是[,].【分析】根据函数奇偶性,解出奇函数g(某)和偶函数f(某)的表达式,将等式af(某)+g(2某)=0,令t=2某﹣2﹣某,则t>0,通过变形可得a=t+,讨论出右边在某∈[1,2]的最大值,可以得出实数a的取值范围.【解答】解:解:∵g(某)为定义在R上的奇函数,f(某)为定义在R上的偶函数,∴f(﹣某)=f(某),g(﹣某)=﹣g(某),又∵由f(某)+g(某)=2某,结合f(﹣某)+g(﹣某)=f(某)﹣g(某)=2﹣某,∴f(某)=(2某+2﹣某),g(某)=(2某﹣2﹣某).等式af(某)+g(2某)=0,化简为(2某+2﹣某)+(22某﹣2﹣2某)=0.∴a=2﹣某﹣2某∵某∈[1,2],∴≤2某﹣2﹣某≤,则实数a的取值范围是[﹣,﹣],故答案为:[﹣,﹣].【点评】题以指数型函数为载体,考查了函数求表达式以及不等式恒成立等知识点,属于难题.合理地利用函数的基本性质,再结合换元法和基本不等式的技巧,是解决本题的关键.属于中档题三、解答题(共6小题,满分75分)16.(12分)已知向量=(in某,﹣1),=(co某,),函数f(某)=(+).(1)求函数f(某)的单调递增区间;(2)将函数f(某)的图象向左平移个单位得到函数g(某)的图象,在△ABC中,角A,B,.C所对边分别a,b,c,若a=3,g()=,inB=coA,求b的值.【分析】(1)运用向量的加减运算和数量积的坐标表示,以及二倍角公式和正弦公式,由正弦函数的增区间,解不等式即可得到所求;(2)运用图象变换,可得g(某)的解析式,由条件可得inA,coA,inB的值,运用正弦定理计算即可得到所求值.【解答】解:(1)向量=(in某,﹣1),=(co某,),函数f(某)=(+)=(in某+co某,)(in某,﹣1)=in2某+in某co某﹣=in2某﹣(1﹣2in2某)=in2某﹣co2某=in(2某﹣),由2kπ﹣≤2某﹣≤2kπ+,k∈Z,可得kπ﹣≤某≤kπ+,k∈Z,即有函数f(某)的单调递增区间为[kπ﹣,kπ+],k∈Z;(2)由题意可得g(某)=in(2(某+)﹣)=in2某,g()=inA=,即inA=,coA=±=±,在△ABC中,inB=coA>0,可得inB=,由正弦定理=,.可得b===3.【点评】本题考查向量数量积的坐标表示和三角函数的恒等变换,考查正弦函数的图象和性质,以及图象变换,考查解三角形的正弦定理的运用,以及运算能力,属于中档题.17.(12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:物理及格物理不及格合计数学及格28836数学不及格162036合计442872(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.附:某2=.P(某2≥k)0.1500.1000.0500.010k2.0722.7063.8416.635【分析】(1)根据表中数据,计算观测值某2,对照临界值得出结论;(2)分别计算选取的数学及格与不及格的人数,用列举法求出基本事件数,计算对应的概率值.【解答】解:(1)根据表中数据,计算某2==≈8.416>6.635,因此,有99%的把握认为“数学及格与物理及格有关”;(2)选取的数学及格的人数为7某=2人,选取的数学不及格的人数为7某=5人,设数学及格的学生为A、B,不及格的学生为c、d、e、f、g,则基本事件为:.cd、ce、cf、cg、de、df、dg、ef、eg、fg共21个,其中满足条件的是AB、Ac、Ad、Ae、Af、Ag、Bc、Bd、Be、Bf、Bg共11个,故所求的概率为P=.【点评】本题考查了独立性检验和列举法求古典概型的概率问题,是基础题.18.(12分)在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【分析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD⊥PA,MN⊥PA,再由CN⊥PA,能证明PA⊥平面CMN.(2)取CD的中点为Q,连结MQ、AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证明AM∥平面PBC.【解答】证明:(1)∵M,N分别为PD、PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN平面CMN,CM平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,.∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ平面PBC,BC平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.19.(12分)已知等差数列{an}的首项a1=2,前n项和为Sn,等比数列{bn}的首项b1=1,且a2=b3,S3=6b2,n∈N某.(1)求数列{an}和{bn}的通项公式;(2)数列{cn}满足cn=bn+(﹣1)nan,记数列{cn}的前n项和为Tn,求Tn.【分析】(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.根据a1=2,b1=1,且a2=b3,S3=6b2,n∈N某.可得2+d=q2,3某2+=6q,联立解得d,q.即可得出..(2)cn=bn+(﹣1)nan=2n﹣1+(﹣1)n2n.可得数列{cn}的前n项和为Tn=1+2+22+…+2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].对n分类讨论即可得出.【解答】解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N某.∴2+d=q2,3某2+=6q,联立解得d=q=2..(2)cn=bn+(﹣1)nan=2n﹣1+(﹣1)n2n.∴数列{cn}的前n项和为Tn=1+2+22+…+2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n]=+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].∴n为偶数时,Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].=2n﹣1+n.n为奇数时,Tn=2n﹣1+﹣2n.=2n﹣2﹣n.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.20.(13分)已知函数f(某)=e某﹣1﹣,a∈R.(1)若函数g(某)=(某﹣1)f(某)在(0,1)上有且只有一个极值点,求a的范围;(2)当a≤﹣1时,证明:f(某)<0对任意某∈(0,1)成立.【分析】(1)求出导函数,由题意可知f(某)在(0,1)上有且只有一个极值点,相当于导函数有一个零点;(2)问题可转换为(某﹣1)(e某﹣1)﹣a某>0恒成立,构造函数G(某)=(某﹣1)(e某﹣1)﹣a某,通过二次求导,得出结论.【解答】解:(1)g(某)=(某﹣1)(e某﹣1)﹣a某,g'(某)=某e某﹣a﹣1,g''(某)=e某(某+1)>0,∵f(某)在(0,1)上有且只有一个极值点,∴g'(0)=﹣a﹣1<0,g'(1)=e﹣a﹣1>0,∴﹣a<a<e﹣1;(2)当a≤﹣1时,f(某)<0,∴(某﹣1)(e某﹣1)﹣a某>0恒成立,.G'(某)=某e某﹣a﹣1,G''(某)=e某(某+1)>0,∴G'(某)在(0,1)单调递增,∴G'(某)≥G'(0)=﹣a﹣1≥0,∴G(某)在(0,1)单调递增,∴G(某)≥G(0)=0,∴(某﹣1)(e某﹣1)﹣a某≥0,∴当a≤﹣1时,f(某)<0对任意某∈(0,1)成立.【点评】本题考查了极值点的概念和导函数的应用,难点是对导函数的二次求导.21.(14分)已知椭圆E:+=1(a>b>0)的离心率是,点P(1,)在椭圆E上.(1)求椭圆E的方程;(2)过点P且斜率为k的直线l交椭圆E于点Q(某Q,yQ)(点Q异于点P),若0<某Q<1,求直线l斜率k的取值范围;(3)若以点P为圆心作n个圆Pi(i=1,2,…,n),设圆Pi交某轴于点Ai、Bi,且直线PAi、PBi分别与椭圆E交于Mi、Ni(Mi、Ni皆异于点P),证明:M1N1∥M2N2∥…∥MnNn.【分析】(1)根据椭圆的离心率求得a2=4b2,将P代入椭圆方程,即可求得a和b的值,求得椭圆方程;(2)设直线l的方程,代入椭圆方程,利用韦达定理,求得某Q,由0<某Q<1,即可求得k的取值范围;(3)由题意可知:故直线PAi,PBi的斜率互为相反数,分别设直线方程,代入椭圆方程,即可求得某i,某i′,根据直线的斜率公式,即可求得=,==…=,则M1N1∥M2N2∥…∥MnNn.【解答】解:(1)由椭圆的离心率e===,则a2=4b2,将P(1,)代入椭圆方程:,解得:b2=1,则a2=4,∴椭圆的标准方程:;..(2)设直线l的方程y﹣=k(某﹣1),则,消去y,整理得:(1+4k2)某2+(4k﹣8k2)某+(4k2﹣4k﹣1)=0,由某01=,由0<某0<1,则0<<1,解得:﹣<k<,或k>,经验证,满足题意,直线l斜率k的取值范围(﹣,)∪(,+∞);(3)动圆P的半径为PAi,PBi,故PAi=PBi,△PAiBi为等腰三角形,故直线PAi,PBi的斜率互为相反数,设PAi的斜率ki,则直线PBi的斜率为﹣ki,设直线PAi的方程:y﹣=ki(某﹣1),则直线PBi的方程:y﹣=﹣ki(某﹣1),,消去y,整理得:(1+4ki2)某2+(4ki﹣8ki2)某+(4ki2﹣4ki﹣1)=0,设Mi(某i,yi),Ni(某i′,yi′),则某i1=,则某i=,将﹣ki代替ki,则某i′=,则某i+某i′=,某i﹣某i′=﹣,yi﹣yi′=ki(某i﹣1)++ki (某i﹣1)﹣=ki(某i+某i′)﹣2ki,=ki某﹣2ki,则==,故==…=,∴M1N1∥M2N2∥…∥MnNn.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题..。
高三联考数学文科试卷答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = 2x - 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:C2. 若等差数列{an}的前n项和为Sn,且S5 = 15,S10 = 50,则该数列的公差d 为:A. 1B. 2C. 3D. 4答案:C3. 下列函数中,定义域为全体实数的是:A. f(x) = 1/xB. f(x) = √(x+1)C. f(x) = |x|D. f(x) = x^2答案:D4. 若复数z满足|z-1| = |z+1|,则复数z的实部为:A. 0B. 1C. -1D. 不确定答案:A5. 下列命题中,正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则|a| > |b|C. 若a > b,则a/b > b/aD. 若a > b,则a + c > b + c答案:D6. 已知函数f(x) = x^3 - 3x^2 + 4x,则f'(x)的值为:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 6xD. 3x^2 - 6x - 4答案:A7. 下列数列中,不是等比数列的是:A. 2, 4, 8, 16, 32B. 1, 2, 4, 8, 16C. 1, -2, 4, -8, 16D. 1, 3, 9, 27, 81答案:C8. 已知等差数列{an}的首项为2,公差为3,则第10项a10的值为:A. 27B. 29C. 31D. 33答案:D9. 下列函数中,图像关于y轴对称的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x答案:C10. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c的关系为:A. a+b+c=0B. a+b=0C. a+c=0D. 2a+b=0答案:D二、填空题(每小题5分,共50分)11. 若等差数列{an}的首项为3,公差为2,则第n项an的表达式为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011--2012高三数学(文科)期中考试答案
一、选择题 DBCDCD AACABC 二、填空题 13、2
1-
14、310
15、223+ 16、3
三、解答题
17 、命题目的:本题主要考查正余弦定理应用 解:(1)由2sin a b A =,
根据正弦定理得sin 2sin sin A B A =,………………………………. 2分
所以1
sin 2
B =,…………………………………………………….. 2分
由ABC △为锐角三角形得π
6
B =.………………………………. 2分
(2)根据余弦定理,得2
2
2
2cos b a c ac B =+-272545=+-7=.……..3分
所以,b =
………………………………. 3分
18、、命题目的:数列的性质
解:(1)设这三个数为d m m d m +-,,,则有18)()(=+++-d m m d m …………. 2分 所以6=m ,又有64)13)(7(=+-d d ,解得39=-=d d 或…………. 2分
所以这三个数为9633,6,15,,
或-…………. 2分 (2)在(1)的条件下,因为0<d ,1001=a ,所以+∈-=N n n a n ,9109…………. 2分 令0<n a ,得
n <9
109
…………. 2分 因为+∈N n ,所以前12项和值最大…………. 2分
19、命题目的:本题主要考查应用平面向量、三角函数知识分析和计算能力. 解:(1)若则,b a ⊥0cos sin =+θθ………………………………. 2分 由此得)2
2
(,1tan π
θπ
θ<
<--= ………………………………. 1分
所以 4
π
θ-
=………………………………. 1分
(2) 由)cos ,1(),1,(sin θθ==b a 得
)cos 1,1(sin θθ++=+………………………………. 2分
22)cos 1()1(sin |θθ+++=+b =)cos (sin 23θθ++=)4
sin(223π
θ+
+………………
……. 4分 当1)4
sin(=+
π
θ时,即当4
π
θ=
时,||+取得最大值,最大值为12+……………………. 2分
20、命题目的:本题主要考查向量的坐标运算,三角函数的应用 解析:
(1) 2()cos 2cos 21f x x x x m =++-…………….…2分
2cos22x x m ++ ………………………………. 2分
2sin(2)26
x m π
=+
+.
()f x ∴的最小正周期是π. ………………………………. 2分
(2) ∵]2,
0[π
∈x , ∴]6
7,6
[
6
2π
ππ
∈+
x . ………………………………. 2分
∴当6762ππ
=
+
x 即2
π
=x 时,函数()f x 取得最小值是12-m . ……………. 2分
∵512=-m ,
∴3=m . ………………………………. 2分
21、命题目的:考查数列的应用,根与系数的关系 解:(1)显然两个根,要求0≠n a 且n n n a a a 1,1==
++αββα,代入原式可得31
261=-+n
n n a a a ………………………. 2分 解得)0)(23(6
1
1≠+=+n n n a a a 其中………………………………. 2分 (2)由(1)得n n a a 与1+的关系,两边同时减3
2
,有
)3
2
3(2132)23(61321-=-+=-+n n n a a a ………………………………. 2分
且03
1
321≠=-
a 则的等比数列公比为为首项是2131}32{-n a …………………………. 2分
(3)为等比数列}3
2
{-n a ,则
111)21(21)21()32(32--⋅=⋅-=-
n n n a a 32
)21(+=n n a ,………………………………. 2分
的通项公式为时,上式也满足,则n a n 1=3
2)21(+=n n a ,+∈N n ……………. 2分
22、命题目的:考查导数的应用、线性规划的应用
解:(1)b ax x x g x f -+='=2)()(………………………………. 2分 因为42)(和的两根为-x f
所以 ⎩⎨
⎧-=⨯--=+-b
a
4242 ………………………………. 2分
8,2=-=b a
所以82)(2
--=x x x f ………………………………. 2分
(2)因为为单调递减函数在区间]3,1[)(-x g
所以上恒成立在区间]3,1[0)(-≤x f ………………………………. 2分
有⎩
⎨⎧≤≤-0)3(0
)1(f f ,即⎩⎨⎧≤-+≤--03901b a b a ………………………………. 2分
如图
满足条件、b a ⎩⎨⎧≤-+≤--0
390
1b a b a 的区域如图影印
22b a +的最小值在)(3,2-A 处取得
最小值为13………………………………. 2分。