分数(百分数)应用题的六种常见类型
六年级【小升初】小学数学专题课程《分数、百分数问题》(含答案)
15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。
三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。
【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。
【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。
考点2 求部分量【例2】 参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的47,男队员比女队员的23多40人,问女队员有多少人?【精析】 以全体少先队员为单位“1”。
男队员占全体少先队员的1-47=37,男队员比全体少先队员的47×23=821多40人。
那么全体少先队员的(37-821)是40人,全体少先队员是40÷(37-821)=840(人),女队员有840×47=480(人)。
分数应用题的六种类型整理
精选课件
1
1、看清分率(几分之几或百分之几)。 2、找准单位“1”的量。 3、确定单位“1”是已知还是未知?
4、列算式。
单位“1”的量×分率=分率对应量 (分率对应量÷分率=单位“1”的量)
精选课件
2
下面各题中应把哪个量看作单位“1”?
(1)男生人数是全班人数的
3 5
。 全班人数
(2)苹果重量比桔子多
5 7
的重量。桔子的重量
(3)已修的长度占这条路的
4 7
。这条路的长度
(4)一种电视机打九折出售。 原价
精选课件
3
第一类 求一个数是另一个数的几(百) 分之几(除法计算)
1、甲是乙的几分之几。 甲÷乙
2、乙是甲的几分之几。 乙÷甲
用字母表示:
求A是B的几(百)分之几。A÷B
精选课件
4
例1 果园里有梨树50棵,桃树30棵 1、梨树是桃树的几分之几? 50÷30 2、桃树是梨树的几分之几? 30÷50 3、桃树是梨树与桃树的和的几分之几?
30÷(50+30)
精选课件
5
第二类 求一个数比另一个数多(少)几(百) 分之几(除法计算)
1、求一个数比另一个数多百分之几。
①(一个数-另一个数)÷另一个数 ②(大数-小数)÷小数
用字母表示:
已知 A的n是B,求A. m
①除法
B n m
②解方程 设 A为 x n xB m
精选课件
13
例1 果园里有桃树30棵,
桃树是梨树的
3 5
1、求梨树多少棵?
算式为:(
30÷
3 5
)
2、桃树和梨树一共多少棵?
分数(百分数)解决问题典型解法中的六种数学思想
四、变中求定的解题思想
分数(百分数)应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数 量的变化,但总存在着不变量。解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。
四、变中求定的解题思想
分数(百分数)应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数 量的变化,但总存在着不变量。解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。
2、直接运用分率计算进行“率”的转化
三、转化思想
转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。它是把某一个数学问题,通过适当的变 化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。复杂的分数应用题,常常含有几个不同 的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。
20 20
分数(百分数)解决问题 典型解法中的六种数学思想
分数(百分数)解决问题 典型解法中的六种数学思想
一、数形结合思想
四、变中求定的解题思想
二、对应思想 三、转化思想
五、假设思想形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表 示出来,进行分析、推理和计算,从而降低解题难度。画线段图常常与其它解题方法结合使用, 可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
六、用方程解应用题思想
在用算术方法解应用题时,数量关系比较复杂,特别是逆向思考的应用题,往往棘手,而这些的 应用题用列方程解答则简单易行。列方程解应用题一开始就用字母表示未知量,使它与已知量处 于同等地位,同时运算,组成等式,然后解答出未知数的值。列方程解应用题的关键是根据题中 已知条件找出的等量关系,再根据等量关系列出方程。 。
分数(百分数)应用题的六种类型PPT课件
列方程
根据题目中的已知条件 ,列出一个包含未知数
的方程。
解方程
通过计算,求出未知数 的值。
检验
将求得的未知数的值代 入原方程进行检验,确
保答案的正确性。
典型例题分析
例题1
已知一个数的3/4是24,求这个数。
分析
根据题目中的已知条件,可以列出一个方程:3/4x=24 ,其中x表示这个数。解这个方程,可以得到x的值。
解方程
通过计算,求出未知数的值。
检验
将求得的未知数的值代入原方 程进行检验,确保答案的正确
性。
典型例题分析
例题1
已知甲数比乙数多25%,且甲数是 120,求乙数。
分析
设乙数为x,根据题意可列出方程: 甲数 = 乙数 + 乙数 × 25%。将甲 数代入方程,可求得乙数的值。
解答
120 = x + x × 25%,解得x = 96。
解答
3/4x=24,解得x=32。
例题2
已知一个数的25%是15,求这个数。
分析
根据题目中的已知条件,可以列出一个方程: 0.25x=15,其中x表示这个数。解这个方程,可以得到 x的值。
解答
0.25x=15,解得x=60。
学生自主练习
01
02
03
练习1
已知一个数的4/5是32, 求这个数。
练习2
THANKS
感谢观看
练习3
已知一个数的75%比它的 50%多6,求这个数。
06
CATALOGUE
类型五:折扣、纳税、利息问题中分数和 百分数应用
折扣问题中分数和百分数应用
折扣的含义及计算方法
01
六年级上分数百分数应用题分类总结
六年级上分数百分数应用题分类总结本文是一篇数学应用题分类总结文章,主要包括三类问题。
第一类问题是求一个数的几分之几(百分之几)是多少,需要用到乘法和连乘。
例如,某食油批发店上午卖出96箱花生油,下午卖出上午的5/12,需要求下午卖出的箱数;一根钢管长8米,用去一部分后还剩下全长的20%,需要求还剩下多少米。
第二类问题是求甲数是/占/相当于已数的几分之几(百分之几),需要用到除法。
例如,六(1)班有男生30人,女生20人,需要求男、女生各占全班的几分之几。
第三类问题是已知甲数的几分之几(或百分之几)是多少,需要用到除法或方程解。
例如,海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3,需要求海豹的寿命大约是多少年。
2330平方千米缩减到了大约1860平方千米,面积缩减了多少百分之几?6、一辆汽车从甲地到乙地,全程共600千米,第一天行了全程的三分之一,第二天行了剩下路程的一半,第三天行了剩下路程的三分之二,第四天行了剩下路程的四分之三,第五天行了剩下路程的五分之四,第六天行了剩下路程的六分之五。
这辆汽车比规定时间多行了多少百分之几的路程?7、某种药品原价100元,现在打7折出售,打折后的价格是多少?打折后比原价少多少百分之几?8、一件衣服原价200元,现在降价出售,降价后的价格是原价的75%,降价后比原价少多少百分之几?9、某地区去年的旅游人数是100万人次,今年增加到120万人次,今年比去年增加了多少百分之几?10、某种蔬菜去年产量是1000吨,今年增加到1200吨,今年比去年增加了多少百分之几?1、洞庭湖的面积从4350平方千米缩小到了约2700平方千米,面积减少了大约38.62%。
2、机器零件的成本从2.4元降低到了0.8元,成本降低了66.67%。
4、某玩具厂原计划要做550个布娃娃,实际比计划多做了50个,多做了9.09%。
5、西瓜太朗的书包原来每个96元,现在每个只要75元,降价了21.88%。
分数应用题的六种类型整理
②已知比一个数少几分之几的数是多少,求这个数。
用字母表示:
已知A,A比B少 n ,求B。
m
①除法
②解方程
A 1 n m
设 B为 x
1 n x A
m
分数应用题的六种类型整理
例
果园里有桃树30棵,桃树比梨树少
2 5
梨树多少棵?
30÷(1-
2 5
)
这是一类 怎样的分数应用题?解答这类 应用题要注意什么问题 ?
分数应用题的六种类型整理
(1)池塘里有12只鸭和4只鹅,
鹅的只数是鸭的几分之几?
单位“1”
鸭:
鹅:
4只
12只
求一个数是另一个数的几分之几(或
几倍)是多少,用除法计算。
4÷12=
1 3
1 答:鹅的只数是鸭的 。 3 分数应用题的六种类型整理
(2)池塘里有12只鸭,鹅的只数是鸭
的
1 3
。池塘里有多少只鹅单?位“1”
分数应用题的六种类型整理
我们一起来小结: 解答分数应用题要准确判断题目中的
( 单位“)1”,根据单位“1”已知还是 未知,单位“1”已知选择( 乘法)、单 位“1”未知选择( 除法),同时要处 理好( 数量间的对应关系)。
找单位“1”的方法有( )
分数应用题的六种类型整理
①电视机厂今年生产电视机36000台,相当于去年产量的1/4, 去年生产多少台?
②电视机厂今年生产电视机36000台,比去年少生产1/4,去 年生产多少台?
③电视机厂今年生产电视机36000台,比去年多生产1/4,去 年生产多少台?
④电视机厂今年生产电视机36000台,去年产量是今年的1/4, 去年生产多少台?
六年级上分数、百分数应用题分类总结
六年级上分数、百分数应用题分类总结六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)就是多少?(用乘法,包括连乘)1、某食油批发店,上午卖出花生油96箱,下午卖出的就是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、水果店运来苹果20筐,运来的橘子的筐数就是苹果的12%,运来橘子多少筐?4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米?5、水果店进苹果36箱,进的梨的箱数就是苹果的12%(5/8)。
(1)进的梨的箱数就是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨与苹果共有多少箱?6、小红体重42千克,小方体重38千克,小明的体重相当于小红与小方体重总与的50%,小明体重多少千克?7、从邮电局汇款需要交1%的汇费,寄2000元需要交多少汇费?8、王格尔塘镇中小学与洒索玛小学的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,洒索玛小学有学生750人,哪个学校的男生多?多多少人?9、小强在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,她捐献了多少元?10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡?11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?12、一个长方形花坛,长就是12米,宽就是长的60%,这个花坛的面积就是多少?13、王格尔塘镇中心小学有480人,只有5%的学生没有参加意外事故保险。
参加保险的学生有多少人?14、王格尔塘镇中心小学开展回收废纸活动,共回收废纸87、5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸?15、海象的寿命大约就是40年,海狮的寿命就是海象的3/4,海豹的寿命就是海狮的2/3。
海豹的寿命大约就是多少年?第二类:(1)求甲数就是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数)1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实际种树200棵,计划种树的棵树就是实际的百分之几?第三类:已知甲数的几分之几(或百分之几)就是多少,求甲数(用除法或者用方程解)1、工地运来的水泥有24吨,运来的水泥就是黄沙的5/6,运来的黄沙有多少吨?2、水果店运来苹果28箱,正好就是运来梨的箱数的45%,运来的梨有多少箱?3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米?4、鲜牛肉煮熟后的重量只有原来的5/12,要得到熟牛肉26千克,需要鲜牛肉多少千克?5、王格尔塘下摊村种玉米120公顷,种玉米的面积就是种小麦面积的36%,这个村种小麦多少公顷?6、我校有女生160人,正好占男生人数的42%,全校有多少人?7、某电视机厂去年上半年生产电视机48万台,就是下半年产量的80%,这个电视机厂去年全年的产量就是多少万台?8、一辆汽车从甲地到乙地,行了全程的3/4,行了240千米,还剩多少千米没有行?9、一辆汽车以每小时45千米的速度从甲地到乙地,3小时行了全程的15%,这辆汽车还要行多少千米才能到达乙地?10、王老师有1800元,就是张老师的12%,李老师的钱就是张老师的8%,李老师有多少元?11、汪刚瞧一本书,第一天瞧了18页,第二天瞧了全书的97%,还余45页没有瞧,这本书共有多少页?12、修一条公路,已经修了全长的4/5,未修的比已修的少28千米,这条公路全长多少千米?13、草地上的灰兔的只数就是白兔的60%,白兔比灰兔多10只,白兔有多少只?14、我已经打了2000个字,正好打了全文的40%。
分数百分数应用题
一、分数应用题(A)一、基本应用几种基本类型:(1)求一个数是另一个数的几分之几。
(2)求一个数的几分之几是多少。
(3)已知一个数的几分之几是多少,求这个数。
要能正确判断“标准量”(单位1)、“比较量”、以及比较量的对应分率,用线段图来分析解决。
1、一本书共80页,分三天看完。
第一天看了它的1/4,第二天看了余下的2/3,第三天看了多少页?2、一段公路长1200米,修路队准备三周修完。
第一周修了全长的1/2,第二周修了剩下的1/4。
第三周要修多少米才能按计划完成任务?3、甲乙两地相距1500千米,一辆汽车从甲地开往乙地,平均每小时行全程的1/30 ,5小时行了多少千米?4、玲玲原有90张邮票,她把1/9送个小明,这时小明的邮票张数恰好是玲玲的3/4,小明原有多少张邮票?5、小明的零花钱用去了2/5,用去的比剩下的少5元,小明的零花钱有多少元?6、某工地有一批水泥,用去2/5后,又运进50吨,这时的水泥吨数恰好是原来水泥吨数的4/5。
工地原有水泥多少吨?7、小明读一本书,第一天读了12页,第二天读了剩下的1/4,这时读过的和未读的页数正好相等,这本书共有多少页?9、实验小学六(1)班有学生66人,男生相当于女生的5/6,男生有多少人?10、美术兴趣小组和书法兴趣小组共有30人,已知美术兴趣小组是书法兴趣小组人数的2/3,两个兴趣小组各有多少人?11、地上有水泥和黄沙共126吨,水泥用去1/5后和黄沙的吨数相等,工地上有黄沙多少吨?12、教室里的书架有两层,已知上层比下层多摆放了16本书,下层的书是上层的7/8,书架上一共有多少本书?二、转化单位“1”复杂的分数应用题会出现几个不同的单位“1”,这时应根据条件将某一数量确定为单位“1”,再将其它的条件转化为该单位“1”的几分之几,变成统一的单位“1”,再解答。
1、有两筐苹果共140个,甲筐苹果的3/8等于乙筐苹果的1/2,甲乙两筐各有多少个苹果?2、六(3)班有58名学生,已知女生人数的4/7等于男生人数的8/15,六(3)班男、女生各有多少人?3、学校图书室里的科技书比文艺书多300本,科技书的2/3等于文艺书的5/6,图书室里的科技书和文艺书各有多少本?个集装箱,这批集装箱一共有多少个?5、张华看一本漫画书,第一天看了全书的1/3,第二天看了剩下的2/5,两天一共看了72页,这本书一共有多少页?6、农场里养了许多鸡、鸭和鹅。
六年级数学上应用题归纳
六年级数学上应用题归纳一、分数应用题1.求一个数是另一个数的几分之几解法:部分量÷标准量=分率2.已知一个数,求这个数的几分之几是多少(已知整体,求部分)解法:标准量×分率=部分量3.已知一个数的几分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷分率=标准量解法②:(列方程)设这个数是x,则x×分率=部分量二、百分数应用题1. 求一个数是另一个数的百分之几解法:部分量÷标准量=百分率2. 已知一个数,求这个数的百分之几是多少(已知整体,求部分)解法:标准量×百分率=部分量3.已知一个数的百分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷百分率=标准量解法②:(列方程)设这个数是x,则x×百分率=部分量分百应用题要找准题中的关键词,比如:是,比,占,相当于,等于,和“谁”比,谁就是单位“1”,就是标准量三、比的问题1.已知A,B比A多几分之几,求B解法:A×(1+分率)2.已知B,B比A多几分之几,求A解法:(列方程)设A为x,则x ×(1+分率)=B“少几分之几”的问题把加号改减号四、替换法替换的策略是指将题目中的一个量用另一个量表示,这样就将两个量替换成为一个量,将题目进行了简化,从而方便解题。
替换法体现了数学中等量代换的思想,在运用过程中一定要注意找准进行替换的量,只有相等的两个量才能够进行替换替换法一定要用“箭头()”表示清楚用哪个替换哪个,它们之间的数量关系是如何,五、假设法(“鸡兔同笼”问题)解法1:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数解法2:假设全是鸡(略)“鸡兔同笼”问题一定要先假设,假设为同一类,把问题简单化,然后再解替换法和假设法两类题解答完后一定要把答案代入题中验算,防止把两者对应答案搞错!!分数应用题在小学数学中非常重要,它不仅是考试中的重点,也是难点。
六年级上册数学分数、百分数应用题分类总结练习题
六年级上册数学分数、百分数应用题分类总结练习题书痴者文必工,艺痴者技必良。
这是一句名言,意思是如果想要在某个领域有所成就,就必须勤奋研究和不断修炼。
下面是关于六年级分数和百分数应用题的分类总结和练题:第一类:已知一个数,求它的几分之几或百分之几是多少?这种问题可以用乘法来解决,包括连乘。
1、某食油批发店上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、修一段公路,第一天修300米,第二天修的是第一天的4/5,第二天修多少米?4、小红体重42千克,小方体重38千克,XXX的体重相当于小红和小方体重总和的50%,XXX体重多少千克?5、王格尔塘镇中小学和XXX的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,XXX有学生750人,哪个学校的男生多?多多少人?第二类:求一个数是另一个数的几分之几或百分之几,可以用除法来解决,即分量除以单位“1”。
1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实际种树200棵,计划种树的棵树是实际的百分之几?第三类:已知一个数的几分之几或百分之几是多少,求这个数。
这种问题可以用除法或方程解来解决,即分量除以分率或分量除以单位“1”。
1、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米?2、王格尔塘下摊村种玉米120公顷,种玉米的面积是种小麦面积的36%,这个村种小麦多少公顷?3、我校有女生160人,正好占男生人数的42%,全校有多少人?4、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?5、一辆汽车以每小时45千米的速度从甲地到乙地,行驶了全程的15%需要多少千米才能到达乙地?这辆汽车需要行驶的总路程为:(100% ÷ 15%)×(3小时)= 20小时已经行驶了3小时,所以还需要行驶的时间为:20小时 - 3小时 = 17小时根据速度公式,汽车还需要行驶的距离为:17小时 × 45千米/小时 = 765千米6、XXX有1800元,是XXX的12%,XXX的钱是XXX 的8%,那么XXX有多少元?根据题意可得,XXX的钱为:1800元 ÷ 12% = 元XXX的钱为:元 × 8% = 1200元7、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,那么白兔有多少只?设白兔的数量为x,则灰兔的数量为0.6x根据题意可得:x - 0.6x = 10只解得:x = 25只因此,白兔的数量为25只。
常见的百分数应用题有以下几种类型
常见的百分数应用题有以下几种类型1、甲数是乙数的百分之几。
计算方法:甲数÷乙数2、甲数比乙数多百分之几,求甲数计算方法:乙数×(1+百分之几)3、甲数比乙数多百分之几,求乙数计算方法:甲数÷(1+百分之几)4、甲数比乙数少百分之几,求甲数计算方法:乙数×(1-百分之几)5、甲数比乙数少百分之几,求乙数计算方法:甲数÷(1-百分之几)6、甲数比乙数多百分之几。
计算方法:(甲数-乙数)÷乙数7、甲数比乙数少百分之几。
计算方法:(乙数-甲数)÷乙数8、打折计算方法:现价÷原价9、一件商品打几折,求现价。
计算方法:原价×折数10、一件商品打几折,求原价。
计算方法:现价÷折数11、应纳税额。
计算方法:营业额×税率12、利息计算方法:本金×利率×时间13、税后利息计算方法:利息-利息×税率14、到期后可以取出的钱数计算方法:本金+税后利息常见的百分数应用题有以下几种类型1、甲数是乙数的百分之几。
计算方法:甲数÷乙数(“是”字左边的数除以“是”字右边的数)例题1:4是5的百分之几?列式:4÷5=80%例题2:五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,达标率是多少?列式:120÷160=0.75=75%例题3:有一台冰箱,原价2000元,降价后少卖400元,降了百分之几?列式:400÷2000=0.2=20%例题4:有一台电视,原价1200元,降了300元,价格降了百分之几?例题5:有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、2、已知甲数比乙数多百分之几,求甲数。
计算方法:乙数×(1+百分之几)(单位“1”是已知量)例题1:一个数比4多25%,求这个数。
列式:4×(1+25%)=5例题2:一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?例题3:小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕3、已知甲数比乙数多百分之几,求乙数。
六年级数学总复习-分数百分数应用题
1
3
答:池塘里有4只鹅。
(2)池塘里有12只鸭,鹅的只数是鸭的 。池塘里有多少只鹅?
1
3
单位“1”
鸭:
鹅:
?只
4只
单位“1”
单位“1”的量未知, 可直接用除法计算。
4÷ =12(只)
1
3
答:池塘里有12只鸭。
1
3
× =
鸭的只数
解答这类应用题要注意什么问题 ?
桃树是梨树的
3
5
第三类 1 果园里有桃树30棵, 1>求梨树多少棵?(用除法计算)应补充什么条件?算式为:( )
30÷
3
5
30÷
3
5
30+
2>桃树和梨树一共多少棵?
2 果园里有桃树30棵,桃树比梨树少 梨树多少棵?
(14-12) ÷12
=2÷12 ≈0.167 =16.7% 答:实际造林比原计划多16.7%。
第一步:求实际比计划多的公顷数。
第二步:求多的公顷数占计划的百分之几。
单位“1”
原计划:
实 际:
12公顷
14公顷
实际比原计划多的
单位“1”
第一步:求实际公顷数占原计划的百分之几。
第二步:求实际造林比原计划多百分之几。
单击此处添加副标题
202X
分数应用题的六种常见类型
学习目标
进一步巩固用分数知识解决实际问题的基本思考方法,进一步体会分数在实际生活中的广泛应用。
01
02
03
04
05
六一班男生30人,女生20人。
女生人数是男生人数的几分之几?
男生人数是女生人数的几分之几?
分数和百分数应用题典型解法
分数和百分数应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为: 144÷(1-207-207)=480(人)【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
六年级分数(百分数)应用题典型解法的整理和练习
1、分数应用题类型总结第一类、一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
“是比占”相当于“=” “的”相当于“×”例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 = 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、一个数的几分之几。
未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
“是比占”相当于“=” “的”相当于“×”例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=251、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有桃树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 、看问题求小利有图书多少本; B 、小利的图书是小芳的3/4;从ab 看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。
C 、小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数; D 、最后,彩蛋来了,“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。
自己尝试做一下吧B 、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
分数应用题的分类
分数应用题的分类根据分数应用题的特点,可以把分数应用题分成三大类:一、求一个数是另一个数的几分之几(或百分之几、),1:求一个数是另一个数的几分之几?例:六年级<1>有男生30人,女生24人,女生是男生的几分之几?方法是:一个数÷另一个数算式: 30÷24 =这里“是”是关键词,也就是“是”字后面的是单位“1”2:求一个数比另一个数多几分之几(或百分之几、几倍)。
例:甲数是5,乙数是4,甲数比已数多几分之几》?方法是:(甲数-乙数) ÷乙数这里的关键词是“比”,比字后边的是单位“1”。
算式:(5-4)÷4 =3:求一个数比另一个数少几分之几(或百分之几、几倍)例:甲数是5,已数是4,已数比甲数少几分之几》?方法是:(甲数-乙数) ÷甲数=这里的关键词是“比”,比字后边的是甲数,所以甲数是单位“1”。
算式: (5-4)÷5 =此类题型特点:分率未知,求分率,用除法计算。
二:求一个数的几分之几(或百分之几、)是多少。
1、求一个数的几分之几(或百分之几、)是多少。
例、小明看一本60页的故事书,第一天看了这本书的32,第一天看的多少页?(这里“这本书”是单位“1”,是谁的32谁就是单位“1”.)特点:单位“1”的量已知,用乘法计算。
解题方法:单位“1”的量×所求数量的对应分率= 所求数量算式: 60×32=40(页)2、求比一个数多几分之几的数是多少。
某校六年级有男生120人,女生比男生多51,女生有多少人?特点:单位“1”的量已知,用乘法计算。
“多”是加法方法是: 单位“1”的量×(1+几分之几)=(1+几分之几)对应量算式:120×(1+51)=3、求比一个数少几分之几的数是多少。
例、某校六年级有女生120人,男生比女生少51,男生有多少人?特点:单位“1”的量已知,用乘法计算。
“少”是减法方法是: 单位“1”的量×(1-几分之几)=(1-几分之几)对应量算式:120×(1-51)=三、已知一个数的几分之几是多少,求这个数。
《分数(百分数)解决问题》
《分数(百分数)解决问题》教学设计——分数(百分数)解决问题【科目】数学【教学对象】六年级【教材】义务教育教科书数学六年级下册总复习【课时】 1课时【任课教师】郭子强1 课前准备阶段1.1课程标准分析1.1.1学生能获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;1.1.2学生能初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;1.1.3学生能体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;1.1.4学生能具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
1.2教材分析分数(百分数)解决问题是全套教材的一个重要组成部分。
这部分教学质量的高低直接关系到小学数学教学目标的任务能否圆满地完成。
分数、百分数应用题的数量关系是这一部分的难点所在。
因此,要通过复习和比较使学生牢固地掌握分数、百分数应用题之间的数量关系,提高学生的辨析能力,使学生弄清复杂的分数应用题,从而为中学学习打下坚实基础。
1.3学生分析学生在思想上都积极要求进步,学习态度上都很严谨认真,大多数学生能按照老师的要求自主完成学习任务。
但有少部分学生学习态度不够端正,解决(1)看清分率。
(2)找准单位“1”的量。
(3)确定单位“1”是已知还是未知?(4)单位“1”的量×分率=分率对应量多:单位“1”的量×(1+分率)=分率对应量少:单位“1”的量×(1-分率)=分率对应量(分率对应量÷分率=单位“1”的量)2.2.3说一说下面各题中表示单位“1”的量。
(1)连环画的本数是故事书本数的 3/8。
(2)美术小组的人数相当于科技小组人数的 3/5。
(3)冰箱价格的1/2是洗衣机的价格。
(4)苹果树的棵数是梨树棵数的3/4,桃树棵数是苹果树棵数的 2/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数(百分数)应用题的六种常见类型
解题技巧:
一看,二找,三定,四列式。
1、看清分率。
2、找准单位“1”的量。
3、确定单位“1”是已知还是未知?
4、单位“1”的量×分率=分率对应量
(分率对应量÷分率=单位“1”的量)
分数应用题的六种类型
①电视机厂今年生产电视机36000台,相当于去年产量的1/4,去年生产多少
台?
②电视机厂今年生产电视机36000台,比去年少生产1/4,去年生产多少台?
③电视机厂今年生产电视机36000台,比去年多生产1/4,去年生产多少台?
④电视机厂今年生产电视机36000台,去年产量是今年的1/4,去年生产多少
台?
⑤电视机厂今年生产电视机36000台,去年产量比今年少1/4,去年生产多少
台?
⑥电视机厂今年生产电视机36000台,去年产量比今年多1/4,去年生产多少台?
5. 甲、乙、丙三个数之和为100,已知甲数等于乙数的1/3,等于丙数的一半。
求甲、乙、丙三个数各是多少?
6. 一项工程,甲、乙,两人合作8天完成;乙、丙两人合作6天完成;丙、丁两人合作12 天完成。
那么甲、丁两人合作多少天完成
7. 一个最简分数,如果分子加上1,可约简为;如果分子减去1,可约简为;求这个最简分数?
8. 甲、乙两人进行骑车比赛,甲车骑了全程的1/2时,乙车骑了全程的2/5,这时两人相距140米,如果继续按原速度骑下去,当甲到达终点时,乙距终点还有多少米
分数、百分数应用题练习(一)
1、小明每天看12页故事书,看了5天,还剩下全书的4/5,这本故事书共有多少页?
2、工人修一条公路,第一天修了全长1/2 ,第二天修了63米,还剩下全长的1/6,求全长?
3、一块铜和银的合金有290克,其中铜的质量比银的25%少10克,这块合金中银和铜各有多少克?
4、某校新建一幢教学楼,实际投资了126万元,比计划节约了10%,计划投资是实际投资的百分之几?(百分号前面的数保留一位小数)
5、一批零件有120只,甲乙合做了3小时完成,已知甲每小时加工的相当于乙的1/2,甲乙每小时各加工多少只?
6、一件工程甲乙两队合做6小时完成,甲乙两队的效率比是3:2。
甲乙单独做,各需要多少天?
7、修一条水渠,第一天修了150米,比第二天少修25米,两天修的正好占这条水渠的5/6,这条水渠的全长是多少米?
8、一本小说书,小芳已经看的与未看的页数比是2:5,如果再看27页,正好占这本小说书的一半,这本书共有多少页?
9、七月份用水360吨,比六月份节约40吨,比六月份节约百分之几?
10、王师傅要加工720只零件,其中有36只不合格,求合格率?
11、修一条公路,第一天修了全长的1/6,第二天修了全长的1/3,还剩下360米没有修,这条路全长多少米?。