平衡微分方程和边界条件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.4 平衡微分方程和边界条件
Hale Waihona Puke Baidu
平衡微分方程
平衡
物体整体平衡,内部任 何部分也是平衡的。 对于弹性体,必须讨论 一点的平衡。
微分平行六面体单元
平衡微分方程
yx zx x Fbx 0 x y z
ij , i Fbj 0
xy y zy Fby 0 x y z yz z z Fbz 0 x y z
这种平衡只是静力学可能的平衡。 真正处于平衡状态的弹性体,还必须满足
变形连续条件。
位移边界条件
边界位移已知——位移边界Su
u u
vu
ww
位移边界条件就是弹性体表面的变形协调
弹性体临近表面的位移与已知边界位移相等
混合边界条件 弹性体边界 S=S+Su 部分边界位移已知——位移边界Su
部分边界面力已知——面力边界S
不论是面力边界条件,位移边界条件, 还是混合边界条件,任意边界的边界条件
数必须等于3个。
切应力互等定理
ij ji
边界条件
弹性体的表面,应力分量必须与表面力满足面 力边界条件,维持弹性体表面的平衡。 边界面力已知——面力边界S
面力边界条件——
Fsj ij ni
确定的是弹性体表面外力与弹性体内部趋近于 边界的应力分量的关系。
面力边界条件描述弹性体表面的平衡,
平衡微分方程描述弹性体内部的平衡。
相关文档
最新文档