选修4-4平面直角坐标系(课堂PPT)

合集下载

高二数学选修4-44.1.21极坐标系课堂PPT.ppt

高二数学选修4-44.1.21极坐标系课堂PPT.ppt

(x , y , z)的集合建立一一对应;
授课:XX
1
复习回顾
4.1.1 直角坐标系

平面直角

坐标系
空间直角 坐标系
R
(x , y)
(x , y , z)
授课:XX
2
复习回顾
建立坐标系是为了确定点的位置。由此,在所创建的坐标系 中,应满足: 任意一点都存在一个坐标与之对应;反之,依据一个点的坐 标就能确定这个点的位置; 而确定点的位置即为求出此点在设定的坐标系中的坐标。
OM= 3
M
给定ρ,θ在极坐标系中描点的方法:先按极角找到极径所在的 射线,后按极径的正负和数值在这条射线或其反向延长线上描 点。
授课:XX
19
5、负极径的实质
从比较来看,负极径比 正极径多了一个操作,将射
M
线OP“反向延长”。
而反向延长也可以看成是旋转 O
,因此,所谓“负极径”实
质是针对方向的。这与数学中
[1]作射线OP,使XOP=
P
[2]在OP的反向延长
线上取一点M,使OM= ;
O
X
如图示:
M
授课:XX
15
新课讲解
2、负极径的实例
在极坐标系中画出点:M(-3,/4)的位置
[1]作射线OP,使XOP= /4 [2]在OP的反向延长线上取一
P = /4
点M,使OM= 3;
O
X
如图示: M(-3,/4)
[3]一点的极坐标是否有统一的表达式?
有.( ,2k ) 或(- ,2k π)
授课:XX
27
课堂小结
1、极坐标 (ρ,2kπ+θ) 和(-ρ,2kπ+θ+π)k其Z

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)
x′=3x ∴ y′=2y
,即将圆 x2+y2=1 上所有点横坐标变为原
x′2 y′2 来的 3 倍,纵坐标变为原来的 2 倍,可得椭圆 + =1. 9 4
返回
坐标伸缩变换
x′=λx φ: y′=μy
λ>0 注意变换中的系 μ>0
数均为正数.在伸缩变换下,平面直角坐标系保持不变, 即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标 伸缩变换 φ 可以求变换前和变换后的曲线方程. 已知前换 前后曲线方程也可求伸缩变换 φ.
返回
因为 m∈(0,1)∪(1,+∞),所以 当 0<m<1 时,曲线 C 是焦点在 x 轴上的椭圆, 两焦点坐标分别为(- 1-m2,0),( 1-m2,0); 当 m>1 时,曲线 C 是焦点在 y 轴上的椭圆, 两焦点坐标分别为(0,- m2-1),(0, m2-1).
返回
求轨迹的常用方法 (1)直接法:如果题目中的条件有明显的等量关系或者
x′=2x ∴ y′=y
x2 y2 ,即将椭圆 + =1 上所有点横坐标变为原来 4 9
x′2 y′2 的 2 倍,纵坐标不变,可得椭圆 + =1. 16 9
返回
6.求 4x -9y =1 方程.
2
2
x′=2x 经过伸缩变换 y′=3y
后的图形所对应的
1 x′=2x, x=2x′, 解:由伸缩变换 得: y′=3y y=1y′, 3 将其代入 4x2-9y2=1, 1 1 2 得 4· x′) -9· y′)2=1. ( ( 2 3 整理得:x′2-y′2=1. ∴经过伸缩变换后图形所对应的方程为 x′2-y′2=1.
返回
点击下图进入
返回
可以推出某个等量关系,即可用求曲线方程的五个步骤直

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

1.1《平面直角坐标系》 课件(人教A版选修4-4)

1.1《平面直角坐标系》 课件(人教A版选修4-4)

【解析】(1)设曲线方程为 y=ax 2 +
7
64 , 7
因点D(8,0)在抛物线上,∴ a=- 1 , ∴曲线方程为 y=- 1 x 2 + 64 .
7 7
y=y
μ≠1,
∴x=y=0,即P(0,0)为所求.
答案:(0,0)
9.台风中心从A地以20 km/h的速度向东北方向移动,离台风 中心30 km内的地区为危险区,城市B在A地正东40 km处,则 城市B处于危险区内的时间为_______.
【解析】以A为坐标原点,AB所 在直线为x轴,建立平面直角坐
3.在同一平面直角坐标系中,将曲线y=2sin3x变为曲线 y=sinx的伸缩变换是( )
x=3x 1 =sin3x,令 【解析】选C.由曲线y=2sin3x,得 y 1 , 2 y= 2 y
得y′=sinx′,即y=sinx.
1 x = x 4.若点P(-2 009,2 010)经过伸缩变换 2 010 后所得的 y= 1 y 2 009
20
答案:1 h
三、解答题(共40分) 10.(12分)怎样由正弦曲线y=sinx得到曲线y=2sin3x?
【解析】设P(x,y)为正弦曲线y=sinx上任意一点,保持横坐标
x不变,将纵坐标伸长到原来的2倍,得到曲线y=2sinx,在此基 础上将横坐标缩小到原来的 1 ,得到曲线y=2sin3x.
缩短到原来的 1 ,得到的曲线方程为(
3
)
(A)F( x ,3y)=0
2
(B)F(2x, y )=0
3
(C)F(3x, y )=0
2
(D)F( x ,2y)=0
3
【解析】

湘教版高中数学选修4-4课件 1.4极坐标与平面直角坐标的互化(共17张PPT)优质课件PPT

湘教版高中数学选修4-4课件  1.4极坐标与平面直角坐标的互化(共17张PPT)优质课件PPT

AB
1
1 2
2
0
3 2 2
3
小结: 1、极坐标化为平面直角坐标; 2、平面直角坐标化为极坐标.
谢谢!
我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激 组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的 有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自 对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,挥动依旧没有 和球,然后用更大的力气对自己喊:“我是世界上最棒的棒球手!”可是接下来的结果,并未如愿。男孩子似乎有些气馁,可是转念一想:我抛球这么刁,一定是个很 喊:“我是世界上最棒的挥球手!”其实,大多数情况下,很多人做不到这看似荒谬的自我鼓励,可是,这故事却深深反映了这个男孩子自我鼓励下的执著,而这执著 迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要目标太小、而且太模糊不清,使自己失去动力。如果你的主要 实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目标的道路绝不是坦途。它总是呈现出一条波浪线,有起也有落,但你 你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整计划。这才是明智之举。在自己的事业波峰时,要给自己安排休整点。安排出 是离开自己挚爱的工作也要如此。只有这样,在你重新投入工作时才能更富激情。困难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。 很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力陡生。所以,困难不可怕,可怕的是回避困难。大多数人通过别人对自己的印象和看法来看自 尤其正面反馈。但是,仅凭别人的一面之辞,把自己的个人形象建立在别人身上,就会面临严重束缚自己的。因此,只把这些溢美之词当作自己生活中的点缀。人生的 上找寻自己,应该经常自省。有时候我们不做一件事,是因为我们没有把握做好。我们感到自己“状态不佳”或精力不足时,往往会把必须做的事放在一边,或静等灵 些事你知道需要做却又提不起劲,尽管去做,不要怕犯错。给自己一点自嘲式幽默。抱一种打趣的心情来对待自己做不好的事情,一旦做起来了尽管乐在其中。所以, 要尽量放松。在脑电波开始平和你的中枢神经系统时,你可感受到自己的内在动力在不断增加。你很快会知道自己有何收获。自己能做的事,放松可以产生迎接挑战的 社会,面对工作,一切的未来都需要自己去把握。人一定要靠自己。命运如何眷顾,都不会去怜惜一个不努力的人,更不会去同情一个懒惰的人,一切都需要自己去努 一时的享受也只不过是过眼云烟,成功需要自己去努力。当今社会的快速发展,各行各业的疲软,再加上每年几百万毕业生涌向社会,社会生存压力太大,以至于所有 高自己。看着身边一个个同龄人那么优秀,看着朋友圈的老同学个个事业有成、买房买车,我们心急如梵,害怕被这个社会抛弃。所以努力、焦躁、急迫这些名词缠绕 变自己,太想早一日成为自己梦想中的那个自己。收藏各种技能学习资料,塞满了电脑各大硬盘;报名流行的各种付费社群,忙的人仰马翻;于是科比看四点钟的洛杉 早起打卡行动。其实……其实我们不觉得太心急了吗?这是有一次自己疲于奔命,病倒了,在医院打点滴时想到的。我时常恐慌,害怕自己浪费时间,就连在医院打点 浪费。想快点结束,所以乘着护士不在,自己偷偷的拨快了点滴速度。刚开始自己还能勉强受得了,过了差不多十分钟,真心忍不住了,只好叫护士帮我调到合适的速 就在想,平时做事和打点滴何尝不是一样,都是有一个度,你太急躁了、太想赶超,身体是受不了的。身体是革命的本钱,我们还年轻,还有大把的时间够我们改变, 前面的那个若是1都不存在了,后面再多的0又有什么用?我是一个急性子,做事风风火火的,所以对于想改变自己,是比任何人都要心急。这次病倒了,个人感觉完全 乎才导致的,病倒换来的努力根本是一钱不值。生病的那几天,我跟自己的大学老师打了一个电话,想让老师帮我解惑一下,自己到底是怎么了。别人也很努力啊,而 为啥他们反到身体倍棒而一无所获的自己却病倒了?老师开着电脑,给我分享了两个小故事讲的第一个故事是“保龄球效应”,保龄球投掷对象是10个瓶子,你如果每 而你如果每次能砸倒10个瓶子,最终得分是240分。故事讲完,老师问我明白啥意思没?我说大概猜到一点,你让我再努力点,对吗?不对!你已经够努力了,都累病了 在就是那个每次砸倒9个瓶子的人。你累倒的原因是因为你同时在几个场馆玩,每一个场馆得分都是90分,而有些人,则是只在一个场馆玩,玩多了,他就能砸倒10个瓶 却还是远远超过你。老师讲的第二故事是“挖水井”,一个人选择好一处地基,就在那里一直坚持不懈的挖下去,而另一个人则是到处选地基,这边挖几米,那边挖几 而另一个人则是直到累死也没有挖出一滴水。首先,你必须承认努力是必须的,只要你比别人努力了那么一点,你确实能超过一些人。只是人的精力也是有限的,你这 果只会是永远装不满水桶的半桶水。和老师通完电话后,我调整了几天,也对自己手头上的事物做一些大改变。将目前摆在面前的计划一一列出来,挑出最重要的、最 排完手中所有的计划。对于那些不是很急的,对目前生活和工作不是特别重要的,先果断放弃。我现在最迫切的目标是什么?当然是七月份的转行新媒体咯,那么学习 媒体所需学习的技能又有很多,那怎么办呢?先挑自己有点底子的,有点基础的,把巩固持续加强。个人��

1.1《平面直角坐标系》 课件(人教A版选修4-4)

1.1《平面直角坐标系》 课件(人教A版选修4-4)

周期为( (A)
2
)
(B)π
(C)2π
(D)3π
1 x = x, 【解析】选B.由 2 得 y=3y.
x=2x, 代入曲线y=sinx,得 1 y= 3 y.
y′=3sin2x′,即y=3sin2x,故周期为π.
6.将曲线F(x,y)=0上的点的横坐标伸长到原来的2倍,纵坐标
标系,则B(40,0),以点B为圆
心,30为半径的圆的方程为 (x-40)2+y2=302,台风中心移动 到圆B内时,城市B处于危险区, 台风中心移动的轨迹为直线y=x,与圆B相交于点M、N,点B到
直线y=x的距离 d= 40 =20 2, 求得|MN|= 2 302 -d 2 =20 (km),
2
【解析】(1)设曲线方程为 y=ax 2 +
7
64 , 7
因点D(8,0)在抛物线上,∴ a=- 1 , ∴曲线方程为 y=- 1 x 2 + 64 .
7 7
∴ |MN| =1,所以城市B处于危险区的时间为1 h .
20
答案:1 h
三、解答题(共40分) 10.(12分)怎样由正弦曲线y=sinx得到曲线y=2sin3x?
【解析】设P(x,y)为正弦曲线y=sinx上任意一点,保持横坐标
x不变,将纵坐标伸长到原来的2倍,得到曲线y=2sinx,在此基 础上将横坐标缩小到原来的 1 ,得到曲线y=2sin3x.
3.在同一平面直角坐标系中,将曲线y=2sin3x变为曲线 y=sinx的伸缩变换是( )
x=3x 1 =sin3x,令 【解析】选C.由曲线y=2sin3x,得 y 1 , 2 y= 2 y
得y′=sinx′,即y=sinx.

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础

1.1《平面直角坐标系》 课件(人教A版选修4-4)

1.1《平面直角坐标系》 课件(人教A版选修4-4)

8.平面直角坐标系中,在伸缩变换φ : 下仍是其本身的点为_______.
x=x ( 0, 1)
y=y ( 0, 1)
作用
【解析】设P(x,y)在伸缩变换φ: x=x ( 0) 作用下得到 y=y ( 0)
P′(λx,μy),依题意得 x=x , 其中λ>0,μ>0,λ≠1,
【解析】(1)设曲线方程为 y=ax 2 +
7
64 , 7
因点D(8,0)在抛物线上,∴ a=- 1 , ∴曲线方程为 y=- 1 x 2 + 64 .
7 7

2.动点P到直线x+y-4=0的距离等于它到点M(2,2)的距离, 则点P的轨迹是( )
(A)直线(C)双曲线 Nhomakorabea(B)椭圆
(D)抛物线
【解析】选A.由于点M(2,2)在直线x+y-4=0上,而|PM|等 于P到直线x+y-4=0的距离,所以动点P的轨迹为过点M垂直于 直线x+y-4=0的直线.
缩短到原来的 1 ,得到的曲线方程为(
3
)
(A)F( x ,3y)=0
2
(B)F(2x, y )=0
3
(C)F(3x, y )=0
2
(D)F( x ,2y)=0
3
【解析】
二、填空题(每小题8分,共24分) 7.点A(2,-3),B(-1,1)之间的距离为_______. 【解析】由两点间的距离公式得|AB| = [2-(-1)]2 +(-3-1) 2 =5. 答案:5
标系,则B(40,0),以点B为圆
心,30为半径的圆的方程为 (x-40)2+y2=302,台风中心移动 到圆B内时,城市B处于危险区, 台风中心移动的轨迹为直线y=x,与圆B相交于点M、N,点B到

2014年人教A版选修4-4课件 1.平面直角坐标系

2014年人教A版选修4-4课件 1.平面直角坐标系

问题2. 上述思考充分体现了坐标法的思想. 其结 果有如下的两种表述, 各种表述由哪几个元素确定? 你认为各种表述有什么意义? 表述 1: 巨响位于 P(-680 5, 680 5 ) 处. 表述 2: 巨响位于信息中心北偏西45, 相距信息 中心 680 10 米处. 表述 1 用 x、y 的坐标这两个元素确定位置. 表述 2 用相对于信息中心的方位角和距离这两个 元素确定位置. 表述 1 便于书面和图纸上的标注. 这样的表述在 语言的传递中缺了坐标系, 点的坐标就显得无意义. 表述 2 便于语言传递和描述, 是相对于参照位置 的描述, 易于理解和想像.
O 设点 C 的坐标为 C (x, y), 由中点坐标求得 E ( x , y ), F ( c , 0). 2 2 2 由 b2+c2=5a2 得 |AC|2+|AB|2=5|BC|2, 代入坐标整理得 2x2+2y2+2c2-5cx=0. (A) F B x
O F B 设点 C 的坐标为 C (x, y), 2+c2=5a2, y x c 例 1. 已知△ ABC 的三边 a , b , 满足 b 由中点坐标求得 E ( , ), F ( , 0). 2 上的中线 2 2, 建立适当的平 BE, CE 分别为边 AC , AB 由 b2+c2=5a2 得 |AC|2+|AB|2=5|BC|2, 面直角坐标系探究 BE 与 CF 的位置关系. 代入坐标整理得 解: 以△ ABC 的顶点 A= 为原点 , AB 所在直线 2+2y2 2x +2c2-5cx 0. y 为 x 轴, 建立平面直角坐标系 . x y C BE = ( - c, ), 2 2 则各点的坐标为 c E CF = ( x , y ), A(0, 0), B(c, 20), 2 y x c O(A) F B x 则 BE CF = ( - c )((xx )设点 C 的坐标为 C , y ), 2 2 2 y2 x c 1 2 2 由中点坐标求得 E F ).) = 0, = - (2 x( 2 +,2 2 y ), +2 c(2 - ,50 cx 4 2+c2=5a2 得 |AC|2+|AB|2=5|BC|2, 由 b ∴BF 与 CE 互相垂直. 代入坐标整理得 (请同学们用斜率试一试) 2x2+2y2+2c2-5cx=0.

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)


作用下,点 P(x,y)对应到点 P′(x′,y′),称 φ 为平面 直角坐标系中的坐标伸缩变换,简称伸缩变换.
返回
[例1]
(2012· 湖北高考改编)设A是单位圆x2+y2=1上
的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴 的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且 m≠1).当点A在圆上运动时,记点M的轨迹为曲线C. 求曲线C的方程,判断曲线C为何种圆锥曲线,并求其
的轨迹方程.
解:取 B、C 所在直线为 x 轴,线段 BC 的中垂线为 y 轴,建立直角坐标系,则 D(0,0),B(-2,0),C(2,0). 设 A(x,y)为所求轨迹上任意一点, 则|AD|= x2+y2, 又|AD|=3, ∴ x2+y2=3,即 x2+y2=9(y≠0). ∴A 点的轨迹方程为 x2+y2=9(y≠0)
则直线AC的方程为 返回
h y=- a x+h, 即:hx+ay-ah=0. h 直线 AB 的方程为 y=a x+h, 即:hx-ay+ah=0. |2ah| 由点到直线的距离公式:得|BD|= 2 2, a +h |2ah| |CE|= 2 2. a +h ∴|BD|=|CE|,即 BD=CE.
① ②
①2-2②;得 a2=2b+1. π π ∵|θ|≤ ,由 sin θ+cos θ= 2sin(θ+ ), 4 4 知 0≤a≤ 2. 1 1 由 sin θ· θ= sin 2θ,知|b|≤ . cos 2 2 ∴P(a,b)的轨迹方程是 a2=2b+1(0≤a≤ 2).
返回
2.△ABC中,若BC的长度为4,中线AD的长为3,求A点
返回
[例2]
已知△ABC中,AB=AC,BD、CE分别为两腰

1.1《平面直角坐标系》 课件(人教A版选修4-4)

1.1《平面直角坐标系》 课件(人教A版选修4-4)

∴ |MN| =1,所以城市B处于危险区的时间为1 h .
20
答案:1 h
三、解答题(共40分) 10.(12分)怎样由正弦曲线y=sinx得到曲线y=2sin3x?
【解析】设P(x,y)为正弦曲线y=sinx上任意一点,保持横坐标
x不变,将纵坐标伸长到原来的2倍,得到曲线y=2sinx,在此基 础上将横坐标缩小到原来的 1 ,得到曲线y=2sin3x.
标系,则B(40,0),以点B为圆
心,30为半径的圆的方程为 (x-40)2+y2=302,台风中心移动 到圆B内时,城市B处于危险区, 台风中心移动的轨迹为直线y=x,与圆B相交于点M、N,点B到
直线y=x的距离 d= 40 =20 2, 求得|MN|= 2 302 -d 2 =20 (km),
2
器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为对称
轴,M(0,64 )为顶点的抛物线的实线部分,降落点为D
7
(8,0),观测点A(4,0),B(6,0)同时跟踪航天器.
(1)求航天器变轨后的运行轨迹所在的曲线方程; (2)试问:当航天器在x轴上方时,观测点A,B测得离航天 器的距离分别为多少时,应向航天器发出变轨指令?
周期为( (A)
2
)
(B)π
(C)2π
(D)3π
1 x = x, 【解析】选B.由 2 得 y=3y.
x=2x, 代入曲线y=sinx,得 1 y= 3 y.
y′=3sin2x′,即y=3sin2x,故周期为π.
6.将曲线F(x,y)=0上的点的横坐标伸长到原来的2倍,纵坐标
8.平面直角坐标系中,在伸缩变换φ : 下仍是其本身的点为_______.

1.1《平面直角坐标系》 课件(人教A版选修4-4)

1.1《平面直角坐标系》 课件(人教A版选修4-4)
一、选择题(每小题6分,共36分)
1.已知△ABC中,A(4,-3),B(5,-2),重
心G(2,-1),则点C的坐标为( (A)(-3,2) )
(B)(3,-2)
(C)(2,-3)
(D)(-2,3)
2 2
【解析】选A.设点C(x,y),线段AB的中点 D( 9 ,- 5 ) , 依题意得 GC=2DG ,
y=y
μ≠1,
∴x=y=0,即P(0,0)为所求.
答案:(0,0)
9.台风中心从A地以20 km/h的速度向东北方向移动,离台风 中心30 km内的地区为危险区,城市B在A地正东40 km处,则 城市B处于危险区内的时间为_______.
【解析】以A为坐标原点,AB所 在直线为x轴,建立平面直角坐
∴ |MN| =1,所以城市B处于危险区的题(共40分) 10.(12分)怎样由正弦曲线y=sinx得到曲线y=2sin3x?
【解析】设P(x,y)为正弦曲线y=sinx上任意一点,保持横坐标
x不变,将纵坐标伸长到原来的2倍,得到曲线y=2sinx,在此基 础上将横坐标缩小到原来的 1 ,得到曲线y=2sin3x.
【解析】(1)设曲线方程为 y=ax 2 +
7
64 , 7
因点D(8,0)在抛物线上,∴ a=- 1 , ∴曲线方程为 y=- 1 x 2 + 64 .
7 7

2.动点P到直线x+y-4=0的距离等于它到点M(2,2)的距离, 则点P的轨迹是( )
(A)直线
(C)双曲线
(B)椭圆
(D)抛物线
【解析】选A.由于点M(2,2)在直线x+y-4=0上,而|PM|等 于P到直线x+y-4=0的距离,所以动点P的轨迹为过点M垂直于 直线x+y-4=0的直线.

北师大版高中数学选修4-4《点的极坐标和直角坐标的互化》课件(共13张PPT)

北师大版高中数学选修4-4《点的极坐标和直角坐标的互化》课件(共13张PPT)

3.已知A,B两点的极坐标A(2, ),B(4, 5 ),求A, B两点间
3
6
距离和AOB的面积。
4.已知两点的极坐标A(3, ),B(3, ),求A, B两点间
2
6
距离和AB与极轴正方向的夹角.
课时小结
1.点的极坐标的理解,极坐标的不唯一性; 2.点的极坐标与直角坐标的互化; 3.极坐标系下,两点间距离公式及应用。
(1)当极径 0,以OX为始边作角,在角的终边上截取| OM | ; (2)当极径 0,以OX为始边作角,在角的终边的反向延长线上 截取 | OM || |; (3)极点的极坐标为(0,),其中为任意角。
M
O
X

° O
x
(, )
3.极坐标系下点与它的极坐标的对应情况
P
[1]给定(,),就可以在极坐标平
M (ρ,θ)
面内确定唯一的一点M;
O
X
[2]给定平面上一点M,但却有无数个极坐标与之对应。
(,),(, 2k ), (, 2k )(k Z)表示同一点
如果限定ρ>0,0≤θ<2π 那么除极点外,平面内的点和极坐标就可以一一对应了.
(ρ,θ)
(ρ,θ +2kπ)
(-ρ,θ +π) (-ρ,θ +(2k+1)π)
[3]对称性:
点(,)关于极轴的对称点为(,2 ); 点(, )关于极点对称点为(, ); 点(, )关于过极点且垂直于极轴的直线的对称点为(, ).

新课探究
1.点的极坐标与直角坐标的互化:
(

R);
(2)点M的直角坐标(x, y)为极坐标(, )的关系式:

人教版数学选修4-4课件 1.1 平面直角坐标系

人教版数学选修4-4课件 1.1 平面直角坐标系
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
• 思维导引:本题涉及两点间的距离及曲线, 故要想到坐标法解决问题.
解析:以 A,B 所在直线为 x 轴,A,B 中点 O 为坐标原点,建立如图的直角坐标 系.
∵|AB|=10,∴点 A(-5,0),B(5,0).设某地 P 的坐标为(x,y),并设 A 地运费为 3a 元/公里,则 B 地运费为 a 元/公里,设 P 地居民购货总费用满足条件(P 地居民选择 A 地 购货):价格+A 地运费≤价格+B 地运费,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
•要点二 平面直角坐标系中的伸缩变换
定义:设 P(x,y)是平面直角坐标系中任意一点,在变换 φ:xy′′==λμxy,,λμ>>00,
• 的作用下,点P(x,y)对应到点P′(x′,y′),就 坐称标φ伸为缩平变面换 直角伸坐缩标变换系中的________________, 简称______________.

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)

返回
2.平面直角坐标系中的伸缩变换 (1)平面直角坐标系中方程表示图形,那么平面图形的 伸缩变换就可归纳为 坐标 伸缩变换,这就是用 代数方法 研 究 几何 变换.
(2)平面直角坐标系中的坐标伸缩变换:设点 P(x,y)是 平面直角坐标系中任意一点, 在变换
x′=λxλ>0 φ: y′=μyμ>0
返回
建立平面直角坐标系的原则
根据图形的几何特点选择适当的直角坐标系的一 些规则:①如果图形有对称中心,选对称中心为原点, ②如果图形有对称轴,可以选对称轴为坐标轴,③使 图形上的特殊点尽可能多地在坐标轴上.
返回
3.求证等腰梯形对角线相等. 已知:等腰梯形ABCD.求证:AC=BD.
证明:取 B、C 所在直线为 x 轴,线段 BC 的中垂线为 y 轴, 建立如图所示的直角坐标系. 设 A(-a,h),B(-b,0), 则 D(a,h),C(b,0). ∴|AC|= b+a2+h2, |BD|= a+b2+h2. ∴|AC|=|BD|, 即等腰梯形 ABCD 中,AC=BD.
返回
返回
1.平面直角坐标系
(1)平面直角坐标系的作用:使平面上的点与 坐标 、
曲线与 方程 建立联系,从而实现 数与形 的结合. (2)坐标法解决几何问题的“三部曲”:第一步:建立适 当坐标系,用坐标和方程表示问题中涉及的 几何 元素,将 几何问题转化为 代数 问题;第二步:通过代数运算解决
代数问题;第三步:把代数运算结果翻译成 几何 结论.
焦点坐标.
[思路点拨] 解. 设出点M的坐标(x,y),直接利用条件求
返回
[解]
如图,设 M(x,y),A(x0,y0),则由
|DM|=m|DA|(m>0,且 m≠1), 可得 x=x0,|y|=m|y0|, 1 所以 x0=x,|y0|=m|y|. ①

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)
返回
返回
1.平面直角坐标系
(1)平面直角坐标系的作用:使平面上的点与 坐标 、
曲线与 方程 建立联系,从而实现 数与形 的结合. (2)坐标法解决几何问题的“三部曲”:第一步:建立适 当坐标系,用坐标和方程表示问题中涉及的 几何 元素,将 几何问题转化为 代数 问题;第二步:通过代数运算解决
代数问题;第三步:把代数运算结果翻译成 几何 结论.
可以推出某个等量关系,即可用求曲线方程的五个步骤直
接求解. (2)定义法:如果动点的轨迹满足某种已知曲线的定义, 则可依定义写出轨迹方程.
返回
(3)代入法:如果动点P(x,y)依赖于另一动点Q(x1, y1),而Q(x1,y1)又在某已知曲线上,则可先列出关于x,y,
y1,x1的方程组,利用x、y表示x1、y1,把x1、y1代入已知
返回
x2 y2 5.求满足下列图形变换的伸缩变换:由曲线 + =1 变成 4 9 x′2 y′2 曲线 + =1. 16 9 x′=λx,λ>0, x′2 y′2 解:设变换为 代入方程 + =1, 16 9 y′=μy,μ>0,
λ2x2 μ2y2 x2 y2 得 + =1,与 + =1 比较系数, 16 9 4 9 λ2 1 μ2 1 得 = , = ,得 λ=2,μ=1. 16 4 9 9
返回
建立平面直角坐标系的原则
根据图形的几何特点选择适当的直角坐标系的一 些规则:①如果图形有对称中心,选对称中心为原点, ②如果图形有对称轴,可以选对称轴为坐标轴,③使 图形上的特殊点尽可能多地在坐标轴上.
返回
3.求证等腰梯形对角线相等. 已知:等腰梯形ABCD.求证:AC=BD.
证明:取 B、C 所在直线为 x 轴,线段 BC 的中垂线为 y 轴, 建立如图所示的直角坐标系. 设 A(-a,h),B(-b,0), 则 D(a,h),C(b,0). ∴|AC|= b+a2+h2, |BD|= a+b2+h2. ∴|AC|=|BD|, 即等腰梯形 ABCD 中,AC=BD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用y=-x代入上式,得 x6805,
∵|PA|>|PB|,
x680 5,y680 5, 即 P(680 5,680 5)故 , PO 681 00
答:巨响发生在接报中心的西偏北
450距中心 680 10m 处.
例1.已知△ABC的三边a,b,c满足
b2+c2=5a2,BE,CF分别为边AC,AB上
1
x’= 2 x 3 y’=3y 通常把 3 叫做平面直角坐标系中的一个坐标
伸缩变换。
定义:设P(x,y)是平面直角坐标系中 任意一点,在变换
:xy''xy
(0) (0)
4
的作用下,点P(x,y)对应P’(x’,y’).称
为平面直角坐标系中的伸缩变换。
注 (1) 0,0
(2)把图形看成点的运动轨迹, 平面图形的伸缩变换可以用坐标伸缩 变换得到;
因此,BE与CF互相垂直.
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能地在坐标轴上。
P8 习题 1.1-- 1
二.平面直角坐标系中的伸缩变换
思考: (1)怎样由正弦曲线y=sinx得到曲 线y=sin2x?
即 x 2 y 2 c 2 5 [(x c )2 y 2 ].
整 理 得 2 x 2 2 y 2 2 c 2 5 c x 0 .
因 为 u B u E u v (x c ,y ) ,C u u F u v (c x , y ) , 22 2
所 以 u B u E u v g C u u F u v (x c )(c x )y2 0 . 22 2
第一讲 坐标系
§1 平面直角坐标系
2
一.平面直角坐标系的建立 坐标法
1、建立平面直角坐标系 2、设点(点与坐标的对应) 3、列式(方程与坐标的对应) 4、化简 5、说明
C P
B
信息中心
A
l r
以接报中心为原点O,以BA方向为x轴,建立 直角坐标系.设A、B、C分别是西、东、北观测点,
则 A(1020,0), B(-1020,0), C(0,1020)
的中线,建立适当的平面直角坐标系
探究BE与CF的位置关系。 y
解:以△ABC的顶点A为原点O, 边AB所在的直线x轴,建立直角 坐标系,由已知,点A、B、F的 坐标分别为
C E
c
A ( 0, 0 ) , B ( c ,0 ) , F ( 2 ,0 ).
O (A)
F
Bx
设 点 C 的 坐 标 为 ( x , y ) , 则 点 E 的 坐 标 为 ( x 2 , y 2 ) . 由 b 2 c 2 5 a 2 , 可 得 到 |A C |2 |A B |2 5 |B C |2 ,
换 x’=3x 后, y’=y
曲线C变为x’2-9y’2 =1,求曲线C的方 程并画出图形。
思考:在伸缩 4 下,椭圆是否可以 变成圆?抛物线,双曲线变成什么曲 线?
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题;
(2)掌握平面直角坐标系中的伸缩 变换。
作业: P8 1, 2,4, 5 预习: 极坐标系(书本P9-P11)
y=sin2x
2
O
x
y=sinx
在正弦曲线y=sinx上任取一点P(x,y),保持纵坐
标不变,将横坐标x缩为原来的 1 ,就得到正弦
2
曲线y=sin2x.
上述的变换实质上就是一个坐标的压缩变换,
即:设P(x,y)是平面直角坐标系中任意一点,保持
纵坐标不变,将横坐标x缩为原来 ,得1 到点
P’(x’,y’).坐标对应关系为:
x’=x 2
y’=3y
通常把 2 叫做平面直角坐标系中 的一个坐标伸长变换。
(3)怎样由正弦曲线y=sinx得到曲 线y=3sin2x? 写出其坐标变换。
在正弦曲线y=sinx上任取一点P(x,y),保持纵坐
标不变,将横坐标x缩为原来的
1 2
,在此基础上,
将纵坐标变为原来的3倍,就得到正弦曲线
y=3sin2x. 设点P(x,y)经变换得到点为P’(x’,y’)
设P(x,y)为巨响发生点,由B、C同时听
到巨响声,得|PC|=|PB|,故P在BC的垂直平分
线PO上,PO的方程为y=-x,因A点比B点晚4s
听到爆炸声,
y
C
P
故|PA|- |PB|=340×4=1360
B o Ax
由双曲线定义知P点在以A、B为焦点的
双曲线
x2 a2
y2 b2
1 上,
a680,c1020 b2 c2a2 10220682053420 故双曲线方 6x822程 05为 y324201(x0)
2
坐标对应关系为:
1
x’= 2 x 1 y’=y
通常把 1 叫做平面直角坐标系中 的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到 线y=3sinx?写出其坐标变换。
在正弦曲线上任取一点P(x,y), 保持横坐标x不变,将纵坐标伸长为原 来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为P’(x’,y’)
(3)在伸缩变换下,平面直角 坐标系不变,在同一直角坐标系下进 行伸缩变换。
练习:
1.在直角坐标系中,求下列方程所对 应的图形经过伸缩变换
x’=x
y’=3y
后的图形。 (1)2x+3y=0; (2)x2+y2=1
2.在同一直角坐标系下,求满足下列 图形的伸缩变换:曲线4x2+9y2=36变 为曲线x’2+y’2=1 3.在同一直角坐标系下,经过伸缩变
相关文档
最新文档