80论坛_初中数学校本教材_初中数学校本教材 9849080
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学校本教材
————《校本课程》序言
一、把握数学的生活性——“使教学有生活味”
《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。
二、把握数学的美育性——“使教学有韵味”
数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。作为精神产品的数学就具有上述美的特点。
简练、精确是数学的美。数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。
数学很讲究它的逻辑美。数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。抽象的数学不正展示它的魅力吗?
数学上有很多知识是和对称有关的。对称给人协调,平稳的感觉,象圆,正方体等,它们的形式是如此的匀称优美。正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。
中学数学的美育性,除了上述一些方面,还有其它美妙的地方,只要我们用心挖掘和捕捉,就会发现数学蕴涵着如此丰富的美的因素,教师要善于挖掘美的素材,在学生感受美的同时既提高教学质量,又使教学韵味深厚。
第一章兴趣数学
第一节七桥问题(一笔画问题)
18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,
那里有七座桥。如图1所示:河中的小岛A与河的
左岸B、右岸C各有两座桥相连结,河中两支流间
的陆地D与A、B、C各有一座桥相连结。当时哥尼
斯堡的居民中流传着一道难题:一个人怎样才能一次
走遍七座桥,每座桥只走过一次,最后回到出发点?
大家都试图找出问题的答案,但是谁也解决不了这个
问题。
七桥问题引起了著名数学家欧拉(1707—1783)的关注。
他把具体七桥布局化归为图所示的简单图形,于是,
七桥问题就变成一个一笔画问题:怎样才能从A、B、
C、D中的某一点出发,一笔画出这个简单图形
(即笔不离开纸,而且a、b、c、d、e、f、g各条线
只画一次不准重复),并且最后返回起点?
欧拉经过研究得出的结论是:图是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?
如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。
综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
欧拉定理:如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。
练习:你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。(不走重复线路)
图例1
图例2
图例3
图例4
2四色问题
人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。
这个地图着色问题,是一个著名的数学难题。大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,
才能把所有省份都区别开来。所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。”这就是“四色问题”这个名称的由来。
四色问题又称四色猜想,是世界近代三大数学难题之一。
四色问题的内容是:“任何一张地图只用四种颜色就能
使具有共同边界的国家着上不同的颜色。”用数学语言表示,
即“将平面任意地细分为不相重迭的区域,每一个区域总可
以用1,2,3,4这四个数字之一来标记,而不会使相邻
的两个区域得到相同的数字。”(右图)
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。
数学史上正式提出“四色问题”的时间是在1852年。当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教
授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。于是从那时起,这个问题便成为数学界的一个“悬案”。
一直到二十年前的1976年9月,《美国数学会通告》正式宣布了一件震撼全球数学界的消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了“四色问题”这个猜想是完全正确的!他们将普通地图的四色问题转化为2000个特殊图的四色问题,然后在电子计算机上计算了足足1200个小时,作了100亿判断,最后成功地证明了四色问题,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。
2麦比乌斯带
每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(Möbius.A.F 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。