100测评网新课标高二数学文同步测试(5)(1-1第三章(2))

合集下载

100测评网高二数学练习卷高中排列、组合与二项式定理练习题.doc

100测评网高二数学练习卷高中排列、组合与二项式定理练习题.doc

株洲市十七中高二排列、组合与二项式定理测试卷一、选择题:(本人题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所冇不同的映射共冇81个,则从集合Q到集合P可作的不同的映射共冇()A. 32 个B. 27 个C. 81 个D. 64 个2.某班举行联欢会,原定的五个节目已排出节目单,演出前乂增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为()A. 42B. 36C. 30D. 123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则冇()A. P>QB. P=QC. P<QD.不能确定4.从正方体的六个面小选取3个面,其小有2个面不相邻的选法共有()种A. 8B. 12C. 16D. 205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配A. B. D.方案共冇()6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊.大厅的地而及楼的外墙,现有编号为1〜6的六种不同花色的装饰石材可选择,具屮1号石材有微量的放射性, 不可用于办公室内,则不同的装饰效果有()种A. 350B. 300C. 65D. 507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A. 1680B. 256C. 360D. 2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A. 7200B. 3600C. 2400D. 12009.在(Jg + J舌)"的展开式中,所有奇数项一项式系数Z和等J - 1024,则中间项的二A.462B. 33()C.682D.792项式系数是()10.在(1 + d x)7的展开式屮,x'项的系数是/项系数与xh页系数的等比中项,则d的值为()5二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由人人陪同方可乘船,他们分乘这些船只的方法有__________________ 种。

新课标高二数学文同步测试(5)

新课标高二数学文同步测试(5)

普通高中课程标准实验教科书——数学选修2—1(文科)[人教版]2005-2006学年度下学期高中学生学科素质训练新课标高二数学同步测试(5)(1-1第三章(2))说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.物体运动方程为s =41t 4-3,则t =5时的瞬时速率为( )A .5 m/sB .25 m/sC .125 m/sD .625 m/s2.曲线y =x n(n ∈N )在点P (2,)22n 处切线斜率为20,那么n 为 ( )A .7B .6C .5D .43.细杆AB 长为20 cm ,AM 段的质量与A 到M 的距离平方成正比,当AM =2 cm 时,AM 段 质量为8 g ,那么,当AM =x 时,M 处的细杆线密度ρ(x )为 ( )A .2xB .4xC .3xD .5x 4.若f(x)=ax 3+bx 2+cx+d (a >0)为增函数,则( )A .b 2-4ac >0B .b >0,c >0C .b=0,c >0D .b 2-3ac <0 5.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则( )A .0<b <1B .b <1C .b >0D .0<b <21 6.()()()为则设h f h f f h 233lim ,430--='→( )A .-1B.-2C .-3D .17.两曲线32xy 1y 2b ax x y +-=++=与相切于点(1,-1)处,则a ,b 值分别为 ( ) A .0,2 B .1,-3 C .-1,1D .-1,-1 8.曲线y=ln(2x -1)上的点到直线2x-y+3=0的最短距离 ( )A .5B .25C .35D .09.设函数y =f (x )在1x x =处有(),0x f 1='在2x x =时()2x f '不存在,则 ( )A .一定都是极值点及21x x x x ==B .是极值点只有1x x =C .都可能不是极值点及21x x x x ==D .至少有一个点是极值点及21x x x x ==10.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是( )A .21<<-aB .63<<-aC .63>-<a a 或D .21>-<a a 或二、填空题:请把答案填在题中横线上(每小题6分,共24分)。

100测评网高二(文科)数学试题参考答案

100测评网高二(文科)数学试题参考答案

官桥中学2006~2007学年度第一学期期末考试高二(文科)数学试题参考答案一、选择题(5’×10=50’)CABDD DBCBC 二、填空题(5’×4=20’)11、-3 12、12 13、k 10≤ 14、(甲)1 (乙)109三、解答题:15. 解:(1)()2cos 22sin(2)6f x x x x π=+=+…………4分22T ππ== …………6分 (2)由3222()262k x k k Z πππππ+≤+≤+∈得263k x k ππππ+≤≤+,…………10分 所以,减区间为2[,]()63k k k Z ππππ++∈ …………12分 16、解:⑴∵{a n }为公比为q 的等比数列,a n+2=12n na a ++(n ∈N *)∴a n ·q 2=2n na q a + …………2分即2q 2―q ―1=0 解得q =-12或 q =1 …………4分 ∴a n =112n -⎛⎫- ⎪⎝⎭或a n =1 …………6分⑵当a n =1时,b n =n , S n =1+2+3+…+n =()12n n + …………8分 当a n =112n -⎛⎫- ⎪⎝⎭时b n =n ·112n -⎛⎫- ⎪⎝⎭S n =1+2·(-12)+3·212⎛⎫- ⎪⎝⎭+…+(n -1)·212n -⎛⎫- ⎪⎝⎭+n ·112n -⎛⎫- ⎪⎝⎭①-12 S n =(-12)+2·212⎛⎫- ⎪⎝⎭+…+(n -1)·112n -⎛⎫- ⎪⎝⎭+n 12n⎛⎫- ⎪⎝⎭②…………10分①—②得32 S n =1+12⎛⎫- ⎪⎝⎭+212⎛⎫- ⎪⎝⎭+…+112n -⎛⎫- ⎪⎝⎭-n 12n⎛⎫- ⎪⎝⎭=112112n⎛⎫-- ⎪⎝⎭+-n ·12n⎛⎫- ⎪⎝⎭ = ⎪⎭⎫⎝⎛-⋅-⎪⎭⎫ ⎝⎛--21213232n n…………13分⎪⎭⎫⎝⎛-⋅-⎪⎭⎫ ⎝⎛--=2132219494n S nn …………14分17.(Ⅰ)证明: ∵O 是AC 的中点,D 是AB 的中点∴OD//BC,又BC ⊆平面SCD,OD ⊄平面SCD∴ OD//平面SBC; …………………………………7分(Ⅱ) 证明:SAC ∆是正三角形, O 是AC 的中点,∴SO AC ⊥.又∵平面SAC ⊥平面ABC ,∴SO ACB ⊥平面,∴SO AB ⊥. …………………………………14分18、解:设分别采用甲、乙两种原料各y x ,千克,可生产产品z 千克,…………………1分依题意,约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0024.05.065.1y x y x y x …………………6分目标函数为=z y x 10090+把目标函数化为100109z x y +-=, 当直线100109z x y +-=的纵截距取最大值时,z 也取最大值。

100测评网高二(文科)数学试题

100测评网高二(文科)数学试题

官桥中学2006~2007学年度第一学期期末考试高二(文科)数学试题本试卷共150分,120分钟完成,答案写在答题卷上。

第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分)1、若集合{}22|M ≤≤-=x x ,{}03|N 2≤-=x x x ,则N M =( ) A. [-2,3] B. [-2,0]C. [0,2]D. (0,2) 2、一粒骰子,抛掷一次,奇数向上的概率是( ) A.21 B.61 C.32 D. 43 3、要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②某中学的15名艺术特长生中选出3人调查学习负担情况。

宜采用的抽样方法依次为( )A .①用随机抽样法,②用系统抽样法B .①用分层抽样法,②用随机抽样法C .①用系统抽样法,②用分层抽样法D .①②都用分层抽样法4、若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) A .4 B .194 C .94 D .14 5、已知a 、均为单位向量,它们的夹角为60°,那么||a b += ( )A .3B .2C .4D 6、下列函数既是奇函数,又在区间[]1,1-上单调递减的是( )A.x x f sin )(=B.1)(+-=x x fC.()x x a a x f -+=21)( D.xx x f +-=22ln )( 7、在下列关于直线l 、m 与平面α、β的命题中,真命题是( ) A.若β⊂l 且βα⊥,则α⊥l B.若β⊥l 且βα//,则α⊥l .C.若β⊥l 且βα⊥,则α//lD. 若m =⋂βα且m l //,则α//l .8、已知三角形的内角分别是A 、B 、C ,若命题:;P A B >命题:sin sin Q A B >,则P 是Q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9、在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是( ) A.直角三角形. B.等边三角形. C.钝角三角形. D.等腰直角三角形.10、设()x f 是定义在R 上的函数,若不等式()0<x f 的解集为{x │1<x <2},则不等式()01<-x f 的解集为( )A. {x │1<x <2}B. {x │0<x <1}C. {x │2<x <3}D. 不能确定第Ⅱ卷二、填空题(本大题共4小题每小题5分,共20分;把答案填在答题卷中相应的横线上)11、在条件02021x y y x ≤≤⎧⎪≤≤⎨⎪-≥⎩下, 则3z x y =-的最大值是 。

100测评网高二数学练习卷高三第三次调研试题

100测评网高二数学练习卷高三第三次调研试题

苏北四市高三第三次调研试题 物理试题 04.28一、单项选择题:本题共5小题,每小题3分,共15分.每小题只有一个....选项符合题意. 1.利用速度传感器与计算机结合,可以自动作出物体运动的图像. 某同学在一次实验中得到的运动小车的速度—时间图像如图所示,以下说法错误的是( )A .小车先做加速运动,后做减速运动B .小车运动的最大速度约为0.8m /sC .小车的位移一定大于8mD .小车做曲线运动2.一质量为m 、带电量为q 的小球用细线系住,线的一端固定在o 点. 若在空间加上匀强电场,平衡时线与竖直方向成60°角。

则电场强度的最小值为( )A .mg/2qB .3mg/2qC .2mg/qD .mg/q3. 如右图所示,曲线C 1、C 2分别是纯电阻直流电路中,内、外电路消耗的电功率随电流变化的图线.由该图可知下列说法中错误的是( ) A .电源的电动势为4VB .电源的内电阻为1ΩC .电源输出功率最大值为8WD .电源被短路时,电源消耗的最大功率可达16W4. 如图所示,相距为d 的两平行金属板水平放置,开始开关S 合上使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个带电粒子恰能以水平速度v 向右匀速通过两板间.在以下方法中,要使带电粒子仍能匀速通过两板,(不考虑带电粒子所受重力)正确的是 ( )A .把两板间距离减小一倍,同时把粒子速率增加一倍B .把两板的距离增大一倍,同时把板间的磁场增大一倍C .把开关S 断开,两板的距离增大一倍,同时把板间的磁场减小一倍D .把开关S 断开,两板的距离减小一倍,同时把粒子速率减小一倍5.如图所示,P 、Q 是电量相等的两个正电荷,它们的连线中点是O ,A 、B 是PQ 连线的中垂线上的两点,OA <OB ,用E A 、E B 、φA 、φB 分别表示A 、B 两点的场强和电势,则( ) A .E A 一定大于E B ,φA 一定大于φB B .E A 不一定大于E B ,φA 一定大于φB C .E A 一定大于E B ,φA 不一定大于φB D .E A 不一定大于E B ,φA 不一定大于φB.0.1/v s二.多项选择题:本题共 4 小题,每小题 4 分,共16 分.每小题有多个选项....符合题意.全部选对的得 4 分,选对但不全的得 2 分,错选或不答的得 0 分. 6.如图所示,虚线EF 的下方存在着正交的匀强电场和匀强磁场,电场强度为E ,磁感应强度为B .一带电微粒自离EF 为h 的高处由静止下落,从B 点进入场区,做了一段匀速圆周运动,从D 点射出. 下列说法正确的是A .微粒受到的电场力的方向一定竖直向上B .微粒做圆周运动的半径为ghB E 2C .从B 点运动到D 点的过程中微粒的电势能先增大后减小D .从B 点运动到D 点的过程中微粒的电势能和重力势能之 和在最低点C 最小7.如图所示,质量为m 的小球A 沿高度为h 倾角为θ的光滑斜面以初速v 0滑下. 另一质量与A 相同的小球B 自相同高度由静止落下,结果两球同时落地。

100测评网东海高级中学高二文科数学模拟试题五

100测评网东海高级中学高二文科数学模拟试题五



___.
2 7.已知命题 p : “ x [1, 2], x2 a 0 ” ,命题 q : “ x Rx , a x2 a 2
0
”若命
题“ p 且 q ”是真命题,则实数的取值范围为
.
x2 y2 8.椭圆 + =1上一点 M 到右准线的距离是 6, 则点 M 到该椭圆左焦点的距离是 16 12
2 1 ,n 3 3

1 3 , ] 4 4
18.(1)
(2) OM ON 4 (2)最小的正整数 k 为 2008

19.(1) m
20.(1) W 2000 t st ,当 t (2) y 1000 (
2
10002 时,乙方获得最大利润。 s2
2
欢迎登录 《100 测评网》 进行学习检测, 有效提高学习成绩.
参考答案: 一、填空题 1. S1 S 2.充分不必要 8.5 3. y 2 x 1 9. x2 8 y 14.③④ 4. a 1 10. 34 1 5. [1, 2) 6. (
y2 x2 1 表示双曲线的_____________的条件. k 3 k 3 x 3.已知曲线 C: f ( x) sin x e ,则在 x=0 处切线方程为 .
4.已知条件 p :| x 1| 2, 条件 q : x a , 且 p 是 q 的充分不必要条件,则 a 的取值范 围可以是 _____________. 5.若 是假命题,则 x 的取值范围是 “x 2,5 或 x x x 1或x 4 ” 6.函数 y x 2sin x 在(0,2 )内的单调增区间为 ______.
欢迎登录 《100 测评网》 进行学习检测, 有效提高学习成绩.

100测评网新课标高二数学文同步测试(1)(1-1第一章)

100测评网新课标高二数学文同步测试(1)(1-1第一章)

普通高中课程标准实验教科书——数学 [人教版](选修1-1、1-2)高中学生学科素质训练新课标高二数学文同步测试(1)—1-1第一章说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷50分,第Ⅱ卷100分,共150分;答题时间120分钟。

第Ⅰ卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A .ab =0B .a +b =0C .a =bD .a 2+b 2=0 2.“至多有三个”的否定为( ) A .至少有三个B .至少有四个C .有三个D .有四个3.有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p :肖像在这个盒子里;银盒上写有命题q :肖像不在这个盒子里;铅盒上写有命题r :肖像不在金盒里.p 、q 、r 中有且只有一个是真命题,则肖像在 ( )A .金盒里B .银盒里C .铅盒里D .在哪个盒子里不能确定4.不等式04)2(2)2(2<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是 ( )A .)2,2(-B .]2,2(-C .]2,(-∞D .)2,(--∞ 5.“a 和b 都不是偶数”的否定形式是( )A .a 和b 至少有一个是偶数B .a 和b 至多有一个是偶数C .a 是偶数,b 不是偶数D .a 和b 都是偶数 6.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然 而他的实际效果大哩,原来这句话的等价命题是( )A .不拥有的人们不一定幸福B .不拥有的人们可能幸福C .拥有的人们不一定幸福D .不拥有的人们不幸福7.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假8.条件p :1>x ,1>y ,条件q :2>+y x ,1>xy ,则条件p 是条件q 的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .即不充分也不必要条件9.2x 2-5x -3<0的一个必要不充分条件是 ( )A .-21<x <3 B .-21<x <0 C .-3<x <21 D .-1<x <610.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1。

100测评网高二数学(文科)练习(必修5+选修1-1)

100测评网高二数学(文科)练习(必修5+选修1-1)

绵德中学2008-2009学年度高二数学(文科)练习(必修5+选修1-1) 班级 学号 姓名一.选择题:(在每个小题提供的四个选项中,有且仅有一个正确答案。

每题5分,满分50分)1.椭圆2211625x y +=的焦点为F 1,F 2,P 为椭圆上一点,若12PF =,则=2PF ( ) A.2 B.4 C.6 D.82.函数y =x 2cos x 的导数为 ( ) A .y ′=x 2cos x -2x sin xB .y ′=2x cos x -x 2sin xC . y ′=2x cos x +x 2sin xD .y ′=x cos x -x 2sin x3.若a 、b 为正实数,则a b >是22a b >的 ( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件4.在△ABC 中,2,2,6a b B π===,则A 等于( )A .4π B .4π或34π C .3π D . 34π5.与直线14-=x y 平行的曲线3y x x =+的切线方程是( )A. 04=-y xB. 420x y -+=或024=--y xC. 024=--y xD. 04=-y x 或044=--y x6.经过点)62,62(-M 且与双曲线22134y x -=有共同渐近线的双曲线方程为( )A .18622=-x yB .16822=-x yC .16822=-y xD . 18622=-y x7.全称命题“所有被5整除的整数都是奇数”的否定是( ) A .所有被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个奇数,不能被5整除D .存在一个被5整除的整数不是奇数8.已知数列10,4,,2(31)n -,则8是此数列的第( )项:A .10B .11C .12D .13 9.抛物线2(0)y ax a =<的焦点坐标是 ( )A .)4,0(aB .)41,0(a-C .)41,0(aD . )0,41(a10.在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+ 则ABC ∆的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形 二.填空题:(将答案填写在题后的横线上,每题5分,满分20分) 11.二次函数()2y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是_______________________.12.已知32()32f x ax x =++且(1)4f '-=,则实数a 的值等于_________;13.等差数列{}n a 中,14258,12,a a a a +=+=则这数列的前10项和为_________;14.到定直线L :x =3的距离与到定点A (4,0)的距离比是23的点的轨迹方程是 。

100测评网高二新课标数学必修5第二章数列单元试题

100测评网高二新课标数学必修5第二章数列单元试题

新课标数学必修5第二章数列单元试题说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为( )A .34B .35C .36D .372.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于( )A .-1B .1C .0D .23.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .24B .27C .30D .334.设函数f (x )满足f (n +1)=2)(2n n f +(n ∈N *)且f (1)=2,则f (20)为( ) A .95 B .97 C .105 D .1925.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )A .5B .6C .7D .86.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( )A .第10项B .第11项C .第10项或11项D .第12项7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .180B .-180C .90D .-908.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为( )A .9B .10C .19D .299.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列10.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为( )A .14B .15C .16D .17第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.在数列{a n }中,a 1=1,a n +1=22+n n a a (n ∈N *),则72是这个数列的第_________项. 12.在等差数列{a n }中,已知S 100=10,S 10=100,则S 110=_________.13.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______.14.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n ,则1111b a =_________.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?16.(本小题满分10分)在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前多少项和最大.17.(本小题满分12分)数列通项公式为a n =n 2-5n +4,问(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.18.(本小题满分12分)甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m .(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?19.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列; (2)求a n 表达式;(3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.参考答案:1. 考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等差数列,公差为11,数a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36.4,n ∈N *,∴n ≤36.【答案】C2. 考查数学建模和探索问题的能力.【解析】1+2+3+…+n <200,即2)1(-n n <200. 显然n =20时,剩余钢管最少,此时用去22019⨯=190根. 【答案】B3.考查等差数列的运用.【解析】由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 20=180.【答案】A4.考查等差数列的通项.【解析】a n =a 1+(n -1)d ,即-6+(n -1)d =0⇒n =d6+1 ∵d ∈N *,当d =1时,n 取最大值n =7.【答案】C5.考查数列通项的理解及递推关系.【解析】由已知:a n +1=a n 2-1=(a n +1)(a n -1),∴a 2=0,a 3=-1,a 4=0,a 5=-1.【答案】A6.考查等差数列的性质及运用.【解析】a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,故a 3+a 6+a 9=2×39-45=33.【答案】D7.考查递推公式的应用.【解析】f (n +1)-f (n )=2n ⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⨯=-⨯=-⨯=-1921)19()20( 221)2()3(121)1()2(f f f f f f 相加得f (20)-f (1)=21(1+2+…+19)⇒f (20)=95+f (1)=97. 【答案】B8.考查数列求和的最值及问题转化的能力.【解析】由a n =-n 2+10n +11=-(n +1)(n -11),得a 11=0,而a 10>0,a 12<0,S 10=S 11.【答案】C9. 考查等差数列的性质.【解析】(a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.【答案】B10. 考查等差数列的求和及运用.【解析】S 9=2)(991a a +=18⇒a 1+a 9=4⇒2(a 1+4d )=4. ∴a 1+4d =2,又a n =a n -4+4d .∴S n =2)(1n a a n +=16n =240. ∴n =15.【答案】B11. 考查数列概念的理解及观察变形能力. 【解析】由已知得11+n a =n a 1+21,∴{n a 1}是以11a =1为首项,公差d =21的等差数列. ∴n a 1=1+(n -1)21,∴a n =12+n =72,∴n =6. 【答案】612. 考查等差数列性质及和的理解.【解析】S 100-S 10=a 11+a 12+…+a 100=45(a 11+a 100)=45(a 1+a 110)=-90⇒a 1+a 110=-2. S 110=21(a 1+a 110)×110=-110. 【答案】-11013. 考查等差数列的前n 项和公式及等差数列的概念.【解析】-21=2)39)(2(+-+n ,∴n =5. 【答案】514. 考查等差数列求和公式及等差中项的灵活运用. 【解】1111b a =2)(212)(212)(2)(211211211211b b a a b b a a ++=++=322112132122121=+⨯⨯=T S . 【答案】3221 15. 考查等差数列通项及灵活应用.【解】设这两个数列分别为{a n }、{b n },则a n =3n +2,b n =4n -1,令a k =b m ,则3k +2=4m -1.∴3k =3(m -1)+m ,∴m 被3整除.设m =3p (p ∈N *),则k =4p -1.∵k 、m ∈[1,100].则1≤3p ≤100且1≤p ≤25.∴它们共有25个相同的项.16. 考查等差数列的前n 项和公式的应用.【解】∵S 9=S 17,a 1=25,∴9×25+2)19(9-⨯d =17×25+2)117(17-d 解得d =-2,∴S n =25n +2)1(-n n (-2)=-(n -13)2+169. 由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d =-2,数列a n 为递减数列. a n =25+(n -1)(-2)≥0,即n ≤13.5.∴数列前13项和最大.17. 【解】(1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项.(2)∵a n =n 2-5n +4=(n -25)2-49,∴对称轴为n =25=2.5 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2.18. 考查等差数列求和及分析解决问题的能力.【解】(1)设n 分钟后第1次相遇,依题意得2n +2)1(-n n +5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-20(舍去)∴第1次相遇在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意有:2n +2)1(-n n +5n =3×70 整理得:n 2+13n -6×70=0,解得:n =15或n =-28(舍去)第2次相遇在开始运动后15分钟.19.考查数列求和及分析解决问题的能力.【解】(1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2)S n ≠0,∴n S 1-11-n S =2,又11S =11a =2,∴{nS 1}是以2为首项,公差为2的等差数列. (2)由(1)n S 1=2+(n -1)2=2n ,∴S n =n21 当n ≥2时,a n =S n -S n -1=-)1(21-n n n =1时,a 1=S 1=21,∴a n =⎪⎪⎩⎪⎪⎨⎧≥=)2( 1)-(21-)1( 21n n n n (3)由(2)知b n =2(1-n )a n =n 1 ∴b 22+b 32+…+b n 2=221+231+…+21n <211⨯+321⨯+…+n n )1(1-=(1-21)+(21-31)+…+(11 n -n 1)=1-n1<1.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。

100测评网新课标高二数学文同步测试(7)(1-2第二章)

100测评网新课标高二数学文同步测试(7)(1-2第二章)

普通高中课程标准实验教科书——数学选修2—1(文科)[人教版]高中学生学科素质训练新课标高二数学文同步测试(7)(1-2第二章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.已知α∩β=l ,a ⊂α、b ⊂β,若a 、b 为异面直线,则 ( )A . a 、b 都与l 相交B . a 、b 中至少一条与l 相交C . a 、b 中至多有一条与l 相交D . a 、b 都与l 相交2.已知),....3,2,1(,,n i R b a i i =∈,1.. (2)2221=+++n a a a ,1 (2)2221=+++n b b b ,则n n b a b a b a +++.....2211的最大值为 ( )A .1B .2C .2nD .n 2 3.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是 ( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业 C .机械行业最紧张D .营销行业比贸易行业紧张4.已知33q p +=2,关于p +q 的取值范围的说法正确的是( )A .一定不大于2B .一定不大于22C .一定不小于22D .一定不小于25.从棱长为32的正方体的一个顶点A 0出发,在体内沿一条直线进行到另一条棱上的点A 1,使得 |A 0A 1|=1,再从A 1出发,在体内沿一条直线进行到另一条棱上的点A 2,使得|A 1A 2|=1,……,如此 继续走下去,如果限定所走的路径不重复,则总路程最多等于 ( ) A .18 B .8 C .12 D .106.已知数列{a n }满足a n+1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+A +a n ,则下列结论正确 的是 ( ) A .a 100=-a S 100=2b -a B .a 100=-b S 100=2b -a C .a 100=-b S 100=b -a D .a 100=-a S 100=b -a 7.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”拓 展到空间,类比平面几何的勾股定理,“设三棱锥A —BC D 的三个侧面ABC 、AC D 、A D B两两相互垂直,则可得” ( )A .AB 2+AC 2+ AD 2=BC 2 +C D 2 +BD 2B .BCD ADB ACD ABCS S S S∆∆∆∆=⨯⨯2222C .2222BCD AD B ACD ABC S S S S ∆∆∆∆=++D .AB 2×AC 2×AD 2=BC 2 ×C D 2 ×BD 28.已知函数n mx x x f ++=22)(,则)1(f 、)2(f 、)3(f 与1的大小关系为 ( )A .没有一个小于1B .至多有一个不小于1C .都不小于1D .至少有一个不小于19.已知直线l 、m ,平面α、β,且l ⊥α,m ∥β,给出下列四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β; (3)若α⊥β,则l ∥m ; (4)若l ∥m ,则α⊥β; 其中正确命题的个数是 ( )A .1B .2C .3D .4 10.已知函数)(x f y =,对任意的两个不相等的实数21,x x ,都有)()()(2121x f x f x x f ⋅=+成立,且0)0(≠f 。

100测评网高二数学练习卷直线的方程

100测评网高二数学练习卷直线的方程

典型例题一例1 直线l 过点P (-1,3),倾斜角的正弦是54,求直线l 的方程. 分析:根据倾斜角的正弦求出倾斜角的正切,注意有两解. 解:因为倾斜角α的范围是:πα<≤0 又由题意:54sin =α, 所以:34tan ±=α, 直线过点P (-1,3),由直线的点斜式方程得到:()1343+±=-x y 即:01334=+-y x 或0534=-+y x .说明:此题是直接考查直线的点斜式方程,在计算中,要注意当不能判断倾斜角α的正切时,要保留斜率的两个值,从而满足条件的解有两个.典型例题二例2 求经过两点A (2,m )和B (n ,3)的直线方程.分析:本题有两种解法,一是利用直线的两点式;二是利用直线的点斜式.在解答中如果选用点斜式,只涉及到n 与2的分类;如果选用两点式,还要涉及m 与3的分类.解:法一:利用直线的两点式方程∵直线过两点A (2,m )和B (n ,3) (1)当3=m 时,点A 的坐标是A (2,3),与点B (n ,3)的纵坐标相等,则直线AB 的方程是3=y ;(2)当2=n 时,点B 的坐标是B (2,3),与点A (2,m )的横坐标相等,则直线AB 的方程是2=x ;(3)当3≠m ,2≠n 时,由直线的两点式方程121121x x x x y y y y --=--得: 223--=--n x m m y 法二:利用直线的点斜式方程(1)当2=n 时,点B A ,的横坐标相同,直线AB 垂直与x 轴,则直线AB 的2=x ; (2)当2≠n 时,过点B A ,的直线的斜率是23--=n mk , 又∵过点A (2,m )∴由直线的点斜式方程()11x x k y y -=-得过点B A ,的直线的方程是:()223---=-x n mm y 说明:本题的目的在于使学生理解点斜式和两点式的限制条件,并体会分类讨论的思想方法.典型例题三例3 把直线方程()00≠=++ABC c By Ax 化成斜截式______,化成截距式______. 分析:因为0≠ABC ,即0≠A ,0≠B ,0≠C ,按斜截式、截距式的形式要求变形即可.解:斜截式为BC x B A y --=,截距式为A C x -+BC Y -=1说明:此题考查的是直线方程的两种特殊形式:斜截式和截距式.典型例题四例4 直线023cos =++y x θ的倾斜角的取值范围是_____________.分析:将直线的方程化为斜截式,得出直线的斜率,再由斜率和倾斜角的关系,得出关于θ的一个三角不等式即可.解:已知直线的方程为323cos --=x y θ,其斜率3cos θ-=k . 由313cos ≤=θk ,得31tan ≤α,即33tan 33≤≤-α. 由[)πα,0∈,得),65[6,0πππα ⎥⎦⎤⎢⎣⎡∈. 说明:解题易得出错误的结果⎥⎦⎤⎢⎣⎡-∈6,6ππα,其原因是没有注意到倾斜角的取值范围.典型例题五例5 直线l 经过点)2,3(,且在两坐标轴上的截距相等,求直线l 的方程.分析:借助点斜式求解,或利用截距式求解.解法一:由于直线l 在两轴上有截距,因此直线不与x 、y 轴垂直,斜率存在,且0≠k . 设直线方程为)3(2-=-x k y ,令0=x ,则23+-=k y ,令0=y ,则kx 23-=.由题设可得k k 2323-=+-,解得1-=k 或32=k . 所以,l 的方程为)3(2--=-x y 或)3(322-=-x y .故直线l 的方程为05=-+y x 或032=-y x .解法二:由题设,设直线l 在x 、y 轴的截距均为a . 若0=a ,则l 过点)0,0(,又过点)2,3(,∴l 的方程为x y 32=,即l :032=-y x . 若0≠a ,则设l 为1=+a ya x .由l 过点)2,3(,知123=+aa ,故5=a .∴l 的方程05=-+y x .综上可知,直线l 的方程为032=-y x 或05=-+y x .说明:对本例,常见有以下两种误解:误解一:如下图,由于直线l 的截距相等,故直线l 的斜率的值为1±.若1=k ,则直线方程为32-=-x y ;若1-=k ,则直线方程为)3(2--=-x y .故直线方程为01=-+y x 或05=-+y x .误解二:由题意,直线在两轴上的截距相等,则可设直线方程为1=+aya x .由直线过点)2,3(,得123=+aa ,即5=a ,也即方程为05=-+y x . 在上述两种误解中,误解一忽视了截距的意义,截距不是距离,它可正可负,也可以为0.显见,当1=k 时,直线01=--y x 的两轴上的截距分别为1和-1,它们不相等.另外,这种解法还漏掉了直线在两轴上的截距均为0的这种特殊情形.误解二中,没有注意到截距式方程的适用范围,同样也产生了漏解.典型例题六例6 已知在第一象限的ABC ∆中,)1,1(A 、)1,5(B ,3π=∠A ,4π=∠B ,求:(1)AB 边的方程;(2)AC 和BC 所在直线的方程. 分析:(1)当直线与x 轴平行时或垂直时,不能用两点式求直线的方程.(2)由图可知AC 、BC 的斜率,根据点斜式方程即可得出结果.解:(1)如图,AB 的方程为1=y )51(≤≤x .(2)由AB ∥x 轴,且ABC ∆在第一象限知AC 的斜率33tan==πAC k ,BC 的斜率1)4tan(-=-=ππBC k . 所以,AC 边所在直线的方程为)1(31-=-x y ,即0313=-+-y x . BC 边所在直线的方程为)5(11--=-x y ,即06=-+y x .说明:(1)AB 边是一条线段,要注意变量x 的取值范围.(2)解题中,要注意画出图形,便于直观地得到所求直线所具备的条件.典型例题七例7 若ABC ∆的顶点)4,3(A ,)0,6(B ,)2,5(--C ,求A ∠的平分线AT 所在的直线的方程.分析:两个条件确定一条直线.要求AT 的方程,已知点A 的坐标,只要再找出AT 的斜率或点T 的坐标就可以了.在三角形中,A ∠的平分线有下列性质:(1)TAB CAT ∠=∠;(2)AT 上任一点到两边AB 、AC 的距离相等;(3)ABCA TBCT =.用其中任何一个性质,都可以确定第二个条件.解法一:∵10)24()53(22=+++=AC ,54)63(22=+-=AB ,∴T 分BC 所成的比为2===ABACTB CT λ. 设T 的坐标为),(y x ,则:3721625=+⨯+-=x ,3221022-=+⨯+-=y ,即)32,37(-T .由两点式得AT 的方程为3733732432--=++x y ,即0177=--y x . 解法二:直线AC 到AT 的角等于AT 到AB 的角,43)5(3)2(4=----=AC k ,346304-=--=AB k .设AT 的斜率为k (34-<k 或34>k ),则有 k k k k )43(14343143-+--=+-. 解得7=k 或71-=k (舍去).∴直线AT 的方程为)3(74-=-x y ,即0177=--y x .解法三:设直线AT 上动点),(y x P ,则P 点到AC 、AB 的距离相等,即:574352434+-=-+y x y x ,∴037=-+y x 或0177=--y x结合图形分析,知037=-+y x 是ABC ∆的角A 的外角平分线,舍去. 所以所求的方程为0177=--y x .说明:(1)确定不同条件下的直线方程是高考的重要内容,其方法主要是待定系数法(如解法一、解法二)和轨迹法(如解法三).要熟练掌握直线方程各种形式间的相互转化.点斜式是直线方程最重要的一种形式,要加强这方面的训练.(2)解法三涉及到后面将要学到的知识.这里先把它列出来,作为方法积累.典型例题八例8 求过点)4,5(--P 且分别满足下列条件的直线方程: (1)与两坐标轴围成的三角形面积为5;(2)与x 轴和y 轴分别交于A 、B 两点,且53∶∶=BP AP .分析:对于(1),既可借助于截距式求解,也可以利用点斜式来求解;对于(2),利用截距式求解较为简便.解法一:设所求的直线方程为1=+b ya x . 由直线过点)4,5(--P ,得145=-+-ba ,即ab b a -=+54.又521=⋅b a ,故10=ab . 联立方程组⎩⎨⎧=-=+,10,54ab ab b a 解得⎪⎩⎪⎨⎧=-=425b a 或⎩⎨⎧-==25b a . 故所求直线方程为1425=+-y x 和125=-+yx ,即: 02058=+-y x 和01052=--y x .解法二:设所求直线方程为)5(4+=+x k y ,它与两坐轴的交点为)0,54(kk-,)45,0(-k .由已知,得5544521=-⋅-kk k ,即k k 10)45(2=-. 当0>k 时,上述方程可变成01650252=+-k k ,解得58=k ,或52=k . 由此便得欲求方程为02058=+-y x 和01052=--y x .(2)解:由P 是AB 的分点,得53±==PB AP λ. 设点A 、B 的坐标分别为)0,(a ,),0(b .当P 是AB 的内分点时,53=λ. 由定比分点公式得8-=a ,332-=b .再由截距式可得所求直线方程为03234=++y x .当点P 是AB 的外分点时,53-=λ.由定比分点公式求得2-=a ,38=b .仿上可得欲求直线方程为0834=+-y x .故所求的直线方程为03234=++y x ,或0834=+-y x .说明:对于(1),应注意对题意的理解,否则,就较易得到ab b a -=+54,且10=ab ,从而遗漏了10-=ab 的情形;对于(2),应当区分内分点与外分点两种不同的情形.必要时,可画出草图直观地加以分析,防止漏解. 求直线的方程时,除应注意恰当地选择方程的形式外,还应注意到不同形式的方程的限制条件.如点斜式的限定条件是直线必须存在斜率;截距式的限定条件为两轴上的截距都存在且不为0;两点式的限定条件是直线不与x 轴垂直,也不与y 轴垂直.除此以外,还应注意直线方程形式之间的相互转化.典型例题九例9 已知两直线0111=++y b x a 和0122=++y b x a 的交点为)3,2(P ,求过两点),(11b a Q 、),(22b a Q 的直线方程.分析:利用点斜式或直线与方程的概念进行解答. 解法一:∵)3,2(P 在已知直线上,∴⎩⎨⎧=++=++0132********b a b a ∴0)(3)(22121=-+-b b a a ,即322121-=--a a b b .故所求直线方程为)(3211a x b y --=-. ∴0)32(3211=+-+b a y x ,即0132=++y x . 解法二:∵点P 在已知直线上,∴⎩⎨⎧=++=++0132********b a b a 可见),(111b a Q 、),(222b a Q 都满足方程0132=++y x , ∴过1Q 、2Q 两点的直线方程为0132=++y x .说明:解法二充分体现了“点在直线上,则点的坐标满足直线方程;反之,若点的坐标满足方程,则直线一定过这个点”.此解法独特,简化了计算量,能培养学生的思维能力.典型例题十例10 过点)4,1(P 引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线方程.分析:利用直线方程的点斜式,通过两截距之和最小求出直线的斜率,从而求出直线方程.或借助直线方程的截距式,通过两截距之和最小,求出直线在两轴上的截距,从而求出直线的方程.解法一:设所求的直线方程为)1(4-=-x k y .显见,上述直线在x 轴、y 轴上的截距分别为k41-、k -4. 由于041>-k,且04>-k 可得0<k . 直线在两坐标轴上的截距之和为:945)4()(5)4()41(=+≥-+-+=-+-=k k k k S ,当且仅当kk 4-=-,即2-=k 时,S最小值为9.故所求直线方程为)1(24--=-x y ,即062=-+y x .解法二:设欲求的直线方程为1=+bya x (0>a ,0>b ). 据题设有141=+ba , ① 令b a S +=. ②①×②,有94545)41)((=+≥++=++=ba ab bab a S . 当且仅当b a a b 4=时,即b a =2,且141=+ba ,也即3=a ,6=b 时,取等号.故所求的直线方程为163=+yx ,即062=-+y x .说明:在解法一中,应注意到0<k 这个隐含条件.否则,由)4(5kk S +-=,将很有可能得出错误的结果.如145)4(5=-≥+-=k k S ,145)4(5=-≤+-=kk S 等等. 在解法二中,应注意运算过程中的合理性,即讲究算理,不然,将会使运算过程不胜其繁.如采取下述方法:由①,用a 来表示b ,再代入②中,把S 化归成a 的函数.从解题思维方法上说无可厚非,但这种方法将使运算难度陡然增加.不如保持本质、顺其自然好.典型例题十一例11 已知523=+b a ,其中a 、b 是实常数,求证:直线010=-+by ax 必过一定点.分析与解:观察条件与直线方程的相似之处,可把条件变形为01046=-+b a ,可知6=x ,4=y 即为方程010=-+by ax 的一组解,所以直线010=-+by ax 过定点(6,4).说明:此问题属于直线系过定点问题,此类问题的彻底解决宜待学完两直线位置之后较好,当然现在也可以研究,并且也有一般方法.典型例题十二例12 直线l 过点M (2,1),且分别交x 轴、y 轴的正半轴于点A 、B .点O 是坐标原点,(1)求当ABO ∆面积最小时直线l 的方程;(2)当MA MB 最小时,求直线l 的方程.解:(1)如图,设OA a =,OB b =,ABO ∆的面积为S ,则ab S 21=并且直线l 的截距式方程是a x +by=1 由直线通过点(2,1),得a 2+b1=1 所以:2a =b111-=1-b b因为A 点和B 点在x 轴、y 轴的正半轴上,所以上式右端的分母01>-b .由此得:b b b b a S ⨯-=⨯=121111112-++=-+-=b b b b2111+-+-=b b 422=+≥ 当且仅当=-1b 11-b ,即2=b 时,面积S 取最小值4, 这时4=a ,直线的方程是:4x +2y=1即:042=-+y x(2)设θ=∠BAO ,则MA =θsin 1,MB =θcos 2,如图,所以 MA MB =θsin 1θcos 2=θ2sin 4当θ=45°时MA MB 有最小值4,此时1=k ,直线l 的方程为03=-+y x . 说明:此题与不等式、三角联系紧密,解法很多,有利于培养学生发散思维,综合能力和灵活处理问题能力.动画素材中有关于此题的几何画板演示.典型例题十三例13 一根铁棒在20°时,长10.4025米,在40°时,长10.4050米,已知长度l 和温度t 的关系可以用直线方程来表示,试求出这个方程,并且根据这个方程,求这跟铁棒在25°时的长度.解:这条直线经过两点(20,10.4025)和(20,10.4050),根据直线的两点式方程,得:4025.104050.104025.10--l =204020--t即 l =0.002520t⨯+10.4000当t =25°时 l =0.00252025⨯+10.4000=0.0031+10.4000=10.4031即当t =25°时,铁棒长为10.4031米. 说明:直线方程在实际中应用非常广泛.典型例题十三例13 一根铁棒在20°时,长10.4025米,在40°时,长10.4050米,已知长度l 和温度t 的关系可以用直线方程来表示,试求出这个方程,并且根据这个方程,求这跟铁棒在25°时的长度.解:这条直线经过两点(20,10.4025)和(20,10.4050),根据直线的两点式方程,得:4025.104050.104025.10--l =204020--t即 l =0.002520t⨯+10.4000当t =25°时 l =0.00252025+10.4000=0.0031+10.4000=10.4031 即当t =25°时,铁棒长为10.4031米. 说明:直线方程在实际中应用非常广泛.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。

新课标高二数学理同步测试(5)(选修2-1第三章3.2)

新课标高二数学理同步测试(5)(选修2-1第三章3.2)

AA1DCB B1C1图普通高中课程标准实验教科书——数学选修2—1[人教版]高中学生学科素质训练新课标高二数学同步测试(5)—(2-1第三章3.2)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =BB 1,则AB 1与C 1B 所成的角的大小为2( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=,411B A 则BE 1与DF 1所成角的余弦值是( )A .B .171521 C . D .178233.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .B .103021 C . D .153010154.正四棱锥的高,底边长和之间的距离S ABCD -2SO =AB =BD SC ( )A .B .C .D .515555521055.已知是各条棱长均等于的正三棱柱,是侧棱的中点.点到平面111ABC A B C -a D 1CC 1C 的距离()1AB D A .B .a 42a 82 C . D .a 423a 226.在棱长为的正方体中,则平面与平面间的距离11111ABCD A B C D -1AB C 11A C D ()A .B .C .D .6333332237.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =PA ,点O 、D 分别是AC 、PC 的中点,OP 21⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( )A .B .C .D .62133860210302108.在直三棱柱中,底面是等腰直角三角形,,侧棱,111C B A ABC -90=∠ACB 21=AA D ,E 分别是与的中点,点E 在平面AB D 上的射影是的重心G .则1CC B A 1ABD ∆B A 1与平面AB D 所成角的余弦值( )A .B .C .D .323723739.正三棱柱的底面边长为3,侧棱,D 是C B 延长线上一点,且111C B A ABC -3231=AA ,则二面角的大小BC BD =B AD B --1 ()A .B .C .D .3π6π65π32π10.正四棱柱中,底面边长为,侧棱长为4,E ,F 分别为棱AB ,CD1111D C B A ABCD -22的中点,.则三棱锥的体积VG BD EF =⋂11EFD B - ()A .B .C .D .66331631616二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.在正方体中,为的中点,则异面直线和间的距1111ABCD A B C D -E 11A B 1D E 1BC 离.12. 在棱长为的正方体中,、分别是、的中点,求点到截11111ABCD A B C D -E F 11A B CD B 面的距离.1AEC F 13.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 . 14.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,求平面A 1B C 1与平面AB CD 所成的二面角的大小 16.(12分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.(12分)在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值.。

100测评网高二数学练习卷曲线和方程

100测评网高二数学练习卷曲线和方程

典型例题一例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是(A )曲线C 上的点的坐标都满足方程()0=y x f ,.(B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上.(C )坐标满足方程()0=y x f ,的点都不在曲线C 上.(D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,.分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D .典型例题二例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分.说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性.典型例题三例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析.解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线.典型例题四例 4 曲线4)1(22=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢?分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式∆分别满足0>∆、0=∆、0<∆.解:由⎩⎨⎧=-++-=.4)1(,4)2(22y x x k y 得04)23()23(2)1(222=--+-++k x k k x k∴]4)23)[(1(4)23(42222--+--=∆k k k k )5124(42+--=k k)52)(12(4---=k k∴当0>∆即0)52)(12(<--k k ,即2521<<k 时,直线与曲线有两个不同的交点. 当0=∆即0)52)(12(=--k k ,即21=k 或25=k 时,直线与曲线有一个交点. 当0<∆即0)52)(12(>--k k ,即21<k 或25>k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析.典型例题五例5 若曲线x a y =与)0(>+=a a x y 有两个公共点,求实数a 的取值范围.分析:将“曲线有两个公共点”转化为“方程有两个不同的解”,从而研究一元二次方程的解的个数问题.若将两条曲线的大致形状现出来,也许可能得到一些启发.解法一:由⎩⎨⎧+==a x y xa y 得:a y a y -=∵0≥y ,∴222)(a y a y -=,即02)1(4322=+--a y a y a .要使上述方程有两个相异的非负实根. 则有:⎪⎪⎪⎩⎪⎪⎪⎨⎧>->->--=∆010120)1(442423246a a a a a a a 又∵0>a∴解之得:1>a .∴所求实数a 的范围是),1(∞+. 解法二:x a y =的曲线是关于y 轴对称且顶点在原点的折线,而a x y +=表示斜率为1且过点),0(a 的直线,由下图可知,当1≤a 时,折线的右支与直线不相交.所以两曲线只有一个交点,当1>a 时,直线与折线的两支都相交,所以两条直线有两个相异的交点.说明:这类题较好的解法是解法二,即利用数形结合的方法来探求.若题设条件中“0>a ”改为R a ∈呢,请自己探求.典型例题六例 6 已知AOB ∆,其中)0,6(A ,)0,0(O ,)3,0(B ,则角AOB 平分线的方程是x y =(如下图),对吗?分析:本题主要考查曲线方程概念掌握和理解的程度,关键是理解三角形内角平分线是一条线段.解:不对,因为AOB ∆内角平分线是一条线段OC ,而方程x y =的图形是一条直线.如点)8,8(P 坐标适合方程x y =,但点P 不在AOB ∆内角AOB 的平分线上.综合上述内角AOB 平分线为:)20(≤≤=x x y .说明:判断曲线的方程或方程的曲线,要紧扣定义,两个条件缺一不可,关键是要搞清楚曲线的范围.典型例题七例7 判断方程122+--=x x y 所表示的曲线.分析:根据方程的表面形式,很难判断方程的曲线的形状,因此必需先将方程进行等价变形.解:由原方程122+--=x x y 可得:1--=x y ,即⎩⎨⎧<-≥+-=),1(1),1(1x x x x y ∴方程122+--=x x y 的曲线是两条射线,如图所示:说明:判断方程表示的曲线,在化简变形方程时要注意等价变形.如方程21-=-y x等价于2)1(2-=-y x 且1≥x ,即)1(2)1(2≥+-=x x y ,原方程的曲线是抛物线一部分.典型例题八例8 如图所示,已知A 、B 是两个定点,且2=AB ,动点M 到定点A 的距离是4,线段MB 的垂直平分线l 交线段MA 于点P ,求动点P 的轨迹方程.分析:本题首先要建立适当直角坐标系,动点P 满足的条件(等量关系)题设中没有明显给出,要从题意中分析找出等量关系.连结PB ,则PB PM =,由此4==+=+AM PM PA PB PA ,即动点P 到两定点A ,B 距离之和为常数.解:过A ,B 两点的直线为x 轴,A ,B 两点的中点O 为坐标原点,建立直角坐标系 ∵2=AB ,∴A ,B 两点坐标分别为)0,1(-,)0,1(.连结PB .∵l 垂直平分线段BM , ∴PB PM =,4==+=+AM PM PA PB PA .设点),(y x P ,由两点距离公式得4)1()1(2222=+-+++y x y x ,化简方程,移项两边平方得(移项)x y x -=+-4)1(222.两边再平方移项得:13422=+y x ,即为所求点P 轨迹方程. 说明:通过分析题意利用几何图形的有关性质,找出P 点与两定点A ,B 距离之和为常数4,是解本题的关键.方程化简过程也是很重要的,且化简过程也保证了等价性.典型例题九例9 过()42,P 点作两条互相垂直的直线1l ,2l ,若1l 交1l 轴于A ,2l 交y 轴于B ,求线段AB 中点M 的轨迹方程.解:连接PM ,设()y x M ,,则()02,x A ,()y B 20,.∵ 21l l ⊥∴ PAB ∆为直角三角形.由直角三角形性质知 AB PM 21= 即 ()()2222442142y x y x +=-+- 化简得M 的轨迹方程为052=-+y x说明:本题也可以用勾股定理求解,还可以用斜率关系求解,因此本题可有三种解法.用斜率求解的过程要麻烦一些.典型例题十例10 求与两定点A 、B 满足222k PB PA =-(k 是常数)的动点P 的轨迹方程. 分析:按求曲线方程的方法步骤求解.解法一:如图甲,取两定点A 和B 的连线为x 轴,过AB 的中点且与AB 垂直的直线为y 轴建立坐标系.设)0,(a A -,)0,(a B ,),(y x P ,则:222)(y a x PA ++=,222)(y a x PB +-=.图2据题意,222k PB PA =-,有[][]22222)()(k y a x y a x =+--++得24k ax =. 由于k 是常数,且0≠a ,所以ak x 42=为动点的轨迹方程,即动点P 的轨迹是一条平行于y 轴的直线.解法二:如图乙,取A 与B 两点连线为x 轴,过A 点且与AB 垂直的直线为y 轴建立坐标系.设)0,0(A ,)0,(a B ,),(y x P ,则:222y x PA +=,222)(y a x PB +-=. 据题意,222k PB PA =-,有()[]22222)(k y a x y x =+--+, 得a k a x 222+=,即动点P 的轨迹方程为ak a x 222+=,它是平行于y 轴的一条直线. 解法三:如图丙建立坐标系,设),(11y x A ,),(22y x B ,),(y x P ,则21212)()(y y x x PA -+-=,22222)()(y y x x PB -+-=. 据题意,222k PB PA =-,有 [][]222222121)()()()(k y y x x y y x x =-+---+-, 整理后得到点P 的轨迹方程为:0)(2)(22222221211212=---++-+-k y x y x y y y x x x ,它是一条直线.说明:由上面介绍的三种解法,可以看到对于同一条直线,在不同的坐标系中,方程不同,适当建立坐标系如解法一、解法二,得到的方程形式简单、特性明显,一看便知是直线.而解法三得到的方程烦琐、冗长,若以此为基础研究其他问题,会引起不必要的麻烦.因此,在求曲线方程时,根据具体情况适当选取坐标系十分重要.另外,也要注意到本题所求的是轨迹的方程,在作解答表述时应强调曲线的方程,而不是曲线.典型例题十一例11 两直线分别绕着定点A 和B (a AB 2=)在平面内转动,且转动时保持相互垂直,求两直线的交点P 的轨迹方程.分析:建立适当的直角坐标系,利用直角三角形的性质,列出动点所满足的等式. 解:取直线AB 为x 轴,取线段AB 的中点O 为原点建立直角坐标系,则:)0,(a A -,)0,(a B ,P 属于集合{}222AB PB PA P C =+=.设),(y x P ,则22222)2()()(a y a x y a x =+-+++,化简得222a y x =+.这就是两直线的交点P 的轨迹方程.说明:本题易出现如下解答错误:取直线AB 为x 轴,取线段AB 的中点O 为原点建立直角坐标系,则:)0,(a A -,)0,(a B ,交点P 属于集合{}{}1-=⋅=⊥=PB PA k k P PB PA P C . 设),(y x P ,则a x y k PA +=)(a x -≠,a x y k PB -=)(a x ≠, 故1-=-⋅+ax y a x y ,即222a y x =+(a x ±≠). 要知道,当x PA ⊥轴且另一直线与x 轴重合时,仍有两直线互相垂直,此时两直线交点为A .同样x PB ⊥轴重合时,且另一直线与x 轴仍有两直线互相垂直,此时两直线交点为B .因而,)0,(a A -与)0,(a B 应为所求方程的解.纠正的方法是:当PA 或PB 的斜率不存在时,即a x ±=时,)0,(a A -和)0,(a B 也在曲线上,故所求的点P 的轨迹方程是222a y x =+.求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解为坐标的点作考察,既要剔除不适合的部分,也不要遗漏满足条件的部分. 典型例题十二例12 如图,ABC Rt ∆的两条直角边长分别为a 和b )(b a >,A 与B 两点分别在x 轴的正半轴和y 轴的正半轴上滑动,求直角顶点C 的轨迹方程.分析:由已知ACB ∠是直角,A 和B 两点在坐标轴上滑动时,AOB ∠也是直角,由平面几何知识,A 、C 、B 、O 四点共圆,则有AOC ABC ∠=∠,这就是点C 满足的几何条件.由此列出顶点C 的坐标适合的方程.解:设点C 的坐标为),(y x ,连结CO ,由︒=∠=∠90AOB ACB ,所以A 、O 、B 、C 四点共圆.从而ABC AOC ∠=∠.由a b A B C =∠ta n ,x y AOC =∠tan ,有ab x y =,即x a b y =. 注意到方程表示的是过原点、斜率为ab 的一条直线,而题目中的A 与B 均在两坐标轴的正半轴上滑动,由于a 、b 为常数,故C 点的轨迹不会是一条直线,而是直线的一部分.我们可考察A 与B 两点在坐标轴上的极端位置,确定C 点坐标的范围.如下图,当点A 与原点重合时,x b a x AB S ABC ⋅+=⋅=∆222121,所以22ba ab x +=. 如下图,当点B 与原点重合时,C 点的横坐标BD x =.由射影定理,AB BD BC ⋅=2,即222b a x a +⋅=,有222b a a x +=.由已知b a >,所以22222b a a b a ab+<+.故C 点的轨迹方程为:x a b y =(22222ba a xb a ab +≤≤+). 说明:求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解为坐标的点作考察,剔除不适合的部分.典型例题十三例13 过点)2,3(P 作两条互相垂直的直线1l 、2l ,若1l 交x 轴于A ,2l 交y 轴于B ,M 在线段AB 上,且3:1:=BM AM ,求M 点的轨迹方程.分析:如图,设),(y x M ,题中几何条件是21l l ⊥,在解析几何中要表示垂直关系的代数关系式就是斜率乘积为-1,所以要求M 的轨迹方程即x 、y 之间的关系,首先要把1l 、2l 的斜率用x 、y 表示出来,而表示斜率的关键是用x 、y 表示A 、B 两点的坐标,由题可知M 是A 、B 的定比分点,由定比分点坐标公式便可找出A 、B 、M 坐标之间的关系,进而表示出A 、B 两点的坐标,并求出M 点的轨迹方程.解:设),(y x M ,)0,(a A ,),0(b B∵M 在线段AB 上,且3:1:=BM AM .∴M 分AB 所成的比是31, 由⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=31131311b y a x ,得⎪⎩⎪⎨⎧==y b x a 434,∴)0,34(x A 、)4,0(y B又∵)2,3(P ,∴1l 的斜率x k 34321-=,2l 的斜率3242--=y k . ∵21l l ⊥,∴13243432-=--⋅-y x . 化简得:01384=-+y x .说明:本题的上述解题过程并不严密,因为1k 需在49≠x 时才能成立,而当49=x 时,)0,3(A ,1l 的方程为3=x .所以2l 的方程是2=y .故)2,0(B ,可求得)21,49(M ,而)21,49(也满足方程01384=-+y x .故所求轨迹的方程是01384=-+y x .这类题在解答时应注意考虑完备性和纯粹性.典型例题十四例14 如图,已知两点)2,2(-P ,)2,0(Q 以及一直线x y l =:,设长为2的线段AB在直线l 上移动.求直线PA 和QB 的交点M 的轨迹方程.分析1:设),(y x M ,题中的几何条件是2=AB ,所以只需用),(y x 表示出A 、B 两点的坐标,便可求出曲线的方程,而要表示A 点坐标可先找出A 、M 两点坐标的关系,显然P 、A 、M 三点共线.这样便可找出A 、M 坐标之间的关系,进而表示出A 的坐标,同理便可表示出B 的坐标,问题便可以迎刃而解.解法一:设),(y x M 、),(a a A 、),(b b B )(a b >.由P 、A 、M 三点共线可得:2222+-=+-x y a a (利用PA 与MP 斜率相等得到)∴422+-+=y x y x a . 由Q 、B 、M 三点共线可得x y b b 22-=-. ∴22+-=y x x b . 又由2=AB 得2)(22=-b a .∴1=-a b ,∴142222=+-+-+-y x y x y x x . 化简和所求轨迹方程为:082222=+-+-y x y x .分析2:此题也可以先用P 、A 、M 三点共线表示出A 点坐标,再根据2=AB 表示出B 点坐标,然后利用Q 、B 、M 三点共线也可求得轨迹方程.解法二:设),(y x M ,),(a a A 由2=AB 且B 在直线x y =上且B 在A 的上方可得:)1,1(++a a B 由解法一知422+-+=y x y x a , ∴)443,443(+-+++-++y x y x y x y x B 又由Q 、B 、M 三点共线可得:xy y x y x y x y x 24432443-=+-++-+-++. 化简得所求轨迹方程为:082222=+-+-y x y x .解法三:由于2=AB 且AB 在直线x y =上所以可设),(a a A ,)1,1(++a a B .则直线AP 的方程为:)2)(2()2)(2(+-=-+x a y a直线BQ 的方程为:x a y a )1()2)(1(-=-+ 由上述两式解得)0(1212≠⎪⎪⎩⎪⎪⎨⎧-+=--=a a a y a a x ∴⎪⎪⎩⎪⎪⎨⎧++=+-+=+44)1(44)1(222222a a y a a x∴8)1()1(22-=+-+y x ,即082222=+-+-y x y x .而当0=a 时,直线AP 与BQ 平行,没有交点.∴所求轨迹方程为082222=+-+-y x y x .说明:本题的前两种方法属于直接法,相对较繁,而后一种方法,事实上它涉及到参数的思想(a 为参数),利用交点求轨迹方程.一般先把交点表示为关于参数的坐标,然后消去参数,这也反映出运动的观点.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。

新课标高二数学文同步试卷(4)及答案(选修1-1第三章)

新课标高二数学文同步试卷(4)及答案(选修1-1第三章)

1.两曲线 y x 2 ax b与2 y 1 xy3
相切于点(1,-1)处,则 a,b 值分别为 ()
A.0,2
B.1,-3
C.-1,1
D.-1,-1
2.
设函数f
x
2x 1 x2
, 则f
x
()
A.在(-∞,+∞)单调增加
B.在(-∞,+∞)单调减少
C.在(-1,1)单调减少,其余区间单调增加
B.极大值必大于极小值
C.极大值一定是最大值,或极小值一定是最小值
D.极大值不一定是最大值,极小值也不一定是最小值
5. 设f
x在x
0 可导,

lim
x0
f x0

x f x0
x
3x 等于
()
A. 2 f x0
B. f x0
6.下列求导运算正确的是
()
A.(x+
g x f x x2 tx 1。是否存在一个实数 t,使得当 x (0,1]时,g(x)有最
令 3
大值 1?
参考答案
一、 1.D; 2.C; 3.B; 4.D;
5.D
提示:这里插入 f x0 ,因为题目假定 f(x)在 x 0 点可导,所以分成两项的极限都存
12.已知 x R ,奇函数 f (x) x3 ax2

bx c [1,)
的条件是

上单调,则字母 a,b, c 应满足
13.两个和为 48 的正整数,第一个数的立方与第二个数的平方之和最小,则这两个正整数
分别为__________。
14.设f x xx 1x 2 x 1000,则f 0 ____________.

100测评网新课标高二数学文同步测试61-2第一章

100测评网新课标高二数学文同步测试61-2第一章

实用标准文案高中课程标准实验教科书——数学选修2—1(文科)[人教版]高中学生学科素质训练新课标高二数学文同步测试(6)(1-2第一章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.一项研究要确定是否能够根据施肥量预测作物的产量。

这里的被解释变量是()A.作物的产量B.施肥量C.试验者D.降雨量或其他解释产量的变量2.“回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的,他的研究结果是子代的平均身高向中心回归,根据他的结论,在儿子的身高y与父亲的身高x的回归方程^y=a+bx中,b的取值()A.在(-1,0)内B.等于0 C.在(0,1)内D.在[1,+∞]内3.当绘制散点图时()A.应将被解释变量绘制在水平轴上B.将解释变量绘制在水平轴上C.如果解释变量是类别型的,应使用不同的图示标志D.应使用能够使整体趋势大致成线性的绘图标尺4.相关系数度量()A.两个变量之间是否存在关系B.散点图是否显示有意义的模型C.两个变量之间是否存在因果关系D.两个变量之间直线关系的强度考虑下面的列联表数据,并回答问题(5)—(8)。

5.德国生产的汽车是4缸的比例为()A.21% B.50% C.80% D.91%6.表中4缸汽车所占的比例是()A.21% B.50% C.80% D.91%7.表中的4缸汽车是由德国生产的比例是()A.21% B.50% C.80% D.91%8.从表中可以得出结论()A.原产国和汽缸数之间不存在明显的关系B.原产国和汽缸数之间的相关系数可能是0.5C.拟合这些数据的回归线可能有负的斜率D.在原产国和汽缸数之间有一些相关对于家庭暴力案件有三种处理方法:建议分居,发传票和逮捕施暴者。

根据处理后的情况决定是否再次逮捕施暴者。

100测评网新课标高二数学同步测试(9)—(2-2第三章)

100测评网新课标高二数学同步测试(9)—(2-2第三章)

普通高中课程标准实验教科书——数学选修2—2[人教版]高中学生学科素质训练新课标高二数学同步测试(9)—(2-2第三章)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.方程2z +|z |=2+6i 的解的情况是 ( ) A .没有解 B .只有一解 C .有两解 D .多于两解 2.已知z =x +y i (x ,y ∈R ),且 222log 8(1log )x y i x y i ++-=-,则z = ( )A .2+iB .1+2iC .2+i 或1+2iD .无解 3.下列命题中正确的是( )A .任意两复数均不能比较大小;B .复数z 是实数的充要条件是z =z ;C .复数z 是纯虚数的充要条件是z +z =0;D .i +1的共轭复数是i -1; 4.设)()11()11()(N n ii i i n f nn ∈+-+-+=,则集合{})(n f x x =中元素的个数是 ( )A .1B .2C .3D .无穷多个5.使不等式m 2-(m 2-3m )i <(m 2-4m +3)i +10成立的实数m ( ) A .1 B .0 C .3 D .复数无法比较大小 6.设复数(),z x yi x y R =+∈,则满足等式20z x ++=的复数z 对应的点的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线7.若非零复数,x y 满足220x xy y ++=,则20052005()()x y x y x y+++的值是 ( )A .1B .1-C .20042D .20042-8.如图所示,复平面内有Rt ΔA BC ,其中∠B A C=90°,点A 、B 、C 分别对应复数32z z z 、、,且z =2,则z =( )A .i ±-3B .i ±3C .i 31±-D .i 31±9.复数z 1=a +2i,z 2=-2+i,如果|z 1|< |z 2|,则实数a 的取值范围是( )A .-1<a <1B .a >1C .a >0D .a <-1或a >1 10.如果复数z 满足|z +i|+|z -i|=2,那么|z +i+1|的最小值为______.A .1B .2C .2D .5二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.已知关于x 的实系数方程x 2-2a x+a 2-4a +4=0的两虚根为x 1、x 2,且|x 1|+|x 2|=3,则a的值为 . 12.已知(2x -1)+i =y -(3-y )i ,其中x , y ∈R ,求x= , y= . 13.i +i 2+i 3+……+i 2005= . 14.已知x 、y 、t ∈R ,t ≠-1且 t ≠0,求满足x +y i =1()1t ti t t+++时,点(x , y )的轨迹方程 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)设|z 1|=5,|z 2|=2, |z 1-2|=13,求z z 12的值.16.(12分)当m 为何实数时,复数z =2223225m m m ---+(m 2+3m -10)i ;(1)是实数;(2)是虚数;(3)是纯虚数.17.(12分)求同时满足下列条件的所有复数z :(1)z z 10+是实数,且6101≤+<zz .(2)z 的实部和虚部都是整数.18.(12分)设复数|z -i |=1, 且z ≠0, z ≠2i . 又复数w 使ziz i w w 22-⋅-为实数,问复数w 在复平面上所对应的点Z 的集合是什么图形,并说明理由.19.(14分)设虚数z 1,z 2,满足221z z =.(1)若z 1,z 2又是一个实系数一元二次方程的两根,求z 1, z 2. (2)若z 1=1+m i (i 为虚数单位,m ∈R), 2||1≤z ,复数w=z 2+3,求|w|的取值范围.20.(14分)已知:A 、B 是∆A BC 的两个内角,j B A i B A m 2sin 252cos→++→-=→, 其中→i 、→j 为相互垂直的单位矢量.若 | →m | =423,试求t a n A ·t a nB 的值.参考答案一、1.B ;2.C ;解:本题主要考查复数相等的充要条件及指数方程,对数方程的解法. ∵ 222log 8(1log )x yi x y i ++-=-,∴22280log 1log x y x y +⎧-=⎨=-⎩,∴32x y xy +=⎧⎨=⎩, 解得21x y =⎧⎨=⎩或12x y =⎧⎨=⎩, ∴ z =2+i 或z =1+2i .诠释:本题应抓住复数相等的充要条件这一关键,正确、熟练地解方程(指数,对数方程) 3.B ;4.C ;解析:∵ nn i i n f )()(-+=∴ 0)3(,2)2(,0)1(=-==f f f , ,2)4(=f ,∴ 集合{})(n f x x =中的元素为2,0,2-,选C .;5.C ;解:此题主要考查复数能比较大小的条件及方程组和不等式的解法. ∵ m 2-(m 2-3m )i <(m 2-4m +3)i +10, 且虚数不能比较大小,∴2221030430m m m m m ⎧<⎪-=⎨⎪-+=⎩,解得||100或33或1m m m m m <⎧⎪==⎨⎪==⎩,∴ m =3. 当m =3时,原不等式成立.诠释:本题应抓住复数能比较大小时必须都为实数这一条件. 6.D ;7.A ;8.C ;9.A ;利用复数模的定义得a 222+<5,选A ;; 10.A ;由复数模几何意义利用数形结合法求解,选A ;二、11.21;12.x =25, y =4; 13.i ;解:此题主要考查i n 的周期性.i +i 2+i 3+……+i 2005=(i +i 2+i 3+i 4)+……+(i 2001+i 2002+ i 2003+i 2004)+i 2005 =(i -1-i +1)+ (i -1-i +1)+……+(i -1-i +1)+i =0+0+……+0+i =i .或者可利用等比数列的求和公式来求解(略)诠释:本题应抓住i n 的周期及合理分组.14.xy =1;解:此题主要考查复数相等的充要条件,轨迹方程的求法.∵ x +y i =1()1t t i t t +++,∴ 11t x tt y t ⎧=⎪⎪+⎨+⎪=⎪⎩, ∴xy =1,∴点(x,y)的轨迹方程为xy=1,它是以x轴、y轴为对称轴,中心在(0,0)的等轴双曲线.三、15.【分析】利用复数模、四则运算的几何意义,将复数问题用几何图形帮助求解.【解】如图,设z1=、z2=后,则z1=、z2=如图所示.由图可知,|zz12|=52,∠A OD=∠BOC,由余弦定理得:cos∠A OD=5213252222+-()××=45∴zz12=52(45±35i)=2±32i【另解】设z1=、z2=如图所示.则|zz12|=52,且cos∠A OD=5213252222+-()××=45,s i n∠A OD=±35,所以zz12=52(45±35i)=2±32i,即zz12=2±32i.【注】本题运用“数形结合法”,把共轭复数的性质与复平面上的向量表示、代数运算的几何意义等都表达得淋漓尽致,体现了数形结合的生动活泼.一般地,复数问题可以利用复数的几何意义而将问题变成几何问题,16.解:此题主要考查复数的有关概念及方程(组)的解法.(1)z为实数,则虚部m2+3m-10=0,即223100250m mm⎧+-=⎨-≠⎩,解得m=2,∴m=2时,z为实数.(2)z为虚数,则虚部m2+3m-10≠0,即223100250m mm⎧+-≠⎨-≠⎩,解得m≠2且m≠±5. 当m≠2且m≠±5时,z为虚数.22223203100250m mm mm⎧--=⎪+-≠⎨⎪-≠⎩,xx解得m =-21, ∴当m =-21时,z 为纯虚数. 诠释:本题应抓住复数分别为实数、虚数、纯虚数时相应必须具备的条件,还应特别注意分母不为零这一要求. 17.分析与解答:设z =a +b i (a ,b ∈R,且a 2+b 2≠0). 则22)(101010b a bi a bi a bi a bi a z z +-++=+++=+i b a b b a a )101()101(2222+-+++=由(1)知z z 10+是实数,且6101≤+<zz , ∴ 0)101(22=+-ba b 即b=0或a 2+b 2=10. 又6)101(122≤++<b a a *当b=0时,*化为6101≤+<aa 无解. 当a 2+b 2=10时,*化为1<2a ≤6, ∴321≤<a . 由(2)知 a =1,2,3.∴ 相应的b=±3, ±6(舍),±1, 因此,复数z 为:1±3i 或3±i .此题不仅考查了复数的概念、运算等,同时也考查到了方程、不等式的解法. 18.分析与解答:设 z =a +b i , w=x+y i (a ,b, x,y ∈R). 由题z ≠0, z ≠2i 且|z -i |=1, ∴ a ≠0, b ≠0且a 2+b 2-2b=0.222222222222222)2(2)2(2)2()2(2)2(2222b a ai y x xi y y x b a ai b b a y x xi y y x bia i bi a i yi x yi x z iz i w w u +-⋅-++-+=+--+⋅-++-+=+-+⋅-++=-⋅-=记已知u 为实数,∴ 02)2(2222222=+-⋅-+-+ba ay x y y x , ∵a ≠0, ∴ x 2+y 2-2y=0 即 x 2+(y -1)2=1.∴w 在复平面上所对应的点Z 的集合是以(0, 1)为圆心,1为半径的圆. 又∵ w -2i ≠0, ∴除去(0, 2)点.此题中的量比较多,由于是求w 对应点的集合,所以不妨设w 为x+y i (x,y ∈R), z =a +b i (a ,b ∈R).关于z 和w 还有一些限制条件,这些都对解题起着很重要的作用,千万不可大意.19.分析与解答:(1)∵z 1, z 2是一个实系数一元二次方程的两个虚根,因此必共轭, 可设z 1=a +b i (a ,b ∈R 且b ≠0),则z 2=a -b i , 由221z z = 得(a +b i )2=a -b i 即: a 2-b 2+2a b i =a -b i根据复数相等,⎩⎨⎧-==-bab ab a 222∵b ≠0 解得:⎪⎪⎩⎪⎪⎨⎧=-=2321b a 或⎪⎪⎩⎪⎪⎨⎧-=-=2321b a ,∴ ⎪⎪⎩⎪⎪⎨⎧--=+-=i z iz 2321232121 或 ⎪⎪⎩⎪⎪⎨⎧+-=--=i z i z 2321232121. (2)由于 221z z =,z 1=1+m i , w=z 2+3, ∴w=(1+m i )2+3=4-m 2+2m i . ∴ 12)2(4)4(||22222+-=+-=m m m w ,由于2|z |1≤且m ≠0, 可解得0<m 2≤1,令m 2=u, 12)2(||2+-=u w ,在u ∈(0,1)上,(u -2)2+12是减函数,∴)4,13[||∈w .复数这一章中去掉了三角形式,降低了难度,但在复数的基本概念、运算、复数与方程、复数与几何这些部分仍然有许多可考查的内容,并且还可以与其它的数学知识相结合. 20.讲解:从化简变形| →m |入手.|→m |2=(→m )2=(→→++-j B A i B A 2sin 252cos )2=225cossin 242A B A B -++⋅ =2)cos(1452)cos(1B A B A +-⋅+-+ ,∴2)cos(1452)cos(1B A B A +-⋅+-+=89, ∴cos(A -B)=45cos(A +B).4 cos A ·cosB+4s i n A ·s i nB=5cos A ·cosB –5s i n A ·s i nB ,∴9s i n A ·s i nB= cos A ·cosB . 又 A 、B 是∆A BC 的内角,∴ cos A ·cosB 0≠, ∴t a n A ·t a nB=91.说明:本题将复数、三角、向量溶为一体,综合性较强.===========================================================适用版本:人教版,苏教版, 鲁教版,北京版,语文A版,语文S版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版适用学科:语文,数学,英语,科学,物理,化学,生物,政治,历史,地理适用年级:一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初适用领域及关键字:100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷===========================================================本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

100测评网新课标高二数学同步测试(5)—(2-1第三章3.2)

100测评网新课标高二数学同步测试(5)—(2-1第三章3.2)

AA 1 DCBB 1C1 图普通高中课程标准实验教科书——数学选修2—1[人教版]高中学生学科素质训练新课标高二数学同步测试(5)—(2-1第三章3.2)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长AB =直线BD 和SC 之间的距离( ) A .515 B .55 C .552 D .1055.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 22 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( )A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21P A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( )A .621 B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6π C .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V( )A .66B .3316 C .316D .16二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.在正方体1111A B C D A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 .12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 . 13.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 . 14.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,求平面A 1B C 1与平面AB CD 所成的二面角的大小 16.(12分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.(12分)在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且P A ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值. 18.(12分)已知棱长为1的正方体A C 1,E 、F 分别是B 1C 1、C 1D 的中点.(1)求证:E 、F 、D 、B 共面;(2)求点A 1到平面的B DEF 的距离; (3)求直线A 1D 与平面B DEF 所成的角.19.(14分)已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:(Ⅰ)D1E与平面BC1D所成角的大小;(Ⅱ)二面角D-BC1-C的大小;(Ⅲ)异面直线B1D1与BC1之间的距离.20.(14分)如图5:正方体AB CD-A1B1C1D1,过线段B D1上一点P(P 平面A C B1)作垂直于D1B 的平面分别交过D1的三条棱于E、F、G.(1)求证:平面EFG∥平面A C B1,并判断三角形类型;(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.参考答案一、1.B;2.A;3.A;4.C;分析:建立如图所示的直角坐标系,则A ,B ,(C ,(D ,(0,0,2)S .(2,DB ∴=,2(CS =.令向量(,,1)n x y =,且,n DB n CS ⊥⊥,则0n DB n CS ⎧⋅=⎪⎨⋅=⎪⎩,(,,1)0(,,1)2)0x y x y ⎧⋅=⎪∴⎨⋅=⎪⎩,00x y x y +=⎧⎪⎨-+⎪⎩, x y ⎧=⎪∴⎨=⎪⎩(2,n ∴=-. ∴异面直线BD 和SC 之间的距离为:OC n d n⋅===5.A ;分析:11ABB A 为正方形,11A B AB ∴⊥,又平面1AB D ⊥平面11ABB A ,1A B ∴⊥面1AB D ,1A B ∴是平面1AB D 的一个法向量,设点C 到平面1AB D 的距离为d ,则11AC A B d A B⋅==()AC A A AB ⋅+)AC A A AC AB ⋅+⋅=. 6.B ;分析:建立如图所示的直角坐标系,设平面11A C D 的一个法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即(,,1)(1,0,1)0(,,1)(0,1,1)0x y x y ⋅=⎧⎨⋅=⎩11x y =-⎧⇒⎨=-⎩, (1,1,1)n ∴=--,∴平面1A B C 与平面11AC D 间的距离AD n d n⋅==7.D;()()().,0,0,,0,,0,0.0,0,.212,0,,2OP ABC OA OC AB BC OA OB OA OP OB OP O OP z O xyz AB a A B C OP h P h D PC OD a h PA a ⊥==∴⊥⊥⊥-⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫∴=-= ⎪ ⎪⎝⎭ 平面,,,,,以为原点,射线为非负轴,建立空间直角坐标系如图,设,则设,则 为的中点,又Ⅰ,0,1...2h OD PA OD PA OD PAB ⎛⎫- ⎪⎪⎝⎭∴=-∴∴, 平面∥∥()2,,,0,,44,210cos ,210sin cos ,PA a h OD PBC n OD n OD n OD n OD PBC OD n OD PBC θθ=∴=⎛⎫∴=- ⎪ ⎪⎝⎭⎛=- ⎝⋅∴〈〉==⋅=〈〉=∴可求得平面的法向量 设与平面所成的角为,则 与平面所成的角为ⅡA BCDC D 1图8.B ;解 以C 为坐标原点,C A 所在直线为x 轴,C B 所在直线为y 轴,1CC 所在直线为z 轴,建立直角坐标系, 设a CB CA ==,则 )(0,0,a A ,)(0,,0a B ,)(2,0,1a A ,)(1,0,0D ∴ )(1,2,2a a E , )(31,3,3a a G , )(32,6,6a a =,)(1,,0a -=, ∵ 点E 在平面AB D 上的射影是ABD ∆的重心G , ∴ ⊥平面AB D , ∴ 0=⋅BD GE ,解得 2=a . ∴ )(32,31,31=, )(2,2,21-=, ∵ ⊥平面AB D , ∴ 为平面AB D 的一个法向量.由 32323634||||,c o s111=⋅=⋅>=<BA GE BA GE ∴ B A 1与平面AB D 所成的角的余弦值为37. 评析 因规定直线与平面所成角]20[πθ,∈,两向量所成角]0[πα,∈,所以用此法向量求出的线面角应满足|2|απθ-=.9.A ;取B C 的中点O ,连A O .由题意 平面⊥ABC 平面11B BCC ,BC AO ⊥, ∴⊥AO 平面11B BCC ,以O 为原点,建立如图6所示空间直角坐标系,则 )(323,0,0A ,)(0,0,23B ,)(0,0,29D ,)(0,323,231B , ∴ )(323,0,29-=AD , )(0,323,31-=D B , )(0,323,01=BB ,由题意 ⊥1BB 平面AB D , ∴ )(0,323,01=BB 为平面AB D 的法向量. 设 平面D AB 1的法向量为 ),,(2z y x n =,则 ⎪⎩⎪⎨⎧⊥⊥B n n 122, ∴ ⎪⎩⎪⎨⎧=⋅=⋅00122B n n , ∴ ⎪⎩⎪⎨⎧=-=-03233032329y x z x , 即 ⎪⎩⎪⎨⎧==x z y x 3323. ∴ 不妨设 )23,1,23(2=n , 由 212323323||||,c o s 212121=⨯=⋅>=<n BB n BB , 得 60,21>=<n BB . 故所求二面角B AD B --1的大小为60.评析:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证——求”直接简化成了一步曲:“计算”,这表面似乎谈化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神.(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取)23,1,23(2---=n 时,会算得21,cos 21->=<n BB ,从而所求二面角为 120,但依题意只为60.因为二面角的大小有时为锐角、直角,有时也为钝角.所以在计算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”.10.C ;解 以D 为坐标原点,建立如图10所示的直角坐标系, 则 )4,22,22(1B , )4,0,0(1D ,)0,2,22(E ,)0,22,2(F ,∴ )4,2,22(1-=D ,)4,22,2(1-=D ,)0,22,22(11=B D ,图10BA DC D 1A 1B 1C 1zy xEFG∴ 1312262624||||,cos 111111=⋅=⋅>=<F D E D D D , ∴135,sin 11>=<F D E D , 所以 5135262621,sin ||||211=⨯⨯⨯>=<⋅⋅=∆S EF D , 设 平面EF D 1的方程为:0=+++D Cz By x ,将点F E D ,,1代入得⎪⎩⎪⎨⎧=++=++=+0222022204D B D B D C , ∴ ⎪⎪⎩⎪⎪⎨⎧-===232431D C B , ∴ 平面EF D 1的方程为:023243=-++z y x ,其法向量为 )243,1,1(=, ∴点1B 到平面EF D 1的距离516||11==n d , ∴ 31651653131111=⨯⨯=⋅⋅=∆-d S V EFD EFD B 即为所求. 评析 (1)在求点到平面的距离时,有时也可直接利用点到平面的距离公式222000||CB A D Cz By Ax d +++++=计算得到.(2) 法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等. 二、 11分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D E =,1(2,0,2)C B =,设1D E 和1BC 公垂线段上的向量为(1,,)n λμ=,则110n D E n C B ⎧⋅=⎪⎨⋅=⎪⎩,即20220λμ+=⎧⎨+=⎩,21λμ=-⎧∴⎨=-⎩,(1,2,1)n ∴=--,又11(0,2,0)D C =,116D C n n ⋅∴==,所以异面直线1D E 和1BC .12.36分析:以D 为原点,建立如图所示的空间直角坐标系. 则11(1,0,0),(0,,0),(1,,1)22A F E .1(0,,1)2AE ∴=,1(1,,0)2AF =-;设面1AEC F 的法向量为(1,,)n λμ=, 则有:0,0n AE n AF ⋅=⋅=, 102211102λμλμλ⎧+=⎪=⎧⎪∴⇒⎨⎨=-⎩⎪-+=⎪⎩, (1,2,1)n ∴=-,又(0,1,0)AB =,所以点B 到截面1AEC F的距离为AB n AB n⋅⋅==13.1;解:如图建立空间直角坐标系,=(1,1,0) ,=(0,21,1), 1DA =(1,0,1) 设平面D B EF 的法向量为n =(x ,y ,z ),则有:0=⋅ 即x +y =00=⋅21y +z =0 令x =1, y =-1, z=21, 取=(1,-1,21),则A 1D B EF 的距离1==h 14.510解:如图建立空间直角坐标系,=(0,1,0),1AD =(-1,0,1),AE =(0,21,1)设平面AB C 1D 1的法向量为=(x ,y ,z ),由 0=⋅AB n 可解得n =(1,0,1)01=⋅AD设直线A E 与平面AB C 1D 1所成的角为θ,则510sin ==θ, 三、15. 解:如图建立空间直角坐标系,11C A =(-1,1,0),A 1=(0,1,-1)设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由 011=⋅A n 可解得1=(1,1,1)0111=⋅C A n易知2n =(0,0,1), 所以,=33所以平面A 1B C 1与平面AB CD 所成的二面角大小为a rccos33或 π-a rccos 33. 注:用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.16.证明:如图建立空间直角坐标系,则11C A =(-1,1,0),B 1=(-1,0,-1) A 1=(1,0,1), B 1=(0,-1,-1)设111C A A λ=,A A 11μ=,B B 11ν=(λ、μ、 νR ∈,且均不为0)设1n 、2n 分别是平面A 1EF 与平面B 1MC 的法向量,由 011=⋅A n 可得 0111=⋅C A n λ 即 0111=⋅C A n011=⋅F A n 011=⋅D A n μ 011=⋅D A n解得:1=(1,1,-1)由 012=⋅M B n 可得 012=⋅A B n ν 即 012=⋅A B n012=⋅C B n 012=⋅C B n 012=⋅C B n解得2n =(-1,1,-1),所以1n =-2n , 1n ∥2n , 所以平面A 1EF ∥平面B 1MC .注:如果求证的是两个平面垂直,也可以求出两个平面的法向量后,利用1n ⊥2n 021=⋅⇔n n 来证明.17.(1)证明:∵P A ⊥平面ABCD ,∴P A ⊥AB ,又AB ⊥AD .∴AB ⊥平面P AD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵P A ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a ,EF =23a ,∴E (0,23,21a a ) 于是,CD a a AE},23,21,0{=={-a ,a ,0}设AE 与CD 的夹角为θ,则由cos θ||||CD AE CD AE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a AE 与CD 所成角的余弦值为42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段. 18.解:(1)略.(2)如图,建立空间直角坐标系D —xyz , 则知B (1,1,0),).1,21,0(),1,1,21(F E 设.),,(的法向量是平面BDEF z y x = )1,21,0(),0,1,1(,,==⊥⊥由得⎪⎩⎪⎨⎧=+=⋅=+=⋅0210z y y x 则⎪⎩⎪⎨⎧-=-=.21y z y x 令)21,1,1(,1--==n y 得.设点A 1在平面B DFE 上的射影为H ,连结A 1D ,知A 1D 是平面B DFE 的斜线段..23)21)(1(10)1)(1(),1,0,1(1=--+⨯+--=⋅∴--=n AD D A.1222,cos ||||.2223223||||,cos ,23)21(1)1(||,2)1()1(||11111112222221=⨯>=<⨯=∴=⨯⨯>=<∴=-++-==-++-=A A A A n D A A A O A 又 即点A 1到平面B DFE 的距离为1.(3)由(2)知,A 1H=1,又A 1D=2,则△A 1HD 为等腰直角三角形, 4511=∠=∠H DA DH A.45,,,11111 =∠∴∠∴⊥DH A BDFE D A DH A BDFE D A HD BDFE H A 所成的角与平面就是直线上的射影在平面是平面19.解:建立坐标系如图,则()2,0,0A 、()2,2,0B ,(0,2,0C ,()12,0,2A ,()12,2,2B ,()10,0,2D ,()2,1,0E ,(1AC =-()12,1,2D E =-,()0,2,0AB =,()10,0,2BB =.(Ⅰ)不难证明1AC 为平面BC 1D 的法向量,∵ 1111113cos ,A C D EA C D E A C D E== ∴ D 1E 与平面BC 1D 所成的角的大小为 a r c c 2π-(即.(Ⅱ)1AC 、AB 分别为平面BC 1D 、BC 1C 的法向量, ∵ 1113cos ,A C ABA C AB AC AB==,∴ 二面角D -BC 1-C 的大小为. (Ⅲ)∵ B 1D 1∥平面BC 1D ,∴ B 1D 1与BC 1之间的距离为1112A C BB d A C==.20.(证明(1)用纯粹的几何方法要辗转证明EF ∥A C ,EG ∥B 1C ,FG ∥AB 1来证明,而我们借用向量法使问题代数化,运算简洁,思路简单明了.)(1)分析:要证平面EFG 平面A C B 1,由题设知只要证B D 1垂直平面A C B 1即可.证明:以D 为坐标原点,建立空间直角坐标系,如图5,不妨设正方体棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),D 1(0,0,a ),B 1(a ,a ,a ),E (x E ,0,a ),F (0,y F ,a ),G (0,0,z G ).∴→1BD =(-a ,-a ,a ),→1AB =(0,a ,a ),→EF (-x E ,y F ,0),→AC =(-a ,a ,0),→C B 1=(-a ,0,-a ), ∵→1BD ·1→AB =(-a ,-a ,a )·(0,a ,a )=0,∴→1BD ⊥→1AB , 同理 →1BD ⊥→AC , 而→1AB 与→AC不共线且相交于点A ,∴→1BD ⊥平面A C B 1,又已知→1BD ⊥平面EFG , ∴ 平面EFG ∥平面A C B 1;又因为→1BD ⊥平面EFG ,所以 →1BD ⊥→EF , 则→1BD ·→EF =0,即 (-a ,-a ,a )·(-x E ,y F ,0)=0, 化简得 x E -y F =0;同理 x E -z G =0, y F -z G =0, 易得→EF=→EF=→FG,∴ △EFG 为正三角形.(2)解:因为△EFG 是正三角形,显然当△EFG 与△A 1C 1D 重合时,△EFG 的边最长,其面积也最大,此时,EF =A 1C 1=2·a ,∴EFG S ∆= D C A S 11∆=21→→D A C A 111··sin600=21 (2·a )2·23 =23·a 2 . 此时EF 与B 1C 的距离即为A 1C 1与B 1C 的距离,由于两异面直线所在平面平行,所求距离转化为求点B 1到平面 A 1C 1D 的距离,记A 1C 1与B 1D 1交于点O 1,作O 1H ∥D 1B 并交BB 1于点H ,则O 1H⊥平面A 1C 1D ,垂足为O 1,则O 1(2a ,2a ,a ),H(a ,a ,2a),而→H O 1作为平面A 1C 1D 的法向量,所以异面直线EF 与B 1C 的距离设为d 是d = →→→HO H O B O 1111·=43)44(222a a a +=33·a . (证明(2)时一般要找到求这两平面距离的两点,如图5*,而这两点为K 与J ,在立体图形中较难确定,且较难想到通过作辅助线DO 1,O B 1来得到,加上在如此复杂的空间图形中容易思维混乱,但只要借助平面法向量求线段的射影长度的思想,结合题设,使思路清晰明了,最终使问题的解决明朗化;把握这种思想,不管是空间线线距离,线面距离,面面距离问题,一般我们都能转化成点线或点面距离,再借助平面法向量很好地解决了.)=========================================================== 适用版本:人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:语文,数学,英语,科学,物理,化学,生物,政治,历史,地理 适用年级:一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初 适用领域及关键字:100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷=========================================================== 本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

100测评网高二数学练习卷二项式定理

100测评网高二数学练习卷二项式定理

典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项.分析:此题是典型的特定项问题,涉及到前三项的系数及有理项,能够通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛=前三项的.2,1,0=r得系数为:)1(8141C ,2121C ,123121-=====n n t n t t n n, 由已知:)1(8112312-+=+=n n n t t t ,∴8=n 通项公式为1431681,82,1,021C +-+==r r r r r T r xT 为有理项,故r 316-是4的倍数,∴.8,4,0=r依次取得有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:此题通过抓特定项知足的条件,利用通项公式求出了r 的取值,取得了有理项.类似地,1003)32(+的展开式中有多少项是有理项?能够通过抓通项中r 的取值,取得共有17项.典型例题二例2 求10321⎪⎭⎫ ⎝⎛-x x 的展开式中,系数绝对值最大的项和系数最大的项. 分析:此题仍然属于抓通项公式解决特定项的问题,可是系数的绝对值的最大值或系数的最大值,需要对所有项的系数的转变规律进行研究.由于系数的绝对值都是正数,咱们能够用作商来研究系数绝对值的转变情形,另外各项系数正负交替,又便于用系数绝对值的大小转变抓系数的最大值.解:展开式的通项公式为:65301012)1(C r rr rr xT --+⋅⋅-=系数的绝对值为r r-⋅2C 10,记为1+r t .用前后两项系数的绝对值作商得:.)1(210!102)!10(!)!9()!1(!10C 2C 2C 2C 1011010)1(11012+-=⋅-⨯-⋅+==⋅⋅=+-+-+++r r r r r r t t rr r r r r r r 令1)1(210≥+-r r 得:38≤r 即0=r 、1、2时,上述不等式成立.因此,系数的绝对值从第1项到第4项增加,以后逐项减小. 系数绝对值最大的项为第4项,2525334104152)1(C x x T -=-=-.从系数绝对值的转变情形及系数的正负交替,只要比较第3项与第5项的系数,.8105162102C ,4452C 4410522103==⋅==⋅=--t t 因此,系数最大的项为第5项,3558105x t =. 典型例题三例3 已知7722107)21(x a x a x a a x ++++=- ,求:(1)7321a a a a ++++ ;(2)7531a a a a +++;(3)6420a a a a +++.分析:此题是有关展开式系数和的问题,通过对等式中字母的赋值,往往会取得此类问题的结果.字母常常取的值有0、1、-1等.解:(1)取0=x 可得10=a ,取1=x 得1)1(7710-=-=+++a a a . ∴27321-=++++a a a a .(2)取1-=x 得77632103=-++-+-a a a a a a , 记75316420,a a a a B a a a a A +++=+++=. ∴73,1=--=+B A B A .可得1094)31(21,1093)13(2177-=+-==-=B A 从而10947531-=+++a a a a .(3)从(2)的计算已知10936420=+++a a a a .说明:赋值法不仅能够用来求二项展开式的系数和,关于展开式为多项式的代数式的系数和大多数也能用此方式解决,如:65)21()1(x x -⋅+的展开式中各项的系数和为多少?能够看到65)21()1(x x -+的展开式仍是多项式,令1=x ,即得各项系数和为32)1(265=-.再比如:n n n x a x a x a a x x 2222102)1(++++=++ ,那么n a a a a 2420++++ 等于多少?此题能够由取1=x 取得各项系数和,取1-=x 取得奇数项系数和减去偶数项系数和,两式相加可得)13(21220+=+++nn a a a .另外,为了赋值的需要,有时需要用一个新的二项式替换原先二项式,只要它们的系数等同即可.如:n x x )log 2(2+的展开式中各项的系数和是多少?咱们能够用一个更简单的二项式n x )21(+代替原先的二项式,它们的系数并非改变,令1=x 便得各项系数和为n 3.典型例题四例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项.分析:此题的两小题都不是二项式展开,但能够转化为二项式展开的问题,(1)能够视为两个二项展开式相乘;(2)能够通过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 能够看成以下几种方式取得,然后归并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,能够取得5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可取得54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可取得531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可取得521022103C C 3x x x -=⋅-,归并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫⎝⎛+=++x x x x . 由121⎪⎪⎭⎫ ⎝⎛+x x 展开式的通项公式rr rr r r x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时咱们还能够通过归并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,咱们能够通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开.解:方式一:[]6262)1()1(x x x x -+=-+-+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方式二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-. ∴5x 项的系数为6.方式3:此题还可通过把62)1(x x -+看成6个21x x -+相乘,每一个因式各取一项相乘可取得乘积的一项,5x 项可由以下几种可能取得.5个因式中取x ,一个取1取得556C x .3个因式中取x ,一个取2x -,两个取1取得)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1取得222516)(C C x x -⋅⋅.归并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ; (2))12(11C 11C 31C 21C 1210-+=++++++n n n n n n n n . 分析:二项式系数的性质事实上是组合数的性质,咱们能够用二项式系数的性质来证明一些组合数的等式或求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左侧各项转变的等数固定下来,从而利用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k∴左侧111101C C C ----+++=n n n n n n n=⋅=+++=-----11111012)C C C (n n n n n n n 右边. (2))!()!1(!)!(!!11C 11k n k n k n k n k k k n--=-⋅+=+ 11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左侧112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:此题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.另外,有些组合数的式子能够直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,因此需认真观看,咱们能够看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.认真观看能够发觉该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+ 10101091092102C 2C 2C 21021++++⨯+= )C 2C 2C 210(21101099108210+++++=从而能够取得:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理切近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n 981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n 2111118C 8C 8⋅++⋅+=-+++n n n n n64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用此题的方式和技术不仅能够用来证明整除问题,而且能够用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C 10742532243840513518012032x x x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛- 233254315530510)3()4()3()4()4([321-+-+=x C x C x C x])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式n b a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 假设将10)(z y x ++展开为多项式,通过归并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看做二项式10])[(z y x ++展开.解:咱们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k k k z y x C ⋅+-1010)((10,,1,0 =k )展开后,都可不能显现同类项. 下面,再别离考虑每一个乘积k k k z y x C ⋅+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也可不能显现同类项. 故原式展开后的总项数为66191011=++++ , ∴应选D .典型例题十例10 假设nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把三项式nx x ⎪⎭⎫⎝⎛-+21转化为nnx x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn nx x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫⎝⎛-+.然后写出通项,令含x 的幂指数为零,进而解出n .解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=, 令022=-r n ,得r n =,∴展开式的常数项为nn n C 2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫⎝⎛-+,同理可得,展开式的常数项为nn n C 2)1(-. 不管哪一种情形,常数项均为n n n C 2)1(-.令20)1(2-=-n n n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,那么x 的取值范围是______________.分析:第一运用通项公式写出展开式的第3项和第4项,再依照题设列出不等式即可.解:使1031⎪⎭⎫ ⎝⎛+x x 成心义,必需0>x ; 依题意,有43T T <,即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x . ∴应填:5648980<<x . 典型例题十二例12 已知n xx)1(2log +的展开式中有持续三项的系数之比为321∶∶,这三项是第几项?假设展开式的倒数第二项为112,求x 的值.解:设持续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),那么有32111∶∶∶∶=+-k n k n k n C C C ,即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求持续三项为第5、6、7三项.又由已知,1122log 1314=xxC .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x , ∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,依照已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:依照已知条件可求出n ,再依照n 的奇偶性;确信二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n .∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,那么有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ). ∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,依照二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需依照各项系数的正、负转变情形,一样采纳列不等式,解不等式的方式求得.典型例题十四例14 设n m x x x f )1()1()(+++=(+∈N n m ,),假设其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求那个最小值.分析:依照已知条件取得2x 的系数关于n 的二次表达式,然后利用二次函数性质探讨最小值问题.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C nm499)211(55112211022+-=+-=-=n n n mn . ∵+∈N n ,∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,因此499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++. 解:(1)令0=x ,那么10-=a ,令1=x ,那么128270167==++++a a a a . ① ∴129721=+++a a a .(2)令1-=x ,那么701234567)4(-=+-+-+-+-a a a a a a a a ② 由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得: 6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++= 8128])4(128[217-=-+=. 说明:(1)本解法依照问题恒等式特点来用“特殊值”法.这是一种重要的方式,它适用于恒等式.(2)一样地,关于多项式n n n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是________________.分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项确实是余数.解:3230-3)2(103-=3)8(10-= 3)17(10-+=37771010910911010010-++++=C C C C 2]77[791081109010-+++⨯=C C C又∵余数不能为负数,需转化为正数 ∴3230-除以7的余数为5 ∴应填:5分析(2):将5555写成55)156(-,然后利用二项式定理展开. 解:155555+15)156(55+-=15565656555554555415555055+-++-=C C C C容易看出该式只有14155555=+-C 不能被8整除,因此155555+除以8的余数,即14除以8的余数,故余数为6.∴应填:6.典型例题十七例17 求证:关于+∈N n ,111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n .证明:nn ⎪⎭⎫⎝⎛+11展开式的通项rr n r r nr n r p n C T !11=⋅=+ r r r n n n n r )1()2)(1(!1+---=)11()21)(11(!1nr n n r ----=. 1111+⎪⎭⎫ ⎝⎛++n n 展开式的通项rr n r r n r n r A n CT)1(!)1(11'1+=+⋅=++ )111()121)(111(!1+--+-+-=n r n n r . 由二项式展开式的通项明显看出'11++<r r T T ,因此111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n .说明:此题的两个二项式中的两项为正项,且有一项相同,证明时,依照题设特点,采纳比较通项大小的方式完本钱题证明.典型例题十八例18 在52)23(++x x 的展开式中x 的系数为( ).A .160B .240C .360D .800分析:此题考查二项式定理的通项公式的运用.应想方法将三项式转化为二项式求解. 解法1:由5252]2)3[()23(++=++x x x x ,得k k k k x x C T 2)3(5251⋅+=-+k k kx x C -+⋅⋅=525)3(2.再一次利用通项公式得,rk r r k k k r xC C T ---+⋅⋅⋅=21055132, 那个地址50≤≤k ,k r -≤≤50. 令1210=--r k ,即92=+r k .因此1=r ,4=k ,由此取得x 的系数为24032445=⋅⋅C .解法2:由5552)2()1()23(++=++x x x x ,知5)1(+x 的展开式中x 的系数为45C , 常数项为1,5)2(+x 的展开式中x 的系数为4452⋅C ,常数项为52.因此原式中x 的系数为24022445545=⋅+⋅C C . 解法3:将52)23(++x x 看做5个三项式相乘,展开式中x 的系数确实是从其中一个三项式中取x 3的系数3, 从另外4个三项式中取常数项相乘所得的积,即2402344415=⋅⋅⋅C C . ∴应选B .典型例题十九例19 已知92⎪⎪⎭⎫⎝⎛-x x a 的展开式中3x 的系数为49,常数a 的值为___________. 分析:利用二项式的通项公式.解:在92⎪⎪⎭⎫⎝⎛-x x a 的展开式中, 通项公式为=⎪⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛=-+rrr r x x a C T 299192329921)1(--⋅⎪⎭⎫ ⎝⎛⋅-r r r r r x a C . 依照题设,3923=-r ,因此8=r .代入通项公式,得39169ax T =. 依照题意,49169=a ,因此4=a . ∴应填:4.典型例题二十例20 (1)求证:n n n n n n C C C )2(3)1(333133221-=-++⋅-⋅+-(2)假设443322104)32(x a x a x a x a a x ++++=+,求2312420)()(a a a a a +-++的值.分析:(1)注意观看n n n n n n x C x C x C x ++++=+ 2211)1(的系数、指数特点,即可通过赋值法取得证明.(2)注意到)()()(432102312420a a a a a a a a a a ++++=+-++)(43210a a a a a +-+-⋅,再用赋值法求之.解:(1)在公式n n n n n n x C x C x C x ++++=+ 2211)1(中令3-=x ,即有 n n n n n n C C C )3()3()3(1)31(2211-++-+-+=-n n n n C C 3)1(331221⋅-+-⋅+⋅-=∴等式得证.(2)在展开式443322104)32(x a x a x a x a a x ++++=+中, 令1=x ,得443210)32(+=++++x a a a a a ; 令1-=x ,得443210)32(+-=+-+-a a a a a .∴原式)()(4321043210a a a a a a a a a a +-+-⋅++++=1)32()32(44=+-⋅+=.说明:注意“赋值法”在证明或求值中的应用.赋值法的模式是,在某二项展开式,如n n n x a x a x a a bx a ++++=+ 2210)(或b a C a C b a n n n n n 110)(-+=+222b a C n n -+ n n n b C ++ 中,对任意的A x ∈(A b a ∈,)该式恒成立,那么对A 中的特殊值,该工也必然成立.特殊值x 如何选取,没有一成不变的规律,需视具体情形而定,其灵活性较强.一样取1,1,0-=x 较多.一样地,多项式)(x f 的各项系数和为)1(f ,奇数项系数和为)]1()1([21--f f ,偶次项系数和为)]1()1([21-+f f .二项式系数的性质n n n n n n C C C C 2210=++++ 及15314202-=+++=+++n n n n n n n C C C C C C 的证明确实是赋值法应用的范例.典型例题二十一例21 假设+∈N n ,求证明:3724332+-+n n 能被64整除.分析:考虑先将323+n 拆成与8的倍数有关的和式,再用二项式定理展开.解:3724332+-+n n37243322+-⋅=+n n 3724931+-⋅=+n n3724)18(31+-+⋅=+n n3724]8888[311112111101+-+⋅++⋅+⋅+⋅⋅=+++-++++n C C C C C n n n n n n n n n n 3724]18)1(888[3121111+-+⋅+++⋅+⋅+⋅=-+++n n C C n n n n n 3724)]98(8888[3211121111+-++⋅++⋅+⋅+⋅=-+-+++n n C C C n n n n n n n 3724)98(3]888[831132121112+-+⋅+++⋅+⋅+⋅=-+-+-+-n n C C C n n n n n n n 64]888[6433212111++⋅+⋅+⋅=-+-+- n n n n n C C , ∵18-n ,2118-+⋅n n C ,3218-+⋅n n C ,…均为自然数,∴上式各项均为64的整数倍. ∴原式能被64整除.说明:用二项式定理证明整除问题,大体上确实是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.典型例题二十二例22 已知n x x )3(232+的展开式各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.分析:先由条件列方程求出n .(1)需考虑二项式系数的性质;(2)需列不等式确信r . 解:令1=x 得展开式的各项系数之和为n n 22)31(=+,而展开式的二项式系数的和为n n n n n n C C C C 2210=++++ ,∴有992222=-n n.∴5=n .(1)∵5=n ,故展开式共有6,其中二项式系数最大的项为第三、第四两项. ∴62233225390)3()(x x x C T =⋅=,32232232354270)3()(x x x C T =⋅=.(2)设展开式中第1+r 项的系数最大.341052532513)3()(r rr rrr r xC x x C T +-+⋅⋅=⋅⋅=,故有⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--115511553333r r r r r r r r C C C C 即⎪⎪⎩⎪⎪⎨⎧+≥--≥.1351,613r r r r解得2927≤≤r .∵N r ∈, ∴4=r ,即展开式中第5项的系数最大.32642132455405)3()(x x x C T =⋅⋅=说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同.前者用二项式系数的性质直接得出,后者要列不等式组;解不等式组时可能会求出几个r ,这时还必需算出相应项的系数后再比较大小.典型例题二十三例23 求证:(1) pn m m p n p m n p m n C C C C C C C +-=+++0110 ;(2) 1144220242333--+⋅=++++n n n n n n n n C C C C (K n 2=,*N n ∈)分析:(1)注意到两列二项式两乘后系数的特点,可构造一个函数;也可用构造一个组合问题的两种不同解法找到思路.(2)同上构造函数,赋值.证明:(1)(法1)∵n m n m x x x )1()1()1(+⋅+=++,∴)1()1()1(221221nn n n n m m m m m n m x C x C x C x C x C x C x ++++⋅++++=++ .∴此式左右两边展开式中Px 的系数必相等.左侧Px 的系数是p n m C +,右边Px 的系数是 022110mp n p m n p m n p m n C C C C C C C C ⋅++⋅+⋅+⋅-- , ∴pn m m p n p m n p m n p m n C C C C C C C C C +--=⋅++⋅+⋅+⋅022110 .等式成立.(法2)假想有下面一个问题:要从n m +个不同元素中掏出P 个元素,共有多少种取法?该问题可有两种解法.一种解法是明显的,即直接由组合数公式可得出结论:有p n m C +种不同取法.第二种解法,可将n m +个元素分成两组,第一组有m 个元素,第二组有n 个元素,那么从n m +个元素中掏出P 个元素,可看成由这两组元素中别离掏出的元素组成,取法可分成1+P 类:从第一组取P 个,第二组不取,有0n p m C C ⋅种取法;从第一组取1-P 个,从第二组取1个,有11n p m C C ⋅-种取法,…,第一组不取,从第二组取P 个.因此取法总数是p n m n p m n p m n p m C C C C C C C C ⋅++⋅+⋅+⋅--022110 .而该问题的这两种解法答案应是一致的,故有pn m m p n p m n p m n p m n C C C C C C C C C +--=⋅++⋅+⋅+⋅022110 .(2)∵n 为偶数,∴nn nn n n nC C C C 333)31(221++++=+ ;nnn n n n n C C C C 333)31(2210+-+-=- . 两式相加得)333(22444220nn n n n n n n C C C C ++++=+ , ∴114422242333--+⋅=++++n n nn nn n n C C C C .说明:构造函数赋值法,构造问题双解法,拆项法、倒序相加法都是证明一些组合数恒等式(或求和)的经常使用方式.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书——数学选修2—1(文科)[人教版]2005-2006学年度下学期高中学生学科素质训练新课标高二数学文同步测试(5)(1-1第三章(2))说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.物体运动方程为s =41t 4-3,则t =5时的瞬时速率为( )A .5 m/sB .25 m/sC .125 m/sD .625 m/s2.曲线y =x n(n ∈N )在点P (2,)22n 处切线斜率为20,那么n 为 ( )A .7B .6C .5D .43.细杆AB 长为20 cm ,AM 段的质量与A 到M 的距离平方成正比,当AM =2 cm 时,AM 段 质量为8 g ,那么,当AM =x 时,M 处的细杆线密度ρ(x )为 ( )A .2xB .4xC .3xD .5x 4.若f(x)=ax 3+bx 2+cx+d (a >0)为增函数,则( )A .b 2-4ac >0B .b >0,c >0C .b=0,c >0D .b 2-3ac <0 5.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则( )A .0<b <1B .b <1C .b >0D .0<b <21 6.()()()为则设h f h f f h 233lim ,430--='→( )A .-1B.-2C .-3D .17.两曲线32xy 1y 2b ax x y +-=++=与相切于点(1,-1)处,则a ,b 值分别为 ( ) A .0,2 B .1,-3 C .-1,1D .-1,-1 8.曲线y=ln(2x -1)上的点到直线2x-y+3=0的最短距离 ( )A .5B .25C .35D .09.设函数y =f (x )在1x x =处有(),0x f 1='在2x x =时()2x f '不存在,则 ( )A .一定都是极值点及21x x x x ==B .是极值点只有1x x =C .都可能不是极值点及21x x x x ==D .至少有一个点是极值点及21x x x x ==10.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是( )A .21<<-aB .63<<-aC .63>-<a a 或D .21>-<a a 或二、填空题:请把答案填在题中横线上(每小题6分,共24分)。

11.曲线y =x 4的斜率等于4的切线的方程是___________.12.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程是____________。

13.()()()()().____________0,100021='---=f x x x x x f 则设14.质点P 在半径为r 的圆周上逆时针做匀角速率运动,角速率为1 r a d/s ,设A 为起点,那么t 时刻点P 在x 轴上射影点M 的速率为___________.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)。

15.(12分)(1)在曲线y=x 3+3x 2+6x-10的切线中,求斜率最小的切线方程;(2)一质点做直线运动,它所经过的路程和时间的关系是s=3t 2+t ,求t=2时的瞬时速度。

16.(12分)已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧上求一点P,使△P AB面积最大.17.(12分)已知曲线C1:y=ax2上点P处的切线为 1,曲线C2:y=bx3上点A(1,b)处的切线为 2,且 1⊥ 2,垂足M(2,2),求a、b的值及点P的坐标。

18.(12分)路灯距地平面为8 m,一个身高为1.6 m的人以84 m/min的速率在地面上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率v.19.(14分)已知曲线S:y=x3+px2+qx的图象与x轴相切于不同于原点的一点,又函数有极小值-4,求p 、q 的值。

20.(14分)设0>a ,求函数)ln()(a x x x f +-=)),0((+∞∈x 的单调区间。

参考答案(5)(1-1第三章(2))一、1.C ; 2.C ; 3.B ; 4.D ; 5.D ; 6.B ; 7.D ; 8.A ; 9.C ; 10.C ; 二、11.4x -y -3=0; 12.3x+y+6=013.1000!;提示:()()()()()()!.10001000x 2x 1x lim 0x 0f x f lim 0f 0x 0x =---=--='→→14.-r sin t ; 三、15.解:(1)3)1(3663|'200200++=++===x x x y k x x 当x 0=-1时,k 有最小值3,此时P 的坐标为(-1,-14) 故所求切线的方程为3x-y-11=0 (2)'s =6t+1,当t=2时,'s =13, ∴ 当t=2时,质点的瞬时速度为13点拨:1、导数的几何意义:)x ('f 0就是曲线y=f(x)在点M(x 0,y 0)处的切线斜率,即)x ('f 0=k 切线。

16.解:|AB |为定值,△P AB 面积最大,只要P 到AB 的距离最大,只要点P 是抛物线的平行于AB 的切线的切点,设P (x ,y ).由图可知,点P 在x 轴下方的图象上∴y =-2x ,∴y′=- ∵k AB =- ∴-∴x =4,代入y 2=4x (y <0)得y =-4.∴P (4,-4) 17.设P (t ,at 2),则 1斜率k 1=2at∴ 1:y-at 2=2at(x-t) 2斜率k 2=3bx 2|x=1=3b ∴ 2:y-b=3b(x-1) ∵ 1与 2交于点M (2,2)∴ ⎩⎨⎧-=--=-)12(b 3b 2)t 2(at 2at 22∴ ⎪⎩⎪⎨⎧==+-21b 02at 4at 2 ① 又 1⊥ 2∴ k 1·k 2=-1∴ 31at -= ②x 121 211-=x由①②得t=10,a=-301∴ P(10,-310) 18.解:如图,路灯距地平面的距离为DC ,人的身高为E B .设人从C 点运动到B 处路程为x 米,时间为t (单位:秒),AB 为人影长度,设为y ,则∵BE ∥CD ,∴CD BE AC AB =∴86.1=+xy y , 又84 m/min =1.4 m/s ∴y =41x =207t (x =1.4t )∵y ′=207∴人影长度的变化速率为207m/s19.y’=3x 2+2px+q ……2分令y’=0,设3x 2+2px+q=0两根为x 1,x 2,x 1<x 2,列表:∴ S 与x 轴相切于点(x 1,0),点(x 2,-4)在S 上 x 13+px 12+qx 1=0 ① ∴ x 23+px 22+qx 2=-4 ② 3x 12+2px 1+q=0 ③ 3x 22+2px 2+q=0 ④ ③×x 1-①得:x 1=2p-④×x 2-②得:2x 23+px 22=4 又x 1+x 2=-32p ∴ x 2=61-p ,p=6 ∴ x 1=-3,x 2=-1 ∴ p=6,q=9 20.解:ax xx f +-='121)((0>x )当0>a,0>x 时,0)(>'x f ⇔0)42(22>+-+a x a x ,0)(<'x f ⇔0)42(22<+-+a x a x ,(i )当1>a时,对所有0>x ,恒有0)42(22>+-+a x a x ,即0)(>'x f ,此时)(x f 在),0(+∞ 单调递增; (ii )当1=a时,对1≠x ,恒有0)42(22>+-+a x a x ,即0)(>'x f ,此时)(x f 在)1,0(单调递增,在),1(+∞单调递增,又知函数)(x f 在1=x 处连续,因此)(x f 在),0(+∞单调递增; (iii )当10<<a 时,令0)(>'x f ,即0)42(22>+-+a x a x ,解得a a x ---<122或a a x -+->122,因此,函数)(x f 在)122,0(a a ---单调递增,在),122(+∞-+-a a 单调递增,令0)(<'x f ,即0)42(22<+-+a x a x ,解得a a x a a -+-<<---122122, 因此,函数)(x f 在)122,122(a a a a -+----上单调递减。

=========================================================== 适用版本:人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:语文,数学,英语,科学,物理,化学,生物,政治,历史,地理 适用年级:一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初 适用领域及关键字:100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷=========================================================== 本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

相关文档
最新文档