高难度压轴填空题_函数(一)
(名师整理)最新数学中考专题冲刺《函数》压轴真题训练(含答案)

冲刺中考《函数》压轴真题训练第Ⅰ卷(选择题)一.选择题1.(2019•兴安盟)如图,反比例函数y =的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.82.(2019•恩施州)函数y =﹣中,自变量x的取值范围是()A.x ≤B.x ≥C.x <且x≠﹣1 D.x ≤且x≠﹣1 3.(2019•济南)函数y=﹣ax+a与y =(a≠0)在同一坐标系中的图象可能是()A .B .1C .D .4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)5.(2019•铁岭)如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A .B .C .D .6.(2019•盘锦)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()2A .B .C .D .7.(2019•恩施州)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个38.(2019•朝阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.49.(2019•营口)如图,A,B是反比例函数y =(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED =,则k的值为()A.5 B.4 C.3 D .10.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y =(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()4A.1 B.2 C.3 D.411.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.(2019•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取5值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个6第Ⅱ卷(非选择题)二.填空题13.(2019•无锡)如图,已知A(0,3)、B(4,0),一次函数y =﹣x+b的图象为直线l,点O关于直线l的对称点O′恰好落在∠ABO的平分线上,则b的值为.14.(2019•无锡)如图,A为反比例函数y=(k<0)的图象上一点,AP⊥y轴,垂足为P.点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,则k的值为.15.(2019•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.717.(2019•朝阳)如图,直线y =x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.(2019•营口)如图,在平面直角坐标系中,直线l1:y=x+与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.8三.解答题19.(2019•无锡)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD =,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.20.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y =﹣(x<0)的图象过点B(﹣3,a),反比例函数y =(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y =交于点C.求△OAC的面积.21.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y =(x>0)9的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E ,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx ﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.1023.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E 的坐标和的值.(3)点F(0,y)是y轴上一动点,当y 为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H ,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.24.(2019•兴安盟)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.11(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.25.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON =,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.1226.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y =(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.27.(2019•丹东)如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y =﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC =时,求点F的坐标.13(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t ≤),请直接写出S与t的函数关系式.14参考答案一.选择1.解:∵反比例函数y =,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.2.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x ≤且x≠﹣1.故选:D.3.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y =在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y =(a≠0)在二、四象限,只有D符合;故选:D.4.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB ==5,15∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.5.解:∵AB=AC,AG⊥BC,∴BG=GC =,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FD=CD,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x =4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.16故选:A.6.解:tan∠DBC ===,tan∠DAH ====﹣x,y=EF﹣EM﹣NF=2﹣BF tan∠DBC﹣AE tan∠DAH=2﹣x ×﹣x ()=x2﹣x+2,故选:B.7.解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a<0,∴b<0,c>0,∴ab>0且c>0,故①错误,∵抛物线对称轴x=﹣1,经过(1,0),∴(﹣2,0)和(0,0)关于对称轴对称,∴x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴x=﹣4时,y<0,17∵b=2a,∴16a﹣8a+c<0,即8a+c<0,故③错误,∵c=﹣3a=3a﹣6a,b=2a,∴c=3a﹣3b,故④正确,∵直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,∴方程ax2+(b﹣2)x+c﹣2=0的两个根分别为x1,x2,∴x1+x2=﹣,x1•x2=,∴x1+x2+x1x2=﹣+=﹣+=﹣5,故⑤错误,故选:D.8.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,18即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.9.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED ==,∴设DE=3a,BE=5a,∴BD ===4a,∵点B的横坐标为5,∴4a=5,则a =,∴DE =,设AC=b,则CD=3b,∵AC∥BD,∴===,19∴EC =b,∴ED=3b +b =,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y =(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k =,故选:D.10.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA =,∵CD∥OB,AB=BC,∴OD=OA =,CD=2OB=2a,20∴C (,2a),∵反比例函数y =(x>0)的图象经过点C,∴k =×2a=4.故选:D.11.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,21∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,22即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:延长OO'交AB于点C,交l于点E,过点O'作DG⊥x轴交于G,过点E作EF⊥x轴于点F;∵A(0,3)、B(4,0),∴直线AB的解析式为y =﹣x+3,∵直线l的解析式为y =﹣x+b,∴AB∥l,∵OO'⊥l,∴OC⊥AB,∵OA=3,OB=4,由等积法可求,OC =,∵∠COB+∠AOC=∠BAO+∠AOC=90°,∴∠BOC=∠BAO,∵BO'是∠ABO的角平分线,∴CO'=GO',23∴sin∠BAO ====,∴OO'=,∴O'G =﹣=,在Rt△OO'G中,GO =,∵E、F是△OO'G的中位线,∴E (,),∵E点在直线l上,∴=﹣×+b,∴b =,故答案为.14.解:当B点在P点右侧,如图,设A(t ,),∵PB=3PA,24∴B(﹣3t ,),∵BC∥y轴,∴C(﹣3t ,﹣),∵△PAC的面积为4,∴×(﹣t )×(+)=4,解得k=﹣6;当B点在P点左侧,设A(t ,),∵PB=3PA,∴B(3t ,),∵BC∥y轴,∴C(3t ,),∵△PAC的面积为4,∴×(﹣t )×(﹣)=4,解得k=﹣12;综上所述,k的值为﹣6或﹣12.故答案为﹣6或﹣12.2515.解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:在直线y =x+1中,当x=0时,y=1;当y=0时,x=﹣3;26∴OA=1,OM=3,∴tan∠AMO =,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB =,∴OB =.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.18.解:∵y =x +与x轴交于点A1,与y轴交于点A2,∴,27在y =中,当x=﹣1时,y =﹣,∴,设直线A2B1的解析式为:y=kx+b,可得:,解得:,∴直线A2B1的解析式为:,令y=0,可得:x =﹣,∴C1(﹣,0),∴=,∵△A1B1B2∽△A2B2B3,∴△C1B1B2∽△C2B2B3,∴,∴,同理可得:…,∴△C2019B2019B2020的面积=,28故答案为:.三.解答题(共9小题)19.解:(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x =,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH =,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,29∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a =;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,30∴AB=OB•tan30°=2×=,∴|﹣4a﹣2|=,∴或.综上,a =﹣或或.20.解:(1)∵比例函数y =﹣(x<0)的图象过点B(﹣3,a),∴a =﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD31∴===,∴AD =•OE ==3,OD =•BE ==∴A (,3),∵反比例函数y =(x>0)的图象过点A,∴k =×=9;(2)由(1)可知AD=3,OD =,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y =上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.3221.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y =(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y =,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),33∵DF⊥x轴于点F,交反比例函数y =的图象于点E,∴E(5,),∴DE=4﹣=,EF =,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC =,∴=m,34∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.22.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx 中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx ﹣中,得0=﹣4k ﹣,解得k =,∴直线l解析式为y =x ﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,35∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m =•(﹣2m )﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB ===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB =,在x轴下方过点O作OH⊥OE,在OH上截取OH =OE =,36过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y =﹣x,解方程组,得,,∴点P 的横坐标为:或.3723.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x2﹣x﹣2;(2)如图1,∠AOC=90°,AC =,AB=4,设直线AC的解析式为:y=kx+b ,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时38=()2=()2=,∵S△AOC=1,∴S△AEB =,∴AB×|y E|=,AB=4,则y E =﹣,则点E (﹣,﹣);由△AOC∽△AEB 得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,39则FG=CF sin∠FCG =CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y =﹣时,即点F(0,﹣),CF+BF 有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),40∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m +),解得:m =,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).24.解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)41∴抛物线W 的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b 得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S 有最大值,最大值为∴当时,;42(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0).25.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.43(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON =.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y =.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q 的坐标为:,,44(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC =,AD =,CD =,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE =,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).45Ⅱ.PC=AD,PE=AC,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).26.解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y =(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y =,∵点A的纵坐标是4,∴4=,得x=1,46∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.27.解:(1)直线y =﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y =﹣x2+bx+2,将点C坐标代入上式并解得:b =,故抛物线的表达式为:y =﹣x2+x+2…①;(2)抛物线的对称轴为:x =,47点N 的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO ==tan∠FAC =,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r =,即点R 的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n 得:,解得:,故直线AR的表达式为:y =﹣x+2…②,48联立①②并解得:x =,故点F (,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tan α==,则sin α=,cos α=;①当0≤t ≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT ====t,DS =,S=S△DST =DT×DS =t2;②当<t ≤时(右侧图),49同理可得:S=S梯形DGS′T′=×DG×(GS′+DT ′)=3+(+﹣)=t ﹣;③当<t ≤时,同理可得:S =t +;综上,S =.50。
一次函数压轴题经典培优

一次函数压轴题训练(一)典型例题题型一、A 卷压轴题一、A 卷中涉及到的面积问题例1、如图,在平面直角坐标系xOy 中,一次函数1223y x =-+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO分成两部分.(1)求△ABO 的面积;(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。
121+=x y 与x 轴练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :交于点C ,两直线1l ,2l 相交于点B 。
(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。
2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直.(1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?(10分)二、A 卷中涉及到的平移问题例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的ABCO y 2y 1xyP ABC ODxy 1l 2l正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫ ⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.练习1、如图,在平面直角坐标系中,直线1l:xy 34=与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 21=。
(完整版)高一数学第一学期函数压轴(大题)练习(含答案),推荐文档

高一数学第一学期函数压轴(大题)练习(含答案)1.(本小题满分12分)已知x 满足不等式,211222(log )7log 30x x ++≤求的最大值与最小值及相应x 值.22()log log 42x xf x =⋅2.(14分)已知定义域为的函数是奇函数R 2()12x xaf x -+=+ (1)求值;a (2)判断并证明该函数在定义域上的单调性;R (3)若对任意的,不等式恒成立,求实数的取值范围;t R ∈22(2)(2)0f t t f t k -+-<k 3. (本小题满分10分)已知定义在区间上的函数为奇函数,且.(1,1)-2()1ax b f x x +=+12()25f =(1) 求实数,的值;a b (2) 用定义证明:函数在区间上是增函数;()f x (1,1)-(3) 解关于的不等式.t (1)()0f t f t -+<4. (14分)定义在R 上的函数f(x)对任意实数a,b ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)++∈R <0,(1)求f(1) (2)求证:f(x)为减函数。
(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+(b≥1),4b(I)求f(x)的最小值g(b);(II)求g(b)的最大值M 。
6. (12分)设函数,当点是函数图象上的点时,()log (3)(0,1)a f x x a a a =->≠且(,)P x y ()y f x =点是函数图象上的点.(2,)Q x a y --()y g x =(1)写出函数的解析式;()y g x =(2)若当时,恒有,试确定的取值范围;[2,3]x a a ∈++|()()|1f x g x -…a (3)把的图象向左平移个单位得到的图象,函数()y g x =a ()y h x =,()在的最大值为,求的值.1()22()()()2h x h x h x F x a a a ---=-+0,1a a >≠且1[,4]454a 7. (12分)设函数.124()lg ()3xxa f x a R ++=∈(1)当时,求的定义域;2a =-()f x (2)如果时,有意义,试确定的取值范围;(,1)x ∈-∞-()f x a (3)如果,求证:当时,有.01a <<0x ≠2()(2)f x f x <8. (本题满分14分)已知幂函数满足。
初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)一.选择题(共15小题)1.下列各图能表示y是x的函数是()A. B.C.D.2.在下列各图象中,y不是x函数的是()A.B.C.D.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.4.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x 的函数的是()A.(1)B.(2)C.(3)D.(4)5.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1006.下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.57.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积8.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x 之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣1210.若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)11.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个12.如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+513.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x (kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm14.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积15.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量二.填空题(共9小题)16.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.17.已知方程x﹣3y=12,用含x的代数式表示y是.18.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.19.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.20.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.21.小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.22.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.23.如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是.24.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q 以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x 的值或取值范围是.三.解答题(共16小题)25.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?26.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.27.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?28.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.29.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?30.陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?31.端午节小明来到奥体中心观看中超联赛第14轮重庆力帆主场迎战广州富力的比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他爸爸从家里吃饭骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车吧小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)从图中可知,小明家离奥体中心米,爸爸在出发后分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离?(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.32.如图,△ABC底边BC上的高是6厘米,当三角形的定点C沿底边所在直线向点B运动时,三角形的面积发生了变化.1.在这个变化过程中,自变量是,因变量是.2.如果三角形的底边长为x(厘米),三角形的面积y(厘米2)可以表示为.3.当底边长从12厘米变到3厘米时,三角形的面积从厘米2到厘米2;当点C运动到什么位置时,三角形的面积缩小为原来的一半?33.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?34.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.35.圆柱的底面半径是2cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V与高h之间的关系式?(3)当h由5cm变化到10cm时,V是怎样变化的?(4)当h=7cm时,v的值等于多少?36.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.37.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?38.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?39.下表是达州某电器厂2014年上半年每个月的产量:x/月123456y/台100001000012000130001400018000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2014年前半年的平均月产量是多少?40.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是米,a=.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2015春•唐山期末)下列各图能表示y是x的函数是()A. B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.(2015春•荔城区期末)在下列各图象中,y不是x函数的是()A.B.C.D.【分析】答题时知道函数的意义,然后作答.【解答】解:函数的一个变量不能对应两个函数值,故选C.【点评】本题主要考查函数的概念,基本知识要掌握,不是很难.3.(2016春•天津期末)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.(2015春•宜春期末)下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定不是函数的个数.【解答】解:根据对于x的每一个取值,y都有唯一确定的值与之对应,(1)y=x,(2)y=x2,(3)y=x3满足函数的定义,y是x的函数,(4)|y|=x,当x取值时,y不是有唯一的值对应,y不是x的函数,故选:D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.(2015春•高密市期末)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.【解答】解:y=100×0.05x,即y=5x.故选:B.【点评】本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.6.(2014秋•阳谷县期末)下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.5【分析】直接利用函数的定义进而分析得出即可.【解答】解:①y=l,y不是x的函数;②y=x2,y是x的函数;③y2=x,y不是x的函数;④y=|x|,y是x的函数;⑤y=,y是x的函数;⑥y=2x,y是x的函数.故选:C.【点评】此题主要考查了函数的概念,正确把握函数的定义是解题关键.7.(2015春•烟台期末)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A【点评】本题主要考查的是对函数的定义,关键是根据函数的定义对自变量和因变量的认识和理解.8.(2015春•重庆校级期末)如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x【分析】首先根据单价=总价÷数量,用每盒钢笔的售价除以每盒钢笔的数量,求出每支钢笔的价格是多少;然后根据购买钢笔的总钱数=每支钢笔的价格×购买钢笔的支数,求出购买钢笔的总钱数y(元)与支数x之间的关系式即可.【解答】解:25÷10=所以购买钢笔的总钱数y(元)与支数x之间的关系式为:y=x.故选:D.【点评】此题主要考查了函数关系式的求法,以及单价、数量、总价的关系,要熟练掌握;解答此题的关键是根据单价=总价÷数量,求出每支钢笔的价格是多少.9.(2016春•乐亭县期末)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣12【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣x+12(0<x<24).故选:A.【点评】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.10.(2014秋•章丘市校级期末)若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)【分析】根据底边长+两腰长=周长,建立等量关系,变形即可,再根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.【解答】解:依题意得x+2y=60,即y=(60﹣x)(0<x<30).故选D.【点评】本题考查了函数关系式、等腰三角形三边关系的性质、三角形三边关系定理,得出y与x的函数关系式是解题关键.11.(2013春•涟水县校级期末)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.12.(2015春•泰山区期末)如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+5【分析】观察各选项可知y与x是一次函数关系,设函数关系式为y=kx+b,然后选择两组数据代入,利用待定系数法求一次函数解析式解答即可.【解答】解:根据题意,设函数关系式为y=kx+b,则解得:,则y=2x﹣10.故选:A.【点评】本题考查了函数关系式的求解,根据各选项判断出y与x是一次函数关系是解题的关键,熟练掌握待定系数法求一次函数解析式也很重要.13.(2014春•雅安期末)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.【点评】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.14.(2014春•招远市期末)当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积【分析】根据函数的关系,可得答案.【解答】解;雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D.【点评】本题考查了常量与变量,函数与自变量的关系是解题关键.15.(2015秋•高密市期末)下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.【解答】解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二.填空题(共9小题)16.(2016春•石城县期末)汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.17.(2011春•攀枝花期末)已知方程x﹣3y=12,用含x的代数式表示y是y=x ﹣4.【分析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【解答】解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.【点评】考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.18.(2015秋•巴南区校级期末)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是③.【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【解答】解:①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故答案为:③.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.19.(2016春•酒泉期末)某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为y=0.11x﹣0.03.【分析】话费=三分钟以内的基本话费0.3+超过3分钟的时间×0.11,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.11×(x﹣3),通话时间超过3分钟,。
2022中考数学压轴题专题突破05 一次函数问题

一、单选题1.晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C④设爸爸返回的解析式为y2=kx+b,把(15,3000)(45,0)代入得,解得∴y2=-100x+4500∴当0≤x≤20时,y1=200xy1-y2=900∴200x-(-100x+4500)=900∴x=18当20≤x≤45时,y1=ax+b,将(20,4000)(45,0)代入得,∴y1=-160x+7200y1-y2=900 ,(-160x+7200)-(-100x+4500)=900,x=30∴④正确故选:C.【关键点拨】本题考查了一次函数的应用,明确横纵坐标的实际意义是解题得关键.2.如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【答案】B得:k,即k.故选B.【关键点拨】本题考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.3.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【答案】D将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x-100(x≥50),当x=70时,y B=3x-100=110<120,∴结论D错误.故选D.【关键点拨】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.4.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n−1A n B n B n−1的面积依次记为S1、S2、…、S n,则S n=()A.n2B.2n+1C.2n D.2n−1【答案】D5.如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,)C.(,)D.(,)【答案】B【关键点拨】本题考查了一次函数的性质,坐标与图形性质,垂线段最短,等腰直角三角形等知识,熟练掌握垂线段最短是解决本题的关键.6.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2B.x<2C.x≥2D.x≤2【答案】B【关键点拨】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.7.如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A.B.C.D.【答案】A【解析】∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A.【关键点拨】本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.8.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过集中喷洒药物,室内空气中的含药量最高达到B.室内空气中的含药量不低于的持续时间达到了C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内【答案】C【关键点拨】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.9.已知一系列直线分别与直线相交于一系列点,设的横坐标为,则对于式子,下列一定正确的是( ) A.大于1 B.大于0 C.小于-1 D.小于0【答案】B【解析】由题意x i=-,x j=-,∴式子>0,故选:B.【关键点拨】本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F 运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【答案】CBE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2.解得a=.故选:C.【关键点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.11.如图,直线与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()A.5B.10C.15D.20【答案】A【解析】作CH⊥AB于H交⊙O于E、F.连接BC.【关键点拨】本题考查了一次函数图象上的点的坐标特征、一次函数的性质、直线与圆的位置关系等知识,解题的关键是学会添加常用辅助线,利用直线与圆的位置关系解决问题,属于中考填空题中的压轴题.12.如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD∥HE;③;④2OE2=AH•DE;⑤GO+BH=HC正确结论的个数有()A.2B.3C.4D.5【答案】B同理可得:直线CO的方程为:,可得M点坐标(,2),可得:①FG=,AO==,故FG=2AO,故①正确;②:由O点坐标,D点坐标(2,2),可得OD的方程:,由H点坐标(0,),E点坐标(2,1),可得HE方程:,由两方程的斜率不相等,可得OD不平行于HE,故②错误;③由A(0,2),M(,2),H(0,),E(2,1),可得:BH=,EC=1,AM=,MD=,故=,故③正确;④:由O点坐标,E(2,1),H(0,),D(2,2),可得:,AH=,DE=1,有2OE2=AH•DE,故④正确;【关键点拨】本题主要考查一次函数与矩形的综合,及点与点之间的距离公式,难度较大,灵活建立直角坐标系是解题的关键.二、填空题13.如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为_____.【答案】【解析】【关键点拨】本题考查了中心对称图形的性质、待定系数法求解析式,熟知过中心对称图形对称中心的直线把这个图形分成面积相等的两个图形是解题的关键.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为_____.【答案】﹣2<x<2【解析】∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为故答案为:【关键点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.15.如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,,P3,,… ,过每个分点作轴的垂线分别交直线于点,,,… ,用,,,…,分别表示,,…,的面积,则___________.【答案】【关键点拨】本题考查一次函数的应用,规律型−点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.16.如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是_______.【答案】【关键点拨】本题考查了一次函数与一元一次不等式的关系,解决这类题目的关键是找出两个函数图像的交点坐标,再根据图象的位置确定x的取值范围.17.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,依次进行下去,则点的横坐标为__.【答案】【关键点拨】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.18.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.【答案】x=2【解析】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2,故答案为:x=2.【关键点拨】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.19.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【答案】②③④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.20.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_____米.【答案】200【关键点拨】本题考查了一次函数的图象的性质的运用,路程=速度×时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象.21.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=______;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=______.【答案】 1【解析】当y=0时,有(k-1)x+k+1=0,解得:x=-1-,∴直线l1与x轴的交点坐标为(-1-,0),同理,可得出:直线l2与x轴的交点坐标为(-1-,0),∴两直线与x轴交点间的距离d=-1--(-1-)=-.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(-1,-2).(1)当k=2时,d=-=1,∴S2=×|-2|d=1.故答案为:1.【关键点拨】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.22.如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB.以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△A1OB1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3……按此规律进行下去,则正方形A2017B2017C2017A2018的周长为______________.【答案】【关键点拨】本题考查规律型问题、解直角三角形、点的坐标等知识,解题的关键是学会探究规律的方法,根据获取的规律解决问题.23.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】∴A(,0);∴OA=,设D(x,) ,∴E(x,- x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;∴EF=1,∴S△AOE=·OA·EF=2.故答案为:.【关键点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.三、解答题24.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.【答案】(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.(2)①根据题意得:,的取值范围为:,②设销售这批丝绸的利润为,根据题意得:,,(Ⅰ)当时,,时,销售这批丝绸的最大利润;(Ⅱ)当时,,销售这批丝绸的最大利润;(Ⅲ)当时,当时,销售这批丝绸的最大利润.综上所述:.【关键点拨】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.25.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【答案】(1)20;(2)乙地离小红家30千米.当x=2.5时,解得y=30,∴乙地离小红家30千米.【关键点拨】本题考查一次函数的应用,读懂图象信息,掌握待定系数法是解题的关键.26.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【答案】80770∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【关键点拨】一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.27.如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.【答案】(1)AC=;(2)点D的坐标为(x,0)(x>6).∴S=S1﹣S2=-()=5x﹣15,当点D在OA的延长线上时,S1=,S2==,∴S=S1﹣S2=-()=15,由上可得,S=,∵S△DBC==15,∴点D在OA的延长线上的任意一点都满足条件,∴点D的坐标为(x,0)(x>6).【关键点拨】本题考查一次函数的应用、勾股定理的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.28.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【答案】(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.(2)设购买A型空调a台,则购买B型空调(30-a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;【关键点拨】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.29.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.【解析】(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.【关键点拨】本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.30.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?【答案】(1)20,15;(2)y=35x﹣55;(3)再过1天装满第二节车厢.【解析】(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨,a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入得,解得:,∴y=35x﹣55(2≤x≤5);【关键点拨】本题为一次函数实际应用问题,应用了待定系数法、分类讨论思想等,解答要注意通过对这两个函数图象实际意义对比分析得到问题答案.31.已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y 轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E 在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【答案】(1)A(﹣,0).(2)49;(3)P(﹣,3)【解析】(1)如图1中,(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∴△CPE≌△H AE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC-∠∠AFP=30°,∴∠TCF=∠CTP-∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,【关键点拨】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.32.某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.【答案】(1)y=﹣x+18(2)三种购买方案(3)甲种图书6套,乙种图书8套,丙种图书6套,a=10即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a﹣4a=20,解得a=(不是正整数,不符合题意),若按方案二:则有8a﹣6a=20,解得a=10(符合题意),若按方案三:则有3a﹣8a=20,解得a=﹣4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10.【关键点拨】本题主要考查一次函数与不等式等知识的综合,注意运算的准确性及灵活根据题意进行方案选择.33.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =t2;②当1<t≤时,S =﹣t2+18t;③当<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为.(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t)∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),作出点O关于直线y=﹣x+2的对称点O'交此直线于G,过点O'作O'F⊥x轴,则O'F就是OT+PT的最小值,由对称知,OO'=2OG,【关键点拨】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点.34.如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.(2)①如图,当点D在直线上l2时,∵AD=9∴点D与点A的横坐标之差为9,∴将直线l1与直线l2的解析式变形为x=20﹣2y,x=y,∴y﹣(20﹣2y)=9,解得:y=,∴x=20﹣2y=,。
(完整)高一数学第一学期函数压轴[大题]练习[含答案及解析],推荐文档
![(完整)高一数学第一学期函数压轴[大题]练习[含答案及解析],推荐文档](https://img.taocdn.com/s3/m/0e4f6c50eff9aef8941e06cb.png)
10. (本题 16 分)已知函数 f (x) log9 (9x 1) kx ( k R )是偶函数.
(1)求 k 的值;
(2)若函数 y f (x) 的图象与直线 y 1 x b 没有交点,求 b 的取值范围; 2
(3)设 h(x) log9
f
1 ()
2
.
1 x2
25
(1) 求实数 a , b 的值;
(2) 用定义证明:函数 f (x) 在区间 (1,1) 上是增函数;
(3) 解关于 t 的不等式 f (t 1) f (t) 0 .
4. (14 分)定义在 R 上的函数 f(x)对任意实数 a,b R ,均有 f(ab)=f(a)+f(b)成立,且当 x>1 时,f(x)
技术资料.整理分享
WORD 格式.可编辑
13.(本小题满分 16 分)
设 a 0 , b 0 ,已知函数 f (x) ax b . x 1
(Ⅰ)当 a b 时,讨论函数 f (x) 的单调性(直接写结论);
(Ⅱ)当 x 0 时,(i)证明 f (1) f ( b ) [ f ( b )]2 ;
6. (12 分)设函数 f (x) loga (x 3a)(a 0,且a 1) ,当点 P(x, y) 是函数 y f (x) 图象上的点时,
点 Q(x 2a, y) 是函数 y g(x) 图象上的点. (1)写出函数 y g(x) 的解析式; (2)若当 x [a 2, a 3] 时,恒有 | f (x) g(x) |„ 1 ,试确定 a 的取值范围; (3)把 y g(x) 的图象向左平移 a 个单位得到 y h(x) 的图象,函数
WORD 格式.可编辑
填空压轴题(函数篇)-2023年中考数学压轴题专项训练(解析版)

填空压轴题(函数篇)1.压轴题速练1一.填空题(共40小题)1(2023•上虞区模拟)已知点A 在反比例函数y =12x(x >0)的图象上,点B 在x 轴正半轴上,若△OAB 为等腰直角三角形,则AB 的长为23或26 .【答案】23或26.【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:当AO =AB 时,此时∠OAB =90°;∵A 在函数y =12x(x >0)上,∴S △OAB =12,∴12×OA ×AB =12,即12AB 2=12,∴AB =24=26;当AB =BO 时,此时∠ABO =90°;∵A 在函数y =12x (x >0)上,∴S △AOB =122=6,∴12×OB ×AB =6,即12AB 2=6,∴AB =23,当OA =OB 时,A 点落在y 轴上,故不合题意,综上所述,AB 的长为23或26.故答案为:23或26.2(2023•姑苏区校级一模)在平面直角坐标系xOy 中,对于点P (a ,b ),若点P '的坐标为ka +b ,a +b k(其中k 为常数且k ≠0),则称点P '为点P 的“k -关联点”.已知点A 在函数y =3x (x >0)的图象上运动,且A 是点B 的“3-关联点”,若C (-1,0),则BC 的最小值为 3105 .【答案】3105.【分析】由A 是点B 的“3-关联点”,可设点B 坐标,表示出点A 坐标,由点A 在函数y =3x(x >0)的图象上,就得到点B 在一个一次函数的图象上,可求出这条直线与坐标轴的交点M 、N ,过C 作这条直线的垂线,这点到垂足之间的线段CB ,此时CB 最小,由题中的数据,可以证明出△MON ∽△MBC ,进而得出MNMC =ONBC,进而求出BC .【详解】解:过点B 作QB ⊥MN ,垂足为B ,设B (x ,y ),∵A 是点B 的“3-关联点”,∴A 3x +y ,x +y3 ,∵点A 在函数y =3x (x >0)的图象上,∴(3x +y )x +y3=3,即:3x +y =3或2x +y =-3(舍去x <0,y <0),∴y =-3x +3,∴点B 在直线y =-3x +3上,直线y =-3x +3与x 轴、y 轴相交于点M 、N ,则M (1,0)、N (0,3),∴MN =12+32=10,MC =MO +OC =1+1=2,当CB ⊥MN 时,线段BC 最短,∵∠CBM =∠NOM =90°,∠CMB =∠NMO ,∴△MON ∽△MBC ,∴MN MC =ON BC ,即102=3BC,解得:BC =3105,故答案为:3105.3(2023•海门市一模)如图,在平面直角坐标系xOy 中,已知点A (m ,n ),B (m +4,n -2)是函数y =kx(k >0,x >0)图象上的两点,过点B 作x 轴的垂线与射线OA 交于点C .若BC =8,则k 的值为6.【答案】6.【分析】作AD ⊥x 轴于点D ,设直线CB 与x 轴交于点E ,根据AD ∥CE ,得AD CE =ODOE,所以n =32m ,即可得到点A m ,32m ,B m +4,32m -2 ,代入y =kx (k >0,x >0)即可求出答案.【详解】解:如图,作AD ⊥x 轴于点D ,设直线CB 与x 轴交于点E ,∵点A (m ,n ),B (m +4,n -2),BC =8,∴点D (m ,0),E (m +4,0),CE =n +6,∵AD ∥CE ,∴AD CE =ODOE ,∴n n +6=m m +4,∴n =32m ,∴点A m ,32m ,B m +4,32m -2 ,∵点A ,B 是函数y =kx(k >0,x >0)图象上的两点,∴k =m ⋅32m =(m +4)•32m -2 ,解得m =2,∴k =m ⋅32m =6,故答案为:6.【点睛】此题考查了反比例函数图象上点的坐标特征,平行线分线段成比例定理,关键是根据AD ∥CE ,得AD CE =OD OE,求出n =32m .4(2023•建昌县一模)如图,在平面直角坐标系中,点A ,B 在反比例函数y =kx(k ≠0,x >0)的图象上,点C 在y 轴上,AB =AC ,AC ∥x 轴,BD ⊥AC 于点D ,若点A 的横坐标为5,BD =3CD ,则k 值为 154 .【答案】154.【分析】延长BD 交x 轴于点E ,过点B 作BG ⊥y 轴于点G ,过点A 作AF ⊥x 轴于点F ,设B (m ,n ),可得BD =3m ,AD =5-m ,根据勾股定理求出m =1,进一步得出AF =n -3,再根据n =5(n -3)求出n =154即可得出结论.【详解】解:延长BD 交x 轴于点E ,过点B 作BG ⊥y 轴于点G ,过点A 作AF ⊥x 轴于点F ,则四边形BGCD ,COED ,ADEF 均为矩形,∴BG =CD ,AF =DE ,CD =OE ,设B (m ,n ),则有BG =CD =OE =m ,BE =n ,∵AC =AB =5,∴AD =AC -CD =5-m ,∵BD =3CD =3m ,∴AF =DE =n -3m ,在Rt △ABD 中,BD 2+AD 2=AB 2,∴(3m )2+(5-m )2=52,解得m 1=1,m 2=0(不符合题意,舍去),∴DE =n -3,AF =n -3,∴B (1,n ),A (5,n -3),∵点A ,B 在反比例函数y =kx(k ≠0,k >0)的图象上,∴n =5(n -3),解得n =154,∴k =1×154=154.故答案为:154.【点睛】本题主要考查了反比例函数图象上点的坐标特征,矩形的判定与性质以及勾股定理等知识,熟练掌握反比例函数图象上点的坐标一定满足该函数解析式是解答本题的关键.5(2023•碑林区校级模拟)如图,等腰直角△ABC的顶点A 坐标为(-3,0),直角顶点B 坐标为(0,1),反比例函数y =kx(x <0)的图象经过点C ,则k =-4.【答案】-4.【分析】先利用等角的余角相等证明∠CBD =∠BAO ,则可根据“AAS ”判断△AOB ≌△BDA ,所以OB =CD =1,OA =BD =3,则OD =OC +CD =4,从而得到点C 的坐标,代入y =kx(x <0)即可求得k 的值.【详解】解:作CD ⊥y 轴于D ,∵A (3,0),B (0,1),∴OA =3,OB =1,∵∠ABC =90°,∴∠ABO +∠CBD =90°,∵∠ABO +∠BAO =90°,∴∠CBD =∠BAO ,在△AOB 和△BDC 中,∠CBD =∠BAO ∠AOB =∠BDC =90°AB =BC ,∴△AOB ≌△BDA (AAS ),∴OB =CD =1,OA =BD =3,∴点C 的坐标(-1,4),∵反比例函数y =kx(x <0)的图象经过点C ,∴k =-1×4=-4.故答案为:-4.6(2023•宁波模拟)如图,在平面直角坐标系xOy 中,△OAB 为等腰直角三角形,且∠A =90°,点B 的坐标为(4,0).反比例函数y =kx(k ≠0)的图象交AB 于点C ,交OA 于点D .若C 为AB 的中点,则OD OA=32 .【答案】32.【分析】由等腰直角三角形的性质得到A (2,2),直线OA 为y =x ,进一步求得点C (3,1),利用待定系数法求得反比例函数的解析式,与直线OA 的解析式联立,解方程组求得点D 的坐标,从而求得ODOA=32.【详解】解:∵点B 的坐标为(4,0),∴OB =4,∵△OAB 为等腰直角三角形,且∠A =90°,∴A (2,2),∴直线OA 为y =x ,∵C 为AB 的中点,∴C (3,1),∵反比例函数y =kx(k ≠0)的图象交AB 于点C ,交OA 于点D ,∴k =3×1=3,∴反比例函数为y =3x,由y =3x y =x,解得x =3y =3 或x =-3y =-3 ,∴D (3,3),∴OD OA=32.故答案为:32.7(2023•龙港市二模)如图,Rt △ABO 放置在平面直角坐标系中,∠ABO =Rt ∠,A 的坐标为(-4,0).将△ABO 绕点O 顺时针旋转得到△A ′B ′O ,使点B 落在边A ′O 的中点.若反比例函数y =kx(x >0)的图象经过点B ',则k 的值为 3 .【答案】3.【分析】连接BB′,交y轴于D,由题意可知OB=12OA,得出∠A′OB′=∠AOB=60°,证得△BOB′是等边三角形,然后证得BB′垂直于y轴,BD=B′D,从而求得BD=B′D=1,OD=3,得到B′(1,3),代入y=k x(x>0)即可求得k的值.【详解】解:连接BB′,交y轴于D,由题意可知OB=12OA,∴∠OAB=30°,∴∠A′OB′=∠AOB=60°,∵BO=B′O,∴△BOB′是等边三角形,∵∠BOD=90°-60°=30°,∴OD平分∠BOB′,∴BB′垂直于y轴,BD=B′D,∴BB′∥x轴,∵A的坐标为(-4,0),∴OA=4,∴OB=2,∴等边△BOB′的边长为2,∴BD=B′D=1,OD=3,∴B′(1,3),∵反比例函数y=k x(x>0)的图象经过点B',∴k=1×3=3,故答案为:3.8(2023•温州二模)如图,点A在x轴上,以OA为边作矩形OABC,反比例函数y=kx(k>0,x>0)的图象经过AB的中点E,交边BC于点D,连结OE.若OE=OC,CD=2,则k的值为 1633 .【答案】1633.【分析】设OC =AB =m ,则AE =12OE =12m ,利用勾股定理求得OA =32m ,即可得到D (2,m ),E 32m ,12m,由k =xy 得到k =2m =32m •12m ,解得m =833,即可求得k =2m =1633.【详解】解:设OC =AB =m ,∵点E 是AB 的中点,∴AE =12AB∵OE =OC ,CD =2,∴AE =12OE =12m ,∴OA =OE 2-12OE 2=32OE =32m ,∴D (2,m ),E 32m ,12m ,∵反比例函数y =kx (k >0,x >0)的图象经过点D 、E ,∴k =2m =32m •12m ,解得m 1=833,m 2=0(舍去),∴k =2m =1633,故答案为:1633.9(2023•石家庄二模)已知A ,B ,C 三点的坐标如图所示.(1)若反比例函数y =kx的图象过点A ,B ,C 中的两点,则不在反比例函数图象上的是点C ;(2)当反比例函数的图象与线段AC (含端点)有且只有一个y =kx公共点时,k 的取值范围是3≤k <4或k =12424 .【答案】(1)C ;(2)3≤k <4或k =12124.【分析】(1)根据反比例函数系数k =xy 判断即可;(2)求得直线AC 的解析式,与反比例函数解析式联立,整理得3x 2-11x +2k =0,当Δ=0时,反比例函数的图象与直线AC 有且只有一个公共点,求得此时k 的值,根据k =4时,反比例函数经过A 、B 两点,k =3时,反比例函数经过C 点,根据图象即可得出3≤k <4时,反比例函数y =kx的图象与线段AC (含端点)有且只有一个公共点,从而得出3≤k <4或k =12124.【详解】解:(1)由坐标系可知,A (1,4),B (2,2),C (3,1),∵1×4=2×2≠3×1,∴反比例函数y =kx的图象过点A 、B ,点C 不在反比例函数图象上,故答案为:C ;(2)设直线AC 为y =kx +b ,代入A 、C 的坐标得k +b =43k +b =1 ,解得k =-32b =112,∴直线AC 为y =-32x +112,令k x =-32x +112,整理得3x 2-11x +2k =0,当反比例函数的图象与直线AC 有且只有一个公共点时,Δ=0,∴(-11)2-4×3×2k =0,解得k =12124,由(1)可知k =4时,反比例函数图象过A (1,4),B (2,2)两点,k =3时,反比例函数图象过C 点,∴3≤k <4时,反比例函数y =kx 的图象与线段AC (含端点)有且只有一个公共点,综上,当反比例函数y =kx的图象与线段AC (含端点)有且只有一个公共点时,k 的取值范围是3≤k<4或k =12124.故答案为:3≤k <4或k =12124.10(2023•郫都区二模)定义:若一个函数图象上存在横纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(-1,-1)是函数y =2x +1的图象的“等值点”.若函数y =x 2-2(x ≥m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1、W 2两部分组成的图象上恰有2个“等值点”时,m 的取值范围为m <-98或-1<m <2.【答案】m <-98或-1<m <2.【分析】先求出函数y =x 2-2的图象上有两个“等值点”(-1,-1)或(2,2),再利用翻折的性质分类讨论即可.【详解】解:令x =x 2-2,解得:x 1=-1,x2=2,∴函数y =x 2-2的图象上有两个“等值点”(-1,-1)或(2,2),①当m <-1时,W 1,W 2两部分组成的图象上必有2个“等值点”(-1,-1)或(2,2),W 1:y =x 2-2(x ≥m ),W 2:y =(x -2m )2-2(x <m ),令x =(x -2m )2-2,整理得:x2-(4m+1)x+4m2-2=0,∵W2的图象上不存在“等值点”,∴Δ<0,∴(4m+1)2-4(4m2-2)<0,∴m<-98,②当m=-1时,有3个“等值点”(-2,-2)、(-1,-1)、(2,2),③当-1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<-98或-1<m<2.故答案为:m<-98或-1<m<2.11(2023•双阳区一模)如图,抛物线y=-0.25x2+4与y轴交于点A,过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),连接BO、CO,若将△BOC向上平移使得B、C两点恰好落在抛物线y=-0.25x2+4上,则点O平移后的坐标为(0,1.5).【答案】(0,1.5).【分析】先求得A的坐标,进而根据题意得到B、C两点的纵坐标为2,把y=2代入y=x2得x=±2,即可求得B(-2,2),进一步求得x=-2时,函数y=-0.25x2+4的值,即可求得平移的距离,得到点O平移后的坐标.【详解】解:∵抛物线y=-0.25x2+4与y轴交于点A,∴A(0,4),∴OA=4,∵过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),∴B、C两点的纵坐标为2,把y=2代入y=x2得x=±2,∴B(-2,2),把x=-2代入y=-0.25x2+4得y=-0.5+4=3.5,∴此时点B的坐标为(-2,3.5),∴平移的距离为3.5-2=1.5,∴点O平移后的坐标为(0,1.5),故答案为:(0,1.5).12(2023•衡水二模)如图,点A a,-3 a(a<0)是反比例函数y=k x图象上的一点,点M(m,0),将点A绕点M顺时针旋转90°得到点B,连接AM,BM.(1)k的值为-3;(2)当a=-3,m=0时,点B的坐标为(1,3);(3)若a=-1,无论m取何值时,点B始终在某个函数图象上,这个函数图象所对应的表达式.【答案】(1)-3;(2)(1,3);(3)点B始终在函数y=x-2的图象上.【分析】(1)把A的坐标代入反比例函数反比例函数y=kx即可求得;(2)作AC⊥x轴于C,BD⊥x轴于D,根据旋转的性质得出△BDM≌△MCA,从而得出AC=MD,CM=BD,即可得出点B的坐标;(3)由(2)可知AC=MD,CM=BD,根据题意得出B(3+m,m+1),从而得出点B始终在函数y= x-2的图象上.【详解】解:(1)∵点A a,-3 a(a<0)是反比例函数y=k x图象上的一点,∴k=a•-3a=-3.故答案为:-3;(2)作AC⊥x轴于C,BD⊥x轴于D,∵∠AMB=90°,∴∠AMC+∠BMD=90°,∵∠AMC+∠MAC=90°,∴∠BMD=∠MAC,∵∠BDM=∠MCA=90°,BM=AM,∴△BDM≌△MCA(AAS),∴AC=MD,CM=BD,∵a=-3,m=0,∴A(-3,1),M(0,0),∴AC=1,MC=3,∴MD=1,BD=3,∴B(1,3);故答案为:(1,3);(3)若a=-1,则A(-1,3),由(2)可知AC=MD,CM=BD,∵M(m,0),∴B(3+m,m+1),∴点B始终在函数y=x-2的图象上.13(2023•市中区二模)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)⋯根据这个规律,第2023个点的坐标(45,2).【答案】(45,2).【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,横坐标是奇数时,最后以横坐标为该数,纵坐标以0结束;据此求解即可.【详解】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,∴横坐标以n结束的有n2个点,∵452=2025,∴第2025个点的坐标是(45,0),∴2023个点的纵坐标往上数2个单位为2,∴2023个点的坐标是(45,2);故答案为:(45,2).【点睛】本题考查了点坐标规律探究,观察出点的个数与横坐标存在平方关系是解题的关键.14(2023•沈阳二模)某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降5元.【答案】5.【分析】设降价x元时,则日销售可以获得利润为W,由销售问题的数量关系表示出W与x之间的关系,根据关系式的性质就可以求出结论.【详解】解:设该种商品的销售单价应降价x元时,日销售可以获得利润为W元,由题意,得W=(100-70-x)(20+x)=-x2+10x+600=-(x-5)2+625,∵a=-1<0,∴当x=5时,W=625.最大故答案为:5.【点睛】本题考查了销售问题的数量关系的运用,利润=(售价-进价)×销量的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是解题的关键15(2023•贵港二模)如图,抛物线y1截得坐标轴上的线段长AB=OD=6,D为y1的顶点,抛物线y2由y 1平移得到,y2截得x轴上的线段长BC=9.若过原点的直线被抛物线y1,y2所截得的线段长相等,则这条直线的解析式为y =x .【答案】y =x .【分析】根据已知条件,待定系数求得抛物线y 1,y 2的解析式,设过原点的直线解析式为y =kx ,过原点的直线被抛物线y 1,y 2所截得的线段长相等,即可求解.【详解】解:∵抛物线y 1截得坐标轴上的线段长AB =OD =6,D 为y 1的顶点,∴A (-3,0),B (3,0),D (0,6),设y 1的解析式为y =ax 2+6,代入(3,0),得9a +6=0,解得:a =-23,∴y 1的解析式为y 1=-23x 2+6,∵抛物线y 2由y 1平移得到,y 2截得x 轴上的线段长BC =9,∴C (12,0),则y 2的解析式为y =-23(x -3)(x -12),即y 2=-23x 2+10x -24,设过原点的直线解析式为y =kx ,与y 1,y 2分别交于点F ,G ,H ,K ,如图所示,联立y =kx y 1=-23x 2+6,即-23x 2-kx +6=0,∴x 1+x 2=-3k2,x 1•x 2=-9,∴F 、G 两点横坐标之差为|x 1-x 2|=(x 1+x 2)2-4x 1⋅x 2=94k 2+36,联立y =kx y 2=-23x 2+10x -24,即-23x 2+(10-k )x -24=0,∴x 1+x 2=-3k -302,x 1⋅x 2=36,∴H 、K 两点横坐标之差为|x 1-x 2|=(x 1+x 2)2-4x 1⋅x 2=-3k -302 2-144,∵FG =HK ,∴94k 2+36=-3k -3022-144,解得k =1,故直线解析式为y =x .故答案为:y =x .16(2023•江都区一模)如图,在平面直角坐标系中,点A ,B 坐标分别为(3,4),(-1,1),点C 在线段AB 上,且AC BC=13,则点C 的坐标为 2,134 .【答案】2,134.【分析】分别过点A ,B ,C 作x 轴的垂线垂足分别为E ,D ,F ,过点B 作BG ⊥AE 于点G ,交CF 于点H ,则CF ∥AE ,BH ⊥CF ,BD =HF =EG ,设点C 的坐标为(m ,n ),则CF =n ,OF =m ,可得CH=n -1,BH =m +1,根据△BHC ∽△BGA ,可得m +14=n -13=34,即可求解.【详解】解:如图,分别过点A ,B ,C 作x 轴的垂线垂足分别为E ,D ,F ,过点B 作BG ⊥AE 于点G ,交CF 于点H ,则CF ∥AE ,BH ⊥CF ,BD =HF =EG ,∵点A ,B 坐标分别为(3,4),(-1,1),∴BD =HF =EG =1,AE =4,BG =4,∴AG =3,设点C 的坐标为(m ,n ),则CF =n ,OF =m ,∴CH =n -1,BH =m +1,∵AC BC=13,∴BC AB=34,∵CF ∥AE ,∴△BHC ∽△BGA ,∴BH BG =CH AG =BC AB ,∴m +14=n -13=34,解得:m =2,n =134,∴点C 的坐标为2,134 .故答案为:2,134 .17(2023•龙华区二模)如图,在平面直角坐标系中,OA =3,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数y =kx(x >0)的图象恰好过点A 与BC 的中点D ,则k =25 .【答案】25.【分析】设A (m ,n ),则由题意B (m ,n +3),进而求得D m 2,n +62,根据反比例函数系数k =xy ,得到k =mn =m 2•n +62,解得n =2,利用勾股定理求得m 的值,得到A (5,2),代入解析式即可求得k 的值.【详解】解:设A (m ,n ),则B (m ,n +3),∵点D 是BC 的中点,C (0,3),∴D m 2,n +62,∵反比例函数y =kx (x >0)的图象恰好过点A 与BC 的中点D ,∴k =mn =m 2•n +62,解得n =2,∴A (m ,2),∵OA =3,∴m 2+22=32,∴m =5(负数舍去),∴A (5,2),∴k =5×2=25,故答案为:25.18(2023•乐至县模拟)如图,在平面直角坐标系中,点A 、A 1、A 2、A 3⋯A n 在x 轴上,B 1、B 2、B 3⋯B n 在直线y =-33x +33上,若A (1,0),且△A 1B 1O 、△A 2B 2A 1⋯△A n B n A n -1都是等边三角形,则点B n 的横坐标为1-3×2n -2(n 为正整数).【答案】1-3×2n -2(n 为正整数).【分析】过点B n 作B n ∁n ⊥x 轴于点∁n ,利用一次函数图象上点的坐标特征,可得出该直线与y 轴的交点,解直角三角形,可得出∠OAB 1=30°,利用等边三角形的性质及三角形的外角性质,可得出OA 1的长度,结合B 1C 1=32OA 1可得出B 1C 1的长,同理,可求出B n ∁n =3•2n -2(n ≥2,且n 为整数),再结合一次函数图象上点的坐标特征,即可求出点B n 的横坐标.【详解】解:过点B n 作B n ∁n ⊥x 轴于点∁n ,如图所示.∵直线的解析式为y =-33x +33,∴该直线与y 轴交于点0,33,∴tan ∠OAB 1=331=33,∴∠OAB 1=30°.∵△A 1B 1O 是等边三角形,∴∠A 1OB 1=60°,∴∠AB 1O =30°=∠OAB 1,∴OA 1=OB 1=OA =1,∴B 1C 1=32OA 1=32;同理:A 1A 2=AA 1=2,A 2A 3=AA 2=4,A 3A 4=AA 3=8,⋯,∴A n -1A n =AA n -1=2n -1(n ≥2,且n 为整数),∴B n ∁n =32A n -1A n =3•2n -2(n ≥2,且n 为整数),∴点B n 的纵坐标为3•2n -2(n 为正整数).当y =3•2n -2时,3•2n -2=-33x +33,解得:x =1-3×2n -2,∴点B n 的横坐标为1-3×2n -2(n 为正整数).故答案为:1-3×2n -2(n 为正整数).19(2023•玄武区一模)已知函数y =2x 2-(m +2)x +m (m 为常数),当-2≤x ≤2时,y 的最小值记为a .a 的值随m 的值变化而变化,当m =2时,a 取得最大值.【答案】2.【分析】分类讨论抛物线对称轴的位置确定出m 的范围即可.【详解】解:由二次函数y =2x 2-(m +2)x +m (m 为常数),得到对称轴为直线x =m +24,抛物线开口向上,当m +24≥2,即m ≥6时,由题意得:当x =2时,a =8-2m -4+m =4-m ,a 随m 增大而减小,a 的最大值为-2;当-2<m +24<2,-10<m <6时,由题意得:当x =m +24时,a =2×m +24 2-(m +2)•m +24 +m =-18(m -2)2+32,则m =2时,a 取得最大值32;当m +24≤-2,即m ≤-10时,由题意得:当x =-2时,a =8+2m +4+m =3m +12,a 随m 增大而增大,a 的最大值为-18;综上,当m =2时,a 取得最大值.故答案为:2.20(2023•萧山区一模)已知点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上.(1)若x 1x 2=2,则y 1y 2= 12 .(2)若x 1=x 2+2,y 1=3y 2,则当自变量x >x 1+x 2时,函数y 的取值范围是y <-32 .【答案】(1)12;(2)y <-32.【分析】(1)把P 、Q 代入解析式得到y 1=6x 1,y 2=6x 2,进一步得到y 1y 2=6x 16x 2=x 2x 1=12;(2)由x 1=x 2+2,y 1=3y 2得到x 1=-1,x 2=-3,即可得到x 1+x 2=-4,求得x =-4时的函数值,然后根据反比例函数的性质即可得到函数y 的取值范围.【详解】解:(1)∵点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上,∴y 1=6x 1,y 2=6x 2,∵x 1x 2=2,∴y 1y 2=6x 16x 2=x 2x 1=12,故答案为:12;(2)∵点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上,∴y 1=6x 1,y 2=6x 2,∵y 1=3y 2,∴6x 1=3×6x 2,∴x 2=3x 1,∵x 1=x 2+2,∴x 1=3x 1+2,∴x 1=-1,x 2=-3,∴x 1+x 2=-4,当x =-4时,y =6-4=-32,∵反比例函数y =6x中k >0,∴x <0时,y 随x 的增大而减小,∴当自变量x >x 1+x 2时,函数y 的取值范围是y <-32,故答案为:y <-32.21(2023•灞桥区校级模拟)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD,点C,D恰好都落在反比例函数y=k x(k≠0)的图象上,点E在BC延长线上,CE=BC,EF⊥BE,交x轴于点F,边EF交反比例函数y=k x(k≠0)的图象于点P,记△BEF的面积为S,若S=k2+12,则k的值为8.【答案】8.【分析】作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.首先利用全等三角形的性质求出D、C两点坐标,再证明a=b,再构建方程求出k的值.【详解】解:如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠DAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠AOB=∠DAM=90°,∴△AOB≌△BNC(AAS),同理△BNC≌△DMA,∴DM=OA=BN=b,AM=OB=CN=a,∴D(b,a+b),C(a+b,a),∵点C,D恰好都落在反比例函数y=k x(k≠0)的图象上,∴b(a+b)=a(a+b),∵a+b≠0,∴a=b,∴OA=OB,∴∠ABO=45°,∠EBF=45°,∵BE⊥EF,∴△BEF是等腰直角三角形,∵BC=EC,∴可得E(3a,2a),F(5a,0),∴12×4a×2a=k2+12,∴4a2=k2+12,∵D(a,2a),∴2a2=k,∴2k=k2+12,∴k =8.故答案为:8.【点睛】本题考查反比例函数图象的点的特征,正方形的性质、全等三角形的判定和性质,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.22(2023•东莞市校级一模)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上.以AB 为边长作正方形ABCD ,S 正方形ABCD =50,点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,则k 的值是8.【答案】8.【分析】作DF ⊥y 轴于点F ,CE ⊥x 轴于点E ,通过证得△OAB ≌△EBC ≌△FDA 可得出BE =OA =DF ,CE =OB =AF ,设OA =a ,OB =b ,即可得出C (a +b ,b ),D (a ,a +b ),进而把点C 和平移后的D 点坐标代入反比例函数的解析式求出k 的值即可.【详解】解:作DF ⊥y 轴于点F ,CE ⊥x 轴于点E ,正方形ABCD 中,AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°,Rt △ABO 中,∠BAO +∠ABO =90°,∴∠CBE =∠BAO ,在△OAB 与△EBC 中,∠CBE =∠BAO ∠BEC =∠AOB =90°BC =AB ,∴△OAB ≌△EBC (AAS ),∴BE =OA ,CE =OB ,同理△OAB ≌△FDA ,∴DF =OA ,AF =OB ,设OA =a ,OB =b ,则C (a +b ,b ),D (a ,a +b ),∵点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,∴k =b (a +b )=(a -6)•(a +b ),∴a -6=b ,∵S 正方形ABCD =50,∴AB 2=50,∵OA 2+OB 2=AB 2,∴a 2+b 2=50,即a 2+(a -6)2=50,解得a =7(负数舍去),∴b =a -6=1,∴k =b (a +b )=8.故答案为:8.23(2023•长春一模)如图,正方形ABCD 、CEFG 的顶点D 、F 都在抛物线y =-12x 2上,点B 、C 、E 均在y 轴上.若点O 是BC 边的中点,则正方形CEFG 的边长为1+2 .【答案】1+2.【分析】设OB =OC =12BC =a ,且a >0,即可得D (-2a ,-a ),根据D (-2a ,-a )在抛物线y =-12x 2上,可得a =12,设正方形CEFG 的边长为b ,且b >0,同理可得F b ,-12-b ,代入y =-12x 2中,问题得解.【详解】解:∵点O 是BC 边的中点,∴设OB =OC =12BC =a ,且a >0,在正方形ABCD 中,DC =BC =2a ,DC ⊥BC ,∴D (-2a ,-a ),∵D (-2a ,-a )在抛物线y =-12x 2上,∴-a =-12(-2a )2,解得:a =12,设正方形CEFG 的边长为b ,且b >0,∴CE =EF =b ,∴OE =OC +CE =12+b ,∴结合正方形的性质,可知F b ,-12-b ,∵F b ,-12-b 在抛物线y =-12x 2上,∴-12-b =-12b 2,解得:b =1+2(负值舍去),故答案为:1+2.24(2023•成都模拟)如图,在△AOB 中,AO =AB ,射线AB 分别交y 轴于点D ,交双曲线y =kx(k >0,x >0)于点B ,C ,连接OB ,OC ,当OB 平分∠DOC 时,AO 与AC 满足AO AC=23,若△OBD 的面积为4,则k = 407 .【答案】407.【分析】通过证得△AOD ∽△ACO ,得到AD AB=23,即可求得△AOB 的面积为12,进一步求得△BOC 的面积为6,根据S △BOC =S 梯形BMNC 得出k 的值即可.【详解】解:作BM ⊥x 轴于M ,CN ⊥x 轴于N ,∵AO =AB ,∴∠AOB =∠ABO ,∴∠AOD +∠BOD =∠OCB +∠BOC ,∵∠BOD =∠BOC ,∴∠AOD =∠ACO ,∵∠OAD =∠CAO ,∴△AOD ∽△ACO ,∴AD OA =AO AC=23,∴AD AB=23,∵△OBD 的面积为4,∴△AOB 的面积为12,∵AO AC=23,∴AB AC=23,∴△BOC 的面积为6,∴COD 的面积为10,∴x B x C =410=25,∴设B 2x ,k 2x ,则C 5x ,k5x,∵S △BOC =S △BOM +S 梯形BMNC -S △CON ,S △BOM =S △CON =12|k |,∴S △BOC =S 梯形BMNC =12k 2x +k5x⋅(5x -2x )=6,解得k =407,故答案为:407.25(2023•北仑区二模)如图,将矩形OABC 的顶点O 与原点重合,边AO 、CO 分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数y =kx(k >0)上恰好经过E 、F 两点,若B 点的坐标为(2,1),则k 的值为10-221 .【答案】10-221.【分析】连结OF ,过E 作EH ⊥OA 于H ,由B 点坐标为(2,1),即可得出E 点的坐标为(k ,1),F 点的坐标为2,k 2 ,证得△EHD ∽△OAF ,得到EH OA =HD AF,求得HD =k4,进而求得OD =HD +OH =k 4+k =5k 4,AD =2-5k 4,由折叠可得DF =OD =5k 4,利用勾股定理得到关于k 的方程,解方程即可求得k 的值.【详解】解:连结OF ,过E 作EH ⊥OA 于H .∵B 点坐标为(2,1),∴E 点的纵坐标为1,F 点的横坐标为2,∵反比例函数y =kx(k >0)上恰好经过E 、F 两点,∴E 点的坐标为(k ,1),F 点的坐标为2,k2,∵∠EDH +∠AOF =∠EDH +∠HED =90°,∴∠AOF =∠HED ,又∠EHD =∠OAF =90°,∴△EHD ∽△OAF ,∴EH OA =HD AF,即12=HD k 2,∴HD =k4,∴OD =HD +OH =k 4+k =5k 4,AD =2-5k4,由折叠可得DF =OD =5k4,在Rt △DAF 中,由勾股定理可得2-5k 4 2+k 2 2=5k 44,解得k 1=10-221,k 2=10+221(舍).∴k 的值为10-221.故答案为:10-221.26(2023•合肥二模)已知函数y =x 2+mx (m 为常数)的图形经过点(-5,5).(1)m =4.(2)当-5≤x ≤n 时,y 的最大值与最小值之和为2,则n 的值n =-3或n =10-2 .【答案】(1)4;(2)n =-3或n =10-2.【分析】(1)把已知坐标代入解析式计算即可.(2)根据抛物线额性质,分类计算.【详解】解:(1)∵函数y=x2+mx(m为常数)的图形经过点(-5,5),∴5=(-5)2-5m,解得m=4,故答案为:4;(2)由(1)得m=4,∴函数的解析式为y=x2+4x,∴y=x2+4x=(x+2)2-4,故抛物线的对称轴为直线x=-2,二次函数的最小值为-4,∵(-5,5)的对称点为(1,5),当-5≤x≤n时,y的最大值与最小值之和为2,当-5≤n<-2时,最大值为5,x=n时,取得最小值,且为y=n2+4n,根据题意,得n2+4n+5=2,解得n=-3,n=-1(舍去),故n=-3;当-2≤n≤1时,最大值为5,x=-2时,取得最小值,且为-4,根据题意,得5-4=1,不符合题意;当n>1时,x=-2时,取得最小值,且为-4,x=n时,取得最大值,且为y=n2+4n,根据题意,得n2+4n-4=2,解得n=10-2,n=-10-2(舍去),故n=10-2;故答案为n=-3或n=10-2.27(2023•仓山区校级模拟)下表记录了二次函数y=ax2+bx+2(a≠0)中两个变量x与y的6组对应值,x⋯-5x1x21x33⋯y⋯m020n m⋯其中-5<x1<x2<1<x3<3.根据表中信息,当-52<x<0时,直线y=k与该二次函数图象有两个公共点,则k的取值范围为2<k<83 .【答案】2<k<8 3.【分析】由抛物线经过(-5,m),(3,m)可得抛物线对称轴,从而可得a与b的关系,再将(1,0)代入解析式可得二次函数解析式,将二次函数解析式化为顶点式求解.【详解】解:∵抛物线经过(-5,m),(3,m),∴抛物线对称轴为直线x=-b2a=-1,∴b=2a,y=ax2+2ax+2,将(1,0)代入y=ax2+2ax+2得0=a+2a+2,解得a=-2 3,∴y =-23x 2-43x +2=-23(x +1)2+83,∴x =-1时,y =83为函数最大值,将x =-52代入y =-23x 2-43x +2得y =76,将x =0代入代入y =-23x 2-43x +2得y =2,∴2<k <83满足题意.故答案为:2<k <83.28(2023•西安二模)如图,在平面直角坐标系中,直线y =-x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx(k <0)的图象在第二象限交于点C ,若AB =BC ,则k 的值为-2.【答案】-2.【分析】过点C 作CH ⊥x 轴于点H .求出点C 的坐标,可得结论.【详解】解:过点C 作CH ⊥x 轴于点H .∵直线y =-x +1与x 轴,y 轴分别交于点A ,B ,∴A (1,0),B (0,1),∴OA =OB =1,∵OB ∥CH ,∴△AOB ∽△AHC ,∴OA AH =AB AC ,∴AO OH =AB CB=1,∴OA =OH =1,∴CH =2OB =2,∴C (-1,2),∵点C 在y =kx的图象上,∴k =-2,故答案为:-2.29(2023•龙泉驿区模拟)在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值.当t ≤x ≤t +1时,一次函数y =kx +1(k >0)的界值大于3,则k 的取值范围是k >3;当t ≤x ≤t +2时,二次函数y =x 2+2tx -3的界值为2,则t =-1+22或-22 .【答案】k >3;-1+22或-22.【分析】y =kx +1:根据k >0时,y 随x 的增大而增大,根据最大值-最小值>3列不等式可解答;y=x2+2tx-3:先求得二次函数的对称轴,得到函数的增减性,分情况讨论,根据二次函数y=x2 +2tx-3的界值为2列方程可解答.【详解】解:当t≤x≤t+1时,一次函数y=kx+1(k>0)的界值大于3,∴y最大值-y最小值>3,∵k>0,y随x的增大而增大,∴x=t时,y最小值=tk+1,x=t+1时,y最大值=k(t+1)+1,∴k(t+1)+1-(tk+1)>3,∴k>3;y=x2+2tx-3=(x+t)2-3-t2,当x=-t时,y最小值=-3-t2,当x=t时,y=3t2-3,当x=t+2时,y=3t2+8t+1,①当-t≤t≤t+2时,t≥0,此时,当x=t时,y取最小值,当x=a+2时,y取最大值,∴y最大值=3t2+8t+1,y最小值=3t2-3,∴3t2+8t+1-(3t2-3)=2,解得t=-14(舍去);②当t≤-t≤t+2时,-1≤t≤0,当-12≤t≤0时,y最大值=3t2+8t+1,y最小值=-3-t2,∴3t2+8t+1-(-t2-3)=2,解得t=-1+22或t=-1-22(舍);当-1≤t≤-12时,y最大值=3t2-3,y最小值=-3-t2,3t2-3-(-t2-3)=2,解得t=-22或t=22(舍);③当t≤t+2≤-t时,t≤-1,y最小值=3t2+8t+1,y最大值=3t2-3,∴3t2-3-(3t2+8t+1)=2,解得t=-34(舍去);综上所述,t的值为-1+22或-22.故答案为:k>3;-1+22或-22.30(2023•姑苏区一模)如图①,四边形ABCD中,AB∥DC,AB>AD.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD-DC-CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数图象如图②所示,则AB=15cm.【答案】15.【分析】结合图象可知当t =13时,点P 到达点D ,此时y =90,AQ =13cm ,从而可求出此时△APQ 的高DE =12cm ,当t =18时,点P 到达点C ,点Q 已经停止,此时y =90,AQ =AB .由AB ∥DC ,可知此时△APQ 的高也为12cm ,再根据三角形的面积公式即可求出AB 的长.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:当t =13时,P 到达D 点,即AD =AQ =13cm ,此时y =78,∴12AQ •DE =12×13•DE =78,∴DE =12,当t =18时,点P 到达点C ,此时点Q 已停止运动,此时y =90cm 2,AQ =AB ,∵AB ∥DC ,∴此时△APQ 的高也为12cm ,∴S △APQ =12AB •DE =12AB ×12=90,∴AB =15(cm ),故答案为:15.【点睛】本题考查动点问题的函数图象,平行线间的距离,三角形的面积公式等知识.利用数形结合的思想是解题关键.31(2023•宁波模拟)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx(x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .则k =2;△BDF 的面积=3.【答案】2,3.【分析】连接OD ,表示出点M 的坐标,即可求得k 的值,根据△BDF 的面积=△OBD 的面积=S △BOA -S △OAD ,即可求得.【详解】解:连接OD ,设点B (m ,n ),则点M 12m ,12n,∵点B 是反比例函数y =8x(x >0)图象上一点,∴mn =8,∵反比例函数y =kx(x >0)的图象经过OB 的中点M ,∴k =12m ⋅12n =14mn =14×8=2,∴△BDF 的面积=△OBD 的面积=S △BOA -S △OAD =12×8-12×2=3.故答案为:2,3.32(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y =3x 与反比例函数y =kx(k ≠0)的图象交于A ,B 两点,C 是反比例函数位于第一象限内的图象上的一点,作射线CA 交y 轴于点D ,连接BC ,BD ,若CD BC=45,△BCD 的面积为30,则k =6.【答案】6.【分析】作CF ⊥y 于点I ,BF ⊥x ,交CI 的延长线于点F ,作AE ⊥CF 于点E ,设BC 交y 轴于点M ,设A (m ,3m ),则B (-m ,-3m ),k =3m 2,设点C 的横坐标为a ,则C a ,3m 2a,可证明tan ∠CAE =tan ∠CBF =a 3m ,则∠CAE =∠CBF ,即可推导出∠CDM =∠CMD ,则CD =CM ,所以CI CF =CMBC=CD BC=45,则CI =4FI ,所以a =4m ,C 4m ,3m 4 ,由CI MI =tan ∠CMD =tan ∠CBF =43,得DI=MI =3m ,则DM =6m ,于是得12×6m ×m +12×6m ×4m =30,则m 2=2,所以k =3m 2=6.【详解】解:作CF ⊥y 于点I ,BF ⊥x ,交CI 的延长线于点F ,作AE ⊥CF 于点E ,设BC 交y 轴于点M ,∵直线y =3x 经过原点,且与双曲线y =kx交于A ,B 两点,∴点A 与点B 关于原点对称,设A (m ,3m ),则B (-m ,-3m ),k =3m 2,设点C 的横坐标为a ,则C a ,3m 2a ,F -m ,3m 2a,∵tan ∠CAE =CE AE =a -m 3m -3m 2a =a 3m ,tan ∠CBF =CF BF =a +m 3m 2a+3m=a3m ,∴tan ∠CAE =tan ∠CBF ,∴∠CAE =∠CBF ,∵AE ∥BF ∥DM ,∠CAE =∠CDM ,∠CBF =∠CMD ,∴∠CDM =∠CMD ,∴CD =CM ,∵CI CF =CM BC =CD BC=45,∴CI =4FI ,∴a =4m ,∴C 4m ,3m4 ,∵CI MI=tan ∠CMD =tan ∠CBF =a 3m =4m 3m =43,∴DI =MI =34CI =34×4m =3m ,∴DM =DI +MI =6m ,∵12DM •FI +12DM •CI =S △BCD =30,∴12×6m ×m +12×6m ×4m =30,∴m 2=2,∴k =3m 2=3×2=6,故答案为:6.33(2023•锦江区模拟)已知关于x 的多项式ax 2+bx +c (a ≠0),二次项系数、一次项系数和常数项分别a ,b ,c ,且满足a 2+2ac +c 2<b 2.若当x =t +2和x =-t +2(t 为任意实数)时ax 2+bx +c 的值相同;当x =-2时,ax 2+bx +c 的值为2,则二次项系数a 的取值范围是 215<x <27 .【答案】215<a <27.【分析】先根据二次函数的对称性可得其对称轴是:-b 2a =t +2-t +22=2,得b 与a 的关系:b =-4a ,将(-2,2)代入y =ax 2+bx +c 中可得:c =2-12a ,代入a 2+2ac +c 2<b 2中可解答.【详解】解:∵当x =t +2和x =-t +2(t 为任意实数)时ax 2+bx +c 的值相同,∴-b 2a =t +2-t +22=2,∴b =-4a ,∵当x =-2时,ax 2+bx +c 的值为2,∴函数y =ax 2+bx +c 经过点(-2,2),∴4a -2b +c =2,∴4a +8a +c =2,∴c =2-12a ,∵a 2+2ac +c 2<b 2,∴(a +c )2<b 2,∴(a +c )2-b 2<0,∴(a +c +b )(a +c -b )<0,∵b =-4a ,c =2-12a ,∴(a +2-12a -4a )(a +2-12a +4a )<0,∴(2-15a )(2-7a )<0,∴215<a <27.故答案为:215<a <27.34(2023•江北区一模)如图,菱形ABCO 的顶点A 与对角线交点D 都在反比例函数y =kx(k >0)的图象上,对角线AC 交y 轴于点E ,CE =2DE ,且△ADB 的面积为15,则k =8;延长BA 交x 轴于点F ,则点F 的坐标为 607,0 .【答案】8,607,0.【分析】通过构造延长线得到直角三角形EOM ,再用射影定理求出ED 、DA 、DO 之间的数量关系,在通过△ODA 面积为15求出ED 、DA 、DO 实际长度,再通过求D 点到y 轴的距离求出D 点坐标,也解出k ,进而得出B 点坐标.再过点A 作AH ⊥ND 于H ,然后通过相似求出A 点坐标,进而得出AB 直线解析式,最后得出F 点坐标.【详解】解:延长DA 交x 轴于点M ,设DE =a ,则CE =2a ,CD =AD =3a ,∵ED =a ,∴AM =a ,∴Rt △MOE 中,OD ⊥EM ,OD 2=ED ⋅DM ,∴OD =2a ,∵S △AOD =12OD ⋅DA =15,∴2a ⋅3a 2=15,∴a =5过D 作DN ⊥y 轴,则tan ∠DOE =12,即ON =2DN ,∵OD =25,∴D (2,4),即k =8.∵D (2,4),∴B (4,8),过点A 作AH ⊥ND 于H ,∵∠OND =∠H =90°,∠EDN +∠NDO =90°,∠NDO +∠HDA =90°,∴∠NDO =∠HDA ,∴△DHA ∽△OND ,∵DA =35,∴DH =6,AH =3,。
(word完整版)必修一函数压轴题

函数压轴题 一、函数的性质1.已知函数)1()(xx e e x x f -=,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0 C .x 1<x 2 D .2221x x <2。
f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,若f (x )+f (x -8)≤2,则x 的取值范围为________.3。
要使函数22)(-+=x kx x f 与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.4.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,①求证:f (x )是周期函数;②当x ∈[1,2]时,求f (x )的解析式;③计算f (0)+f (1)+f (2)+…+f (2 017)的值.5.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 013)+f (2 015)的值为( )A .-1B .1C .0D .无法计算6.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 014).7.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .18。
若函数)1ln()(2++=x x x x f 为偶函数,则a =________. 9.若函数))(12()(a x x xx f -+=为奇函数,则a =________10.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( )A .4B .-4C .6D .-611.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足)1(2)(log )(log 212f a f a f ≤+,则a 的取值范围是( )A .[1,2]B 。
2021年中考一轮复习数学《函数填空压轴题》专项突破训练(附答案)

2021年九年级数学中考复习《函数填空压轴题》专项突破训练(附答案)1.如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.2.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x 轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.3.如图,抛物线y=x2+bx+c与x轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于M,若AB=6,则OM的长为.4.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.5.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.6.在平面直角坐标系xOy中,P为反比例函数y=(x>0)的图象上的动点,则线段OP 长度的最小值是.7.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.8.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.9.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m 于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.10.已知:在平面直角坐标系中,直线L经过点A(0,﹣1),且直线L与抛物线y=x2﹣x 只有一个公共点,试求出这个公共点的坐标.11.如图,抛物线与y轴交于点A,与x轴交于B、C,点A关于抛物线对称轴的对称点为点D,点E在y轴上,点F在以点C为圆心,半径为2的圆上,则DE+EF 的最小值是.12.如图,已知抛物线y=x2+bx+2与x轴交于A、B两点,顶点为M,抛物线的对称轴在y 轴的右则,若tan∠BAM=,则b的值是.13.如图,已知函数y=x+3的图象与函数y=的图象交于A、B两点,连接BO并延长交函数y=的图象于点C,连接AC,若△ABC的面积为12,则k的值为.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c >0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论有个.15.如图,反比例函数y=(k≠0,x<0)经过△ABO边AB的中点D,与边AO交于点C,且AC:CO=1:2,连接DO,若△AOD的面积为,则k的值为.16.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.17.如图,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=﹣x2+bx+c 的图象经过A、B两点,与x轴交于另一点C.若点M在抛物线的对称轴上,且∠AMB=∠ACB,则所有满足条件的点M的坐标为.18.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c ≤n的解集是.19.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.20.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点,若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,若存在以O,M,N 为顶点的三角形与△ABC相似.请求出点N的坐标.21.已知抛物线y=x2+mx+n经过点(2,﹣1),且与x轴交于A(a,0),B(b,0)两点,若点P为该抛物线的顶点,则使△PAB面积最小时抛物线的解析式为.22.如图,以点O为圆心,半径为2的圆与的图象交于点A,B,若∠AOB=30°,则k 的值为.23.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x 轴上,顶点D在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k 的值为.24.直线与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO'B',则点B′的坐标是.参考答案1.如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.解:过点C作CD⊥x轴,过点B作BE⊥y轴,与DC的延长线相交于点E,由折叠得:OA=AC=1,OB=BC=2,∵∠E=∠CDA=∠ACB=90°,∴∠ECB+∠EBC=90°,∠ECB+∠ACD=90°,∴∠EBC=∠ACD,∴△ACD∽△CBE,∴,设CD=m,则BE=2m,CE=2﹣m,AD=2m﹣1在Rt△ACD中,由勾股定理得:AD2+CD2=AC2,即:m2+(2m﹣1)2=12,解得:m1=,m2=0(舍去);∴CD=,BE=OD=,∴C(,)代入y=得,k==,故答案为:2.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x 轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).3.如图,抛物线y=x2+bx+c与x轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于M,若AB=6,则OM的长为9 .解:抛物线y=x2+bx+c与x轴只有一个交点,则b2﹣4c=0,设OM=h,A、B点的横坐标分别为m、n,则:A(m,h)、B(n,h),由题意得:x2+bx+(c﹣h)=0,则:m+n=﹣b,mn=c﹣h,AB=6=n﹣m===,解得:h=9,故答案为9;附注:其它解法:将抛物线平移,顶点至原点,此时y=x2,则点B点横坐标为3,故y=9.4.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为(8,).解:如图,连接AD并延长,交x轴于E,由A(5,12),可得AO==13,∴BC=13,∵AB∥CE,AB=BD,∴∠CED=∠BAD=∠ADB=∠CDE,∴CD=CE,∴AB+CE=BD+CD=13,即OC+CE=13,∴OE=13,∴E(13,0),由A(5,12),E(13,0),可得AE的解析式为y=﹣x+,∵反比例函数y=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为y=,解方程组,可得,,∴点D的坐标为(8,).5.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.6.在平面直角坐标系xOy中,P为反比例函数y=(x>0)的图象上的动点,则线段OP 长度的最小值是 2 .解:根据题意可得:当P为直线y=x与反比例函数y=(x>0)的交点时则线段OP 长度的最小,由得:或(舍去),则P点的坐标为(,),则线段OP==2,故答案为:2.7.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12 .解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点B、A分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0),∴﹣a(2+b)=b(﹣1﹣a),整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以|k|=12,由函数图象在第二象限,所以k=﹣12.8.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.9.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m 于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为2.解:作CE⊥x轴于E,DF⊥y轴于F,如图,对于y=﹣x+m,令x=0,则y=m;令y=0,﹣x+m=0,解得x=m,∴A(0,m),B(m,0),∴△OAB等腰直角三角形,∴△ADF和△CEB都是等腰直角三角形,设M的坐标为(a,b),则ab=,CE=b,DF=a,∴AD=DF=a,BC=CE=b,∴AD•BC=a•b=2ab=2.故答案为2.10.已知:在平面直角坐标系中,直线L经过点A(0,﹣1),且直线L与抛物线y=x2﹣x 只有一个公共点,试求出这个公共点的坐标(1,0),(﹣1,2)或(0,0).解:(1)、如果直线L是一次函数,设直线L的解析式是y=ax﹣1,根据直线L与抛物线相交可得x2﹣x=ax﹣1,x2﹣(a+1)x+1=0,因为只有一个交点,那么(a+1)2﹣4=0,a=﹣3或a=1.当a=1时,直线L的解析式是y=x﹣1,那么与抛物线的交点就应该是方程组的解,即,即交点坐标是(1,0).当a=﹣3是,直线L的解析式是y=﹣3x﹣1,那么与抛物线的交点就应该是(﹣1,2);(2)、当直线L的解析式是x=0时,他们的交点就应该是(0,0),因此公共点坐标为(1,0),(﹣1,2)或(0,0).11.如图,抛物线与y轴交于点A,与x轴交于B、C,点A关于抛物线对称轴的对称点为点D,点E在y轴上,点F在以点C为圆心,半径为2的圆上,则DE+EF 的最小值是23 .解:对于,令x=0,则y=15,令=0,解得x =4或8,故点A、B、C的坐标分别为(0,15)、(4,0)、(8,0),函数的对称轴为x=6,则点D(12,15),过点D作y轴的对称点H(﹣12,15),连接CH交y轴于点E,交圆C于点F,则点E、F 为所求点,理由:∵点H、D关于y轴对称,则EH=ED,则DE+EF=HE+EF=HF为最小,则DE+EF最小=HF=HC﹣2=﹣2=23,故答案为23.12.如图,已知抛物线y=x2+bx+2与x轴交于A、B两点,顶点为M,抛物线的对称轴在y 轴的右则,若tan∠BAM=,则b的值是﹣3 .解:过点M作MN⊥x轴于点N,则tan∠BAM==,函数的对称轴为x=﹣b,当x=﹣b时,y=x2+bx+2=2﹣,则MN=﹣2,令y=x2+bx+2,则xA+xB=﹣b,xA+xB=2,应该改为:令y=x2+bx+2=0,则xA+xB=﹣b,xA.xB=2.令y=x2+bx+2,则x A+x B=﹣b,x A•x B=2,则AB=|x A﹣x B|===2AN,则AN=,∵AN=2MN,即AN==2(﹣2),解得b=±3,∵b<0,故b=﹣3,故答案为﹣3.13.如图,已知函数y=x+3的图象与函数y=的图象交于A、B两点,连接BO并延长交函数y=的图象于点C,连接AC,若△ABC的面积为12,则k的值为.解:如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=6.设直线y=x+3与y轴交于点D,则D(0,3),设A(a,a+3),B(b,b+3),则C(﹣b,﹣b﹣3),∴S△OAB=×3×(a﹣b)=6,∴a﹣b=4 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC﹣S△OCN=S梯形AMNC=6,∴(﹣b﹣3+a+3)(﹣b﹣a)=6,将①代入,得∴﹣a﹣b=3②,①+②,得﹣2b=7,b=﹣,①﹣②,得2a=1,a=,∴A(,),∴k=×=.故答案为.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c >0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论有 4 个.解:抛物线开口向下,因此a<0,对称轴为x=1>0,因此a、b异号,所以b>0,抛物线与y轴交点在正半轴,因此c>0,所以abc<0,于是①正确;抛物线的对称轴为直线x=﹣=1,因此有2a+b=0,故④正确;当x=﹣1时,y=a﹣b+c<0,而2a+b=0,所以3a+c<0,故②不正确;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,即b2>4ac,故⑤正确;抛物线的对称轴为x=1,与x轴的一个交点在﹣1与0之间,因此另一个交点在2与3之间,于是当x=2时,y=4a+2b+c>0,因此③正确;综上所述,正确的结论有:①③④⑤,故答案为:4.15.如图,反比例函数y=(k≠0,x<0)经过△ABO边AB的中点D,与边AO交于点C,且AC:CO=1:2,连接DO,若△AOD的面积为,则k的值为﹣2 .解:如图所示,过C作CE⊥BO于E,过A作AF⊥BO于F,∴CE∥AF,∴△OCE∽△OAF,设C(x,),∵AC:CO=1:2,∴OC:OA=2:3,∴A(x,),∵D是AB的中点,∴点D的纵坐标为=,又∵点D在反比例函数y=图象上,∴点D的横坐标为=,∴点B的横坐标为×2﹣x=x,∵△AOD的面积为,OD是△AOB的中线,∴△BOD的面积为,即(﹣x)×=,解得k=﹣2,故答案为:﹣2.16.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为﹣.解:3a+2b+c=6,2a+b﹣3c=1,解得a=7c﹣4,b=9﹣11c;∵a≥0、b≥0,∴7c﹣4≥0,9﹣11c≥0,∴≤c≤.∵m=3a+b﹣7c=3c﹣3,∴m随c的增大而增大,∵c≤.∴当c取最大值,m有最大值,∴m的最大值为s=3×﹣3=﹣.故答案为﹣.17.如图,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=﹣x2+bx+c 的图象经过A、B两点,与x轴交于另一点C.若点M在抛物线的对称轴上,且∠AMB=∠ACB,则所有满足条件的点M的坐标为()或().解:一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,则点A、B的坐标分别为(4,0)、(0,﹣2),当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,以O2为圆心,以O2A半径画⊙O2,此时A、B两点均在⊙O2上,M点为⊙O2与对称轴的交点,如图2,∵O1与O2关于AB的对称,∴O2A=O2B=O1A=O1B,∴⊙O2与⊙O1是等圆,∵AB为⊙O2与⊙O1共同的弦,圆周角∠ACB对应的优弧是⊙O1中的优弧AB,圆周角∠AMB 对应的优弧是⊙O2中的优弧AB,又∵在等圆⊙O2与⊙O1中,∠ACB与∠AMB所对应的优弧相等,∴∠AMB=∠ACB,∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,﹣).综上所述,点M的坐标为()或().18.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c ≤n的解集是﹣5≤x≤2 .解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.19.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.20.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点,若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,若存在以O,M,N 为顶点的三角形与△ABC相似.请求出点N的坐标(,0)或(,0)或(﹣1,0)或(5,0).解:设抛物线的解析式为:y=a(x﹣1)2+1,∵抛物线经过原点,∴a(0﹣1)2+1=0,解得,a=﹣1,则抛物线的解析式为:y=﹣(x﹣1)2+1=﹣x2+2x,,解得,,,∴点B的坐标为(2,0),点C的坐标为(﹣1,﹣3),∴AB==,AC==2,BC==3,∴AC2=AB2+BC2,∴∠ABC=90°,设点N的坐标为(n,0),则点M的坐标为(n,﹣n2+2n),当△ONM∽△ABC时,=,即=,解得,n1=﹣1,n2=5,当△ONM∽△CBA时,=,即=,解得,n1=,n2=,综上所述,点N的坐标为(,0)或(,0)或(﹣1,0)或(5,0),故答案为:(,0)或(,0)或(﹣1,0)或(5,0).21.已知抛物线y=x2+mx+n经过点(2,﹣1),且与x轴交于A(a,0),B(b,0)两点,若点P为该抛物线的顶点,则使△PAB面积最小时抛物线的解析式为y=x2﹣4x+3 .解:由题意知4+2m+n=﹣1,即n=﹣2m﹣5,∵A(a,0)、B(b,0)两点在抛物线y=x2+mx+n上,∴a+b=﹣m,ab=n,又∵|AB|=|a﹣b|=x2+mx+n经过(2,﹣1),代入得,n=﹣2m﹣5,∴|AB|=,P点纵坐标为﹣m2﹣2m﹣5,S△PAB=AB•|y P|=•|﹣m2﹣2m﹣5|==,所以,当m=﹣4时,S△PAB最小,此时,该抛物线解析式为y=x2﹣4x+3.故答案是:y=x2﹣4x+3.22.如图,以点O为圆心,半径为2的圆与的图象交于点A,B,若∠AOB=30°,则k 的值为.解:由圆、反比例函数图象的对称性可知,图形关于一三象限角平分线对称,即关于直线y=x对称,可得,△AOM≌△BON,∴∠AOM=∠BON=(90°﹣30°)=30°,在Rt△BON中,∵OB=2,∴BN=2×sin30°=1,ON=2×cos30°=,∴B(,1)∴k=,故答案为:.23.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x 轴上,顶点D在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k 的值为 4 .解:∵正方形ABCD的面积为20,∴AB=BC=CD=DA==2,∴CE=DE=,∵∠COE=∠ADE=90°,∠CEO=∠AED,∴△COE∽△ADE,∴==,即,==,∴=,∵CE=,∴OE=1,OC=2,过点D作DF⊥x轴,垂足为F,∵CE=DE,∴OF=OC=2,DF=2OE=2,∴D(2,2)代入反比例函数关系式得,k=2×2=4,故答案为:4.24.直线与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO'B',则点B′的坐标是(8,6)或(4,﹣6).解:把x=0或y=0代入得,y=2,x=6,故点A(6,0),B(0,2),即OA=6,OB=2;①把△AOB绕点A顺时针旋转90°后得到△AO1'B1',∴O1′B1′=OB=2=AM,B1′M=O1′A=OA=6,OM=6+2=8,∴B1′(8,6);②把△AOB绕点A逆时针旋转90°后得到△AO2'B2',∴O2′B2′=OB=2=AN,B2′N=O2′A=OA=6,ON=6﹣2=4,∴B2′(4,﹣6);故答案为:(8,6)或(4,﹣6).。
第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章一次函数压轴题考点训练A ....【答案】A【分析】根据y 1,y 2的图象判断出k+b 的值,然后根据k-1、所求函数图象经过的象限即可.【详解】解:根据y 1,y 2的图象可知,,且当x=1时,y 2=0,即k+b=0.∴对于函数()1y k x b =-+,有b 时,y=k-1+b=0-1=-1<0.∴符合条件的是选项.故选:A.【点睛】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关....()A.(-1,0)【答案】B【分析】由题意作A求的P点;首先利用待定系数法即可求得直线∵A(1,-1),∴C的坐标为(1,1连接BC,设直线BC∴123k bk b+-⎧⎨+-⎩==,解得⎧⎨⎩A .433B .233【答案】D【分析】根据题意利用相似三角形可以证明线段用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点【详解】解:由题意可知,2OM =,点则OMN ∆为顶角30度直角三角形,ON如图所示,当点P 运动至ON 上的任一点时,设其对应的点∵o AO AB ⊥,iAP AB ⊥∴o iOAP B AB ∠=∠又∵tan 30o AB AO =∙ ,tan i AB AP =∙∴::o i AB AO AB AP=∴o i AB B ∆∽AOP∆∴o i AB B AOP∠=∠【答案】32b -≤≤【分析】根据矩形的性质求得点D 的坐标,交,则交点在线段BD 之间,代入求解即可.【详解】解:矩形ABCD 中,点A 、根据矩形的性质可得:(1,3)D 根据图像得到直线y x b =+与矩形ABCD 将点(4,1)B 代入得:41b +=,解得b 将点(1,3)D 代入得:13+=b ,解得b 由此可得32b -≤≤【答案】0k <或01k <<【分析】分别利用当直线()430y kx k k =+-≠过点值范围,据此即可求解.【详解】解:当直线y =【点睛】本题主要考查等腰直角三角形的性质和两直线交点坐标的求法,加辅助线,构造等腰直角三角形和全等三角形,是解题的关键.评卷人得分三、解答题13.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往运任务承包给某运输公司.已知C乡需要农机34台,两乡运送农机的费用分别为250元/台和200元/台,从别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为系式,并直接写出自变量x的取值范围;值.【答案】(1)W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30;(2)有三种调运方案:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)a 的值为200元.【分析】(1)设A 城运往C 乡x 台农机,可以表示出运往其它地方的台数,根据调运单价和调运数量可以表示总费用W ;(2)列出不等式组确定自变量x 的取值范围,在x 的正整数解的个数确定调运方案,并分别设计出来;(3)根据A 城运往C 乡的农机降价a 元其它不变,可以得出另一个总费用与x 的关系式,根据函数的增减性,确定当x 为何值时费用最小,从而求出此时的a 的值.【详解】解:(1)设A 城运往C 乡x 台农机,则A 城运往D 乡(30﹣x )台农机,B 城运往C 乡(34﹣x )台农机,B 城运往D 乡(6+x )台农机,由题意得:W =250x +200(30﹣x )+150(34﹣x )+240(6+x )=140x +12540,∵x ≥0且30﹣x ≥0且34﹣x ≥0,∴0≤x ≤30,答:W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30.(2)由题意得:1401254016460030x x +>⎧⎨⎩,解得:28≤x ≤30,∵x 为整数,∴x =28或x =29或x =30,因此有三种调运方案,即:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)由题意得:W =(250﹣a )x +200(30﹣x )+150(34﹣x )+240(6+x )=(140﹣a )x +12540,∵总费用最小值为10740元,∴140﹣a <0∴W 随x 的增大而减小,又∵28≤x ≤30,∴当x =30时,W 最小,即:(140﹣a )×30+12540=10740,【答案】(1)y=2x+4(2)1112-+【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线(1)求m 的值;(2)点P 从O 出发,以每秒2个单位的速度,沿射线OA 方向运动.设运动时间为t ()s .①过点P 作PQ OA ⊥交直线AB 于点Q ,若APQ ABO ∆≅∆,求t 的值;②在点P 的运动过程中,是否存在这样的t ,使得POB ∆为等腰三角形?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)6;(2)①2或8;②2.5或4或6.4.3【点睛】本题主要考查一次函数图象与几何图形的综合,形的性质,利用分类讨论的思想方法,是解题的关键.17.如图,在平面直角坐标系中,直线2y x =-+交于点C .(1)求点A ,B 的坐标.(3)存在.∵线段AB在第一象限,∴这时点P在x轴负半轴.∵==OA 2,OB 4,∴222224BP OP OB x =+=+,222222420AB OA OB =+=+=,222()(2)AP OA OP x =+=-.∵222BP AB AP +=,∴222420(2)x x ++=-,解得8x =-,∴当点P 的坐标为(8,0)-时,ABP 是直角三角形;③设AB 是直角边,点A 为直角顶点,即90BAP ∠= .∵点A 在x 轴上,P 是x 轴上的动点,∴90BAP ∠≠ .综上,当点P 的坐标为(0,0)或(8,0)-时,ABP 是直角三角形.【点睛】本题考查的是一次函数的图象与及几何变换、一次函数的性质及直角三角形的判定等知识点,掌握分类讨论思想和一次函数图像的性质是解答本题的关键.。
高一数学第一学期函数压轴(大题)练习(含答案)

高一数学第一学期函数压轴(大题)练习(含答案)1.已知不等式 $2(\log_2 x)^2+7\log_2 x+3\leqslant 0$,求函数 $f(x)=\log_2 x\cdot \log_2 x$ 的最大值、最小值及相应的$x$ 值。
2.已知定义域为 $\mathbb{R}$ 的函数$f(x)=\dfrac{2x+1}{x^2+1}$ 是奇函数。
1)求 $a$ 的值;2)判断并证明该函数在定义域 $\mathbb{R}$ 上的单调性;3)若对任意的 $t\in\mathbb{R}$,不等式 $f(t-2t)+f(2t-k)<0$ 恒成立,求实数 $k$ 的取值范围。
3.已知定义在区间 $(-1,1)$ 上的函数 $f(x)=\dfrac{(1-a)x^2+b}{1-x^2}$。
1)求实数 $a,b$ 的值;2)用定义证明:函数$f(x)$ 在区间$(-1,1)$ 上是增函数;3)解关于 $t$ 的不等式 $\dfrac{(1-a)t^2+b}{1-t^2}>0$。
4.定义在 $\mathbb{R}^+$ 上的函数 $f(x)$ 对任意实数$a,b\in \mathbb{R}^+$,均有 $f(ab)=f(a)+f(b)$ 成立,且当$x>1$ 时,$f(x)<0$。
1)求 $f(1)$;2)求证:$f(x)$ 为减函数;3)当 $f(4)=-2$ 时,解不等式$f(x)+f\left(\dfrac{1}{2}x\right)>0$。
5.已知函数$f(x)=x-2bx+\dfrac{4}{b}$,定义域为$[1,4]$,$b\geqslant 1$。
I)求 $f(x)$ 的最小值 $g(b)$;II)求 $g(b)$ 的最大值 $M$。
6.设函数 $f(x)=\log_a (x-3)$,$a>0$ 且 $a\neq 1$,当点$P(x,y)$ 是函数 $y=f(x)$ 图象上的点时,点 $Q(x-2a,-y)$ 是函数 $y=g(x)$ 图象上的点。
函数压轴题,100道高难度函数试题解法赏析

间1,12éùêúëû上单调递减,因此()max142g x g æö==ç÷èø,从而a ≥4;当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a £2331x x -,()()'4312x g x x -=0>()g x 在区间[)1,0-上单调递增,因此()()ma 14ng x g =-=,从而a ≤4,综上a =4 特殊方法:抓住îíì³£Þïîïíì³³-440)21(0)1(a a f f 例1.函数1)3()(2+-+=x m mx x f 的图象与x 轴的交点至少有一个在原点的右侧,则实数m 的取值范围为_______1£m 解析:显然0£m 成立,当0>m 时,10023£<Þïîïíì>--³D m mm例2.设函数)(x f y =在),(+¥-¥内有定义.对于给定的正数K ,定义函数îíì>£=K x f K K x f x f x f k)(,)(),()(,取函数xe x xf ---=2)(,若对任意的),(+¥-¥Îx ,恒有)()(x f x f k =,则K 的取值范围是_______1³K解析:2009湖南理,由定义知,若对任意的),(+¥-¥Îx ,恒有)()(x f x f k =即为K x f £)(恒成立,即求)(x f 的最大值,由'()10,xf x e-=-=知0x =,所以(,0)x Î-¥时,'()0f x >,当(0,)x Î+¥时,'()0f x <,所以max ()(0)1,f x f ==即()f x 的值域是(,1]-¥例3.已知函数()log (2)a f x ax =+的图象和函数1()log (2)ag x a x =+(0,1a a >¹)的图象关于直线y b =对称(b 为常数),则a b += 2解析:b x g x f 2)()(=+b x a ax a a 2)2(log )2(log =+-+Þ,2,1;0,1====a x b x例4.已知定义在R 上的函数)(x F 满足()()()F x y F x F y +=+,当0x >时,()0F x <. . 若若对任意的[0,1]x Î,不等式组22(2)(4)()(3)F kx x F k F x kx F k ì-<-ïí-<-ïî均成立,则实数k 的取值范围是 .(3,2)-解析:0)0(=F ,令x y -=得)(x F 奇函数,设)()()(,121221x F x F x x F x x -+=-<0)()(12<-=x F x F ,)(x F 减函数,ïîïíì->-->-34222k kx x k x kx ïïîïïíì<Þ££-+=++<<<-Þîíì<<Þ<-+-Þ2)21(2413430)1(0)0(0)4(222k t t t x x k k F f k kx x 例5.已知函数31++-=x x y 的最大值为M ,最小值为m ,则M m 的值为的值为__________22 解析:法一:平方解析:法一:平方 ; 法二:向量)3,1(),1,1(+-x x 数量积数量积 例6.设函数31()12x f x x -=--的四个零点分别为1234x x x x 、、、,1234()f x x x x =+++ . 19 解析:令)0(2)(,13³-==-t t t g t x t画出ty t y 2,3==图象,它们在第一象限有两个交点,则,11t x =-21t x =-242312111,1,1,1t x t x t x t x -=+=-=+=Þ,44321=+++x x x x 19)4(=f例7.定义在R 上的函数()y f x =,若对任意不等实数12,x x 满足1212()()0f x f x x x -<-,且y x ,满足不等式22(2)(2)0f x x f y y -+-£成立函数(1)y f x =-的图象关于点(1,0)对称,则当则当 14x ££时,y x 的取值范围为________]121-[,解析:)(222y x y x -³-,(1)0=-y x 时,1=xy 成立;(2)121-20££Þîíì³+³-xy y x y x(3)ïîïí죣£+<-4120x y x y x 无解无解例8.已知1,0¹>a a ,若函数)(log )(2x ax x f a-=在]4,3[是增函数,则a 的取值范围是________),1(+¥解析:x ax x g -=2)(对称轴是a x 21=,当321£a 时,10)3(161>Þïïîïïíì>>³a g a a ;当421³a 时,f Þïïîïïíì><<£0)4(1081g a a例9.若直角坐标平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 图象上;②Q P ,关于原点对称,则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“友好点对”).已知函数ïîïíì³<++=0,20,142)(2x ex x x x f x ,则)(x f 的“友好点对”有____个 2个解析:数形结合,即看0,2³=x e y x 关于原点对称函数0,2£-=x e y x 与0,1422<++=x x x y 有几个交点。
重难点 填空压轴题(代数篇)(学生版)--2024年中考数学二轮复习

重难点 填空压轴题(代数篇)目录题型01 求值类类型一 代数式求值类型二 方程、不等式求值类型三 函数求值题型02 规律探究类类型四 数字规律探究类型五 图形规律探究类型六 函数规律探究题型03 函数最值类类型七 一次函数的最值问题类型八 二次函数的最值问题类型九 反比例函数与其它函数的最值问题题型04 函数临界点类类型十 一次函数的最值问题类型十一 二次函数的最值问题类型十二 反比例函数的最值问题题型01求值类类型一代数式求值1已知,a+b=x+y=2,ax+by=5,则a2+b2=xy+ab x2+y22如图,正方形ABCD内部摆放着①号,②号,③号3个边长都为1的正方形,其中①号正方形部分被②号和③号正方形遮盖,若图中阴影部分的面积为S,则正方形ABCD的边长为.(用含S的式子表示)3若a <112011+12012+12013+12014+12015<a +1,则自然数a =.4下列说法正确的有.(选序号)①若(x -1)x -1=1,则满足条件x 的值有3个.②若x =32m -2,y =3-9m ,则用含x 的代数式表示y 为y =-9x +3.③已知(x -20)2+(x -28)2=100,则(x -24)2的值是34.④1,2,3,⋯,58这58个数中不能表示成某两个自然数的平方差的数共有14个.5四个互不相等的数a ,b ,c ,m 在数轴上的对应点分别为A ,B ,C ,M ,其中a =4,b =8,m =0.5(a +b +c ).(1)若c =2,则A ,B ,C 中与M 距离最小的点为;(2)若在A ,B ,C 中,点C 与点M 的距离最小,且不等于A ,B 与点M 的距离,则符合条件的点C 所表示的数c 的取值范围为.如果一个三位自然数各个数位上的数字均不为0,且百位数字等于十位数字与个位数字的和,则称这个数为“佳佳数”.如:532,因为5=3+2,所以532是“佳佳数”;又如,432,因为4≠3+2,所以432不是“佳佳数”.已知M 是一个“佳佳数”,则M 最大值是;交换M 的百位数字与十位数字得到一个新三位数N ,在N 的末位数字后加2得到一个新的四位数P ,在M 的十位数字与个位数字之间添加M 的十位数字得到一个新四位数Q ,若Q -P 能被7整除,则满足以上条件的“佳佳数”的最大值为.6若一个四位自然数M ,满足个位数字与十位数字之和的平方正好等于M 的千位数字与百位数字组成的两位数,则这个四位数称为“和数”,比如:4952,满足5+2 2=49;若一个四位自然数N ,满足个位数字与十位数字的平方差正好等于N 的千位数字与百位数字组成的两位数,则这个四位数称为“差数”,比如:7239,满足92-32=72;那么最大的“和数”与最小的“差数”之和是.如果一个“和数”M 与一个“差数”N 的个位数字均为a 、十位数字均为b ,且F M ,N =M +N +18a -22811,若F M ,N 为整数时,记G M ,N =aba +b,则G M ,N 的最大值是.7对于任意一个三位自然数M ,若它的各数位上的数字均不为0,且满足十位上数字的平方等于百位数字与个位数字之积的k 倍(k 为整数),则称M 为“k 阶比例中项数”此时,记去掉其个位数字后剩余的两位数为m 1,去掉百位数字后剩余的两位数为m 2,规定F M =m 1+5m 2,则最大的“4阶比例中项数”是;若N =100m +10n +1(其中1≤m ≤4,2≤n ≤8,m ,n 均为正整数)是一个“k 阶比例中项数”,且F N 能被8除余3,则满足条件的N 之和是.类型二方程、不等式求值8已知方程组a1x+b1y=c1a2x+b2y=c2的解为x=4y=3,则方程组2a1x-1+3b1y+1=6c12a2x-1+3b2y+1=6c2的解为.9如果一个五位数的万位数字与个位数字之和等于其百位数字的2倍,则称这个五位数为“星星数”,如果一个五位数的千位数字与十位数字之和等于其百位数字的2倍,则称这个五位数为“月亮数”;一个五位数A,规定其末三位数字组成的数与其前两位数字组成的数的和为F A;若M=10020+10000a+ 2010b+100c+d为“星星数”,N=10000a+1000b+10c+512+d为“月亮数”(其中1≤a≤8,0≤b≤4,0≤c≤8,0≤d≤7,且a,b,c,d为整数),则a+2b+d的值为;在此条件下,若F M+F N 的值能被13整除,则满足条件的M的值为.定义新运算“⊕”,对于任意实数a,b都有a⊕b=a+3b 2.(1)若a=-2,b=6,则a⊕b的立方根是;(2)若不等式4⊕x≥5成立,则该不等式的解集是.10关于x的一元一次不等式组x-32≥2x+13-32x-m>5至少有3个整数解,且关于y的分式方程myy-2+2=-3y2-y有整数解,那么符合条件的所有整数m的和为.11(2024·浙江宁波·模拟预测)已知关于x的一元二次方程x2+ax+b=0有两个根x1,x2,且满足1<x1<x2<2.记t=a+b,则t的取值范围是.12已知,数轴上从左到右有三点A,B,C,它们在数轴上对应的数分别为a,b,c(a,b,c均不为整数),且6<c-a<7,k<b<k+1(k为正整数)为正整数.在点A与点B之间的所有整数依次记为p1,p2,p3⋯,p m;在点B与点C之间的所有整数分别记为q1,q2,q3,⋯,q n.若p21+p22+p23+⋯+p2n=q21+q22+q23 +⋯+q2n,则k的值为.13如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为ts t>0.(1)当t=s时,PB=4;(2)若点P表示的数是x,当2x+4+2x-6的值最小时,则t的取值范围是.14已知a,b,c为正整数,且a>b>c若b+c,a+c,a+b是三个连续正整数的平方,则a2+b2+c2的最小值为.15如果p,q是非零实数,关于x的方程||2023x-2024|-p|=-q始终存在四个不同的实数解,则p+q |p+q|+p-q|p-q|+pq|pq|+p|p|+q|q|的值为.16已知,直角梯形的上底为12厘米,下底为18厘米,高为12厘米.正方形的边长为13厘米,起始状态如下图所示.若正方形固定不动,把直角梯形以2厘米/秒的速度向右沿直线平移,设直角梯形的平移时间为t秒,两个图形的重叠部分面积为S平方厘米,则当S=60时,t=.类型三函数求值17如图,在平面直角坐标系xOy 中,点A x 1,y 1 、B x 2,y 2 在双曲线y =3x上,且0<x 1<x 2,分别过点A ,点B 作x 轴的平行线,与双曲线y =9x 分别交于点C ,点D .若△AOB 的面积为94,则ACBD的值为.18如图,在Rt △ABC 中,∠BAC =90°,B -6,0 ,CB 与y 轴交于点D ,CD BD=14,点C 在反比例函数y =kxx >0 的图象上,且x 轴平分∠ABC ,则k 的值为.19如图,在平面直角坐标系中,平面内有一动点P m ,-14m 2+12m +2 ,定点A 4,0 、B 0,2 ,连结AB .(1)点A 是否在点P 的运动路径上:;(填“是”或“否”)(2)若点P 只是在第一象限内运动,过点P 作PQ ⊥AB 于Q ,当PQ 取得最大值时,点P 的坐标是.20如图1,在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD,y关于x的函数图象如图2,图象过点0,2.则:(1)BC=.(2)y关于x的函数图象的最低点的横坐标是.21(2024·浙江宁波·一模)如图,点A为反比例函数y=k1x(x>0)上一点,连结AO并延长交反比例函数y=k2x(x<0)于点B,且k2=9k1.点C在y轴正半轴上,连结CA并延长交x轴于点E,连结BC交x轴于点F,若ACAE=4,SΔCOB=10,则△COF的面积为.22如图,正比例函数y=x与反比例函数y=kx(x>0)的图象交于点A,OA=2,过点A作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数的图象于点A₁;过点A₁作A₁B₁⊥A₁B,交x轴于点B₁;再作B1A2∥BA1,交反比例函数的图象于点A₂,依次进行下去⋯根据以上信息,解答下列问题.(1)k的值为.(2)点A101的横坐标为.23给出如下新定义:在平面直角坐标系中,动点M x,y在反比例函数y1=1x上,若点A绕着M点旋转180°后得到点B,我们称B是A关于M的“伴随点”.若A2,t关于M的“伴随点”为B,由A、B和坐标原点构成的三角形是以OA为直角边的等腰直角三角形,则t的值是.24(2023·浙江温州·三模)如图1,为世界最大跨度铁路拱桥--贵州北盘江特大桥.如图2,已知拱桥曲线呈抛物线,主桥底部跨度OA=400米,以O为原点,OA所在直线为x轴建立平面直角坐标系,点E为抛物线最高点,立柱AB,CD,GH都与x轴垂直,BN∥OA,BC=120m,HF=40m,若F,G,O和B,D,O均三点共线.则立柱比HGCD =,以及EFAB=.25如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以3cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧作△PQH,且QH⊥AB,点H在射线AB上.设点P的运动时间为t(s).△PQH与△ABC的重叠部分的面积为S(cm2),则当t=(s)时S最大;当t=(s)时S的值为38cm2.26一次函数y=kx+b(k、b为常数,k≠0)中的x与y的部分对应值如下表:下列结论中一定正确的是(填序号即可).①当n>0时,k<0;②当y的值随x值的增大而增大时,n<0;③当S△AOB=9时,n=-5或n=7;④当k<0时,直线AB与y轴相交于点C,则OC=3n+6 4.题型02规律探究类类型四数字规律探究27将实数-1,2,-3,4,-5⋅⋅⋅按图所示方式排列.若用m,n表示第m排从左向右第n个数,则4,3与23,20 表示的两数之和是.28小亮有黑、白各10张卡片,分别写有数字0~9.把它们像扑克牌那样洗过后,数字朝下,排成四行,排列规则如下:①从左至右按从小到大的顺序排列:②黑、白卡片数字相同时,黑卡片放在左边.小亮每行翻开了两张卡片,如图所示:其余卡片上数字小亮让小明根据排列规则进行推算,小明发现有的卡片上数字可以唯一确定,例如第四行最后一张白色卡片上数字只能是有的卡片上的数字并不能唯一确定,小明对不能唯一确定的卡片上数字进行猜测,则小明一次猜对所有数字的概率是.29将正偶数按下表排列5列:第1列第2列第3列第4列第5列第一行2468第二行16141210第三行18202224⋯⋯2826根据上面规律,则2000应在.30下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为.142638⋯a 1829320435bx31我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非”.如图,在边长为1的正方形纸板上,依次贴上面积为12,14,18,⋯,12n 的长方形彩色纸片(n 为大于1的整数),运用“数形结合”的思想,依数形变化的规律,可计算出12+14+18+⋯+12100=.32定义一种对正整数n 的“F 运算”:(1)当n 为奇数时,结果为3n +5;(2)当n 为偶数时,结果为n 2k(其中k 是使n2k为奇数的正整数),并且运算重复进行.例如,取n =30,则:若n =420,则第2023次“F 运算”的结果是.33记S n =a 1+a 2+a 3+⋯+a n ,令T n =S 1+S 2+⋯+S nn,称T n 为a 1,a 2,⋯,a n 这数列的“理想数”.已知a 1,a 2,⋯,a 500的“理想数”为2505,那么24,a 1,a 2,⋯,a 500的“理想数”为.34观察下列算式:12=1×2×36;12+22=2×3×56;12+22+32=3×4×76;12+22+32+42=4×5×96;⋯⋯.用你所发现的规律,化简:(n +12)(n +13)(2n +25)6-(n +10)(n +11)(2n +21)6=(n 为正整数).35斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即:1,1,2,3,5,8,13,21,34,⋯实际生活中及现代物理与化学等领域也有着广泛的应用,若斐波那契数列中的第n 个数记为a n ,则1+a 3+a 5+a 7+a 9+⋅⋅⋅+a 2021与斐波那契数列中的第个数相同.类型五图形规律探究36如图是一组有规律的图案,它由若干个大小相同的点和三角形组成.第1个图案中有3个点和1个三角形,第2个图案中有6个点和3个三角形,第3个图案中有9个点和6个三角形,⋅⋅⋅⋅⋅⋅依此规律,第10个图案中,三角形的个数与点个数的和为.37如图,图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,⋯,按此规律排列下去,第⑧个图形中菱形的个数为.38如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a 1,第2幅图形中“•”的个数为a 2,第3幅图形中“•”的个数为a 3,以此类推,则1a 1+1a 2+1a 3+⋯+1a 18的值为.39如图,第一个正方形后,是用大小相等的小正方形拼成的大正方形,若第n 个、第m 个图形中正方形的个数分别记为S m 、S n ,m -n =a ,1<a <5,(-3)a <S m -S n <(-5)a ,则满足条件的所有n 值的和为.类型六函数规律探究40如图,在平面直角坐标系中,A 1,0 ,D 0,2 ,第1个正方形ABCD 面积记为S 1,第2个正方形A 1B 1C 1C 面积记为S 2,第3个正方形A 2B 2C 2C 1面积记为S 3,,以此规律,则第2023个正方形的面积S 2023=.41如图所示,已知直线与x 、y 轴交于B 、C 两点,A 0,0 ,在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,⋯则第n 个等边三角形的边长等于.42如图,在平面直角坐标系中,正方形A 1B 1C 1A 2与正方形A 2B 2C 2A 3是以O 为位似中心的位似图形,且位似比为12,点A 1,A 2,A 3在x 轴上,延长A 3C 2交射线OB 1与点B 3,以A 3B 3为边作正方形A 3B 3C 3A 4;延长A 4C 3,交射线OB 1与点B 4,以A 4B 4为边作正方形A 4B 4C 4A 3;⋯按照这样的规律继续作下去,若OA 1=1,则正方形A 2021B 2021C 2021A 2022的面积为.43如图,已知点A 1,A 2,,A 2020在函数y =x 2位于第二象限的图象上,点B 1,B 2,,B 2020在函数y =x 2位于第一象限的图象上,点C 1,C 2,,C 2020在y 轴的正半轴上,若四边形OA 1C 1B 1、C 1A 2C 2B 2,,C 2021A 2022C 2022B 2022都是正方形,则正方形C 2021A 2022C 2022B 2022的对角线长为.44如图所示,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,⋯,A n ,将抛物线y =x 2沿直线l :y =x 向上平移,得到一系列抛物线,且满足条件:①抛物线的顶点M 1,M 2,M 3,⋯,M n 都在直线y =x 上;②抛物线依次经过点A 1,A 2,A 3,⋯,A n ,则顶点M 2021的坐标为.45如图,在函数y=4xx>0的图象上有点P1、P2、P3、⋯,P n,P n+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3、⋯,P n,P n+1,分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3、⋯,S n,则S n=.(用含n的代数式表示)46如图,点A1,A2,A3⋯在反比例函数y=1xx>0的图象上,点B1,B2,B3,⋯B n在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=⋯,直线y=x与双曲线y=1x交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3⋯,则B n(n为正整数)的坐标是.题型03函数最值类类型七一次函数的最值问题47如图,在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,点P是线段AB的中点.若动点C在x轴上,连接BC,以BC为直角边,点B为直角顶点作等腰直角△BCD,连接DP,则DP长度的最小值是.48如图,直线y=3x+3分别交x轴、y轴于点B、A,点M在x轴,将AM绕点A按逆时针旋转60°得到AN,连接BN,则BN的最小值为.49直线y=x+3与y轴和x轴分别交于A、B两点,点C是OB的三等分点,D,E分别是直线AB和y轴上的动点,则△CDE周长的最小值是.50在平面直角坐标系中,A2,0,C在直线y=x上运动,存在一点P,满足∠POA+∠OPA,B3,0OP的最小值为.=∠APB,则CP+1351已知二次函数y=ax2+bx+c的图象与x轴交于点A、B,与y轴交于点C,且顶点的纵坐标为-1,如果△ABC为直角三角形,那么△ABC的面积的最大值为.类型八二次函数的最值问题52(23-24九年级上·浙江·期末)已知Rt△ABC的直角顶点C与原点O重合,点A,B都落在抛物线y=4x2上,则AB与y轴的交点为;若OD⊥AB于点D,则点D到点1,0的最大距离为.53已知关于x的二次函数y=-x-k2+11,当1≤x≤4时,函数有最小值2k,则k的值为.54(2024·浙江杭州·模拟预测)若点在抛物线上过y轴上点E作两条相互垂直的直线与抛物线分别交于A,B,C,D,且M,N分别是线段AB,CD的中点,面积的最小值为.55如图,在平面直角坐标系中,二次函数y=-x2+2x+3的图象与x轴交于点A,B,与y轴交于点C,点在线段上,则PA+PO的最小值是.56(23-24九年级上·浙江嘉兴·期中)如图,抛物线y=x2-2x-3与轴交于两点,抛物线的顶点为,点为AB的中点,以为圆心,长为半径在轴的上方作一个半圆,点为半圆上一动点,连接,取的中点,当点沿着半圆从点运动至点的过程中,线段的最小值为.类型九反比例函数与其它函数的最值问题57如图,一次函数y=-x+b与反比例函数的图像相交于A,B两点,其交点的横坐标分别为4,8.(1)k的值是;(2)将点A沿x轴正方向平移个单位长度得到点C,连接并延长交x轴正半轴于点D,则的最大值是.58如图,一次函数的图象与轴、轴分别交于、两点.线段的中点在反比例函数的图象上.若一次函数的图象与的图象有且只有一个第三象限的公共点,且与轴、轴分别交于、两点,试求出四边形的面积最小为.59如图,曲线是二次函数y=-x2+6x+3图像的一部分(其中A是抛物线与y轴的交点,B是抛物线顶点),曲线是反比例函数()图像的一部分,A,C两点的纵坐标相等,由点C开始不断重复“”的过程,形成一组波浪线.若点是波浪线上的点,则;若点和是波浪线上的点,则的最大值为.60如图,在平面直角坐标系中,点A,C分别在坐标轴上,且四边形是边长为3的正方形,反比例函数的图像与边分别交于E,D两点,△DOE的面积为4,点P为y轴上一点,则的最小值为.类型十一 一次函数的最值问题61如图,在平面直角坐标系中,已知点A的坐标为,点B的坐标为,点为y轴上一动点,现连接.记线段所围成的封闭区域(不有6个整点时,m的取值范围是.62在平面直角坐标系中,点的坐标为,点的“变换点”的坐标定义如下:当时,点坐标为;当时,点坐标为,线段上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则的取值范围是.63把a、b、c三个数按照从小到大排列,最大的数记作,例如,若直线与函数的图象有且只有1个交点,则k的取值范围是.64如图,直线分别与坐标轴交于,两点,若称横纵坐标都是整数的点为整点,那么△AOB内(含边界)的整点共有个.65某数学兴趣小组遇到这样一个问题:探究函数员小东根据学习函数的经验,对函数的图象与性质进行了探究,结合绝对值的性质以及函数图象,解决问题:若一次函数的图象与函数的图象只有一个交点,则实数a的取值范围是.类型十二二次函数的最值问题66若抛物线y=x2-x+m与轴交于不同的两点、,且,则的取值范围是.67已知点,,若抛物线y=ax2-2ax+4a≠0与线段恰有一个公共点,则a 的取值范围为.68(23-24九年级上·浙江金华·期末)定义:若x,y满足:,(k为常数)且x≠y,则称点为“好点”.(1)若是“好点”,则.(2)在的范围内,若二次函数的图象上至少存在一个“好点”,则c的取值范围为.69如图函数y=ax2+bx+ca>0,b2-4ac>0图象是由函数y=ax2+bx+c a>0,b2-4ac>0的图像x轴上方部分不变,下方部分沿轴向上翻折而成,如图所示,则下列结论正确的是.;将图像向上平移个单位后与直线有个交点.70在平面直角坐标系中,为抛物线y=x2+4x+2上一点,为平面上一点,且位于点右侧.(1)此抛物线的对称轴为直线;(2)若线段与抛物线有两个交点,则的取值范围是.类型十三反比例函数的最值问题71在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,那么称该点为“黎点”.例如都是“黎点”.(1)当时,双曲线上的“黎点”为;(2)若抛物线(为常数)上有且只有一个“黎点”,则当时,的取值范围为.72定义新运算:,即的取值为a,b,c的中位数,例如:,,已知函数与直线有个交点时,则的取值范围为.73对于平面直角坐标系xOy 中的图形M 和直线m ,给出如下定义:若图形M 上有点到直线m 的距离为d ,那么称这个点为图形M 到直线m 的“d 距点”.如图,双曲线C :y =4x(x >0)和直线l :y =-x +n ,若图形C 到直线l 的“2距点”只有2个,则n 的取值范围是.74如图是6个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角和凹入的角的顶点记作(为的整数).函数的图象为.()若过点,则.()若过,则一定过另一点,则.()若使得这些点分布在它的两侧,且一侧个点一侧个点,请写出符合要求的的所有整数值:.75定义:在平面直角坐标系xOy 中,函数图象上到两条坐标轴的距离之积等于的点,叫做该函数图象的“n 阶积点”.例如,点为一次函数y =-32x +3图象的“92阶积点”.若y 关于x的一次函数y =nx +4n -6图象的“n 阶积点”恰好有3个,则n 的值为.76定义:平面直角坐标系xOy 中,点,点,若,,其中k 为常数,且k≠0,则称点是点的“k 级变换点”.例如,点-2,4 是点1,2 的“-2级变换点”.(1)若函数y =-4x的图象上存在点1,2 的“k 级变换点”,则k 的值为;(2)若关于x 的二次函数y =nx 2-4nx -5n (x ≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线上,则的取值范围是.77如图,在第一象限,反比例函数y =k 1x x >0 和y =k 2x x >0 的图象分别与直线l :y =25x 交于点,,过点A ,B 分别作轴,轴,垂足分别为C ,D .(1)①k 1的值为.②图中阴影部分的面积为.(2)已知反比例函数y =m x x >0 的图象与直线l :y =25x 交于点,与抛物线y =-x 2+992x 交于点,,将点M ,N 之间的抛物线(不含端点)记为图象G ,则图象G 上的整点(横、纵坐标都是整数的点)有个.78定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例如,点是函数图象的“阶方点”;点是函数图象的“2阶方点”.(1)在①;②;③三点中,是反比例函数图象的“1阶方点”的有(填序号);(2)若y 关于x 的一次函数y =ax -3a +1图象的“2阶方点”有且只有一个,则;(3)若y 关于x 的二次函数图象的“n 阶方点”一定存在,则n 的取值范围为.。
压轴题28填空压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

2023年中考数学压轴题专项训练压轴题28填空压轴题(函数篇)一.填空题(共40小题)1.(2023•上虞区模拟)已知点A在反比例函数y=12x(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰直角三角形,则AB的长为.2.(2023•姑苏区校级一模)在平面直角坐标系xOy中,对于点P(a,b),若点P'的坐标为(ka+b,a+b k)(其中k为常数且k≠0),则称点P'为点P的“k—关联点”.已知点A在函数y=3x(x>0)的图象上运动,且A是点B的“3—关联点”,若C(﹣1,0),则BC的最小值为.3.(2023•海门市一模)如图,在平面直角坐标系xOy中,已知点A(m,n),B(m+4,n﹣2)是函数y=kx(k>0,x>0)图象上的两点,过点B作x轴的垂线与射线OA交于点C.若BC=8,则k的值为.4.(2023•建昌县一模)如图,在平面直角坐标系中,点A,B在反比例函数y=kx(k≠0,x>0)的图象上,点C在y轴上,AB=AC,AC∥x轴,BD⊥AC于点D,若点A的横坐标为5,BD=3CD,则k值为.5.(2023•碑林区校级模拟)如图,等腰直角△ABC的顶点A坐标为(﹣3,0),直角顶点B坐标为(0,1),反比例函数y=kx(x<0)的图象经过点C,则k=.6.(2023•宁波模拟)如图,在平面直角坐标系xOy中,△OAB为等腰直角三角形,且∠A=90°,点B的坐标为(4,0).反比例函数y=kx(k≠0)的图象交AB于点C,交OA于点D.若C为AB的中点,则ODOA=.7.(2023•龙港市二模)如图,Rt△ABO放置在平面直角坐标系中,∠ABO=Rt∠,A的坐标为(﹣4,0).将△ABO绕点O顺时针旋转得到△A′B′O,使点B落在边A′O的中点.若反比例函数y=kx(x>0)的图象经过点B',则k的值为.8.(2023•温州二模)如图,点A在x轴上,以OA为边作矩形OABC,反比例函数y=kx(k>0,x>0)的图象经过AB的中点E,交边BC于点D,连结OE.若OE=OC,CD=2,则k的值为.9.(2023•石家庄二模)已知A,B,C三点的坐标如图所示.(1)若反比例函数y=kx的图象过点A,B,C中的两点,则不在反比例函数图象上的是点;(2)当反比例函数的图象与线段AC(含端点)有且只有一个y=kx公共点时,k的取值范围是.10.(2023•郫都区二模)定义:若一个函数图象上存在横纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(﹣1,﹣1)是函数y=2x+1的图象的“等值点”.若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1、W2两部分组成的图象上恰有2个“等值点”时,m的取值范围为.11.(2023•双阳区一模)如图,抛物线y=﹣0.25x2+4与y轴交于点A,过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),连接BO、CO,若将△BOC向上平移使得B、C两点恰好落在抛物线y=﹣0.25x2+4上,则点O平移后的坐标为.12.(2023•衡水二模)如图,点A(a,−3a)(a<0)是反比例函数y=k x图象上的一点,点M(m,0),将点A绕点M顺时针旋转90°得到点B,连接AM,BM.(1)k的值为;(2)当a=﹣3,m=0时,点B的坐标为;(3)若a=﹣1,无论m取何值时,点B始终在某个函数图象上,这个函数图象所对应的表达式.13.(2023•市中区二模)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2023个点的坐标.14.(2023•沈阳二模)某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降 元.15.(2023•贵港二模)如图,抛物线y 1截得坐标轴上的线段长AB =OD =6,D 为y 1的顶点,抛物线y 2由y 1平移得到,y 2截得x 轴上的线段长BC =9.若过原点的直线被抛物线y 1,y 2所截得的线段长相等,则这条直线的解析式为 .16.(2023•江都区一模)如图,在平面直角坐标系中,点A ,B 坐标分别为(3,4),(﹣1,1),点C 在线段AB 上,且AC BC=13,则点C 的坐标为 .17.(2023•龙华区二模)如图,在平面直角坐标系中,OA =3,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数y =kx (x >0)的图象恰好过点A 与BC 的中点D ,则k = .18.(2023•乐至县模拟)如图,在平面直角坐标系中,点A 、A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n在直线y =−√33x +√33上,若A (1,0),且△A 1B 1O 、△A 2B 2A 1…△A n B n A n ﹣1都是等边三角形,则点B n的横坐标为 .19.(2023•玄武区一模)已知函数y =2x 2﹣(m +2)x +m (m 为常数),当﹣2≤x ≤2时,y 的最小值记为a .a 的值随m 的值变化而变化,当m = 时,a 取得最大值.20.(2023•萧山区一模)已知点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上. (1)若x 1x 2=2,则y 1y 2= .(2)若x 1=x 2+2,y 1=3y 2,则当自变量x >x 1+x 2时,函数y 的取值范围是 . 21.(2023•灞桥区校级模拟)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD ,点C ,D 恰好都落在反比例函数y =k x(k ≠0)的图象上,点E 在BC 延长线上,CE =BC ,EF ⊥BE ,交x 轴于点F ,边EF 交反比例函数y =kx(k ≠0)的图象于点P ,记△BEF 的面积为S ,若S =k2+12,则k 的值为 .22.(2023•东莞市校级一模)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上.以AB 为边长作正方形ABCD ,S 正方形ABCD =50,点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,则k 的值是 .23.(2023•长春一模)如图,正方形ABCD 、CEFG 的顶点D 、F 都在抛物线y =−12x 2上,点B 、C 、E 均在y 轴上.若点O 是BC 边的中点,则正方形CEFG 的边长为 .24.(2023•成都模拟)如图,在△AOB 中,AO =AB ,射线AB 分别交y 轴于点D ,交双曲线y =kx (k >0,x >0)于点B ,C ,连接OB ,OC ,当OB 平分∠DOC 时,AO 与AC 满足AO AC=23,若△OBD 的面积为4,则k= .25.(2023•北仑区二模)如图,将矩形OABC 的顶点O 与原点重合,边AO 、CO 分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数y =kx (k >0)上恰好经过E 、F 两点,若B 点的坐标为(2,1),则k 的值为 .26.(2023•合肥二模)已知函数y =x 2+mx (m 为常数)的图形经过点(﹣5,5). (1)m = .(2)当﹣5≤x ≤n 时,y 的最大值与最小值之和为2,则n 的值 .27.(2023•仓山区校级模拟)下表记录了二次函数y =ax 2+bx +2(a ≠0)中两个变量x 与y 的6组对应值,x … ﹣5 x 1 x 2 1 x 3 3 … y…m2nm…其中﹣5<x 1<x 2<1<x 3<3.根据表中信息,当−52<x <0时,直线y =k 与该二次函数图象有两个公共点,则k 的取值范围为 .28.(2023•西安二模)如图,在平面直角坐标系中,直线y =﹣x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx (k <0)的图象在第二象限交于点C ,若AB =BC ,则k 的值为 .29.(2023•龙泉驿区模拟)在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值.当t ≤x ≤t +1时,一次函数y =kx +1(k >0)的界值大于3,则k 的取值范围是 ;当t ≤x ≤t +2时,二次函数y =x 2+2tx ﹣3的界值为2,则t = .30.(2023•姑苏区一模)如图①,四边形ABCD 中,AB ∥DC ,AB >AD .动点P ,Q 均以1cm /s 的速度同时从点A 出发,其中点P 沿折线AD ﹣DC ﹣CB 运动到点B 停止,点Q 沿AB 运动到点B 停止,设运动时间为t (s ),△APQ 的面积为y (cm 2),则y 与t 的函数图象如图②所示,则AB = cm .31.(2023•宁波模拟)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .则k = ;△BDF 的面积= .32.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y =3x 与反比例函数y =kx (k ≠0)的图象交于A ,B 两点,C 是反比例函数位于第一象限内的图象上的一点,作射线CA 交y 轴于点D ,连接BC ,BD ,若CD BC=45,△BCD 的面积为30,则k = .33.(2023•锦江区模拟)已知关于x的多项式ax2+bx+c(a≠0),二次项系数、一次项系数和常数项分别a,b,c,且满足a2+2ac+c2<b2.若当x=t+2和x=﹣t+2(t为任意实数)时ax2+bx+c的值相同;当x=﹣2时,ax2+bx+c的值为2,则二次项系数a的取值范围是.34.(2023•江北区一模)如图,菱形ABCO的顶点A与对角线交点D都在反比例函数y=kx(k>0)的图象上,对角线AC交y轴于点E,CE=2DE,且△ADB的面积为15,则k=;延长BA交x轴于点F,则点F的坐标为.35.(2023•吴兴区一模)如图1,点A是反比例函数y=kx(k>0)的图象上一点,连接OA,过点A作AA1∥y轴交y=1x(x>0)的图象于点A1,连接OA1并延长交y=k x(k>0)的图象于点B,过点B作BB1∥y轴交y=kx(k>0)的图象于点B1,已知点A的横坐标为1,S△AOA1=2S△BA1B1,连接OB1,小明通过对△AOA1和△BOB1的面积与k的关系展开探究,发现k的值为;如图2,延长OB1交y=kx(k>0)的图象于点C,过点C作CC1∥y轴交y=kx(k>0)的图象于点C1,依此进行下去.记S△BA1B1=S1,S△CB1C1=S2,…则S2023=.36.(2023•徐汇区二模)如图,抛物线C1:y=x2+2x−3与抛物线C2:y=ax2+bx+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A、B(点B在点A右侧),与y轴的交点分别为C、D.如果BD=CD,那么抛物线C2的表达式是.37.(2023•蜀山区校级模拟)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差).(1)m=,n=;(2)当2≤t≤3时,w的取值范围是.38.(2023•南充模拟)如图,平移抛物线y=ax2+bx+c,使顶点在线段AB上运动,与x轴交于C,D两点.若A(﹣2,﹣3),B(4,﹣3),四边形ABDC的面积为15,则a=.39.(2023•通州区一模)某学校带领150名学生到农场参加植树劳动,学校同时租用A,B,C三种型号客车去农场,其中A,B,C三种型号客车载客量分别为40人、30人、10人,租金分别为700元、500元、200元.为了节省资金,学校要求每辆车必须满载,并将学生一次性送到农场植树,请你写出一种满足要求的租车方案,满足要求的几种租车方案中,最低租车费用是元.40.(2023•武侯区模拟)某投球发射装置斜向上发射进行投球实验,球离地面的高度h(米)与球运行时间t(秒)之间满足函数关系式h=﹣5t2+mt+n,该装置的发射点离地面10米,球筐中心点离地面35米.如图,若某次投球正好中心入筐,球到达球筐中心点所需时间为5秒,那么这次投球过程中球离地面的高度h(米)与球运行时间t(秒)之间满足的函数关系式为(不要求写自变量的取值范围);我们把球在每2秒内运行的最高点离地面的高度与最低点离地面的高度的差称为“投射矩”,常用字母“L”表示.那么在这次投球过程中,球入筐前L的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,则实数p 的取值范围是________)23,3(-解析:反面考虑,补集思想,⎩⎨⎧≤≤-0)1(0)1(f f 23,3≥-≤⇒p p2. 设函数3()31()f x ax x x R =-+∈,若对于任意的[]1,1-∈x 都有0)(≥x f 成立,则实数a 的值为 4解析:2008年高考题,本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,()f x ≥0显然成立;当x >0 即[]1,1x ∈-时,()331f x ax x =-+≥0可化为,2331a x x ≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫==⎪⎝⎭,从而a ≥4; 当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a ≤2331x x-,()()'4312x g x x -=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而a ≤4,综上a =4 特殊方法:抓住⎩⎨⎧≥≤⇒⎪⎩⎪⎨⎧≥≥-440)21(0)1(a a f f 3.函数1)3()(2+-+=x m mx x f 的 图象与x 轴的交点至少有一个在原点的右侧,则实数m 的取值范围为_______1≤m解析:显然0≤m 成立,当0>m 时,100230≤<⇒⎪⎩⎪⎨⎧>--≥∆m mm4.设函数)(x f y =在),(+∞-∞内有定义.对于给定的正数K ,定义函数⎩⎨⎧>≤=Kx f K K x f x f x f k )(,)(),()(,取函数xe x xf ---=2)(,若对任意的),(+∞-∞∈x ,恒有)()(x f x f k =,则K 的取值范围是_______1≥K解析:2009湖南理,由定义知,若对任意的),(+∞-∞∈x ,恒有)()(x f x f k =即为Kx f ≤)(恒成立,即求)(x f 的最大值,由'()10,xf x e -=-=知0x =,所以(,0)x ∈-∞时,'()0f x >,当(0,)x ∈+∞时,'()0f x <,所以max ()(0)1,f x f ==即()f x 的值域是(,1]-∞5. 已知函数()log (2)a f x ax =+的图象和函数1()log (2)ag x a x =+(0,1a a >≠)的图象关于直线y b =对称(b 为常数),则a b += 2解析:b x g x f 2)()(=+b x a ax a a 2)2(log )2(log =+-+⇒,2,1;0,1====a x b x 6. 已知定义在R 上的函数)(x F 满足()()()F x y F x F y +=+,当0x >时,()0F x <. 若对任意的[0,1]x ∈,不等式组22(2)(4)()(3)F kx x F k F x kx F k ⎧-<-⎪⎨-<-⎪⎩均成立,则实数k 的取值范围是 .(3,2)-解析:0)0(=F ,令x y -=得)(x F 奇函数,设)()()(,121221x F x F x x F x x -+=-<0)()(12<-=x F x F ,)(x F 减函数,⎪⎩⎪⎨⎧->-->-34222k kx x k x kx ⎪⎪⎩⎪⎪⎨⎧<⇒≤≤-+=++<<<-⇒⎩⎨⎧<<⇒<-+-⇒2)21(2413430)1(0)0(0)4(222k t t t x x k k F f k kx x 7. 已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm 的值为_____22解析:法一:平方 ; 法二:向量)3,1(),1,1(+-x x 数量积 8. 设函数31()12x f x x -=--的四个零点分别为1234x x x x 、、、,1234()f x x x x =+++ .19解析:令)0(2)(,13≥-==-t t t g t x t画出ty t y 2,3==图象,它们在第一象限有两个交点,则,11t x =-21t x =-242312111,1,1,1t x t x t x t x -=+=-=+=⇒ 9. 定义在R 上的函数()y f x =,若对任意不等实数12,x x 满足1212()()0f x f x x x -<-,且yx ,满足不等式22(2)(2)0f x x f y y -+-≤成立.函数(1)y f x =-的图象关于点(1,0)对称,则当 14x ≤≤时,yx的取值范围为________]121-[,解析:)(222y x y x -≥-,(1)0=-y x 时,1=x y 成立;(2)121-20≤≤⇒⎩⎨⎧≥+≥-x yy x y x(3)⎪⎩⎪⎨⎧≤≤≤+<-4120x y x y x 无解10. 已知1,0≠>a a ,若函数)(log )(2x ax x f a -=在]4,3[是增函数,则a 的取值范围是________),1(+∞解析:x ax x g -=2)(对称轴是a x 21=,当321≤a 时,10)3(161>⇒⎪⎪⎩⎪⎪⎨⎧>>≥a g a a ;当421≥a 时, 11. 若直角坐标平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 图象上;②Q P ,关于原点对称,则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“友好点对”).已知函数⎪⎩⎪⎨⎧≥<++=0,20,142)(2x ex x x x f x ,则)(x f 的“友好点对”有____个 2个解析:数形结合,即看0,2≥=x ey x关于原点对称函数0,2≤-=x e y x与 0,1422<++=x x x y 有几个交点。
当1-=x 时,121->-=-e y ,故有2个交点12. 已知函数321,(,1]12()111,[0,]362x x x f x x x ⎧∈⎪+⎪=⎨⎪⎪-+∈⎩,函数()⎪⎭⎫⎝⎛=x πsin a x g 622+-a (a >0),若存在 12[0,1]x x ∈、,使得12()()f x g x =成立,则实数a 的取值范围是________14[,]23解析:即两函数在]1,0[上值域有公共部分,先求)(x f 值域]1,0[]61,0[]1,61[⇒⎪⎪⎩⎪⎪⎨⎧=, ]232,22[)(a a x g -+-∈,故⎪⎩⎪⎨⎧≥-≤-0232122a a 13. 设()ax x x f +=2,{}{}()0,R (())0,R x f x x x f f x x =∈==∈≠∅,则满足条件的所有实数a 的取值范围为_______________04a ≤<解析:00)(=⇒=x x f 或a x -=;0)(0))((=⇒=x f x f f 或a x f -=)(,由00)(=⇒=x x f 或a x -=,则a x f -=)(即02=++a ax x 无解或根为0或a -,400<<⇒<∆a ,或0=a14.如图为函数()1)f x x <<的图象,其在点(())M t f t ,处的切线为l ,l 与y 轴和直线1=y 分别交于点P 、Q ,点N (0,1),若△PQN 的面积为b 时的点M 恰好有两个,则b 的取值范围为 .18,427⎛⎫⎪⎝⎭解析:令)2)(211(21),10(2x x x S b x x t --==<<=∆ )2)(2(412x x x --=,x x x b x g 444)(23+-== )23)(2()('--=x x x g ,273241<<b15. 已知函数42)(,4341ln )(2+-=+-=bx x x g x x x x f )2,0(1∈x ,存在]2,1[2∈x ,使)()(21x g x f ≥,则实数b 的取值范围为_______214≥b 解析:即min min )()(x g x f ≥,求导易得21)1()(min ==f x f ,)(x g 对称轴是b x =当1≤b 时,)(x g 增,492125)1()(min ≥⇒≤-==b b g x g 矛盾; 当21<<b 时,2142214)()(2min ≥>⇒≤-==b b b g x g ; 当2≥b 时,)(x g 减,8152148)2()(min ≥⇒≤-==b b g x g 2≥⇒b 16. 已知函数)(x f 定义在正整数集上,且对于任意的正整数x ,都有)1(2)2(+=+x f x f)(x f -,且6)3(,2)1(==f f ,则_______)2009(=f 4018解析:实际上是等差数列问题 17. 如果函数1)1(2131)(23+-+-=x a ax x x f 在区间)4,1(上为减函数,在),6(+∞上为增函数,则实数a 的取值范围是_________]7,5[ 解析:0)6(',0)4(',0)1('≥≤≤f f f18. 若关于x 的方程021=--a a x 有两个相异的实根,则实数a 的取值范围是____)21,0(解析:数形结合a a x 21=-,对a 分10<<a 和1>a 讨论19. 已知函数f (x )=xx +a ,若函数y =f (x +2)-1为奇函数,则实数a =________-2解析:ax aa x x x f ++-=-+++=-+21221)2(,显然2-=a 有人说0=a 可以吗?不行!此时,)0(1)(≠=x x f ,显然y =f (x +2)-1定义域不关于原点对称!20. 已知可导函数()()f x x R ∈的导函数()f x '()()f x f x '>满足,则当0a >时,()f a 和(0)a e f (e 是自然对数的底数)大小关系为 )0()(f e a f a >解析:构造函数0)())()('()(',)()(2>-==x x x e x f x f e x F e x f x F ,)(x F 增, 21. 若对任意的D x ∈,均有)()()(21x f x f x f ≤≤成立,则称函数)(x f 为函数)(1x f 到函数)(2x f 在区间D上的“折中函数”.已知函数x x x h x g x k x f ln )1()(,0)(,1)1()(+==--=且)(x f 是)(x g 到)(x h 在区间]2,1[e 上的“折中函数”,则实数k 的值是_______2解析:即要求x x x k ln )1(1)1(0+≤--≤在]2,1[e 恒成立.对于左边:1=x 时,2≥k ,e x 2=时,ek 211+≥,故2≥k ;右边:x x x k 1ln )1(1++≤-,对右边函数求导后得增函数,则211≤⇒≤-k k ,综上,2=k22. 已知函数2ln )(x x a x f -=,若对区间(0,1)内任取两个不等的实数q p ,,不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围是_________),10[+∞解析:0)1()1()]1()1([)]1()1([>+-++-+-+-+q p q q f p p f ,故x x f x g -=)()(是(1,2)上增函数,012)('≥--=x xax g 在(1,2)上恒成立,则x x a +≥22 23. 设函数()f x 的定义域为D ,如果存在正实数k ,使对任意x D ∈,都有x k D +∈,且()()f x k f x +>恒成立,则称函数()f x 为D 上的“k 型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2011型增函数”,则实数a 的取值范围是 .20116a <解析:本题类似于第24题,但由于函数不同,方法截然不同,本题对a 分正负0三种情况讨论,利用数形结合较好。