桁架及组合结构解剖

合集下载

6静定桁架和组合结构讲解

6静定桁架和组合结构讲解

1
a
AD
B
P
2 P
a
C aaaa
解: 复杂桁架,结构对称。将荷载分为对称和反对
称两种情况求解。
(1)对称结构对称荷载 EI F
0A P
10 D P/2 2 P
00
IC aaa
a B P/2 Pa
a
结点C位于对称轴上,所以两 斜杆轴力等于零,见右图。
00 C
结点D
Y 0 N 1 ' P 2
N
2m
2m E
II
2m
I
B
2m 60kN
(2) 求N1、N2
Y 0 X 0
FyBE 60kN FxBE 60kN NBC FxBE 0 NBC FxBE 60kN(拉)
取截面I-I以左为隔离体
MD0
I
D
N2
1 22
(60
2
80kN
60 2 80 2)
A
8 0 2 8 .2 8 k N ( 压 ) 60kN 2m
(4) 运用比拟关系 N Fx Fy 。 l lx ly
结点受力的特殊情况
(1)
N1 0 90。 0 N2
s
结点上无荷载,则N1=N2=0。
由∑FS=0,可得N2=0,故N1=0。
(2)
N1
N2
0 N3
Y0 N3 0 X 0 N1 N2
(3) N1
N4 N2
N3
Y0 N3 N4 X0 N1 N2
由∑Y=0 , N1=-N2
6.3 截 面 法
对于联合桁架或复杂桁架,单纯应用结点 法不能求出全部杆件的轴力,因为总会遇到有 三个未知轴力的结点而无法求解,此时要用截 面法求解。即使在简单桁架中,求指定杆的轴 力用截面法也比较方便。

静定桁架和组合结构

静定桁架和组合结构
B
d A FN1
1
I
0
FN1= - 3FP
d
I d d
FP
例:求图示桁架杆1轴力。
解: 求反力。 取截面I-I右部。 由∑x’=0
a/2
FP I
x’
-
a A FN1 B
FN1
· cos45o+F
cos45o=0
By·
I 1
a/2 FBy= 3FP /4 a/2 a/2 a/2
FN1= FBy =0.75 FP

FP2

FP1

E
ⅡDⅡFra bibliotekFP2
FxD

FP1
FxE
FxA
A

B FyB
C
FyD
FyD

FyE
FyC
FEy

FyA

FxA
FyA
FxC
∑MC=0,求出FxD、 FxE FyB
§6-4 结点法与截面法的联合应用
在桁架计算中,对于某一杆件的内 力,如果只用一个的平衡条件或只作一次 截面均无法解决时,可把结点法和截面法 联合起来应用,往往能收到良好的结果。
实例说明。
例:截面隔离体与结点隔离体联合求解杆内力
求a ,b两杆轴力。

FP
作截面 I - I ∑y=0 FNa cos45o-FNc cos45o+FP=0
取结点K: ∑x=0 FNa = - FNc 2FNa cos45o= - FP FNa = - 0.707FP 作截面Ⅱ-Ⅱ ∑MD=0 →FNb
FNDF= - 1.5kN (压力)
同理可得: FNEB=2.5kN (拉力) FNEG= -1.5kN (压力) 提问:

桁架及组合结构

桁架及组合结构
0.000 35.000 60.000 75.000
刚架轴力 -34.966 -59.973 -74.977 -79.977
0.032 35.005 59.997 74.991
桁架结构的分类:
一、根据维数分类 1. 平面(二维)桁架(plane truss) ——所有组成桁架的杆件以及荷载的作 用线都在同一平面内
当坡度(即 f1)加大,上弦杆正弯矩增大。当 f2 0 时,为带拉杆的三铰拱式屋架,上弦梁类似与简支梁。
适当调节 f1 与 f2 关系,可使上弦结点的负弯矩和两 结点间最大正弯矩大致相等。
静定结构总论
(Statically determinate structures general introduction)
实际结构中由于结点并非是理想铰,同时还将 产生弯矩、剪力,但这两种内力相对于轴力的 影响是很小的,故称为次内力(secondary internal forces)。
次内力的影响举例
杆号 起点号 终点号
12
4
24
6
36
8
48
10
51
3
63
5
75
7
87
9
桁架轴力 -35.000 -60.000 -75.000 -80.000
2. 结点单杆 以结点为平衡对象能仅用一个方程求 出内力的杆件,称为结点单杆(nodal single bar)。
利用这个概念,根据荷载状况可判断此杆内力是 否为零。
3. 零杆 零内力杆简称零杆(zero bar)。
FN2=0 FN1=0
FN=0
FN=0
判断结构中的零杆
FP
FP
FP/ 2
FP/2
按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。

第三章 桁架结构解析

第三章     桁架结构解析

第三章桁架结构第一节桁架结构的特点由简支梁发展成为桁架的过程――简支梁在均布荷载作用下,沿梁轴线弯曲,剪力的分布及截面正应力的分布(分为受压区和受拉区两个三角形)在中和轴处为零。

截面上下边缘处的正应力最大,随着跨度的增大,梁高增加。

根据正应力的分布特点,要节省材料,减轻自重,先形成工字型梁――继续挖空成空腹形式――最后,中间剩下几根截面很小的连杆时,就发展成为“桁架”。

由此可见,桁架是从梁式结构发展产生出来的。

桁架的实质是利用梁的截面几何特征的几何因素――构件截面的惯性矩I增大的同时,截面面积反而可以减小。

梁结构的梁高加大时,自重随之增加很多,桁架结构无此弊端。

Z在实际工作中,由于其自重轻,用料经济,易于构成各种外形适应不同的用途,桁架成为一种应用极广泛的形式,除经常用于屋盖结构外,(我们常说的屋架),还用于皮带运输机栈桥、塔架和桥梁等。

(如图示各种组合屋架、武汉长江大桥采用的桁架形式等)一.桁架结构计算的假定(基本特点)1.杆件与杆件之间相连接的节点均为铰接节点2.所有杆件的轴线都在同一平面内。

(这一平面称为桁架的中心平面)3.所有外力(包括荷载与支座反力)都作用在桁架的中心平面内,且集中作用在节点上实际桁架与上述假定是有差别的,尤其是节点铰接的假定。

例如:木桁架常常为榫接,它与铰接的假定是接近的。

而钢桁架有些杆件在节点处是连续的,腹杆采用的是节点板焊接或铆接,节点具有一定的刚性;混凝土节点构造往往采用刚性连接。

尽管如此,科学试验和工程实践均表明,上述不符合假定的因素对桁架影响很小,只要采取适当的构造措施,就能保证这些因素产生的应力对结构和杆件不会造成危害。

故桁架在计算中仍按“节点铰接”处理。

假定3 “集中力作用在节点上”是保证桁架各杆件仅承受轴向力的前提。

对于桁架上直接搁置屋面板或屋架下弦承受吊顶荷载时,当上下弦间有荷载作用时,则会使原来杆件的受力形式发生变化(纯压、纯拉变为压弯、拉弯构件),从而使得上、下弦截面尺寸变大,材料用料增加。

《桁架结构》PPT课件

《桁架结构》PPT课件

屋架、无斜腹杆屋架或刚接屋架、立体屋 架等。
14
一、木屋架
建 筑
常用的木屋架是方木或原木齿连接的豪式木屋架,一 般分为三角形(图a)和梯形(图b)两种,大多在工 地上用手工制作。

豪式木屋架的节间长度控制在2~3m的范围内为宜,一
构 选
般为4~8节间,适用跨度为12~18m。当屋架跨度不大 时,上弦杆可用整根木料,当屋架跨度较大,上弦杆 需做接头时,四接头位置应尽量靠近节点,避免承受
外形而定,对于三角形屋架,其跨度一般
为12~18m,对于梯形、折线形等多边形
屋架,其跨度可为18~24m。
17
三、钢屋架

钢屋架的形式主要有三角形屋架、梯形屋架、矩形(

平行弦)屋架等,为改善上弦杆的受力情况,常采用再

分式腹杆的形式,如图3-9b所示。 三角形屋架一般用于屋面坡度较大的屋盖结构中,当
计算中均将桁架结构节点按铰接处理。
9





a)

b)
c)
图为桁架结构的节点 a)木桁架节点;b)钢桁架节点;c)钢筋混凝土桁架节点
10
将节点间化成铰接点后,为保证各杆仅承受轴力,

还必须满足假定3的要求,即桁架结构仅受到节点荷

载的作用。对于桁架上直接搁置的屋面板的结构,当

屋面板的宽度和桁架上弦的节间长度不等时,上弦将 受到节间荷载的作用并产生弯矩;或对下弦承受吊顶
选 梁和一根拉杆组成,斜梁有平面桁架式和空间桁架式两种,

如图所示,拉杆可用于圆钢或角钢。这种屋架的特点是杆 件受力合理,斜梁腹杆短,取材方便,经济效果好。三角

6-3超静定桁架和组合结构

6-3超静定桁架和组合结构
P
0
1 1 N E 1 2 l A E 1A N 1 2 l E 12 A 22a
P
NP
1 P N E 1 N P l A E 1 A N 1 N P l E 1 A P 23 a 22
a 0.396P -0.604P
(4)解方程
防 灾 科 (5)内力 技 学 院
M图m
第6章 力法

11
M
2 1
d
s
EI
FN21 l EA
灾 科 技
2 1.4 104
1.49 2.975 2
2 3
1.49
学 院
1 1.99
106
1.862 5.95
2 2.56
105
1.932 3.09
1 2.02
105
12 0.8
0.000419 m/kN
灾 F N F N 1 X 1 F N P M M 1 X 1 M P
科 技 学 院
第6章 力法
练习 用力法计算下图所示组合结构,求
防 出各桁架杆的轴力,并作梁式杆的弯矩图。
灾 已知梁式杆的抗弯刚度EI=常数,各桁架杆
科 技
的轴向刚度EA=常数,且A=I/16。

A
q=10kN /m
C
B

结构力学
主讲:王 丽
第6章 力法
§6-4 超静定桁架和组合结构
防 1、超静定桁架结构

杆件只有轴力,故系数和自由项只考虑轴力的影响。

ii
Ni2l EA
iP
NiNPl EA
技 例1 求图示超静定桁架的内力。各杆EA为常数。

FP

(完整word版)桁架结构体系..

(完整word版)桁架结构体系..

桁架结构体系在本小节中我们要给大家介绍桁架结构体系的组成、优缺点及适用范围;桁架结构体系的合理布置原则及及受力特点。

桁架结构组成:一般由竖杆,水平杆和斜杆组成(图1-23)。

图1-23 桁架结构在房屋建筑中,桁架常用来作为屋盖承重结构,这时常称为屋架。

用于屋盖的桁架体系有两类:(1)平面桁架,用于平面屋架;(2)空间桁架,用于空间网架。

这两类桁架的共同特点是它们都由一系列只受同向拉力或压力的杆件连接而成。

作为桁架结构的整体来说,它们在荷载作用下受弯、受剪;但作为桁架结构中的杆件来说,只承受轴向力,不承受弯矩、剪力和扭矩。

桁架结构的最大特点是,把整体受弯转化为局部构件的受压或受拉,从而有效地发挥出材料的潜力并增大结构的跨度。

桁架结构受力合理、计算简单、施工方便、适应性强,对支座没有横向推力,因而在结构工程中得到了广泛的应用。

屋架的主要缺点是结构高度大,侧向刚度小。

结构高度大,增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。

侧向刚度小,对于钢屋架特别明显,受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。

桁架是较大跨度建筑的屋盖中常用的结构型式之一。

在一般情况下,当房屋的跨度大于18m时,屋盖结构采用桁架比梁经济。

屋架按其所采用的材料区分,有钢屋架、木屋架、钢木屋架和钢筋混凝土屋架等。

钢筋混凝土屋架当其下弦采用预应力钢筋时,称为预应力钢筋混凝土屋架。

目前,我国预应力钢筋混凝土屋架的跨度已做到60多米,钢屋架的跨度已做到70多米。

一、桁架结构的型式与受力特点屋架结构的型式很多:(1)按屋架外形的不同,有三角形屋架、梯形屋架、抛物线屋架、折线型屋架、平行弦屋架等。

(2)根据结构受力的特点及材料性能的不同,也可采用桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架等。

我国常用的屋架有三角形、矩形、梯形、拱形和无斜腹杆屋架等多种型式,见图1-24。

图1-24常用的屋架型式(a)三角形屋架(b)平行弦屋架(矩形)(c)梯形屋架(再分式)(d)拱形屋架(e)下撑式屋架(f)无斜腹杆屋架尽管桁架结构中以轴力为主,其构件的受力状态比梁的结构合理,但在桁架结构各杆件单元中,内力的分布是不均匀的。

桁架(屋架)结构

桁架(屋架)结构
3
桁架结构的发展
掏空的梁----桁架可以看成是从梁衍化而来
第二章 桁架结构
桁架(truss): 由直杆组成的一般具有三角形 单元的平面或空间结构。在房屋建筑中,桁架常用 来作为屋盖承重结构,又称为屋架。
5
桁架结构计算的假定
理想桁架简图假设: 理想光滑铰接; 直杆且过铰心; 力只作用在结点。
只受结点荷载作用的直杆铰接体系
屋架结构的型式
按使用材料:木屋架、钢-木组合屋架、钢屋架、 轻型钢屋架、钢筋混凝土屋架、预应力混凝土屋架、 钢筋混凝土-钢组合屋架等
按屋架外形:三角形屋架、梯形屋架、抛物线屋 架、折线型屋架、平行弦屋架等
按受力特点:桥式屋架、无斜腹杆屋架(刚接桁 架、空腹桁架)、立体桁架等
三角形桁架
三角形屋架一般 用于屋面坡度较大 的屋盖结构中。一 般宜用于中小跨度 的轻屋盖结构。
建筑结构选型
第二章 桁架结构
第一节 桁架结构的受力特点 第二节 屋架结构的型式 第三节 屋架结构的选型与布置 第四节 立体桁架 第五节 张弦结构 第六节 屋架结构的其他型式
教学要求
了解桁架结构的受力特点及其型式, 掌握屋架结构选型与布置
2
第二章 桁架结构
桁架(truss): 由直杆组成的一般具有三角形 单元的平面或空间结构。在房屋建筑中,桁架常用 来作为屋盖承重结构,又称为屋架。
2.2 屋架结构的型式
25
木屋架
一般为三角形屋 架,内力支座处大 而跨中小。适用于 跨度在18米以内的 建筑中。
2.2 屋架结构的型式
26
这种屋架型式适用于木屋架。其特点是:
(1)屋架的节间大小均匀,屋架的杆件内力不致突 变太大。因为木材强度较低,这对采用木材作杆件 提供有利条件。

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结

5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。

二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。

采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。

计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。

结点法一般适用于求简单桁架中所有杆件轴力。

2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。

T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。

X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。

K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。

若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。

Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。

若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。

对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。

第二章桁架结构ppt课件

第二章桁架结构ppt课件
27
梯屋形架桁结架 构的选型
2.3 屋架结构的选型及布置
防水 屋面防水构造决定了屋面排水坡度,进而决定屋盖
的建筑造型。 一般来说,当屋面防水材料采用粘土瓦、机制平瓦
或水泥瓦时,应选用三角形屋架、陡坡梯形屋架。当 屋面防水采用卷材防水、金属薄板防水时,应选用拱 形屋架、折线形屋架和缓坡梯形屋架。
28
载有关。一般上弦受压,节间长度应小些,下弦受拉, 节间长度可大些。
屋架上弦节间长度常取 3m。 当屋盖采用有檩体 系时,则屋架上弦节间长度应与檩条间距一致。
25
梯屋形架桁结架 构的选型
2.3 屋架结构的选型及布置
屋架结构的选型应考虑房屋的用途、建筑 造型、屋面防水构造、屋架的跨度、结构材 料的供应、施工技术条件等因素,做到受力 合理、技术先进、经济适用。
37
2.5 无斜腹杆屋架
38
26
2.3 屋架结构的选型及布置
梯屋形架桁结架 构的选型
受力 从结构受力来看,抛物线状的拱式结构受力最为合
理。但拱式结构上弦为曲线,施工复杂。折线型屋架, 与抛物线弯矩图最为接近,故力学性能良好。梯形屋 架,因其既具有较好的力学性能,上下弦均为直线施工 方便,故在大中跨建筑中被广泛应用。三角形屋架与 矩形屋架力学性能较差。三角形屋架一般仅适用于中 小跨度,矩形屋架常用作托架或荷载较特殊情况下使 用。
32
2.4 立体桁架
❖ 平面屋架结构虽然有很好的平面内受力性能,但 其在平面外的刚度很小。为保证结构的整体性, 必须要设置各类支撑。支撑结构的布置要消耗很 多材料,且常常以长细比等构造要求控制,材料 强度得不到充分发挥。采用立体桁架可以避免上 述缺点。立体桁架的截面形式有矩形、正三角形 、倒角形。

结构力学第六讲

结构力学第六讲

隔离体上的力是一个平面任意力系,可列出三个独立的 平衡方程。取隔离体时一般切断的未知轴力的杆件不多余三 根。
20
例2.用截面法计算下图桁架1、2、3杆的轴力。
P2 P F
G 1
2
I
E A
a/3 2a / 3 N
2
N1
3
C
YB 解: 1.求支座反力 YA 7 P / 5(),YB 3P / 5() 2.作1-1截面,取右部作隔离体 A O F 0, N 3 2 P / 5
零杆——内力为零的杆件。
(1)不共线的两杆结点,无荷载作用时,则 两杆为零杆。 N1
N2
N1=N2=0
(2)有两杆共线的三杆结点,无荷载作用时 ,则第三杆为零杆。
N3=0
N1 N3
N2
14
(3)四杆对称K结点,结构对称,荷载对称,K 结点位于对称轴上,无荷载作用时,则不在一直 线上的两杆为零杆。
N1 N2
31
再考虑结点D、E的平衡可求出各链杆的内力。
3. 计算梁式杆内力 取AC杆为隔离体,考虑其平衡可求得:
A
12kN
F
8kN C
6kN
=12kN HC
HC=12kN← VC=3kN↑
B
5kN 8kN
V=3kN C
A
1kN 6kN 4 0
C
6kN 12 0
并可作出弯矩图。
3kN
6
0 M图 (kN· m)
32
作业P89 6.10,6.15 6.18,6.28
33
15kN
15kN
+15kN
12
计算中的技巧 当遇到一个结点上未知力均为斜向时,为简化计算: (1)改变投影轴的方向

桁架_图文——精选推荐

桁架_图文——精选推荐

桁架桁架:一种由杆件彼此在两端用铰链连接而成的结构。

桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。

“桁”字念“héng”,由于“桁”字较少使用,误被念为“háng”(行),故此,“行架”由此得名。

桁架的定义:由杆件通过焊接、铆接或螺栓连接而成的支撑横梁结构,称为“桁架”。

桁架的优点是杆件主要承受拉力或压力,可以充分发挥材料的作用,节约材料,减轻结构重量。

常用的有钢桁架、钢筋混凝土桁架、预应力混凝土桁架、木桁架、钢与木组合桁架、钢与混凝土组合桁架。

[1]广州震鸿展览展示有限公司,主要以租赁行业为主,太空架租赁/铝合金桁架租赁/舞台租赁/灯光音响租赁/展台租赁/展架租赁/展板租赁/背景架租赁/展览架;地处广州市(海珠区琶洲黄埔村)广州国际会展中心附近。

是由一般充满活力的年轻队伍组成,是一间广告制作综合性厂家搭建公司。

我公司本以"诚信服务"为宗旨,但我们抱着没有最好只有更好的态度为客服服务。

我司拥有一支高素质的专业生产队伍,籍着提供"质量好、交货快"的服务,一直以来得到厂家、广告礼仪公司等行业客户的认同和支持!一、理论原理桁架是由一些用直杆组成的三角形框构成的几何形状不变的结构物。

杆件间的结合点称为节点(或结点)。

根据组成桁架杆件的轴线和所受外力的分布情况,桁架可分为平面桁架和空间桁架。

屋架或桥梁等空间结构是由一系列互相平行的平面桁架所组成。

若它们主要承受的是平面载荷,可简化为平面桁架来计算。

平面桁架组成桁架的杆件的轴线和所受外力都在同一平面上(图1)。

平面桁架可视为在一个基本的三角形框上添加杆件构成的。

每添加两个杆,须形成一个新节点才能使结构的几何形状保持不变。

这种能保持几何坚固性的桁架叫作无余杆(或叫无冗杆)桁架。

如果只添加杆件而不增加节点,就不能保持桁架的几何坚固性,这种桁架叫作有余杆(或叫有冗杆)桁架。

结构力学第05章桁架结构和组合结构

结构力学第05章桁架结构和组合结构

结点荷载
15-3-25
力力 学 教 研 室
7
第五章 桁架结构和组合结构
桁架结构(truss structure)
力力 学 教 研 室
第五章 桁架结构和组合结构
力力 学 教 研 室
第五章 桁架结构和组合结构
力力 学 教 研 室
第五章 桁架结构和组合结构 3、桁架简图
上承荷载
斜杆 下弦杆 节间
竖杆
Ø 力力矩法: (适用用于另外两个力力相交) 力力矩方方程 结论: 弦杆的水水平分力力等于X=±Mo/h 三个杆件不能相交于一一点。 限制: Ø 投影法: (适用用于另外两个力力平行行) 投影方方程 结论: 腹杆竖向分力力等于YDG=±V0 限制: 三个杆不能完全互相平行行。 示示例
15-3-25
Ø 复杂桁架: 不属于以上两类桁架之外的其它桁架。
l静 力力特性 Ø 静定桁架: 无无多余约束的几几何不变体 Ø 超静定桁架: 有多余约束的几几何不变体
15-3-25
力力 学 教 研 室
14
第五章 桁架结构和组合结构 三、桁架分析方方法
l 支支座反力力: 与梁或者拱一一致 P3 P2 G F P E
4m
D
0
+60 40 30
E
15
3m
!
20 Ê -20
15kN 4m
+15
C
-20
15kN 4m
F
G
15kN
力力 学 教 研 室
第五章 桁架结构和组合结构
练习
力力 学 教 研 室
第五章 桁架结构和组合结构
以节点为平衡对象,画出受力力图:
FC y F BC FB A FA B FA D FD B FD A FD y FBD FD C FC B FC FC

桁架结构分析与实例PPT课件

桁架结构分析与实例PPT课件
第9页/共63页
桁架的演变历史
巴黎的万国博览会大厅,1867年 建成。建筑师 为Leopold Hardy, Jean-Baptiste Krantz
第10页/共63页
成功使用了由Camille Polonceau发明的Polonceau桁 架。它证实了建筑技术的飞跃源 于新材料的运用:铁、玻璃、波 纹金属薄片材料。
第1页/共63页
概述
• 桁架结构是由直杆在端部相互连接而成的以抗弯为主的格构式结构。
上弦杆
下弦杆
斜腹杆 桁架示意图
第2页/共63页
竖杆
概述
• 在房屋建筑中,桁架常用来作为屋盖承重结构,这时称为屋架。现今,桁架结构已经发展起多种多样的形 式,不仅局限于屋架,在一些大跨度结构、高层建筑、桥梁中都有非常广泛的应用。
19按外形不同分类三角形屋架梯形屋架抛物线屋架折线形屋架平行弦屋架2025252540254545757560a三角形行架平行弦桁架柏式抛物线形桁架三角形桁架21按腹杆布置不同分类三角形腹杆系即华伦式桁架带竖杆的三角形腹杆系半斜杆腹系如k式桁架组合腹系亦称再分式桁架22k式桁架再分式桁架23按桁架几何组成方式分类简单桁架联合桁架由几个简单桁架按几何不变体系的简单组成规则联合组成复杂桁架不同于前两种的其它静定桁架24联合桁架复杂桁架2526按所受水平推力分类无推力的梁式桁架与相应的实体梁结构比较掏空率大上下弦杆联合抗弯腹杆主要抗剪受力合理用材经济有推力的拱式桁架拱圈与拱上结构联为一体整体性好便于施工跨越能力强节省钢材料27伸臂梁式桁架悬臂梁式桁架拱式桁架28按结构受力特点分类桥式屋架无斜腹杆屋架刚接桁架立体桁架29按材料使用不同分类木屋架钢木组合屋架钢屋架轻型钢屋架钢筋混凝土屋架预应力混凝土屋架钢混凝土组合屋架30常用的木屋架是方木或原木齿接的豪式木屋架31322020193334钢木组合屋架的形式有豪式屋架芬克式屋架梯形屋架和下折式屋架采用钢拉杆作为屋架的下弦提高屋架结构的刚度消除了接头的非弹性变形35由于钢屋架承载力高自重轻适用于跨度大的屋安装施工方便

第5章 静定平面桁架和组合结构

第5章 静定平面桁架和组合结构

结点3
3
Y34 40 80 0
60
80 40 Y34
X13
N35 34 X34 N 34 40 5 50
4
X
Y34 40 3 40 30 4
N12
N12 X 13 0 N12 60
N 35 30 60 0 N 35 90
3
-90 30
(2)关于等力杆的判断
1)X型结点:成X型汇交的四杆结点无荷载作用,则彼此 共线的杆件的内力两两相等。
2)K型结点:成K型汇交的四杆结点,其中两杆共线, 而另外两杆在此直线同侧且交角相等,若结点上无荷载 作用,则不共线的两杆内力大小相等而符号相反。 3)Y型结点:成Y型汇交的三杆结点,其中两杆分别在 第三杆的两侧且交角相等,若结点上无与该第三杆轴线 方向偏斜的荷载作用,则该两杆内力大小相等且符号相 同。 FN1 FN2= FN1 FN1 FN3
在分析桁架内力时,如能选择合适的截面、合适的平
衡方程及其投影轴或矩心,并将杆件未知轴力在适当的位
置进行分解,就可以避免解联立方程,做到一个平衡方程
求出一个未知轴力,从而使计算工作得以简化(刚体力学
中力可沿作用线移动)。 截面选择原则: 1)尽量切开被求杆件或尽量靠近被求杆件; 2) 截断杆件尽量少,最好只有三个(可建三个方程直接求解)
1)平行弦桁架。 2)三角形桁架。
a) b)
3)折弦桁架。
4)梯形桁架。
d) e)
3 、按支座反力的性质分
1)梁式桁架或无推力桁架。 2)拱式桁架或有推力桁架。
f)
5.2 静定平面桁架
计算静定平面桁架各杆轴力的基本方法,隔离体平衡法。 根据截取隔离体方式的不同,又区分为结点法、截面法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、按受力特点分类: 1. 梁式桁架
2. 拱式桁架
竖向荷载下将 产生水平反力
结点法(nodal analysis method)
以只有一个结点的隔离体为研究对象,用 汇交力系的平衡方程求解各杆内力的方法
例1. 求以下桁架各杆的内力
0 -33 34.8
19
19
Y 0 YNAD 11 kN YNAD CD 0.5 X NAD AC 1.5 X NAD 3YNAD 33 kN
FP
零杆的作用 零杆是否在桁架结构中可拆除?
不可拆除,因为拆除后体系将成为几何可 变体系。
不可拆除,实际桁架还存在次内力,一般 情况零杆将受到次内力的作用。
除此之外零杆还有什么作用?
确定图示体系A点的位移? B
(a)图A点位移沿水平
方向向右。
B
(b) 图由于零杆AC的存 在,使得A点位移垂直于AC C 杆,斜向右下方。
§3-4 桁架内力分析
桁架结构(truss structure)
横梁
主桁架
纵梁
弦杆
上弦杆 斜杆 竖杆 腹杆
下弦杆
桁高
d 节间
跨度
经抽象简化后,杆轴交于一点,且“只 受结点荷载作用的直杆、铰结体系”的 工程结构.
特性:只有轴力,而没有弯矩和剪力。 轴力又称为主内力(primary internal forces)。
影响下撑式五角形组合屋架内力状态的主要原因:
1、高跨比 f l
轴力 FNFG 可用三铰拱的推力公式计算:
小,屋架轴力愈大,这与三铰拱相似。
2、 f1 与 f2 关系
高度 f 确定后,内力状态随 f1 与 f2 比例不同而改变。
弦杆轴力变化幅度不大,但上弦杆弯矩变化幅度很大。 当坡度(即 f1 )减小,上弦杆负弯矩增大。当 f1 0 时,为下撑式平行弦组合结构,上弦梁类似与悬臂梁。
求得,则此杆称为截面单杆。
可能的截面单杆通常有相交型 和平行型两种形式。



FP FP FP FP FP

FP
a 为 截 面 单 杆
FP FP
平行情况
b为截面单杆
用截面法灵活截取隔离体
FP
FFPP
1
2
3
FN1
FP
FN2 FN3
FAy
联合法
凡需同时应用结点法和截面法才 能确定杆件内力时,统称为联合法 (combined method)。
0.000 35.000 60.000 75.000
刚架轴力 -34.966 -59.973 -74.977 -79.977
0.032 35.005 59.997 74.991
桁架结构的分类:
一、根据维数分类 1. 平面(二维)桁架(plane truss) ——所有组成桁架的杆件以及荷载的作 用线都在同一平面内
按与“组成顺序相反”的原则,逐次建 立各结点的平衡方程,则桁架各结点未 知内力数目一定不超过独立平衡方程数。
由结点平衡方程可求得桁架各杆内力。
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
1. 对称性的利用
如果结构的杆件轴线对某轴(空间桁架为 某面)对称,结构的支座也对同一条轴对 称的静定结构,则该结构称为对称结构 (symmetrical structure)。
实际结构中由于结点并非是理想铰,同时还将 产生弯矩、剪力,但这两种内力相对于轴力的 影响是很小的,故称为次内力(secondary internal forces)。
次内力的影响举例
杆号 起点号 终点号
12
4
24
6
36
8
48
10
51
3
63
5
75
7
87
9
桁架轴力 -35.000 -60.000 -75.000 -80.000
2. 空间(三维)桁架(space truss) ——组成桁架的杆件不都在同一平面内
二、按外型分类 1. 平行弦桁架 2. 三角形桁架 3. 抛物线桁架 4. 梯形桁架
三、按几何组成分类
简单桁架 (simple truss)
联合桁架 (combined truss)
复杂桁架 (complicated truss)
X 0 FNAC 33 kN
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
-8 -5.4
19
37.5
19
-8 kN
YDE CD 0.75 X DE CE 0.5
0 -33
-33 -33
-33
34.8 19
-8
-8
-5.4 -5.4
37.5
34.8 19
小结:
以结点作为平衡对象,结点承受汇交力 系作用。
A
FA P
(a)
A
FP A
(b)
零杆有约束(或称为引导)结点位移的作用。
截面法
截取桁架的某一局部作为隔离体,由 平面任意力系的平衡方程即可求得未知的 轴力。
对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
作用: 1、求解桁架中某些特定位置杆的轴力。 2、对计算结果进行校核。
试用截面法求图示桁架指定杆件的内力。
nm 1
A 2.5FP
34
n2m FP FP FP FP FP
6 5m
6m B
2.5FP
FN1 =-3.75FP FN4=0.65FP
FN2 =3.33FP FN3 =-0.50FP
截面单杆 截面法取出的隔离 体,不管其上有几个轴力,如果某 杆的轴力可以通过列一个平衡方程
对称结构在对称或反对称的荷载作用下, 结构的内力和变形(也称为反应)必然对称 或反对称,这称为对称性(symmetry)。
对称结构受对称荷载作用, 内力和反 力均为对称:
E 点无荷载,红色杆不受力
FAy
FBy
对称结构受反对称荷载作用, 内力和 反力均为反对称:
垂直对称轴的杆不受力
FAy
FBy
对称轴处的杆不受力
试求图示K式桁架指定杆1、2、3的轴力
ED杆内力如何求?
如何 计算?
FP
返 回 章
组合结构的计算
组合结构——由链杆和受弯杆件混合组成的结构。
A FN图(kN)
5 kN
8 kN I
4
C
12 M图(kN . m)
B
-6 F 6 12
-6 G
2m
D
E
4m 2m 2m 4m
4 m 3 kN
I
一般情况下应先计算链杆的轴力 取隔离体时宜尽量避免截断受弯杆件
2. 结点单杆 以结点为平衡对象能仅用一个方程求 出内力的杆件,称为结点单杆(nodal single bar)。
利用这个概念,根据荷载状况可判断此杆内力是 否为零。
3. 零杆 零内力杆简称零杆(zero bar)。
FN2=0 FN1=0
FN=0
FN=0
判断结构中的零杆
FP
FP
FP/ 2
FP/2
相关文档
最新文档