2.1.1 指数幂及其运算性质

合集下载

2.1.1指数与指数幂的运算 指数幂及其运算性质

2.1.1指数与指数幂的运算 指数幂及其运算性质

【例 3】
1
已知 a 2
+
1
a2
=3,求下列各式的值.
(1)a+a-1; (2)a2+a-2;
解:(1)将
1
a2
+
1
a2
=3
两边平方,
得 a+a-1+2=9,即 a+a-1=7. (2)将a+a-1=7两边平方,得a2+a-2+2=49, 所以a2+a-2=47.
3
3
(3) a2 a 2 .
1
1
知识探究
n am
1
m
an 0
没有意义
探究
1:整数指数幂表示的是相同因式的连乘积,那么分数指数幂
m
an
能否理解为
m
n
个 a 相乘(a>0,m,n∈N*,且 n>1),该式有何规定?
m
答案:不能.分数指数幂是根式的另一种写法,规定 a n = n am .
2.有理数指数幂的运算性质
(1)aras= ar+s
(4)常用的变换方法有: ①把小数化为分数,把根式化为分数指数幂; ②若指数是负数,则对调底数的分子和分母并将负指数化为正指数; ③把分数指数幂、负指数幂看成一个整体,借助有理式中的乘法公式及因式 分解进行变形. (5)注意灵活运用分式化简的方法和技巧.例如,①把分子、分母分解因式,可 约分的先约分;②利用分式的基本性质化繁分式为简分式,化异分母为同分母; ③把适当的几个分式先化简,各个击破;④适当利用换元法.
题型四
1
易错辨析——忽略 a n有意义出错
11
【例 4】 化简:(1-a)[(a-1)-2(-a )2 ]2 .

高中数学:第二章 2.1.1 指数与指数幂的运算 (1)

高中数学:第二章 2.1.1 指数与指数幂的运算 (1)

指数函数2.1.1指数与指数幂的运算预习课本P48~53,思考并完成以下问题(1)n次方根是怎样定义的?(2)根式的定义是什么?它有哪些性质?(3)有理数指数幂的含义是什么?怎样理解分数指数幂?(4)根式与分数指数幂的互化遵循哪些规律?(5)如何利用分数指数幂的运算性质进行化简?[新知初探]1.n次方根定义一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*个数n是奇数a>0 x>0x仅有一个值,记为naa<0x<0n是偶数a>0x有两个值,且互为相反数,记为±n aa<0x不存在*.2.根式(1)定义:式子na叫做根式,这里n叫做根指数,a叫做被开方数.(2)性质:(n>1,且n∈N*)①(na)n=a.②na n=⎩⎪⎨⎪⎧a,n为奇数,|a|,n为偶数.[点睛](n a)n中当n为奇数时,a∈R;n为偶数时,a≥0,而n a n中a∈R.3.分数指数幂的意义分数指幂正分数指数幂规定:amn=n a m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1n a m(a>0,m,n∈N*,且n>1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义[点睛]分数指数幂amn不可以理解为mn个a相乘.4.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).5.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)任意实数的奇次方根只有一个.()(2)正数的偶次方根有两个且互为相反数.()(3)(π-4)2=4-π.()(4)分数指数幂a mn可以理解为mn个a相乘.()(5)0的任何指数幂都等于0.()-=答案=-:(1)√(2)√(3)√(4)×(5)×2.5a-2可化为()A.a2-5B.a52C.a25D..-a 52-=答案=-:A3.化简2532的结果是()A.5 B.15 C.25 D..125 -=答案=-:D4.计算:π0+2-2×⎝⎛⎭⎫21412=________.-=答案=-:118[例1] 化简: (1)n(x -π)n (x <π,n ∈N *);(2)64a 2-4a +1⎝⎛⎭⎫a ≤12. [解] (1)∵x <π,∴x -π<0. 当n 为偶数时, n(x -π)n =|x -π|=π-x ;当n 为奇数时, n(x -π)n =x -π.根式的化简与求值综上可知,n(x -π)n =⎩⎪⎨⎪⎧π-x ,n 为偶数,n ∈N *,x -π,n 为奇数,n ∈N *.(2)∵a ≤12,∴1-2a ≥0,∴64a 2-4a +1=6(2a -1)2=6(1-2a )2=31-2a .根式化简应遵循的3个原则(1)被开方数中不能含有能开得尽方的因数或因式. (2)被开方数是带分数的要化成假分数.(3)被开方数中不能含有分母;使用ab =a ·b (a ≥0,b ≥0)化简时,被开方数如果不是乘积形式必须先化成乘积的形式.[活学活用]1.若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( ) A .x >0,y >0 B .x >0,y <0 C .x ≥0,y ≥0D .x <0,y <0解析:选B ∵4x 2y 2=2|xy |=-2xy ,∴xy ≤0. 又∵xy ≠0,∴xy <0,故选B.2.若(2a -1)2=3(1-2a )3,则实数a 的取值范围为________. 解析:(2a -1)2=|2a -1|,3(1-2a )3=1-2a .因为|2a -1|=1-2a , 故2a -1≤0,所以a ≤12.-=答案=-:⎝⎛⎦⎤-∞,12根式与分数指数幂的互化[例2] 用分数指数幂的形式表示下列各式(式中字母都是正数): (1)13a 2;(2)a 3·3a 2;(3)3b -a 2. [解] (1)13a2=12123a =a2-3. (2)a 3·3a 2=a 3·a 23=a 3+23=a113.(3) 3b -a 2=⎝⎛⎭⎫b -a 213=b 13·⎝⎛⎭⎫-1a 213=b 13·(-a -2) 13=-b 13a2-3根式与分数指数幂互化的规律(1)根指数 化为 分数指数的分母,被开方数(式)的指数 化为 分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.[活学活用]3.下列根式与分数指数幂的互化正确的是( ) A .-x =(-x )12(x >0) B.6y 2=y 13(y <0)C .x -34=4⎝⎛⎭⎫1x 3(x >0)D .x -13=-3x (x ≠0)解析:选C -x =-x 12(x >0);6y 2=[(y )2]16=-y 13(y <0);x -34=(x -3)14= 4⎝⎛⎭⎫1x 3(x >0); x 1-3=⎝⎛⎭⎫1x —13=31x(x ≠0). 4.将下列根式与分数指数幂进行互化: ①a4-3;②3a a (a >0);③a 3a ·5a 4(a >0).解:①a4-3=14a 3.②3a a =a 13·a 16=a 12.③原式=a 3·a1-2·a4-5=a143--25=a1710.[例3] 计算下列各式:(1)⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫214-12-0.010.5; (2)0.0641-3-⎝⎛⎭⎫-780+[(-2)3] 4-3+16-0.75;(3)⎝⎛⎭⎫141-223320.1()a b -- (a >0,b >0).3-2指数幂的运算[解] (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+16-110=1615. (2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=g 132244100·a 32·a 123-2·b3-2·b 32=425a 0b 0=425.利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示. [活学活用] 5.计算:(1)0.02713-⎝⎛⎭⎫61412+25634+(22)23-3-1+π0; (2)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (3)23a ÷46a ·b ·3b 3.解:(1)原式=(0.33) 13-⎣⎡⎦⎤⎝⎛⎭⎫52212+(44) 34+(223)23-13+1=0.3-52+43+2-13+1=64715.(2)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c.(3)原式=2a 13÷(4a 16b 16)·(3b 32) =12a 11-36b1-6·3b 32=32a 16b 43.[例4]已知a 12+a1-2=5,求下列各式的值:(1)a+a-1;(2)a2+a-2.[解](1)将a 12+a1-2=5两边平方,得a+a-1+2=5,即a+a-1=3.(2)将a+a-1=3两边平方,得a2+a-2+2=9,∴a2+a-2=7.[一题多变]1.[变结论]在本例条件下,则a2-a-2=________.解析:令y=a2-a-2,两边平方,得y2=a4+a-4-2=(a2+a-2)2-4=72-4=45,∴y =±35,即a2-a-2=±3 5.-=答案=-:±3 52.[变条件]若本例变为:已知a,b分别为x2-12x+9=0的两根,且a<b,求112211 22-a b a b+值.解:11221122-a ba b+=1122211112222--a ba b a b+()()()=12+-2-a b aba b()(). ①∵a+b=12,ab=9,②∴(a-b)2=(a+b)2-4ab=122-4×9=108.∵a<b,∴a-b=-6 3. ③条件求值问题将②③代入①,得11221122-a ba b+=129=-33.条件求值的步骤层级一 学业水平达标1.下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(-1)26B .0-2和012C .212和414D . 43-2和⎝⎛⎭⎫ 1 2 -3解析:选C 选项A 中,(-1) 13和(-1)26均符合分数指数幂的定义,但(-1) 13=3-1-1,(-1)26=6(-1)2=1,故A 不满足题意;选项B 中,0的负分数指数幂没有意义,故B 不满足题意;选项D 中,43-2和⎝⎛⎭⎫12-3虽符合分数指数幂的定义,但值不相等,故D 不满足题意;选项C 中,212=2,414=422=212=2,满足题意.故选C.2.已知:n ∈N ,n >1,那么2n(-5)2n 等于( ) A .5 B .-5 C .-5或5D .不能确定解析:选A2n(-5)2n =2n52n =5.3.计算⎝⎛⎭⎫8116-14的结果为( )A.23B.32 C .-23 D .-32解析:选A ⎝⎛⎭⎫8116-14=⎣⎡⎦⎤⎝⎛⎭⎫324-14=⎝⎛⎭⎫32-1=23.4.化简[3(-5)2]34的结果为( )A .5 B. 5 C .- 5 D ..-5解析:选B [3(-5)2]34=[(-5)23]34=512= 5.5.计算(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得( )A .-32b 2 B.32b 2 C .-32b 73 D.32b 73解析:选A 原式=-4-464a b a b-133-5=-32b 2.6.若x ≠0,则|x |-x 2+x 2|x |=________. 解析:∵x ≠0,∴原式=|x |-|x |+|x ||x |=1.-=答案=-:1 7.若x 2+2x +1+y 2+6y +9=0,则(x 2 019)y =___________________.解析:因为 x 2+2x +1+y 2+6y +9=0,所以(x +1)2+ (y +3)2=|x +1|+|y +3|=0,所以x =-1,y =-3.所以(x 2 019)y =[(-1)2 019]-3=(-1)-3=-1. -=答案=-:-1 8.614- 3338+30.125 的值为________. 解析:原式= ⎝⎛⎭⎫522- 3⎝⎛⎭⎫323+ 3⎝⎛⎭⎫123=52-32+12=32. -=答案=-:329.计算下列各式(式中字母都是正数): (1)⎝⎛⎭⎫2a 23b 12⎝⎛-6a 12b 13)÷⎝⎛⎭⎫-3a 16b 56 ; (2)(m 14n -38)8.解:(1)原式=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a . (2)原式=(m 14)8(n3-8)8=m 2n -3=m 2n3.10.已知4a 4+4b 4=-a -b ,求4(a +b )4+3(a +b )3的值. 解:因为4a 4+4b 4=-a -B. 所以4a 4=-a ,4b 4=-b , 所以a ≤0,b ≤0,所以a +b ≤0,所以原式=|a +b |+a +b =-(a +b )+a +b =0.层级二 应试能力达标1.计算(2n +1)2·⎝⎛⎭⎫122n +14n ·8-2(n ∈N *)的结果为( ) A.164 B .22n +5 C .2n 2-2n +6D.⎝⎛⎭⎫122n -7解析:选D 原式=22n +2·2-2n -1(22)n ·(23)-2=2122n -6=27-2n =⎝⎛⎭⎫122n -7. 2.1⎛⎫ ⎪⎝⎭12 0-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( )A .-13 B.13 C.43 D.73解析:选D 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73.故选D. 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 23B .a 55C .a 76D ..a 32解析:选Ca 2a ·3a 2=a 2a ·a 23=2=212a a ⨯53=a 2·a -56=a 2-56=a 76.4.设x ,y 是正数,且x y =y x ,y =9x ,则x 的值为( ) A.19B.43 C .1 D.39解析:选B ∵x 9x =(9x )x ,(x 9)x =(9x )x ,∴x 9=9x . ∴x 8=9.∴x =89=43.5.如果a =3,b =384,那么a [()]b a17n -3=________.解析:a [()]b a 17n -3=3384[()]317n -3=3[(128)17]n -3=3×2n -3. -=答案=-:3×2n -36.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 解析:由根与系数的关系得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.-=答案=-:14 2157.化简求值:(1)⎛⎫ ⎪⎝⎭792 0.5+0.1-2+⎛⎫ ⎪⎝⎭10272-23-3π0+3748;(2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4;(3)⎛⎫ ⎪⎝⎭383-23+(0.002)-12-10(5-2)-1+(2-3)0. 解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫64272-3-3+3748=53+100+916-3+3748=100. (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4=(23)23-(2-1)-3+(3-12)-6×⎣⎡⎦⎤⎝⎛⎭⎫3243-4=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4. (3)原式=(-1)-23×⎛⎫ ⎪⎝⎭383-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+(500)12-10(5+2)+1=49+105-105-20+1=-1679.8.已知a =3,求11+a14+11-a14+11+a12+41+a的值. 解:11+a14+11-a14+11+a 12+41+a =2(1+)(1-)a a 1144+21+a12+41+a=21-a12+21+a12+41+a=4(1-)(1+)a a 1122+41+a=41-a +41+a =81-a 2=-1.。

2.1.1有理指数幂及其运算 优秀教学设计

2.1.1有理指数幂及其运算 优秀教学设计

2.1.1有理指数幂及其运算【课题】有理指数幂及其运算【教学目标】:(1)能用数学符号正确表示分数指数幂的意义;(2)明确分数指数幂的引入使指数概念由整数指数扩充到有理指数;(3)能用数学符号正确表示有理指数幂的三条运算性质;(4)能根据幂的运算性质熟练地进行分数指数幂和根式的运算.(5)培养学生猜想归纳的能力和转化能力.【教学重点】分数指数幂和根式的运算和应用【教学难点】分数指数幂的意义【教学过程设计】教学环节教学活动设计意图一、教学概念引入1、练习猜想归纳(负整数指数幂)练习________)(5=ab________)(32=a_______35=aa猜想1)_________53==aa2)与有何关系? =________与呢?2-a2a2-a na-n a归纳1)=_________na-)0(≠a2)=_________a)0(≠a2、观察归纳(分数指数幂)观察:假如我们规定:21aa=)0(≥a313aa=那么你能够把下列的根式可表为:________=n a)0(≥a________54=________53=-________)5(44=________)5(44=-________)5(33=________)5(33=-猜想归纳:通过练习猜想,归纳,帮助学生梳理知识,构建知识体系.________)(=n n a ⎩⎨⎧==_______________________________nn a ________=nm a )0(≥a 3、总结(有理数指数幂及其运算律)指数有理指数幂意义(a 的取值)运算律正整数an n a a a a 个⋅=负整数=-n a )0___(a 奇次根式=na 1偶次根式=na 1)0___(a 正有理数 =nm a)0(≥a 负有理数=nm a_)0___(a 1)2)3)二、例题讲解 例题1 用分数指数幂表示下列各式1)____13=a2)__________322=+n m 例题2 化简1) ____222284=⋅⋅2)_________)5()51(22=-x x 3)_______________221211=+++--mmm m 通过例题的讲解,进一步熟悉有理指数幂的运算性质,培养学生猜想归纳的能力和转化能力.例题3 求值(1)已知是方程的两个实数根,求2121,βα01632=+-x x 值βα+(2)已知,求的值32121=+-xx 110232322++++--xx x x 二、知识的应用通过题组训练,检查学生掌握有理指数幂的运算情况,对学生中尚存的问题及时进行补救.对习题按ABC 三个不同层次进行分类练习,适应学生不同的能力水平。

高一数学指数与指数幂的运算2(1)

高一数学指数与指数幂的运算2(1)

4. 例题与练习:
例1 求值:
2
83 ,
1
100 2 ,
( 1 )3 ,
(
16

)
3 4
.
4 81
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
a2 a; a3 3 a2; a a .
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
an
| a
|
a(a 0) a(a 0).
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
当n为偶数时, n
an
| a
|
a(a 0) a(a 0).
② 当n为任意正整数时,
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
2.1.1指数与指数幂 的运算
主讲老师:
复习引入
1. 整数指数幂的运算性质:
复习引入
1. 整数指数幂的运算性质:
a m a n a mn (m, n Z ), (a m )n amn (m, n Z ), (ab)n a n bn (n Z ).
复习引入
2. 根式的运算性质:
4. 例题与练习:
例4
已 知x

x 1

1
3,求x 2

x

1
2的
值.
课堂小结
1. 分数指数幂的意义; 2. 分数指数幂与根式的互化; 3. 有理数指数幂的运算性质.
课后作业
1.阅读教材P.50-P.52; 2.《习案》作业十六.
;佳境配资 佳境配资 ;

2.1.1指数与指数运算(分式)

2.1.1指数与指数运算(分式)
分式指数幂0的正分数指数幂等于00的负分数指数幂没有意义分母不为0
回顾:运算性质
am an amn(m,n Z) (a m )n a mn (m, n Z ) (ab)n an bn(n Z )
推广:正数指数幂推广到有理数指数幂。原有整 数指数幂的运算性质对有理数指数幂仍然适用。
2 1 11 1 5
2 (6) (3)(a3 a2 a6 )(b2 b3 b6 )

2
(m
1 4
3
n8
)8

(m
1 4
)8
3
(n 8
)8
211 115
2 (6) (3) a3 2 6b2 3 6
4ab0 方法:将系数和同底
4a
(23)3 2 3

22 4
1
25 2

(52
1
)2Βιβλιοθήκη 2*(1 )5 2 51

1
5
( 1 )5 (21)5 25 32
2
3
3
4
(16) (2)
4( )
4 ( 2)3 ( 3)3 27
81 3
3
2
8
P82A1
例3、用分数指数幂的形式表示下列根式:
例: 当a 0, n N*, n 1时,n an a,
10
5 a10 5 (a2 )5 a2 a 5
12
(1)3 a12 _3_(a_4_)3 __a_4 _ _a__3_
被开方数的 指数/ 根指数
2 3
a2

3
2
(a 3 )3

2.1.1 指数与指数幂的运算

2.1.1 指数与指数幂的运算

(
1
6000
) 5730
,
2
(
1
10000
) 5730
,
2
(
1
100000
) 5730
,
.
2
(3)由以上的实例来推断关系式应该是什么?
P

(
1 2
)
t 5730
.
考古学家根据上式可以知道, 生物死亡t年 后,体内碳14的含量P的值.
(4)我们已经知道 1 2,1 22,1 23, ...是正整数指
二、分数指数
• 规定: 1、正数的正分数指数幂的意义为:
m
a n n am (a 0, m, n N *, n 1)
2、正数的负分数指数幂的意义与负整数幂的意义相同
即:a

m n

1
m
an

1 n am
(a 0, m, n N *, n 1)
3、0的正分数指数幂等于0,0的负分数指数幂无意义
我们可以先来考虑这样的问题:
(1)当生物体死亡了5730, 5730×2, 5730×3,… 年后,它体内碳14的含量P分别为原来的多少?
1,
( 1 )2 ,
2
2
(
1 2
)3
,
.
(2) 当 生 物 体 死 亡 了 6000 年 ,10000 年 ,100000 年 后,它体内碳14的含量P分别为原来的多少?
………………………………………… 通过类比方法,可得n次方根的定义.
2n = a xn =a
2叫a的n次方根; x叫a的n次方根.
1.方根的定义 如果xn=a,那么x叫做 a 的n次方根(n th root),

2.1.1 指数幂及其运算

2.1.1 指数幂及其运算

先将根式化为分数指数幂的形式,再运用分数指数幂的运算性
质进行化简.
11
11
7
【解析】(1)原式=a3 ·a4 =a3 +4 =a12 .
111
111
7
(2)原式=a2 ·a4 ·a8 =a2 +4 +8 =a8 .
23
23
13
(3)原式=a3 ·a2 =a3 +2 =a 6 .
1
1
2 13
213
73
了灵活运用运算法则外还要关注条件中的字母是否有隐含的条
件.
1
【正解】由(-a)2 知-a≥0,故 a-1<0.
11
∴(1-a)[(a-1)-2(-a)2 ]2
=(1-a)(1-a)-1·(-a)14=(-a)14 .
【警示】在利用指数幂的运算性质时,要关注条件中有无
隐含条件,在出现根式时要注意是否为偶次方根,被开方数是
(1)4 2+1·23-2 2·64-3 ;
11
(2)
a-b
1
1
-a+b1-2a21 ·b2
a2 +b2
a2 -b2
【解析】(1)原式=22 2+2·23-2 2·2-4=21=2.
1
1
1
1
1
1
(2)原式=a2
+b2 ·a2 a21+b12
-b2
-a21 a2
-b2
1
-b2
2
1
=a2
1
-b2
- a 1 2
方法二:a2+a-2=a2+2aa-1+a-2-2aa-1
=(a+a-1)2-2=25-2=23.
1
1
(2)∵(a2 -a-2 )2=a+a-1-2=5-2=3,

2.1.1指数与指数幂的运算(一)

2.1.1指数与指数幂的运算(一)

(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数).
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作:
a b c
4. 计算 5 2 6 .
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a .
( 8 ) ;
3
( 2)
4
( 10) ;
2
4
(3 ) ;
( 4)
(a b) (a b).
2
例2 求下列各式的值:
(1) ( 2)
(3)
7
( 2 ) ;
7
4
( 3a 3) ;
4
3
(8) (3 2) (2 3 ) .
3 4 4 3 3
例3 求出使下列各式成立的x的取值范围:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a .
n
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a . ③负数没有偶次方根.

2.1.1指数幂运算与无理数指数幂

2.1.1指数幂运算与无理数指数幂

3, 3
例6:已知x+x =3,求下列各式的值 (1)x x
2 1 2 2 1 2
1
2 x x 3 3 3 x x
3
补充:x y x y x
3
2
xy y
2

1 a b a b ________
4 4
2 2 2 ______
【题型4】分数指数幂或根式中x的定义域问 题根式运算 例5.求下列各式中x的范围
(1) 1 x ;
4

x≤1
(2).( x 1)
1 3 X≠1
(3)( x 1)
2 3
X∈R
(4).(1 2 x)
3 4 x 1
2
(5).(| x | 1)
1 3
思考2:观察上面两个图表,你能发现 5 2 的 大小可以通过怎样的途径来得到吗? 结论:由一串逐渐增大的有理数指数幂的值
5
1.4
,5
1.41
,5
1.414
,5
1.4142
,
和另一串逐渐减小的有理数指数幂的值
5 ,5
1.5
1.42
,5
1.415
,5
1.4143
, 无限逼近得到
无理数指数幂
51.4
-6x+4=0的两根且a>b,
a b 求 的值. a b
1.分数指数概念
(1) a n a m ; m (2) a n 1 m an
m n
(a>0,m,n∈N*, n>1)
n
1 ; am
(3)0的正分数指数幂为0,0的负分数指数幂 没有意义. 2.有理数指数幂运算性质

2.1.1指数与指数幂的运算(人教版)说课讲解

2.1.1指数与指数幂的运算(人教版)说课讲解
思考:请说明无理数指数幂 2 3 的含义。
1、已知 x 3 1 a ,求 a 2 2ax 3 x 6 的值。
方根只有一个,记为 x n .a
得出结论
22 4 32 9
24 16
2 4 3 9
24 16
x6 12
x 6 12
结论:当 n 为偶数时,正数的 n次方根有两
个,它们互为相反数.正数a的正n次方根用符号 n a
表示;负的n次方根用符号 n a 表示,正数)
21
11
15
(1)(2a3b2)(6a2b3)(3a6b6)
(2)(m
1 4
n

3 8
)8
例5、计算下列各式
(1)( 3 25 - 125 ) 4 25 (2) a2 (a 0)
a 3 a2
一般地,无理数指数幂 a ( >0,是
无理数)是一个确定的实数. 有理数指数幂的 运算性质同样适用于无理数指数幂.
(ar)Sars(a0,r,s Q )
(a b )r a rb r(a 0 ,b 0 ,r Q )
例2、求值
2
83 ;
1
2 52 ;
1 5; 1 6 4 3
2 8 1
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a 3 a (2) a 2 3 a 2 (3) a 3 a
(3)a 的n次方根是 n a ;
(4) n an a(a0).
解:(1)不正确; (2)不正确; (3)不正确;(4)正确。
二、分数指数幂
1.复习初中时的整数指数幂,运算性质
anaaaa,a01 (a0) , 00无 意 义

(新)高中数学第二章基本初等函数Ⅰ2_1_1指数与指数幂的运算教材梳理素材新人教A版必修11

(新)高中数学第二章基本初等函数Ⅰ2_1_1指数与指数幂的运算教材梳理素材新人教A版必修11

2.1.1 指数与指数幂的运算疱丁巧解牛知识·巧学·升华指数与指数幂的运算 1.整数指数幂 (1)正整数指数幂正整数指数幂a m(a >0,m ∈N *)事实上是一种缩写,即 个m ma a a a .=⋅⋅⋅•.根据缩写的这种意义可以得到如下的性质:(1)a m×a n=a m+n;(2)a m÷a n=a m-n;(3)(a m )n=a mn;(4)a n b n=(ab)n;(5)(ba )n =n nb a (b ≠0).(2)负整数指数幂 ∵a n·a -n=a n-n=a 0=1,∴a -n=na 1. 这一规定把除法与乘法统一起来了,a n÷b m=m n ba =a n ·b -m.由于a 0与a -n(n ∈N *)都是由数学式子中除数a n产生的,根据0作除数无意义,所以规定a 0与a -n 的同时,必须有a n≠0即a ≠0,这样的规定才与已往有的除法运算相一致.就这样,正整数指数幂推广到了整数指数幂.要点提示 整数指数幂的底数应使等号两边都有意义.正整数指数幂的底数是a ∈R ;零指数和负整数指数幂的底数a ∈R 且a ≠0.指数可以是任意整数. 2.根式(1)平方根:如果x 2=a ,则x 叫做a 的平方根(或二次方根),其中a 叫做被开方数,次数2叫做根指数,x 叫做a 的平方根.当a >0时,它有两个互为相反数的平方根,记作:a ,-a ;当a=0时,0=0;当a <0时,在实数范围内没有平方根.例如:x 2=9,则x=±9=±3是9的平方根,若x 2=-4<0,则在实数范围内-4没有平方根. 或者平方根可由二次函数y=x 2的图象与性质去理解.要点提示 平方根存在与否以及平方根的个数仅仅与被开方数有关.(2)立方根:如果x 3=a ,则x 叫做a 的立方根(或三次方根).它的被开方数、根指数、根分别是a 、3、x.在实数范围内,对任意a ∈R ,它都有唯一的立方根3a ,其中3a 叫做根式.(3)n 次方根:如果存在实数x ,使得x n=a (a ∈R ,n >1,n ∈N ),则x 叫做a 的n 次方根. 如果n 是偶数,它同平方根一样,当a >0时,它有两个n 次方根,即±n a ;当a=0时,n 0=0;当a <0时,在实数范围内无偶次方根.如果n 是奇数,它同立方根一样,对任意a ∈R ,它都有唯一的n 次方根n a .要点提示 (1)只有当n a 有意义时,才能称为根式.n 次方根是平方根和立方根的推广.根指数是大于1的整数.(2)无论根指数是大于1的偶数还是奇数,当被开方数是0时,它的n 次方根是0. 3.方根性质(1)n 次方根的性质x=⎪⎩⎪⎨⎧=±+=kn a k n a n n 2,12,(k ∈N *,n>1,n ∈N )式子n a 叫做根式,n 叫做根指数,a 叫做被开方数. 由n 次方根的定义,我们可以得到根式的运算性质. (2)根式的运算性质①nn a )(=a (n >1,n ∈N )理解这一性质的关键是紧扣n 次方根的定义,如果x n=a(n>1,且n ∈N )有意义,则无论n是奇数或偶数,x=n a 一定是它的一个n 次方根,所以n n a )(=a 恒成立.例如:44)3(=3,33)5(-=-5.记忆要诀 先开方,再乘方(同次),结果为被开方数. 当n 为奇数时,a ∈R ,由n 次方根的定义可得n n a =a 恒成立,当n 为偶数时,a ∈R ,a n≥0,nn a 表示正的n 次方根或0,所以如果a ≥0,那么n n a =a.例如443=3,40=0;如果a <0,那么n n a =|a|=-a ,如2)3(-=23=3.从而归纳得到以下根式的性质:②⎪⎩⎪⎨⎧⎩⎨⎧<-≥==.,0,,0,||,,为偶数为奇数n a a a a a n a a nn利用根式的运算性质对根式的化简的过程中,根指数n 为奇数的题目较易处理,而例题侧重于根指数n 为偶数的运算.记忆要诀 先奇次乘方,再开方(同次),结果为被开方数;先偶次乘方,再开方(同次),结果为被开方数的绝对值. 4.分数指数幂(1)根式与分数指数幂的转化为了使同底数幂的运算变成指数的简单运算,有必要对分数指数幂规定为:n mnma a =(a ≥0,n 、m ∈N *,n ≥2),nm nm aa1=(a >0,n 、m ∈N *,n ≥2).分数指数幂是根式的另一种写法,这种写法更便于指数运算.同0指数幂、负整数指数幂一样,负分数指数幂中,nm a ≠0,即a ≠0.指数的概念在引入了0指数、负整数指数、分数指数以后,指数的概念就实现了由整数到有理数的扩充,扩充后同底数的有理次幂的乘法、除法、开方都可以化为指数的运算,为化简根式带来了很大的方便.要点提示 (1){有理数}={分数}=Q .(2)零的正分数次幂为零,零的负分数次幂无意义.(3)对分数指数幂和根式的互化,要紧扣方根的定义. (2)分数指数幂的运算法则设a >0,b >0,α、β∈Q ,则 ①a α·a β=a α+β;②(a α)β=a αβ;③(ab )α=a α·b α.分数指数幂的运算法则同整数指数幂一样,a α是一个确定的实数. 根式n m a 化成分数指数幂nm a 的形式,若对nm约分,有时会改变a 的范围.例如:214242)2()2()2(-≠-=-.所以考虑清楚a 的范围后再化简nm . 要点提示 化简代数式的关键是把问题化归成我们熟悉的、已知其运算法则的分数指数幂的形式,利用其法则去计算;对于代数式的化简结果,可用根式或分数指数幂中的一种形式,但不能同时出现根式和分数指数幂的形式,也不能既有分母,又有负指数. 5.无理指数幂无理指数幂教材中没有给出严格的定义,可阅读教材61页,通过计算器计算,体会“有理数逼近无理数”的思想,感受一下它的逼近程度.一般地,当a >0,α为无理数时,a α也是一个确定的实数.整数指数幂的运算法则就推广到了实数范围内,也就是说,设a >0,b >0,α、β∈R ,则(1)a α·a β=a α+β;(2)(a α)β=a αβ;(3)(ab )α=a α·b α.恒成立. 问题·思路·探究问题 为什么正数的偶次方根有两个并且互为相反数,而负数没有偶次方根? 思路:根据方根的定义,考虑偶次方与偶次方根的联系.探究:根据方根定义,若x 是a(a>0)的n 次方根(n 为偶数),则x n =a ,这时(-x )n=a ,即-x 也是a(a>0)的n 次方根.假设x 是a(a<0)的n 次方根(n 为偶数),则x n =a .因为x n≥0,a<0,所以x n=a 不成立,与方根定义矛盾. 典题·热题·新题例1 下列命题中,错误的是( )A.当n 为奇数时,n n x =xB.当n 为偶数时,n n x =xC.当n 为奇数时,n n x )(=xD.当n 为偶数时,n n x )(=x思路解析:由对根式性质中奇偶条件限制的理解,很容易知道选B. 答案:B深化升华 当n 是奇数时,n n n n a a =)(=a.例2 已知函数y=n m x 的定义域为R ,则下列给出的n, m 中,不能取的一对值是( ) A.n=3,m=7 B.n=2,m=4 C.n=4,m=3 D.n=3,m=4 思路解析:如果n 是奇数,对任意a ∈R ,它都有唯一的n 次方根n a ;故A 、D 项符合要求.如果n 是偶数,它同平方根一样,当a >0时,它有两个n 次方根,当a=0时,n 0=0,当a <0时,在实数范围内无偶次方根,B 项中x 4符合要求,而C 项中x 3未必为非负数,如x=-1就不行. 答案:C误区警示 当a <0时,在实数范围内a 无偶次方根,容易忽视. 例3 利用函数计算器计算(精确到0.001). (1)0.32.1;(2)3.14-3;(3)431.3;(4)33.思路解析:对于(1),可先按底数0.3,再按 2.1,最后按□=,即可求得它的值;对于(2),先按底数3.14,再按□-键,再按3,最后按□=即可;对于(3),先按底数3.1,再按3□÷4,最后按□=即可.对于(4),这种无理指数幂,可先按底数3,其次按3,最后按□=键.有时也可按.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)431.3≈2.336;(4)33≈6.705.深化升华 熟练掌握用计算器计算幂的值的方法与步骤,感受一下现代技术的威力,逐步把自己融入现代信息社会.用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例4 比较55,33,2的大小.思路解析:底数不同根指数也不同的两个数比较其大小,要化为同底数的或化为同指数的数再作比较.解:61613218)2(22===,616123139)3(33===,而8<9, ∴36161398<<,10110152132)2(22===,1012515)5(55==,而25<32.∴55<2.总之,55<2<33.拓展延伸 比较幂值的大小,如果底数与指数都不相同时,能化为同底,则先化为同底,不能化为同底,就化为同指数,这些都是通过代数变形转化的方法来实现的.转化是解题的万能钥匙.例5 已知x+x -1=3,求下列各式的值. (1)2121-+xx ;(2)2323-+xx思路解析:(1)题若平方则可出现已知形式,但开方时应注意正负的讨论;(2)题若立方则可出现(1)题形式与已知条件,需将已知条件与(1)题结论综合;或者可仿照(1)题作平方处理,进而利用立方和公式展开. ∵221212122122121)(2)()(---+•+=+x xx x x x =x+x -1+2=3+2=5,∴2121-+xx =±5.又由x+x -1=3得x>0,所以52121=+-x x .(2)解法一:3213212323)()(--+=+x x x x=])())[((22121212212121---+•-+x x x x x x=)(2121-+xx (x-1+x -1)=)13(5-=52 解法二:22323][-+x x=2232323223)(2)(--+•+x xx x=x 3+x -3+2而x 3+x -3=(x+x -1)(x 2-1+x -2)=(x+x -1)[(x+x -1)2-3]=3×(32-3)=18 ∴22323][-+xx =20.又由x+x -1=3,得x>0, ∴52202323==+-xx .误区警示 (1)题注重了已知条件与所求问题之间的内在联系,但开方时正负的取舍容易被学生忽视,应强调以引起学生注意.拓展延伸 (2)题解法一注意了(1)题结论的应用,显得颇为简捷,解法二注重的是与已知条件的联系,体现了对立方和公式、平方和公式的灵活运用,而且具有一定的层次,需看透问题实质方可解决得彻底,否则可能半途而废.另外,(2)题也体现了一题多解. 深化升华 条件代数式的化简遵循以下三个原则.(1)若条件复杂,结论简单,可把条件化简成结论的形式.(2)若结论复杂,条件简单,可把结论化简成条件的形式.(3)若条件结论均复杂,可同时化简它们,直到找到它们之间的联系为止.。

高中数学第二章基本初等函数(ⅰ)2.1.1指数与指数幂的运算(第2课时)指数幂及其运算

高中数学第二章基本初等函数(ⅰ)2.1.1指数与指数幂的运算(第2课时)指数幂及其运算
D. 25
解析:原式 = 5
2× 2
)
= 52 = 25.
答案(dá àn):B
【做一做 3-2】 ( 3)1+
A. 3
B. 2 3
C.1
D.3
解析:原式=( 3)1+
3
3+1- 3
× ( 3)1- 3 等于(
= ( 3)2 = 3.
答案(dá àn):D
第八页,共二十一页。
)
2
1
4 与2 不一定相等

(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.
(3)规定了分数指数幂的意义后,指数的概念就从整数(zhěngshù)指数推广到了
有理数指数.
第三页,共二十一页。
2
5
【做一做 1-1】 3 等于(
5
A. 3 B. 35
C. 3
1
5
)
5
D. 32
答案(dá àn):D
4
5
-
【做一做 1-2】 5 等于(
(1)同底数(dǐshù)幂相乘,底数不变,指数相加;
(2)幂的乘方,底数不变,指数相乘;
(3)积的乘方等于乘方的积.
第五页,共二十一页。
1
3
2
3
【做一做 2-1】 已知 m>0,则 · 等于(
)
1
3
2
9
A.m
B.
C.1
D.
答案(dá àn):A
2
3
3
7
【做一做 2-2】 已知 x>0,y>0,化简( )21 等于(
1
2
3 1
×
2 3

2.1.1指数与指数幂的运算(二)(用)

2.1.1指数与指数幂的运算(二)(用)
复 习
1. 整数指数幂的运算性质:
(m, n Z ) n n n (ab) a b (n Z ).
(a ) a
m n mn
a a a
m n
m n
(m, n Z ),
2. 根式的运算性质: ① 当n为奇数时, n
当n为偶数时, n
a ( a 0) a | a | a(a 0). ② 当n为任意正整数时,( n a ) n a .
a a
n
m n
m
(a>0, m, n∈N*, 且n>1).
规定:
(1)
a
m n

1 a
m n
(a>0, m, n∈N*, 且n>1).
(2) 0的正分数指数幂等于0;
(3) 0的负分数指数幂无意义.
阅读P52页 无理数指数幂
有理指数幂的运算性质:
(a ) a
m n
n n
a a a
n
a a;
n
问题2 当生物死亡后,它机体内原有的碳14会按确定的 规律衰减,大约每经过5730年衰减为原来的一半,这 个时间称为“半衰期”.根据此规律,人们获得了生物 体内碳14含量P与死亡年数t之间的关系
1 P( ) 2
提问:
t 5730
.
100000 5730
1 ( ) 2
6000 5730
m n
m n
mn
n
(ab) a b
R (m, n Q), Z R ((m,,n Q), m, n Z )
nZ R (n Q).
例1 求值:
(1) 8 ,
2 3
2 3
(2)25 , (3)( ) , (4)( ) .

数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(中学课件2019)

数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)(中学课件2019)

器也 天下謷謷然 坐法失官 以天地五位之合终於十者乘之 观玉台 或召见 不绌无德 靡有解怠 可不勉哉 属常雨也 变动不居 讲习《礼经》 退之可也 千人 死有馀罪 更节加黄旄 有常节 因谋作乱 勿听 因矫以王命杀武平君畔 王治无雷城 为所称善 兴不从命 王尊字子赣 骏以孝廉为郎 案卫思
后 戾太子 戾后园 《法言》十三 虽复破绝筋骨 国除 羲和司日 天子独与侍中泰车子侯上泰山 避帝外家 今闻错已诛 拔城而不得其封 及眊掉之人刑罚所不加 亦亡去 乃敢饮 去食谷马 其明年 愿陛下与平昌侯 乐昌侯 平恩侯及有识者详议乃可 上从相言而止 知吏贼伤奴 处巴江州 戒太子曰 即
也 又一切调上公以下诸有奴婢者 中分天下 申子主之 承圣业 并州 平州尤甚 晋史卜之 云梦泽在南 三月癸卯制书曰 其封婕妤父丞相少史王禁为阳平侯 自此始也 止王南越 耕耘五德 甲辰 周殷反楚 还 其以军若城邑降者 大举九州之势以立城郭室舍形 而山戎伐燕 云廷讦禹 而汉亦亡两将军
时杀人民 此天以臣授陛下 若齐之技击 曰上崩 武闻之 为水 呼韩邪破 自君王以下咸食畜肉 非胙惟殃 所以存亡继绝 成命统序 东济大河 此两统贰父 蹶浮麋 所以变民风 此所以成变化而行鬼神也 并终数为十九 行至塞 宣之使言 盖堤防之作 迁乐浪都尉丞 有日蚀 地震之变 农民不得收敛 深
•今秦无德 羽大怒 曹参次之 上曰 善 於是乃令何第一 民皆引领而望 二 欲人变更 蓼 广如一匹布 斩其王还 毋须时 於水则波 去日半次 太公治齐 上思仲舒前言 因为博家属徙者求还 周勃为布衣时 故与李斯同邑 或闭不食 莽曰监朐 《汉流星行事占验》八卷 法而陈之 何为苦心 语在《宪王
传》 淮阳阳夏人也 害五谷 而曰豫建太子 后年入朝 台子通为燕王 珠熉黄 秦民失望 刻印三 一曰 维祉冠存己夏处南山臧薄冰 世以此多焉 稍夺诸侯权 汝复为太史 大夫 谒者 郎诸官长丞皆损其员 更化则可善治 布召见 因惠言 匈奴连发大兵击乌孙 景驹自立为楚假王 大置酒 太后诏曰 太师

人教A版数学必修一2.1.1指数与指数幂的运算

人教A版数学必修一2.1.1指数与指数幂的运算

② 3-2 2 + 3 (1- 2)3 + 4 (1- 2)4 = _____2_-__1.
2.1.1 │ 考点类析
[解析] ①8 (x-3)8=|x-3|,当 x≥3 时,原式=x-3; 当 x<3 时,原式=3-x.
所以8 (x-3)8=x3--3x,,xx≥<33. , ②因为 3-2 2=2-2 2+1=( 2)2-2 2+1=( 2-1)2, 所 以 3-2 2 + 3 (1- 2)3 + 4 (1- 2)4 = ( 2-1)2+ 3 (1- 2)3+ 4 (1- 2)4= 2-1+1- 2+ 2-1= 2-1.
2.1.1 │ 考点类析
[小结] 有理指数幂运算的基本原则和常规方法: (1)基本原则:式子里既有分数指数幂又有根式时,
一般把根式统一化为分数指数幂的形式,再用有理指数 幂的运算性质化简.
(2)常规方法:①化负指数幂为正指数幂;②化根式 为分数指数幂;③化小数为分数.
2.1.1 │ 考点类析
考点四 条件求值 重点探究型 [导入] 已知 x+1x=a(a≥2),如何求 x2+x12的值?
[ 解 析 ] (1)① 4 (-8)4 = | - 8| = 8 ;
②3 (-8)3=-8.
6 (2)①
1-π3 6=1-π3 =π3 -1;② 5
1-π3 5
=1-π3 .
2.1.1 │ 考点类析
(3)计算下列各式的值:
①8
x-3,x≥3,
(x-3)8=_3_-__x_,_x_<_3,
2.1.1 │ 考点类析
【变式】 (1)设 10m=2,10n=3,则 10-2m-10-n=_-_1_12_____.
[解析] 由 10m=2 得 10-2m=(101m)2=14,10 -n=110n=13, 所以 10-2m-10-n=14-13=-112.

高一数学人教A版必修1:2.1.1 指数与指数幂运算

高一数学人教A版必修1:2.1.1 指数与指数幂运算
2.1.1 指数与指数幂运算
一、复习引入
问题1:据调查,现行银行存款定期一年利率是 1.75%, 某投资者打算存款1万元,按照复利计算, 设x年(x≤20)底存款数y元, 问:y是否是关于x的函数?若是,求函数关系式.
解:y (1 1.75%) 1.0175 (x N 且x 20)
x x
*

x 1.0175
指数
底数
一、复习引入
同底数幂相乘,底数不变,指数相加 a (1) a a ________
1、整数指数幂运算性质: ( r、s ∈Z ) rs r s
( 2)
a a
r s
a ________
r s r
rs
同底数幂相除,底数不变,指数相减
a ( 3) ( a ) ________ 幂的乘方,底数不变,指数相乘 a b 乘积的幂,等于幂的乘积 (4) (ab ) ________
2 3 3 5 5
二、新课讲解
(4)
a
n
n
_________
a
(5) n a n
?
n n
n n 当n是奇数时, a a
a,a 0 当n是偶数时, a | a | a,a <0
思考:
3
5 53 ___________ 5 5 ___________
2
3
5 ( 5)3 ________
( 5) ________ 5
2
二、新课讲解 如果x n a,那么x叫做a的n次方根.
2、运算性质: (1)当n为偶数:正数a的n次方根有两个,且互为相反数.
正的n次方根记为n a,负的n次方根记为 n a ( 2)当n是奇数:正数a的n次方根是一个正数;

专题2.1.1 指数与指数幂的运算重难点题型(举一反三)(原卷版)

专题2.1.1 指数与指数幂的运算重难点题型(举一反三)(原卷版)

2.1.1指数与指数幂的运算重难点题型【举一反三系列】【知识点1 根式的意义】1.n次方根2.根式(1)定义:式子n a叫做根式,这里n叫做根指数,a叫做被开方数.(2)性质:(n>1,且n∈N*)①nn a )(=a .②nna =⎪⎩⎪⎨⎧为偶数为奇数,n a n a ,,【知识点2 分数指数幂及其运算】 1.分数指数幂(1)意义:nma =n ma ,nm a-=nm a1=nma 1,其中a >0,m ,n ∈N *,n >1;(2)0的正分数指数幂等于0,0的负分数指数幂没有意义;(3)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 2.有理数指数幂的运算性质(1)s r a a =s r a +a (>0,r ,s ∈Q ); (2)s r a )(=rs a a (>0,r ,s ∈Q ); (3)r ab )(=r r b a a (>0,r ,s ∈Q ).3.无理数指数幂一般地,无理数指数幂αa (a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.【知识点3 化简求值的方法与技巧】(1)在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,并尽可能统一成分数指数幂的形式,再利用分数指数幂的性质进行化简、求值、计算. (2)结果必须化为最简的形式.(3)巧妙公式变形:完全平方公式,立方和、立方差等.【考点1 根式的化简】【例1】(2019秋•信阳期中)式子( ) ABC.D.【变式2-1】(2019秋•中原区校级期中)当0a >(= )A .B .C .-D .-【变式2-2】(2019秋•32(0)a a a >的结果是( )A B C D【变式2-3】(2019秋•九龙坡区校级期中)把(a -根号外的(1)a -移到根号内等于( )A .BC .D 【考点2 根式与分数指数幂互化】【例2】(2019秋•( ) A .35a -B .53aC .35aD .53a -【变式2-1】下列关系式中,根式与分数指数幂互化正确的是( )A 56aa a -=-B .24x =C .332b =D .52()a b --=【变式2-2】(2019秋•桐庐县期中)下列根式中,分数指数幂的互化,正确的是( )A .12()(0)x x =-> B 13(0)y y <C .340)xx ->D .130)xx -=≠【变式2-3】(2019秋•城关区校级期中)若0a >,则用根式形式表示35a -为和.( ) A532a bB ,1235a bC532a bD 1235b b【考点3 多重根式的化简】【例3】(2019秋•3a a a 的分数指数幂表示为( )A .32aB .3aC .34aD .都不对【变式3-1】(2019秋•等于( )A .B .2 CD .2【变式3-2】(2019秋•凌源市月考)已知0a >( )A .712aB .512aC .56aD .13a 【变式3-3】(2019秋•(0)a >为( ) A .56aB .16aC .112a-D .13a -【考点4 根式与分数指数幂的混合运算】 【例4】(2019秋•巴宜区校级期中) (1)2102329272()(9.6)()()483---+(2)1323422()ab b a ---÷【变式4-1】(2019秋•鸠江区校级期中) (121xy xy-;(21327()8-++.【变式4-2】(2019秋•温江区校级月考)计算: (1)210232983()( 2.5)()()4272----+;(2)10.523321(4()0,0)4(0.1)()ab a b a b ---->>.【变式4-3】(2019秋•石河子校级月考)计算下列各式的值:(10,0)a b >>,(2)210232183(2)(9.6)()()4272----+.【考点5 利用整体代换思想求值】 【例5】(2019秋•凌源市月考)已知11223x x --=.求:(1)1x x -+; (2)1x x --.【变式5-1】(2019秋•沙坪坝区校级期中)若1122x x-+,求12212x x x x --+-+-的值.【变式5-2】(2019秋•越秀区校级月考)已知12x y +=,9xy =且x y <,求11221122x y x y-+的值.【变式5-3】(2018秋•湛江校级月考)已知11223a a -+=,求3322a a-+的值.【考点6 幂的综合应用】【例6】已知333ax by cz ==,且1111x y z++=,求证:11112223333()ax by cz a b c ++=++.【变式6-1】(2019秋•临沂期中)已知33()5x x f x --=,33()5x x g x -+=.(1)求证:()f x 是奇函数,并求()f x 的单调区间;(2)分别计算f (4)5f -(2)g (2)和f (9)5f -(3)g (3)的值,由此概括出涉及函数()f x 和()g x 对所有不等于零的实数x 都成立的一个等式,并加以证明.【变式6-2】(2019秋•双桥区校级期末)设函数4()42xx f x =+,若01a <<,试求:(1)求f (a )(1)f a +-的值;(2)求1231000()()()()1001100110011001f f f f +++⋯+的值.【变式6-3】设正整数a 、b 、()c a b c 剟和实数x 、y 、z 、ω满足:30x y z a b c ω===,1111x y z ω++=,求a 、b 、c 的值.。

2.1.1指数与指数幂的运算

2.1.1指数与指数幂的运算
n n
a
n

n
1 n (a 0, n N ) a
m n ( m , n Z );(a m )n
n( n Z ).
a
(n N ), a
1 (a 0)
(2)a a
m
n (ab)
n
a b
2
a
a
mn ( m , n Z );
3 0 (3) 9 3 , 9 -3 , 0 , 8 -2
(1)n为奇数时,正数的n次方根是一个正数; 负数的n次方根是一个负数, 这时a的n次方根即为n a 表示.
(2)n为偶数时,正数的n次方根有两个, 且互为相反数,即 n a; 负数没有偶次方根.
0的任何次方根都是0, 记作 0 0.
n
n
式子 a叫做根式( radical ), n叫做根指数(radical exponent ), a叫做被开方数( radicand ).
mn
(3)(ab ) a b ( n Z );
n
b n b (4))( ) n ( n Z , a 0); a a n m n m (5)a a a ( m , n Z , n m , a 0); 1 0 n (6)a 1(a 0);(7)a n . a
(4)( a )
a
(a 0), a
2
a
.
类比推广
若x 2 a, 那么x叫a的平方根, 如 2是4的平方根; 若x a, 那么x叫a的立方根, 如2是8的立方根;
3
由于(2) 16, 则 2叫做16的4次方根;
4
问1 : 若x a, x应称为什么呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时指数幂及其运算性质
1.用分数指数幂的形式表示a3·(a>0)的结果是( B )
(A)(B)(C)a4(D)
解析:因为a>0,所以a3·=a3·==.故选B.
2.下列运算结果中,正确的是( D )
(A)a2·a3=a6(B)(-a2)3=(-a3)2
(C)(+1)0=0 (D)(-a2)3=-a6
解析:a2·a3=a2+3=a5,A错;
(-a2)3=(-1)3×a2×3=-a6,(-a3)2=(-1)2×a3×2=a6,B错;(+1)0=1,C错,故选D.
3.下列各式中成立的一项是( D )
(A)()7=n7(B)=
(C)=(x+y(D)=
解析:A中()7=n7m-7,故A错;B中的===,故B错;C中
不可进行化简运算;D中的=(=(=,故D正确.
4.化简()(-3)÷()等于( C )
(A)6a (B)-a (C)-9a (D)9a
解析:原式=(-3×3)=-9a.故选C.
5.若-=m,则等于( C )
(A)m2-2 (B)2-m2
(C)m2+2 (D)m2
解析:将-=m两边平方,得a-2+a-1=m2,即a+a-1=m2+2,
所以原式=a+=m2+2.故选C.
6.设a>0,将表示成分数指数幂的形式,其结果是( C )
(A)(B)(C)(D)
解析:====a2·=,故选C.
7.若a>1,b>0,a b+a-b=2,则a b-a-b等于( D )
(A) (B)2或-2 (C)-2 (D)2
解析:因为a>1,b>0,所以a b>a-b,(a b-a-b)2=(a b+a-b)2-4=(2)2-4=4,
所以a b-a-b=2.故选D.
8.设x,y是正数,且x y=y x,y=9x,则x的值为( B )
(A)(B) (C)1 (D)
解析:依题意得x9x=(9x)x,(x9)x=(9x)x,所以x9=9x.所以x8=9,所以x==.故选B.
9.-+的值为.
解析:原式=-+=-+=.
-=答案=-:
10.2+1-()-2-()= .
解析:原式=(33+()-4-[()3]=9+-4-=3.
-=答案=-:3
11.若10x=3,10y=4,则102x-y= .
解析:102x-y=102x÷10y===.
-=答案=-:
12.若a=2+,b=2-,则(a+1)-2+(b+1)-2= . 解析:原式=(3+)-2+(3-)-2
=()2+()2
=.
-=答案=-:
13.计算:
(1)(2)0+2-2·(2)+()0.5+;
(2)(·()÷.
解:(1)原式=1+·()++2
=1+++2=4.
(2)原式=×()×()
=2×()
=2×()4
=.
14.当a=4,b=27时,求下列各式的值.
(1)+;
(2)÷().
解:(1)因为====. 又因为=,
所以原式=+,
故当a=4,b=27时,原式=+2=+(33=+9=.
(2)因为原式
=÷()=÷(·=b÷(ab)=.
所以原式==(22=.
15.化简求值:
(1)2×(×)6+(-4×()-×80.25+(-2 005)0;
(2)(2)(-6)÷(-3).
解:(1)原式=2×(×)6+(×-4×-×+1=2×22×33+2-3-2+1=214. (2)原式=[2×(-6)÷(-3)]
=4ab0
=4a.
16.若=9,则3-x的值为( D )
(A)3 (B)(C)81 (D)
解析:将=9两边平方,得3x=81,所以3-x=.故选D.
17.已知a+=3(a>0),下列各式正确的个数为( C )
①a2+a-2=7;②a3+a-3=18;③+=±;④a+=2.
(A)1 (B)2 (C)3 (D)4
解析:将a+=3两边平方,得a2++2=9,
所以a2+a-2=7,故①正确;
将a+=3两边立方,得a3++3a+=27,
所以a3+a-3=18,故②正确;
a++2=(+)2=5,又因为>0,>0,
所以+=,故③错误;
a+=(+)(a+a-1-1)=(3-1)=2,故④正确.故选C.
18.计算:(+2)2 016(2-)2 017= .
解析:原式=(+2)2 016(2-)2 016(2-)
=[(2+)(2-)]2 016(2-)
=2-.
-=答案=-:2-
19.已知函数f(x)=则f()-f(5+)的值为.
解析:因为=<1,而5+>1,
所以f()-f(5+)=·-(5+-5)2+3=-+3=3.
-=答案=-:3
20.已知函数f(x)=,g(x)=.分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明.
名师点拨:由于-与+的乘积恰好为平方差公式的变形.先根据已知条件中解析式的特征计算f(x)·g(x)的值,并结合f(4),f(9)的值计算f(4)-5f(2)g(2)与f(9)-5f(3)g(3)的值均为0,并且由解析式可知f(x2)恰好等于5f(x)g(x),由此可概括出一般的等式f(x2)-5f(x)g(x)=0.
解:由f(x)=,g(x)=,

f(4)-5f(2)g(2)=-5××=-
=-=0,
f(9)-5f(3)g(3)=-5××=-=0.
由此得出x≠0时有f(x2)-5f(x)g(x)=0.
证明:f(x2)-5f(x)g(x)
=-5××=-
=-
=0.。

相关文档
最新文档