数值分析.数值积分
数值分析-第4章 数值积分和数值微分
![数值分析-第4章 数值积分和数值微分](https://img.taocdn.com/s3/m/464e8c12227916888486d7a6.png)
A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析积分实验报告(3篇)
![数值分析积分实验报告(3篇)](https://img.taocdn.com/s3/m/0c53ac55a22d7375a417866fb84ae45c3b35c287.png)
第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
1_数值分析4-数值积分与微分
![1_数值分析4-数值积分与微分](https://img.taocdn.com/s3/m/1a934d26ad02de80d5d8404a.png)
回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn
h
k 1
fk
2 ( f0
fn )
b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x
xk
)(x
xk
1
),
k (xk , xk1)
(
f0
fn)
(3)
k 1
非等距分割梯形公式
Tn
n1 k 0
fk
fk 1 2
(xk 1
xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。
数值分析与数值计算方法
![数值分析与数值计算方法](https://img.taocdn.com/s3/m/c5e46935f56527d3240c844769eae009581ba218.png)
数值分析与数值计算方法数值分析与数值计算方法是现代科学与工程领域中的重要学科,它涉及到利用计算机和数值方法解决数学问题的理论和技术。
本文将从数值分析的基本概念、应用领域以及常见的数值计算方法等方面进行探讨。
一、数值分析的基本概念数值分析是一门研究数学算法与计算机实现相结合的学科,旨在通过数学模型的建立和数值计算方法的选择,对实际问题进行定量分析和计算。
它不仅包括了数值计算方法的研究,还包括了误差分析、计算复杂性和算法设计等内容。
数值分析的核心任务是将问题转化为数学模型和计算机可处理的形式,通过数值计算方法求解模型得到近似解。
数值分析的基本思想是通过将连续问题离散化,将其转化为离散的代数问题,然后利用数值计算方法进行求解。
二、数值分析的应用领域数值分析广泛应用于科学和工程领域,例如物理学、化学、生物学、经济学、计算机科学等。
在实际的科学研究和工程应用中,常常需要对现象进行数值建模和计算求解,以获得更加准确的结果。
在物理学中,数值分析用于求解微分方程、积分方程等物理模型,并模拟和预测天体运动、流体流动等自然现象。
在化学和生物学中,数值分析被用于计算分子结构、化学反应动力学等问题。
在经济学中,数值分析可以用于建立经济模型、进行风险评估和决策分析。
三、常见的数值计算方法1. 插值和拟合方法:插值和拟合方法用于根据已知数据点的函数值,构造出一个逼近原函数的函数。
常见的插值方法有拉格朗日插值和牛顿插值;拟合方法包括最小二乘拟合、多项式拟合等。
2. 数值积分方法:数值积分方法用于计算函数在一定区间上的定积分。
常见的数值积分方法有梯形规则、辛普森规则等。
3. 数值微分方法:数值微分方法用于在离散数据点上估计函数的导数。
常见的数值微分方法有中心差分法和向前差分法等。
4. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的数值解。
常见的数值解法有欧拉法、龙格-库塔法等。
5. 线性方程组的数值解法:线性方程组的数值解法用于求解线性代数方程组的数值解。
数值分析(清华大学第五版) 第四章数值积分和微分
![数值分析(清华大学第五版) 第四章数值积分和微分](https://img.taocdn.com/s3/m/b054357bf46527d3240ce0c2.png)
b
a
l j ( x)dx ( x x j -1 )( x x j 1 ) ( x x j 1 )( x x j 1 ) ( x xn ) ( x j xn )
dx
作变量代换, x a th ,则
n t (t 1) h (t j 1)(t j 1) (t n) 上式 dt b a 0 j ( j 1) 1(1) ( j n) 1 n t (t 1) (t j 1)(t j 1) (t n) dt n 0 j ( j 1) 1 (1) ( j n)
该积分仅与 n 有关,与 a, b, f ( x) 无关.
③ 设 n 1 个线性无关的次数 n 的多项式为 e0 ( x), 等距结点 x0 ,
过同样 , en ( x) ,
, xn , 对每一个 ei ( x) 利用 Newton Cotes 公式求积,且积分
余项均为零.即有
n b 1 b a a e0 ( x) dx c j e0 ( x j ) j 0 n 1 b e1 ( x)dx c j e( x j ) a (1) b a j 0 n b 1 b a a en ( x)dx c j en ( x j ) j 0
, n) ,
又设过该结点的次数 n 的 Lagrange插值多项式
P( x) f ( x j )l j ( x) ,
j 0
n
余项
f ( ) R( x) ( x) . (n 1)!
( n 1)
代数精确度
b n
定义 设求积公式 f ( x)dx A j f ( x j ) R(a, b, f ) .
数值分析6-数值积分
![数值分析6-数值积分](https://img.taocdn.com/s3/m/3b93874ced630b1c59eeb5df.png)
代数精度
如果对于所有次数不超过 m 的多项式 f (x) ,公式
定义
b
n
f ( x)dx
a
Ak f ( xk )
k0
精确成立,但对于某一次数为 m+1 的多项式不精确成
立,则称该求积公式的代数精度为 m 次。
第二章 数值积分
数值积分引言
计算定积分
I[ f ]
b
f ( x) dx
a
微积分基本公式:ab f ( x)dx F (b) F (a)
但是在许多实际计算问题中
(1) f (x) 表达式较复杂,原函数难求!甚至有时不能用初 等函数表示。如 f ( x) sin x , f ( x) ex2
如何求解求积公式
思考题
如果求积节点并没有确定,则待定参数有几个? 有2n+2个
能够达到的代数精度是多少? 2n+1个
此时的方程为非线性方程
插值型求积公式
基本思想
由已知的n+1个点以及在这n+1个点上的函数值, 作拉格朗日插值,得到pn(x)
则
b
b
bn
a f ( x )dx a pn ( x )dx a
a
6
2
辛甫生 公式
一般求积公式
更一般地,可以用 f (x) 在 [a, b] 上的一些离散点
上的值加权平均作为 f () 的近似值,从而构造出
b
n
f (x)dx
a
Ak f (xk )
求积节点
k 0
求积系数
机械求积法:求积系数仅仅与结点xk的选取有关,而不 依赖于被积函数f(x)的具体形式
数值分析--第4章数值积分与数值微分[1]详解
![数值分析--第4章数值积分与数值微分[1]详解](https://img.taocdn.com/s3/m/9edd6ad82f60ddccdb38a082.png)
第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。
在微积分中,我们熟知,牛顿-莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。
对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()baf x dx F b F a =-⎰似乎问题已经解决,其实不然。
如1)()f x 是由测量或数值计算给出数据表时,Newton-Leibnitz 公式无法应用。
2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-= 等等,它们的原函数不能用初等函数的有限形式表示。
3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。
例如下列积分241arc 1)arc 1)1dx tg tg C x ⎡⎤=+++-+⎣⎦+⎰ 对于上述这些情况,都要求建立定积分的近似计算方法—-数值积分法。
1。
1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定.由积分中值定理:对()[,]f x C a b ∈,存在[,]a b ξ∈,有()()()baf x dx b a f ξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a -而高为()f ξ的矩形面积(图4-1)。
问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()f ξ。
我们将()f ξ称为区间[,]a b 上的平均高度。
这样,只要对平均高度()f ξ提供一种算法,相应地便获得一种数值求积分方法.如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b aT f a f b -=+ (4—1) 便是我们所熟悉的梯形公式(图4-2)。
数值分析与计算方法的基本原理
![数值分析与计算方法的基本原理](https://img.taocdn.com/s3/m/70512b84f021dd36a32d7375a417866fb84ac0e0.png)
数值分析与计算方法的基本原理数值分析与计算方法是一门涉及数学、计算机科学和工程学的学科,主要研究如何利用数值计算的方法解决实际问题。
本文将从数值分析和计算方法的基本原理两个方面进行论述。
一、数值分析的基本原理数值分析的基本原理是通过数学方法对实际问题进行近似计算,以获得问题的数值解。
它主要涉及数值逼近、数值积分、数值微分和数值代数等方面。
1. 数值逼近数值逼近是指通过一系列已知的数值来近似表示一个函数或者数值。
其中最常用的方法是插值和拟合。
插值是通过已知数据点构造一个函数,使得该函数在这些点上与原函数值相等;拟合是通过已知数据点构造一个函数,使得该函数在这些点上与原函数的差别最小。
插值和拟合可以用于曲线拟合、数据预测等问题。
2. 数值积分数值积分是指通过数值计算的方法对函数的积分进行近似计算。
常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则等。
这些方法通过将积分区间划分成若干小区间,在每个小区间上用简单的数值计算方法来估计积分值,然后将这些估计值相加得到近似的积分值。
3. 数值微分数值微分是指通过数值计算的方法对函数的导数进行近似计算。
常用的数值微分方法有有限差分法和微分拟合法。
有限差分法通过计算函数在某一点的前后差值来估计导数的值;微分拟合法通过在某一点附近构造一个拟合函数,然后计算该函数的导数来估计原函数的导数。
4. 数值代数数值代数是指通过数值计算的方法解决线性代数方程组、非线性方程和矩阵特征值等问题。
常用的数值代数方法有高斯消元法、迭代法和特征值分解等。
这些方法通过将复杂的代数问题转化为简单的数值计算问题来求解。
二、计算方法的基本原理计算方法是指利用计算机进行数值计算的方法,它主要涉及数值计算软件、算法设计和计算机编程等方面。
1. 数值计算软件数值计算软件是指专门用于进行数值计算的软件工具,如MATLAB、Python的NumPy库和SciPy库等。
这些软件提供了丰富的数学函数和数值计算工具,方便用户进行各种数值计算操作。
数值分析-数值积分详解
![数值分析-数值积分详解](https://img.taocdn.com/s3/m/d71f3497d0d233d4b14e69ae.png)
xk
和 Ak 的代数问题.
b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。
1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n
b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:
数值分析之插值型数值积分
![数值分析之插值型数值积分](https://img.taocdn.com/s3/m/6f48e8145fbfc77da369b17c.png)
x1=b x
25
数值分析
梯形公式的余项和精度
梯形公式的余项为
R1
=
(b
− a)3 2
1 f ''( )t(t −1)dt, = (a + th) (a,b)
0
由第二积分中值定理得到 R1
= − (b − a)3 12
f
''(), (a,b)
注意到,此时的余项与代数精度保持一致。
26
数值分析
a j=0 xk − x j
n n t− j
(
h)dt
0 j=0 k − j
jk
jk
n
= h(
1
)
n
[
n
(t − j)]dt =
(−1)n−k h
nn
[ (t − j)]dt
j=0 k − j 0 j=0
k !(n − k )! 0 j=0
jk
jk
jk
= (b − a)ck(n) k = 0,1, , n
出定积分的近似值,即
b
b
a f ( x)dx a ( x)dx
6
数值分析
求积公式与代数精度
7
数值分析
6.1 求积公式及代数精度
数值求积公式的一般形式为
b
f (x)dx
a
n
k f (xk )
k =0
式 中 的 xk ( k= 0 , 1 , n称, 为) 求 积 节 点 并 且 有
a x0 x1 xn b,k (k = 0,1, , n) 称为求积系数,
28350 28350 28350 28350 28350 28350 28350 28350 28350
数值分析中的数值微分与数值积分
![数值分析中的数值微分与数值积分](https://img.taocdn.com/s3/m/a10e43d0162ded630b1c59eef8c75fbfc67d9454.png)
数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。
它们在计算机科学、工程学和物理学等领域中有广泛的应用。
本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。
一、数值微分数值微分是通过数值方法来计算函数的导数。
导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。
1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。
它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。
2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。
3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。
二、数值积分数值积分是通过数值方法来计算函数的积分。
积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。
1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。
具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。
最后,将各个矩形的面积相加,即可得到近似的积分值。
2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。
数值分析--数值积分与数值微分
![数值分析--数值积分与数值微分](https://img.taocdn.com/s3/m/60b62000e87101f69e3195fe.png)
n 1 ( x )
(a, b)
(2―2)
第4章 数值积分与数值微分
这里yi=f(xi),对式(2―1)两边积分得
《 数 值 分 析 》
b a
f ( x )dx
n
b a
pn ( x )dx
b n
b a
Rn ( x )dx dx ] yi
[
i0 a
x xk xi xk f
《 数 值 分 析 》
相当复杂。例如定积分
的被积函数
b a
dx 1 x
4
4
1 1 x
的原函数就比较复杂,从数值计算角
度来看,计算量太大。
第4章 数值积分与数值微分
如图4.1,若用左矩形近似地代替曲边梯形,则得到左
矩形公式
b a
《 数 值 分 析 》
f ( x )dx (b a ) f (a )
k 0 k i
第4章 数值积分与数值微分
称C(n)i为柯特斯求积系数。
很显然,当n=1时,可算得
C0
《 数 值 分 析 》
(1 )
1 0
( s 1) d s 1 2
ba 2
1 2
C1
(1 )
1 0
sd s
此时式(2―5)为
b a
f ( x )dx
[ f ( a ) f ( b )]
于是
b a
f ( x )dx
ba 6
[ f (a ) 4 f (
ab 2
) f ( b )]
(2―8)
第4章 数值积分与数值微分
数值分析中的数值微分与数值积分
![数值分析中的数值微分与数值积分](https://img.taocdn.com/s3/m/4d8cea57a200a6c30c22590102020740bf1ecd61.png)
数值分析中的数值微分与数值积分数值分析是一门重要的数学分支,用于研究如何使用计算机来求解各种数学问题。
数值微分和数值积分是数值分析中的两个基本概念,它们在科学计算和工程应用中具有广泛的应用。
一、数值微分数值微分是通过数值方法来近似计算函数的导数。
在实际计算中,往往很难直接求得函数的导数表达式,这时候数值微分方法就派上用场了。
1. 前向差分公式前向差分公式是最简单的数值微分方法之一,它基于导数的定义,用函数值的差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0)) / h其中h是一个足够小的正数,通常称为步长。
通过取不同的步长h,可以得到不同精度的数值微分结果。
2. 中心差分公式中心差分公式是数值微分中较为常用的方法,它利用了函数值的前向和后向差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0 - h)) / (2h)与前向差分公式相比,中心差分公式的精度更高,但计算量稍大一些。
二、数值积分数值积分是通过数值方法来近似计算函数在某个区间上的定积分值。
定积分在数学、物理等领域中具有广泛的应用,尤其是对于无法用解析方法求解的积分问题,数值积分提供了可行的解决办法。
1. 矩形法则矩形法则是最简单的数值积分方法之一,它将函数在积分区间上分成若干个小矩形,然后计算这些小矩形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * f(x)其中x是[a, b]上的随机点。
2. 梯形法则梯形法则是数值积分中较常用的方法,它将函数在积分区间上分成若干个小梯形,然后计算这些小梯形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * (f(a) + f(b)) / 2梯形法则的精度要比矩形法则要高一些。
数值分析数值微积分实验
![数值分析数值微积分实验](https://img.taocdn.com/s3/m/98463c3f31126edb6f1a105e.png)
实验报告
一、实验目的
复化求积公式计算定积分。
二、实验题目
1.用复化梯形公式、复化辛普森公式求下列定积分,要求绝对误差为3
10-=ε,并将计算结果与精确解进行比较: dx e x e x 232
143
2⎰= 三、实验原理
复化求积公式程序,复化辛普森公式程序。
四、实验内容及结果
五、实验结果分析
实验1中复化梯形公式和复化辛普森公式的比较:
运行复化梯形公式的时候,因为要去找区分精度,所以花的时间比较长,需要将区间分为365份时才能达到规定的误差范围。
而复化辛普森公式则只需要将区间分为12份即可。
说明复化辛普森比较好。
数值分析应用例题和知识点总结
![数值分析应用例题和知识点总结](https://img.taocdn.com/s3/m/e0dcce37571252d380eb6294dd88d0d233d43cc3.png)
数值分析应用例题和知识点总结数值分析是数学的一个重要分支,它主要研究如何用数值方法求解数学问题,包括数值逼近、数值微分和积分、线性方程组的求解、非线性方程的求解、插值与拟合等。
以下将通过一些具体的例题来展示数值分析的应用,并对相关知识点进行总结。
一、数值逼近数值逼近是用简单的函数(如多项式、分段多项式等)来近似地表示复杂的函数。
例题:给定函数$f(x) =\sin(x)$,在区间$0, \pi$ 上,用一次多项式(直线)来逼近它。
解:设逼近的一次多项式为$p(x) = ax + b$。
在区间两端点,即$x = 0$ 时,$p(0) = b$,且$f(0) = 0$;$x =\pi$ 时,$p(\pi) = a\pi + b$,$f(\pi) = 0$。
由此可得到方程组:\\begin{cases}b = 0 \\a\pi + b = 0\end{cases}\解得$a = 0$,$b = 0$,所以逼近的一次多项式为$p(x) = 0$,显然这个结果不太理想。
知识点总结:1、数值逼近的方法有很多,如泰勒展开、拉格朗日插值、牛顿插值等。
2、误差是衡量逼近效果的重要指标,包括截断误差和舍入误差。
二、数值微分数值微分是通过已知的函数值来近似计算函数的导数。
例题:已知函数$f(x) = x^2$ 在$x = 1$ 附近的三个点$x_0 =09$,$x_1 = 1$,$x_2 = 11$ 处的函数值分别为$081$,$1$,$121$,用中心差分公式求$f'(1)$的近似值。
解:中心差分公式为$f'(x) \approx \frac{f(x + h) f(x h)}{2h}$,取$h = 01$,则:\f'(1) \approx \frac{f(11) f(09)}{02} =\frac{121 081}{02}= 2\而$f'(x) = 2x$,$f'(1) = 2$,可见近似效果较好。
数值分析-第六章-数值积分
![数值分析-第六章-数值积分](https://img.taocdn.com/s3/m/f58ceb52a5e9856a5712602c.png)
k 0
而对应的误差为
b
b f (n1) ( )
I In
(
a
f
(
x)
Ln
(
x))dx
a (n 1)! wn1(x)dx
Newton-Cotes公式
当节点为等距节点时,对应的插值型求积公式称为 Newton-Cotes 公式。
梯形公式:最简单的 Newton-Cotes 公式
a
2
梯形公式的误差
梯形公式的误差为:
b f ( )
E I T a 2 (x a)(x b)dx
注意到对任意的 x [a,b] ,有 (x a)(x b) 0,根据积分中值定理,
若 f "(x) C[a,b] ,有
E f ()
b
(x a)(x b)dx
第六章 数值积分
数值积分的基本概念 数值积分的基本思想 代数精度 插值型求积公式
Newton-Cotes 求积公式 梯形公式、辛普森公式、一般的 Newton-Cotes 公式 复化积分公式:复化梯形公式、复化辛普森公式 区间逐次分半法
Romberg(龙贝格)积分
高斯型求积公式
数值积分的基本概念
微积分中定积分的定义为:b Nhomakorabean
a
f
(x
)dx
lim
n m a xxk
k01
xk
f
k( ,)
n
b
n
可用 xk f (xk ) 作为原积分的近似: a f (x)dx xk f (xk ) 。
k 1
k 1
进一步推广得到更一般的公式:
数值分析知识点大全总结
![数值分析知识点大全总结](https://img.taocdn.com/s3/m/e795ae11bf23482fb4daa58da0116c175f0e1ec9.png)
数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。
下面我们将逐一介绍这些方面的知识点。
1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。
常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。
其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。
2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。
常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。
其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。
3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。
常见的插值方法包括拉格朗日插值、牛顿插值等。
而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。
4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。
常见的数值微分方法包括向前差分、向后差分、中心差分等。
而数值积分方法则可以直接用差分方法来估计积分的值。
5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。
常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。
而直接法则是指用消元法来求解线性方程组的方法。
6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。
常见的迭代法包括牛顿法、割线法等。
其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。
7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。
其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。