北京市2019年中考数学真题与模拟题分类汇编 专题08 函数之填空题(25道题)(原卷版)

合集下载

(真题)2019年北京市中考数学试题有答案(Word版)

(真题)2019年北京市中考数学试题有答案(Word版)

2019年北京市高级中等学校招生考试数学试卷姓名 准考证号考场号 座位号考生须知1. 本试卷共8页,共三道大题,28道小题。

满分100分。

考试时间120分钟。

2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3. 试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将试卷、答题卡和草稿纸一并交回。

第1-8题均有四个选项,符合题意的选项只有..一个。

1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a + 3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。

已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为(A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯5. 若正多边形的一个外角是o 60,则该正多边形的内角和为(A )o 360 (B )o 540 (C )o 720 (D )o 9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )347. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。

北京市2019年中考数学试题(解析版)

北京市2019年中考数学试题(解析版)

2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。

1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。

解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。

2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。

将28 000用科学计数法表示应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10na⨯形式,其中1||10≤<,n为整数,28000=。

故选C。

a3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴比较数的大小。

解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。

4. 内角和为540的多边形是答案:c考点:多边形的内角和。

n-⨯︒,当n=5时,内角和为540°,所以,选C。

解析:多边形的内角和为(2)1805. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。

解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。

6. 如果,那么代数2()b aaa a b--的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平方差公式。

解析:2()b aaa a b--=22a b aa a b--=()()a b a b aa a b-+-=a b+=2。

7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D考点:轴对称图形的辨别。

【中考真题】2019年北京市中考数学试题(Word版解析版)word【推荐】

【中考真题】2019年北京市中考数学试题(Word版解析版)word【推荐】

2019年北京市中考数学试题(Word版解析版)2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,中要求,此题中,故选C2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A表示数为a,点B表示数为2,点C表示数为a+1,由题意可知,a<0,∵CO=BO,∴,解得(舍)或,故选A 5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CDB【解析】连接ON,由作图可知△COM≌△DON.A.由△COM≌△DON.,可得∠COM=∠COD,故A正确.B.若OM=MN,则△OMN为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B正确C.由题意,OC=OD,∴∠OCD=.设OC与OD与MN分别交于R,S,易证△MOR≌△NOS,则OR=OS,∴∠ORS=,∴∠OCD=∠ORS.∴MN∥CD,故C正确.D.由题意,易证MC=CD=DN,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN<MC+CD+DN=3CD,故选D6.如果,那么代数式的值为() A.-3 B.-1 C.1 D.3【解析】:∴原式=3,故选D7.用三个不等式,,中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【解析】本题共有3种命题:命题①,如果,那么.∵,∴,∵,∴,整理得,∴该命题是真命题.命题②,如果那么.∵∴∵,∴,∴.∴该命题为真命题.命题③,如果,那么.∵∴∵,∴,∴∴该命题为真命题.故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h,女生为25.5h,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误故,选C二、填空题(本题共16分,每小题2分)9.若分式的值为0,则的值为.【解析】本题考查分式值为0,则分子,且分母,故答案为110.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②12.如图所示的网格是正方形网格,则=°(点A,B,P是网格线交点).【解析】本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算,∴,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系中,点在双曲线上.点关于轴的对称点在双曲线上,则的值为.【解析】本题考查反比例函数的性质,A(a,b)在反比例上,则,A关于轴的对称点B 的坐标为,又因为B在上,则,∴故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.【解析】设图1中小直角三角形的两直角边分别为a,b(b>a),则由图2,图3可列方程组解得,所以菱形的面积故答案为12.15.小天想要计算一组数据92,90,94,86,99,85的方差.在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据的方差为,则. (填“”,“”或“”)【解析】本题考查方差的性质。

北京市2019年中考数学真题与模拟题分类汇编 专题19 统计与概率之填空题(28道题)(原卷版)

北京市2019年中考数学真题与模拟题分类汇编 专题19 统计与概率之填空题(28道题)(原卷版)

专题19 统计与概率之填空题(28题)一.填空题(共28小题)1.(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)2.(2018•北京)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.3.(2019•房山区二模)在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是月份.4.(2019•通州区三模)某市多措并举,加强空气质量治理,空气质量达标天数显著增加,重污染天数逐年减少,越来越多的蓝天出现在人们的生活中.下图是该市4月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量为优良.由上图信息,在该市4月1日至15日空气质量为优良的时间里,从第日开始,连续三天空气质量指数的方差最小.5.(2019•房山区二模)如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向颜色的可能性大.6.(2019•通州区三模)为了了解学生每月的零用钱情况,从甲、乙、丙三个学校各随机抽取200名学生,调查了他们的零用钱情况(单位:元)具体情况如下:在调查过程中,从(填“甲”,“乙”或“丙”)校随机抽取学生,抽到的学生“零用钱不低于300元”的可能性最大.7.(2019•昌平区二模)在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(2)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到表中的一组统计数据:请估计:当次数n足够大时,摸到红球的频率将会接近.(精确到0.1)8.(2019•顺义区二模)改革开放以来,由于各阶段发展重心不同,北京的需求结构经历了消费投资交替主导、投资消费双轮驱动到消费主导的变化.到2007年,北京消费率超过投资率,标志着北京经济增长由投资消费双轮驱动向消费趋于主导过渡.如图是北京1978﹣2017年投资率与消费率统计图.根据统计图回答:年,北京消费率与投资率相同;从2000年以后,北京消费率逐年上升的时间段是.9.(2019•东城区二模)运算能力是一项重要的数学能力.王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中5位同学的测试成绩.(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高.)①在5位同学中,有位同学第一次成绩比第二次成绩高;②在甲、乙两位同学中,第三次成绩高的是.(填“甲”或“乙”)10.(2019•西城区二模)某水果公司新购进10000千克柑橘,每千克柑橘的成本为9元.柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如表所示:率根据表中数据,估计柑橘损坏的概率为(结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每千克的售价至少为元.11.(2019•怀柔区二模)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2019年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微粒/立方米)表从上述表格随机选择一个区域,其2019年1月份PM2.5的浓度小于51微克/立方米的概率是.12.(2019•海淀区二模)某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是.13.(2019•石景山区二模)一冰箱生产厂家对某地区两个经销本厂家冰箱的大型商场进行调查,产品的销售量占这两个商场同类产品销售量的45%,由此在广告中宣传,他们的产品销售量在国内同类产品销售量中占45%,请你根据所学的统计知识,判断这个宣传数据是否可靠:(填是或否),理由是.14.(2019•丰台区二模)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性“凹面向上”的可能性.(填“大于”,“等于”或“小于”).15.(2019•平谷区二模)掷一枚硬币两次,可能出现的结果有四种,如图,我们可以利用树状图来分析有可能出现的结果,那么掷一枚硬币两次,全是正面的概率是.16.(2019•朝阳区一模)某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A型保温杯的优势是.17.(2019•丰台区一模)为了解同学们对网络游戏的喜好和作业量多少的相关性,小明随机对年级50名同学进行了调查,并将调查的情况进行了整理,如下表:如果小明再随机采访一名同学,那么这名同学是“喜欢网络游戏并认为作业多”的可能性“不喜欢网络游戏并认为作业不多”的可能性.(填“>”,“=”或“<”)18.(2019•海淀区一模)如图是北京故宫博物馆2018年国庆期间客流指数统计图(客流指数是指景区当日客流量与2018年10月1日客流量的比值).根据图中信息,不考虑其他因素,如果小宇想在今年国庆期间游客较少时参观故宫,最好选择10月日参观.19.(2019•东城区一模)有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.20.(2019•顺义区一模)如图是北京市2019年3月1日至20日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良.那么在这20天中空气质量优良天数比例是.21.(2019•石景山区一模)一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为.22.(2019•西城区一模)小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、共星、二星和一星.)小芸选择在(填“甲”、“乙”或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.23.(2019•北京一模)2018年北京PM2.5平均浓度变化情况如图所示.根据统计图提供的信息,有下面三个推断:①2018年北京PM2.5全年累计平均浓度值为51微克/立方米;②2018年7月﹣10月,北京PM2.5平均浓度逐月持续下降;③2018年下半年,北京PM2.5平均浓度最高的月份是11月.其中合理的推断的序号是:.24.(2019•北京一模)如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为cm2.25.(2019•房山区一模)如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.为了最大限度的避开地雷,下一步应该点击的区域是.(填“A”或“B”)26.(2019•平谷区一模)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:则甲、乙、丙三名业务员中销售额最稳定的是 .27.(2019•延庆区一模)小明调查了他所在年级三个班学生的身高,并进行了统计,列出如下频数分布表:在调查过程中,随机抽取某班学生,抽到(填“1班”、“2班”或“3班”)的“身高不低于155cm ”可能性最大.28.(2019•门头沟区一模)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下:那么该苹果幼树移植成活的概率估计值为 .(结果精确到0.1)。

2019年北京市中考数学真题复习(附答案)(可编辑修改word版)

2019年北京市中考数学真题复习(附答案)(可编辑修改word版)

P Q P Q 2019 年北京市中考数学真题复习(附答案)副标题题号 一二三总分得分一、选择题(本大题共 8 小题,共 16.0 分)1. 4 月24 日是中国航天日.1970 年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道, 距地球最近点 439000 米,将 439000 用科学记数法表示应为( )A. 0.439 × 106B. 4.39 × 106C. 4.39 × 105D. 439 × 1032. 下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.3. 正十边形的外角和为( ) A. 180 ∘ B. 360 ∘ C. 720 ∘ D. 1440 ∘4. 在数轴上,点A ,B 在原点 O 的两侧,分别表示数 a ,2,将点 A 向右平移 1 个单位长度,得到点C ,若 CO =BO ,则 a 的值为( ) A. −3 B. −2 C. −1 D. 1 5. 已知锐角∠AOB ,如图,(1) 在射线 OA 上取一点 C ,以点 O 为圆心,OC 长为半径作⏜,交射线 OB 于点 D ,连接 CD ;(2) 分别以点 C ,D 为圆心,CD 长为半径作弧,交⏜于点 M ,N ;(3) 连接 OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠CO M = ∠C O D C. MN//CDB. 若O M = MN.则∠AOB = 20 ∘ D. MN = 3CD6.如果 m +n =1,那么代数式(2m + n + 1)•(m 2-n 2)的值为()A. −3B. −1m 2−mn mC. 1D. 31 17.用三个不等式a>b,ab>0,a<b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A. 0B. 1C. 2D. 38.某校共有200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分下面有四个推断:①这200 名学生参加公益劳动时间的平均数一定在24.5-25.5 之间②这200 名学生参加公益劳动时间的中位数在20-30 之间③这200 名学生中的初中生参加公益劳动时间的中位数一定在20~30 之间④这200 名学生中的高中生参加公益劳动时间的中位数可能在20~30 之间所有合理推断的序号是()A.①③B.②④C. ①②③D. ①②③④二、填空题(本大题共8 小题,共16.0 分)x−19.分式x的值为0,则x 的值是.10.如图,已知△ABC,通过测量、计算得△ABC 的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)0 11 0 (4) . x + 73 >x12. 如图所示的网格是正方形网格,则∠PAB +∠PBA =° (点 A ,B ,P 是网格线交点).13. 在平面直角坐标系 xOy 中,点 A (a ,b )(a >0,b >0)k 1k 2在双曲线 y = x 上,点 A 关于 x 轴的对称点 B 在双曲线 y = x ,则 k 1+k 2 的值为 .14. 把图 1 中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图 2,图 3 所示的正方形,则图 1 中菱形的面积为 .15. 小天想要计算一组数据 92,90,94,86,99,85 的方差 s 2,在计算平均数的过程中,将这组数据中的每一个数都减去 90,得到一组新数据 2,0,4,-4,9,-5,记这组新数据的方差为 s 2,则 s 2 s 2(填“>”,“=”或”<”)16. 在矩形 ABCD 中,M ,N ,P ,Q 分别为边 AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形 ABCD ,下面四个结论中, ①存在无数个四边形 MNPQ 是平行四边形; ②存在无数个四边形 MNPQ 是矩形; ③存在无数个四边形 MNPQ 是菱形; ④至少存在一个四边形 MNPQ 是正方形. 所有正确结论的序号是 .三、解答题(本大题共 12 小题,共 68.0 分)17. 计算:|- 3|-(4-π)0+2sin60°+ 1-1{4(x−1)<x + 218. 解不等式组:19.关于x 的方程x2-2x+2m-1=0 有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E,F 分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;1(2)延长EF 交CD 的延长线于点G,连接BD 交AC 于点O.若BD=4,tan G=2,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40 的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7 组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70 这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40 个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O 到点A,B,C的距离均等于a(a 为常数),到点O 的距离等于a 的所有点组成图形G,∠ABC 的平分线交图形G 于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D 作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF 交图形G 于点M,连接CM.若AD=CM,求直线DE 与图形G 的公共点个数.AB23. 小云想用 7 天的时间背诵若干首诗词,背诵计划如下:①将诗词分成 4 组,第 i 组有 x i 首,i =1,2,3,4;②对于第 i 组诗词,第 i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;首. 解答下列问题:(1)填入 x 3 补全上表; (2)若 x 1=4,x 2=3,x 3=4,则 x 4 的所有可能取值为 ;(3)7 天后,小云背诵的诗词最多为首.24. 如图,P 是⏜ 与弦 AB 所围成的图形的外部的一定点,C 是⏜上一动点,连接 PCAB交弦 AB 于点 D .AB小腾根据学习函数的经验,对线段 PC ,PD ,AD 的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1) 对于点 C 在⏜上的不同位置,画图、测量,得到了线段 PC ,PD ,AD 的长度在 PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2) 在同一平面直角坐标系 xOy 中,画出(1)中所确定的函数的图象;a(3) 结合函数图象,解决问题:当 PC =2PD 时,AD 的长度约为cm .25. 在平面直角坐标系 xOy 中,直线 l :y =kx +1(k ≠0)与直线 x =k ,直线 y =-k 分别交于点 A ,B ,直线 x =k 与直线 y =-k 交于点 C . (1) 求直线 l 与 y 轴的交点坐标; (2) 横、纵坐标都是整数的点叫做整点,记线段 AB ,BC ,CA 围成的区域(不含边界)为 W .①当 k =2 时,结合函数图象,求区域 W 内的整点个数; ②若区域 W 内没有整点,直接写出 k 的取值范围.26. 在平面直角坐标系 xOy 中,抛物线 y =ax 2+bx -1与 y 轴交于点 A ,将点 A 向右平移 2 个单位长度,得到点 B ,点 B 在抛物线上.(1) 求点 B 的坐标(用含 a 的式子表示); (2) 求抛物线的对称轴;11(3) 已知点 P (2,-a ),Q (2,2).若抛物线与线段 PQ 恰有一个公共点,结合函数图象,求 a 的取值范围.D E27. 已知∠AOB =30°,H 为射线 OA 上一定点,OH = 3+1,P 为射线 OB 上一点,M 为 线段 OH 上一动点,连接 PM ,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺时针旋转 150°,得到线段 PN ,连接 ON .(1) 依题意补全图 1; (2) 求证:∠OMP =∠OPN ;(3) 点 M 关于点 H 的对称点为 Q ,连接 QP .写出一个 OP 的值,使得对于任意的点 M 总有 ON =QP ,并证明.28. 在△ABC 中,D ,E 分别是△ABC 两边的中点,如果 ⏜上的所有点都在△ABC 的内部或边上,则称⏜ 为△ABC 的中内弧.例如,图 1 中⏜ 是△ABC 的一条中内弧.D E D E(1)如图 2,在 Rt △ABC 中,AB =AC =2 2,D ,E 分别是 AB ,AC 的中点,画出△ABC 的最长的中内弧⏜ ,并直接写出此时⏜ 的长;D ED E(2)在平面直角坐标系中,已知点 A (0,2),B (0,0),C (4t ,0)(t >0),在△ABC 中,D ,E 分别是 AB ,AC 的中点.1 ⏜ ①若 t =2,求△ABC 的中内弧D E 所在圆的圆心 P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧⏜ ,使得 ⏜ 所在圆的圆心 P 在△ABC 的内部或边上,D ED E直接写出t 的取值范围.答案和解析1.【答案】C【解析】解:将439000 用科学记数法表示为4.39×105.故选:C.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.【答案】C【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】B【解析】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.根据多边的外角和定理进行选择.本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.【答案】A【解析】解:∵点C 在原点的左侧,且CO=BO,∴点C 表示的数为-2,∴a=-2-1=-3.故选:A.根据CO=BO 可得点C 表示的数为-2,据此可得a=-2-1=-3.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.【答案】D【解析】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A 选项正确;∵OM=ON=MN,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON= ∠MON=20°,故B 选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN= ∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C 选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D 选项错误;故选:D.由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.【答案】D【解析】解:原式= •(m+n)(m-n)= •(m+n)(m-n)=3(m+n),当m+n=1 时,原式=3.故选:D.原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3 个;故选:D.由题意得出3 个命题,由不等式的性质再判断真假即可.本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.【答案】C【解析】解:①解这200 名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5 之间,正确;②这200 名学生参加公益劳动时间的中位数在20-30 之间,正确;③这200 名学生中的初中生参加公益劳动时间的中位数一定在20~30 之间,正确;④这200 名学生中的高中生参加公益劳动时间的中位数可能在20~30 之间,错误.故选:C.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.9.【答案】1【解析】解:∵分式的值为0,∴x-1=0 且x≠0,∴x=1.故答案为1.根据分式的值为零的条件得到x-1=0 且x≠0,易得x=1.本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.【答案】1.9【解析】解:过点C 作CD⊥AB 的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC= AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.过点C 作CD⊥AB 的延长线于点D,测量出AB,CD 的长,再利用三角形的面积公式即可求出△ABC 的面积.本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.【答案】①②【解析】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.【答案】45【解析】解:延长AP 交格点于D,连➓BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.延长AP 交格点于D,连➓BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.【答案】0【解析】解:∵点A(a,b)(a>0,b>0)在双曲线y= 上,∴k1=ab;又∵点A 与点B 关于x 轴的对称,∴B(a,-b)∵点B 在双曲线y= 上,∴k2=-ab;∴k1+k2=ab+(-ab)=0;故答案为:0.由点A(a,b)(a>0,b>0)在双曲线y= 上,可得k1=ab,由点A 与点B 关于x 轴的对称,可得到点B 的坐标,进而表示出k2,然后得出答案.考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0 的性质.14.【答案】12【解析】解:如图1 所示:∵四边形ABCD 是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD 的面积= AC×BD= ×6×4=12;故答案为:12.由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.【答案】=【解析】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.本题考查方差的意义:一般地设n 个数据,x 1,x2,…x n 的平均数为,则方差S2= [(x 1- )2+(x2- )2+…+(x n- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.【答案】①②③【解析】解:①如图,∵四边形ABCD 是矩形,连➓AC,BD 交于O,过点O 直线MP 和QN,分别交AB,BC,CD,AD 于M,N,P,Q,则四边形MNPQ 是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ 是平行四边形,故存在无数个四边形MNPQ 是平行四边形;故正确;②如图,当PM=QN 时,四边形MNPQ 是菱形,故存在无数个四边形MNPQ 是矩形;故正确;③如图,当PM⊥QN 时,存在无数个四边形MNPQ 是菱形;故正确;④当四边形MNPQ 是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD 是正方形与任意矩形ABCD 矛盾,故错误;故答案为:①②③.根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.x + 73>x②2O本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.17. 【答案】解:原式= 【解析】3-1+2× 2 +4= 3-1+ 3+4=3+2 3.直➓利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数 幂的性质分别化简得出答案此题主要考查了实数运算,正确化简各数是解题关键.{4(x−1)<x + 2①解①得:x <2, 7解②得 x <2,7则不等式组的解集为 2<x <2. 【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:∵关于 x 的方程 x 2-2x +2m -1=0 有实数根,∴b 2-4ac =4-4(2m -1)≥0, 解得:m ≤1, ∵m 为正整数, ∴m =1,∴x 2-2x +1=0, 则 (x -1)2=0, 解得:x 1=x 2=1. 【解析】直➓利用根的判别式得出 m 的取值范围进而解方程得出答案. 此题主要考查了根的判别式,正确得出 m 的值是解题关键. 20.【答案】(1)证明:连接 BD ,如图 1 所示:∵四边形 ABCD 是菱形,∴AB =AD ,AC ⊥BD ,OB =OD , ∵BE =DF ,∴AB :BE =AD :DF , ∴EF ∥BD , ∴AC ⊥EF ;(2)解:如图 2 所示: ∵由(1)得:EF ∥BD , ∴∠G =∠ADO ,OA 1∴tan G =tan ∠ADO =OD =2,1∴OA =D ,3 18.【答案】解: ,∵BD=4,∴OD=2,∴OA=1.【解析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD 即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tanG=tan∠ADO= =,得出OA= OD,由BD=4,得出OD=2,得出OA=1.本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.【答案】17 2.8 ①②【解析】解:(1)∵国家创新指数得分为69.5 以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40 个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为28. 万美元;故答案为:2.8;(4)由40 个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.(1)由国家创新指数得分为69.5 以上(含69.5)的国家有17 个,即可得出结果;(2)根据中国在虚线l1 的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40 个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40 个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.【答案】(1)证明:∵到点O 的距离等于a的所有点组成图形G,∴图象G 为△ABC 的外接圆⊙O,∵AD 平分∠ABC,∴∠ABD=∠CBD,∴ ⏜= ⏜,AD CD∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC 垂直平分DM,∴BC 为直径,∴∠BAC=90°,∵ ⏜= ⏜,AD CD∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE 为⊙O 的切线,∴直线DE 与图形G 的公共点个数为1.【解析】(1)利用圆的定义得到图象G 为△ABC 的外➓圆⊙O,由∠ABD=∠CBD 得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC 垂直平分DM,利用垂径定理得到BC 为直径,再证明OD⊥DE,从而可判断DE 为⊙O 的切线,于是得到直线DE 与图形G 的公共点个数.本题考查了三角形的外➓圆与外心:三角形外➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.【答案】4,5,6 23【解析】第1 天第2 天第3 天第4 天第5 天第6 天第7 天第1 组x1x1x1第2 组x2x2x2第3 组x3x3x3第4 组x4x4x4(2)∵每天最多背诵14 首,最少背诵4 首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4 的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14 首,最少背诵4 首,∴ 由第2 天,第3 天,第4 天,第5 天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④-③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤ +14= ,∴x1+x2+x3+x4≤23,∴7 天后,小云背诵的诗词最多为23 首,故答案为:23.(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.【答案】PC PD AD 1.59(答案不唯一)【解析】解:(1)按照变量的定义,PC 是自变量,而PD、AD 随PC 的变化而变化,故PD、AD 都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;a a(3)PC=2PD,即PD= PC,画出y= x,交曲线AD 的值约为1.59,故答案为1.59(答案不唯一).(1)按照变量的定义,PC 是自变量,而PD、AD 随PC 的变化而变化,故PD、AD 都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD= PC,画出y= x,交曲线AD 的值为所求,即可求解.本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.【答案】解:(1)令x=0,y=1,∴直线l 与y 轴的交点坐标(0,1);(2)由题意,A(k,k2+1 −k−1B ,-k),C(k,-k),),(k3①当k=2 时,A(2,5),B(-2,-2),C(2,-2),在W 区域内有6 个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);②直线AB 的解析式为y=kx+1,当x=k+1 时,y=-k+1,则有k2+2k=0,∴k=-2,当0>k≥-1 时,W 内没有整数点,∴当0>k≥-1 或k=-2 时W 内没有整数点;【解析】(1)令x=0,y=1,直线l 与y 轴的交点坐标(0,1);(2)①当k=2 时,A(2,5),B(- ,-2),C(2,-2),在W 区域内有6 个整数点;②当x=k+1 时,y=-k+1,则有k2+2k=0,k=-2,当0>k≥-1 时,W 内没有整数点;本题考查一次函数图象上点的特征;能够数形结合解题,根据k 变化分析W 区域内整数点的情况是解题的关键.126.【答案】解:(1)A(0,- )1点A 向右平移2 个单位长度,得到点B(2,-a);(2)A 与B 关于对称轴x=1 对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b-2a,∴y=ax2-2ax-1,①a>0 时,1当x=2 时,y=-a<2,1当y=-a时,x=0 或x=2,∴函数与AB 无交点;②a<0 时,1当y=2 时,2,ax -2ax-a=2a + |a + 1| a−|a + 1|x= a或x= aa + |a + 1| 1≤2时,a≤-2;当a1∴当a≤-时,抛物线与线段PQ 恰有一个公共点;2【解析】(1)A(0,- )向右平移2 个单位长度,得到点B(2,- );(2)A 与B 关于对称轴x=1 对称;(3)①a>0 时,当x=2 时,y=- <2,当y=- 时,x=0 或x=2,所以函数与AB 无交点;②a<0 时,当y=2 时,ax2-2ax- =2,x= 或x= 当≤2时,a≤- ;本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.27.【答案】解:(1)如图1 所示为所求.(2)设∠OPM=α,∵线段PM 绕点P 顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN-∠OPM=150°-α∵∠AOB=30°∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α∴∠OMP=∠OPN(3)OP=2 时,总有ON=QP,证明如下:过点N 作NC⊥OB 于点C,过点P 作PD⊥OA 于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2O P 2−P D 23+1 1∴PD =2OP =1∴OD = = ∵OH = ∴DH =OH -OD =1∵∠OMP =∠OPN∴180°-∠OMP =180°-∠OPN即∠PMD =∠NPC在△PDM 与△NCP 中 ∠PDM = ∠NC P ∠PMD = ∠NPC PM = NP∴△PDM ≌△NCP (AAS )∴PD =NC ,DM =CP设 DM =CP =x ,则 OC =OP +PC =2+x ,MH =MD +DH =x +1∵点 M 关于点 H 的对称点为 Q∴HQ =MH =x +1∴DQ =DH +HQ =1+x +1=2+x∴OC =DQ在△OCN 与△QDP 中OC = QD ∠OCN = ∠QD P = 90° N C = P D ∴△OCN ≌△QDP (SAS ) ∴ON =QP 【解析】(1) 根据题意画出图形.(2) 由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM ;由∠AOB=30°和三角形内角和 180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM ,得证.(3) 根据题意画出图形,以 ON=QP 为已知条件反推 OP 的长度.由(2)的结论 ∠OMP=∠OPN 联想到其补角相等,又因为旋转有PM=PN ,已具备一边一角相等,过点 N 作 NC ⊥OB 于点 C ,过点 P 作 PD ⊥OA 于点 D ,即可构造出 △PDM ≌△NCP ,进而得 PD=NC ,DM=CP .此时加上 ON=QP ,则易证得 △OCN ≌△QDP ,所以 OC=QD .利用∠AOB=30°,设 PD=NC=a ,则 OP=2a , OD= a . 再 设 DM=CP=x , 所 以 QD=OC=OP+PC=2a+x ,MQ=DM+QD=2a+2x .由于点 M 、Q 关于点 H 对称,即点 H 为 MQ 中点,故 MH= MQ=a+x ,DH=MH-DM=a ,所以 OH=OD+DH= a+a= +1,求得 a=1,故 OP=2.证明过程则把推理过程反过来,以 OP=2 为条件,利用构造全等证得 ON=QP .本题考查了根据题意画图,旋转的性质,三角形内角和 180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以 ON=QP 为条件反推OP 的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2 为条件构造全等证明 ON=QP .3{{2 2 2 D ED E 28. 【答案】解:(1)如图 2,以 DE 为直径的半圆弧⏜ ,就 是△ABC 的最长的中内弧⏜ ,连接 DE ,∵∠A =90°,AB =AC =2 2,D ,E 分别是 AB ,AC的中点,AC 1 1 ∴BC = = =4,DE = BC = ×4=2, sinB sin 45° 2 2⏜ 1 ∴弧D E =2×2π=π; (2)如图 3,由垂径定理可知,圆心一定在线段 DE 的垂直平分线上,连接 DE ,作 DE 垂直平分线 FP ,作 EG ⊥AC 交 FP 于 G ,1 1①当 t =2时,C (2,0),∴D (0,1),E (1,1),F (2,1),1设P (2,m )由三角形中内弧定义可知,圆心线段DE上方射线 FP 上均可,∴m ≥1,∵OA =OC ,∠AOC =90°∴∠ACO =45°,∵DE ∥OC∴∠AED =∠ACO =45°1 作 EG ⊥AC 交直线 FP 于 G ,FG =EF =2根据三角形中内弧的定义可知,圆心在点 G 的下方(含点 G )直线 FP 上时也符合要求;1 ∴m ≤21 综上所述,m ≤2或 m ≥1.②如图 4,设圆心 P 在 AC 上,∵P 在 DE 中垂线上,3∴P 为 AE 中点,作 PM ⊥OC 于 M ,则 PM =2,3 ∴P (t ,2),∵DE ∥BC∴∠ADE =∠AOB =90°∴AE = AD 2 + D E 2= 12 + (2t )2= 4t 2 + 1,∵PD =PE ,∴∠AED =∠PDE∵∠AED +∠DAE =∠PDE +∠ADP =90°,∴∠DAE =∠ADP1 ∴AP =PD =PE =2AE由三角形中内弧定义知,PD ≤PM1 32 ∴2AE ≤2,AE ≤3,即 4t + 1≤3,解得:t ≤ ,∵t>0∴0<t≤ 2.【解析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,的长即以DE 为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE 的中垂线上,①当t= 时,要注意圆心P 在DE 上方的中垂线上均符合要求,在DE 下方时必须AC 与半径PE 的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t 的最大值即圆心P 在AC 上时求得的t 值.此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.。

北京市各区2019届中考数学一模试卷精选汇编函数操作专题

北京市各区2019届中考数学一模试卷精选汇编函数操作专题

函数操作专题东城区25. 如图,在等腰△ABC 中,AB =AC ,点D ,E 分别为BC ,AB 的中点,连接AD .在线段AD 上任取一点P ,连接PB ,PE .若BC =4,AD =6,设PD =x (当点P 与点D 重合时,x 的值为0),PB +PE =y .小明根据学习函数的经验,对函数y 随自变量x 的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表: (说明:补全表格时,相关数值保留一位小数). (参考数据:1.414≈1.732≈2.236≈)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y 的最小值为______________(保留一位小数),此时点P 在图1中的位置为________________________.25.解:(1)4.5 . --------------------2分 (2)--------------------4分(3) 4.2,点P 是AD 与CE 的交点. --------------------6分 西城区25.如图,P 为⊙O 的直径AB 上的一个动点,点C 在»AB 上,连接PC ,过点A 作PC 的垂线交⊙O 于点Q .已知5cm AB =,3cm AC =.设A 、P 两点间的距离为cm x ,A 、Q 两点间的距离为cm y .BA某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当2AQ AP =时,AP 的长度均为__________cm .【解析】(1)图5(3)2.42. 海淀区25.在研究反比例函数1y x=的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量x 的取值范围是全体非零实数,因此函数图象会被y 轴分成两部分;其次,分析解析式,得到y 随x 的变化趋势:当0x >时,随着x 值的增大,1x 的值减小,且逐渐接近于零,随着x 值的减小,1x的值会越来越大,由此,可以大致画出1y x=在0x >时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y=的图象与性质. 通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A;(画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:____________________;(3)若关于x(1)a x=-有两个不相等的实数根,结合图象,直接写出实数a的取值范围:__________.25.(1)如图:………………2分x>时,y随着x的增大而减小;(答案不唯一)………………4分(2)当1a≥. ………………6分(3)1丰台区25.如图,Rt△ABC中,∠ACB = 90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E.已知∠A = 30°,AB = 4cm,在点D由点A到点B运动的过程中,设AD = x cm,AE = y cm.CED小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AE =12AD 时,AD 的长度约为 cm . 25.解:(1)1.2; ………………………2分 (2)如右图; ………………………4分 (3)2.4或3.3 ………………………6分 石景山区25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60 时,PM的长度约为cm.25.解:(1)4; 0. ………………2分(2………………4分(3)1.1或3.7 . ………………6分朝阳区25.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x cm,DE=y cm(当x的值为0或3时,y的值为2),探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:的图象;(3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为 cm (结果保留一位小数).25. 解:本题答案不唯一,如:(1)………………………………………………1分(2)Array…………………………………………4分(3)3.5.……………………… 6分燕山区26.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,下表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是-2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=(4)结合函数的图象,写出该函数的一条性质:____________ .26.解:(1)当自变量是-2时,函数值是32…………………………………1′(2)如图,该函数的图象; (略) …………………………………3′(3)标出x=2时所对应的点…………………………………4′且m= …………………………………5′(4)写出该函数的性质(一条即可):_____ .…………………………………7′ 门头沟区25.在正方形ABCD 中,4AB cm = AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,连接PM 、PB , 设A 、P 两点间的距离为xcm ,PM PB +长度为ycm .小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.D A(3)结合画出的函数图象,解决问题:PM PB 的长度最小值约为__________cm .25.(本小题满分6分)(1)5 ……………………………………………………………………1分(2)坐标系正确 ……………………………………………………3分描点正确 ……………………………………………………4分 连线正确……………………………………………………5分(3)4.5 ……………………………………………………………………6分 大兴区25.如图,在△ABC 中,AB=4.41cm,BC=8.83cm ,P 是BC 上一动点,连接AP ,设P ,C 两点间的距离为x cm ,P ,A 两点间的距离为y cm .(当点P 与点C 重合时,x 的值为0) 小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出 该函数的图象;(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为cm.(结果保留一位小数)25.(1)(答案不唯一)(2)………………………………………………………………4分(3) 4.4 ………………………………………………………………6分 (答案不唯一)平谷区25.如图,在△ABC 中,∠C =60°,BC =3厘米,AC =4厘米,点P 从点B 出发,沿B →C →A 以每秒1厘米的速度匀速运动到点A .设点P 的运动时间为x 秒,B 、P 两点间的距离为y 厘米.B小新根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:的值是 (保留一位小数)(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC 中画出点P 所在的位置.25.解:(1)3.0; ···························· 1 (2)如图所示; ·························4(3)如图 ···························· 5 怀柔区25、如图,在等边△ABC 中, BC=5cm ,点D 是线段BC 上的一动点,连接AD ,过点D 作DE ⊥AD ,垂足为D ,交射线AC 与点E .设BD 为x cm ,CE 为y cm .小聪根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y 的几组值,如下表:(说明:补全表格上相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当线段BD 是线段CE 长的2倍时,BD 的长度约为________cm . 25.(1)约1.1; ………………………………………………………………………………………1分 (2)如图:–11234512345O (4)分 (3)约1.7. ………………………………………………………………………………………5分 延庆区25.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =6cm ,设弦AP 的长为x cm ,△APO 的面积为y cm 2,(当点P 与点A 或点B 重合时,y 的值为0).OA B小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;与y的几组值,如下表:(1)通过取点、画图、测量、计算,得到了x那么m= ;(保留一位小数)(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为.(保留一位小数)25.(1)m= 约4.3 ;……1分4321(画此函数图象时要体现出x约为4.2时,y有最大值,为4.5)……4分(3) 3.1或是5.1 ……6分顺义区25.如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为x cm,B,C两点间的距离为y cm.A小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是.25.(1)4.6.……………………………………………………………………… 1分(2)…………………………………………………………………………… 3分(3)6<C<12.…………………………………………………………… 5分。

2019北京中考数学答案精品文档5页

2019北京中考数学答案精品文档5页

一、选择题2019 年北京市高级中等学校招生考试数学试卷参考答案1.B 2.D 3.C 4.C 5.B 6.A 7.B 8.A 二、填空题9.a(b -2)210.x2 +111.20 12.-3,-1,0,-12 3三、解答题13.证明:∵DE ∥AB∴∠CAB =∠ADE在△ABC 与△DAE 中⎧∠CAB =∠ADE⎪AB =DA⎪∠B =∠DAE∴△ADE ≌△BAC (ASA)∴BC =AE14.解:原式=1 +=5 2 - 2 ⨯2+ 4 215.解:由3x >x - 2 ,得x >-1由x +1> 2x ,得3x <15∴-1 <x <1516.代数式化简得:4x2 -12x + 9 -x2 +y2 -y2= 3x2 -12x +9= 3(x2 - 4x +3)∵x2 - 4x =1代入得∴原式=1217.设每人每小时的绿化面积为x 平方米.则有:180-180= 3 6x解得x =2.5(6 + 2)x经检验:x = 2.5 是原方程的解答:每人每小时的绿化面积为2.5 平方米18.(1)△= 4 - 4(2k - 4) = 20 -8k∵方程有两个不等的实根∴△>0即20 -8k >0∴k <52(2)∵k为整数∴0 <k <5即k =1或2,2x1、2=-1±5 -2k∵方程的根为整数,∴5 - 2k 为完全平方数当k =1时,5 - 2k =3k = 2 时,5 - 2k =1∴k =219.(1)在ABCD 中,AD∥BC∵F 是AD 中点.∴DF =1AD ,又∵CE =1BC .2 2∴DF =CE 且DF ∥CE∴四边形CEDF 为平行四边形(2)过D 作DH ⊥BE 于H在ABCD 中∵∠B =60︒∴∠DCE =60︒∵AB =4∴CD =4∴CH =2,DH = 2 3在CEDF 中,CE =DF =1AD = 3 2∴EH =1在Rt△DHE 中DE = (2 3)2 +12 =1320.(1)∵PA 、PC 与O 分别相切于点A 、C∴∠APO =∠EPD 且PA ⊥AO 即∠PAO =90︒∵∠AOP =∠EOD ,∠PAO =∠E =90︒∴∠APO =∠EDO即∠EPD =∠EDO(2)连结OC∴PA =PC =6∵tan ∠PDA =34∴在Rt△PAD 中AD = 8 ,PD =10∴CD =4∵tan ∠PDA =34∴在Rt△OCD 中,OC =OA = 3 ,OD =5∵∠EPD =∠EDO∴△OED ∽△DEP∴PD=D E=10=2 OD OE 5 1在Rt△OED 中OE2 +DE2 =52∴OE =521.(1)0.03(2)陆地面积3.6水面面积1.5图略(3)370022.(1)a(2)四个等腰直角三角形面积和为a2正方形ABCD 的面积为a2∴S正方形MNPQ =S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE= 4 ⨯1⨯12 2=2(3)2323.解:(1)当x = 0 时,y =-2 .∴A(0,-2)抛物线对称轴为x =--2m=1 2m∴B(1,0)(2)易得A 点关于对称轴的对称点为A(2 ,-2)则直线l 经过A 、B .没直线的解析式为y =kx +b⎧2k +b =-2⎩k +b = 0,解得⎧k =-2⎩b = 2∴直线的解析式为y =-2x +2(3)∵抛物线对称轴为x =1抛物体在2 <x < 3 这一段与在-1 <x < 0 这一段关于对称轴对称结合图象可以观察到抛物线在-2 <x <-1这一段位于直线l 的上方在-1 <x < 0 这一段位于直线l 的下方∴抛物线与直线l 的交点横坐标为-1 ;当x =-1时,y =-2x(-1) + 2 =+4则抛物线过点(-1,4)当x =-1时,m + 2m - 2 = 4 ,m =2∴抛物线解析为y = 2x2 - 4x - 2 .24.解:(1)30︒-1 α 2(2)△ABE 为等边三角形证明连接AD 、CD 、ED∵线段BC 绕点B 逆时针旋转60︒得到线段BD则BC =BD ,∠DBC =60︒又∵∠ABE =60︒∴∠ABD = 60︒-∠DBE =∠EBC = 30︒-1α 2且△BCD 为等边三角形.在△ABD 与△ACO 中⎧AB =AC⎪AD =AD⎪BD =CD∴△ABD ≌△ACD (SSS)∴∠BAD =∠CAD =1∠BAC =1α 2 2∵∠BCE =150︒∴∠BEC =180︒- (30︒-1α)-150︒=1α 2 2在△ABD 与△EBC 中A ⎧∠BEC =∠BAD⎪∠EBC =∠ABD⎪BC =BD D∴△ABD ≌△EBC (AAS)E ∴AB =BEB C∴△ABE 为等边三角形(3)∵∠BCD = 60︒,∠BCE =150︒∴∠DCE =150︒- 60︒=90︒又∵∠DEC =45︒∴△DCE 为等腰直角三角形∴DC =CE =BC∵∠BCE =150︒∴∠EBC =(180︒ -150︒)=15︒2而∠EBC = 30︒-1α=15︒ 2∴α = 30︒25. 解:(1) ① D 、E ;② 由题意可知,若 P 点要刚好是圆 C 的关联点;需要点 P 到圆 C 的两条切线 PA 和 PB 之间所夹的角度为 60︒ ; 由图1 可知 ∠APB = 60︒ ,则 ∠CPB = 30︒ ,连接 BC ,则 PC = BCsin ∠CPB = 2BC = 2r ;∴若 P 点为圆 C 的关联点;则需点 P 到圆心的距离 d 满足 0 ≤ d ≤ 2r ; 由上述证明可知,考虑临界位置的 P 点,如图 2; P 点 P 到原点的距离 OP = 2⨯1= 2 ; 过 O 作 x 轴的垂线 OH ,垂足为 H ;t a n ∠OGF = OF = 2 3 = 3 ; AB OG 2∴ ∠OGF = 60︒ ;C ∴ OH = O G ⋅sin 60︒ = 3 ;∴ sin ∠OPH = OH = 3 ;OP 2 ∴ ∠OPH = 60︒ ; 易得点 P 1 与点 G 重合,过 P 2 作 P 2 M ⊥ x 轴于点 M ; 易得 ∠P 2 OM = 30︒ ;∴ OM = O P 2 ⋅cos30︒ = 3 ; 图1 y G (P 1) HO MF x图2从而若点 P 为圆 O 的关联点,则 P 点必在线段 P 1 P 2 上; ∴0 ≤ m ≤ 3 ; (2) 若线段 EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小, 则这个圆的圆心应在线段 EF 的中点; 考虑临界情况,如图 3;即恰好 E 、F 点为圆 K 的关联时,则 KF = 2KN = 1 EF = 2 ;2∴此时 r =1 ;y故若线段 EF 上的所有点都是某个圆的关联点,F这个圆的半径 r 的取值范围为 r ≥1.x KNE图3。

北京市2019年中考数学试题(含答案解析)

北京市2019年中考数学试题(含答案解析)
所有合理推断的序号是()
A.①③B.②④C.①②③D.①②③④
二、填空题
9.若分式 的值为0,则 的值为______.
10.如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)
11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)
(3)在国家创新指数得分比中Fra bibliotek高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
A.-3B.-2C.-1D.1
5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作 ,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交 于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是()
A.∠COM=∠CODB.若OM=MN,则∠AOB=20°
A.0.439×106B.4.39×106C.4.39×105D.139×103
2.下列倡导节约的图案中,是轴对称图形的是()
A. B. C. D.
3.正十边形的外角和为()
A.180°B.360°C.720°D.1440°
4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()

(完整版)北京市2019年初三数学一模试题分类汇编——函数探究,推荐文档

(完整版)北京市2019年初三数学一模试题分类汇编——函数探究,推荐文档

2019 年北京市各区一模数学试题分类汇编——函数探究(房ft)25.如图,AB 为⊙O 直径,点 C 是⊙O 上一动点,过点 C 作⊙O 直径 CD,过点 B 作 BE⊥CD 于点 E.已知 AB=6cm,设弦 AC 的长为 x cm,B,E 两点间的距离为 y cm(当点 C 与点 A 或点 B 重合时,y 的值为 0).CAOBE D小冬根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.下面是小冬的探究过程,请补充完整: (1) 通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:x/cm0123456y/cm00. 991. 892. 602. 98m0经测量 m 的值为;(保留两位小数)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当 BE=2 时,AC 的长度约为cm.1(门头沟)24.如图,在△ABC 中,AB = AC,D 是 AB 的中点,P 是线段 BC 上一动点,连接 AP 和 DP.如果 BC = 8cm,设 B,P 两点间的距离为 x cm,D,P 两点间的距离为 y1 cm,A,P 两点间的距离 为 y2 cm.ADBPC小明根据学习函数经验,分别对函数 y1 和 y2 随自变量 x 变化而变化的规律进行了探 究. 下面是小明的探究过程,请将它补充完整:(1) 按下表中自变量 x 值进行取点、画图、测量,得到了 y1 和 y2 与 x 几组对应值:x/cm012345678y1/cm 2.50 1.80 1.50 1.803.35 4.27 5.22 6.18y2/cm 5.00 4.24 3.61 3.16 3.00 3.16 3.61 4.24 5.00(2) 在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点(x,y2)和(x,y1),并画出函数 y1 和 y2 的图象;y / cm7654 y2321O12345678 x / cm(3) 结合函数图象,解决问题:当 DP = AP 时,BP 的长度约为 cm(结果精确到 0.01).2(密云)25.如图 ABC 中, BAC 30,AB=5cm,AC= 2 3 cm,D 是线段 AB 上一动点,设 AD 长 为 xcm,CD 长为 ycm(当点 A 与点 D 重合时,x=0).CADB小明根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探 究. 下面是小慧的探究过程,请补充完整: (1) 经过取点、画图、测量,得到 x 与 y 的几组对应值,如下表:x /cm 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y /cm 3.52.7 2.3 2.0 1.8 1.7 1.8 2.0 2.3 2.7(说明:补全表格时,结果保留一位小数) (2) 在平面直角坐标系 xoy 中,描出补全后的表中各组数值所对应的点,并画出函数图象;y/cm 54321O1 2 3 4 5 6 7 x/cm(3) 结合函数图象解决问题,当 CD≥2cm 时,x 的取值范围是.3(平谷)25.如图,点 P 是 AB 所对弦 AB 上一动点,点 Q 是 AB 与弦 AB 所围成的图形的内部的一定 点,作射线 PQ 交 AB 于点 C,连接 BC.已知 AB=6cm,设 A,P 两点间的距离为 xcm,P,C 两点间的距离为 y1cm,B,C 两点间的距离为 y2cm.(当点 P 与点 A 重合时,x 的值为 0).小平根据学习函数的经验,分别对函数 y1,y2 随自变量 x 的变化而变化的规律进行了探 究. 下面是小平的探究过程,请补充完整:(1) 按照下表中自变量 x 的值进行取点、画图、测量,分别得到了 y 与 x 的几组对应值;x/cm0123456y1/cm5.374.062.83m3.864.835.82y2/cm2.683.574.905.545.725.795.82经测量 m 的值是(保留一位小数).(2) 在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点(x,y1), (x,y2),并画出函数 y1,y2 的图象;(3) 结合函数图象,解决问题:当△BCP 为等腰三角形时,AP 的长度约为 cm. 4(石景ft)24.如图, Q 是 AB 上一定点, P 是弦 AB 上一动点, C 为 AP 中点,连接 CQ ,过 点 P 作 PD ∥ CQ 交AB 于点 D ,连接 AD , CD . 已知 AB 8 cm,设 A , P 两点间的距离为 x cm, C , D 两点间的距离为 y cm. (当点 P 与点 A 重合时,令 y 的值为 1.30)DQACPB小荣根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整: (1) 按照下表中自变量 x 的值进行取点、画图、测量,得到了 y 与 x 的几组对应值:x /cm 0 1 2 3 4 5 6 7 8y /cm 1.30 1.79 1.74 1.66 1.63 1.692.08 2.39(2) 建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3) 结合函数图象,解决问题:当 DA⊥DP 时, AP 的长度约为 cm.5(通州)24. 数学活动课上,老师提出问题:如图 1,在 Rt△ABC 中, C 90 ,BC =4 cm,AC =3 cm,点 D 是 AB 的中点,点 E 是 BC 上一个动点,连接 AE、DE. 问 CE 的长是多少时,△AED 的周长等于CE 长的 3 倍.设 CE=x cm,△AED 的周长为 y cm(当点 E 与点 B 重合时,y 的值为10). 小牧根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究. 下面是小牧的探究过程,请补充完整:(1) 通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:x/cm00.511.522.5 3 3.5 4y/cm 8.07.77.57.48.0 8.6 9.2 10(说明:补全表格时相关数值保留一位小数)(2) 建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图 2;(3) 结合画出的函数图象,解决问题:①当 CE 的长约为cm 时,△AED 的周长最小;②当 CE 的长约为cm 时,△AED 的周长等于 CE 的长的 3 倍.ADCE图1y/cm 1098765 4321BO 1 2 3 4 x/cm图26(延庆)23.如图,正方形 ABCD 的对角线相交于点 O,点 E,F 分别是边 BC 上两点,且EOF 45 . 将EOF 绕点 O 逆时针旋转,当点 F 与点 C 重合时,停止旋转. 已知,BC=6,设 BE=x,EF=y.小明根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1) 按照下表中自变量 x 的值进行取点、画图、测量,得到了 y 与 x 的几组对应值;x 0 0.5 1 1.5 2 2.5 3y 3 2.772.50 2.55 2.65ADOBEFC(说明:补全表格时相关数值保留一位小数) (2) 建立平面直角坐标系,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;(3) 结合函数图象,解决问题:当 EF=2BE 时,BE 的长度约为.7(燕ft)23.如图,等边△ABC 的边长为 3cm,点 N 在 AC 边上,AN=1cm.△ABC 边上的动点 M 从点 A 出发,沿 A→B→C 运动,到达点 C 时停止.设点 M 运动的路程为 xcm,MN 的长为 ycm.CNAMB小西根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.下面是小西的探究过程,请补充完整: (1) 通过取点、画图、测量,得到了 y 与 x 的几组对应值;x/cm0 0.5 1 1.52 2.5 3 3.5 4 4.5 55.5 6y/cm1 0.87 1 1.322.18 2.65 2.291.8 1.73 1.8 2(2) 在平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点,画出该函数的图象;y/cm321O 1 2 3 4 5 6 x/cm (3) 结合函数图象,解决问题:当 MN=2cm 时,点 M 运动的路程为cm.8(西城)24.如图, AB 是直径 AB 所对的半圆弧,C 是 AB 上一定点,D 是 AB 上一动点,连接 DA, DB,DC.已知 AB=5cm,设 D,A 两点间距离为 xcm,D,B 两点间的距离为 y1 cm,D,C 两点间的距 离为 y2 cm.小腾根据学习函数的经验,分别对函数 y1,y2 随自变量 x 的变化而变化的规律进行了探究.下面是小腰的探究过程,请补充完整:(1)按照下表中自变量 x 的值进行取xm点/c 、画0 图、1 测量2,分别3 得4到了5 y1,y2 与 x 的几组对应值;y1/cm 5 4.94 30y2/cm 4 3.32 2.47 1.4 0 3(2)在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点(,)y1, ( ,x)y2 ,并画出函数 y1,y2 的图象;(3)结合函数图象,解决问题: 连接 BC,当△BCD 是以 CD 为腰的等腰三角形时,DA 的长度约为cm.9(顺义)25.有这样一个问题:探究函数 y 1 x 的图象与性质. x 2小亮根据学习函数的经验,对函数yx1 2x的图象与性质进行了探究.下面是小亮的探究过程,请补充完整:(1) 函数 y 1 x 中自变量 x 的取值范围是;x2(2) 下表是 y 与 x 的几组对应值.3795 x … 2 1 0 1 2 4 4 2 3 4 5 6 …9 4 1 1 9 25 99 16 25y … 4 3 20 2 44m…2234求 m 的值 ; (3) 在平面直角坐标系 xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数 的图象;yO1x(4) 根据画出的函数图象,发现下列特征:①该函数的图象是中心对称图形,对称中心的坐标是 ;②该函数的图象与过点(2,0)且平行于 y轴的直线越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.10y = 2x +1 x2(丰台)25. 有这样一个问题:探究函数y = 2x +1x2 的图象,并利用图象解决问题.小泽根据学习函数的经验,对函数y = 2x +1x2的图象进行了探究.下面是小泽的探究过程,请补充完整:(1)函数x 的取值范围是;(2)下表是y 与x 的几组对应值.x …-2 -32 -1-34-121 34 132 25…2 2y …-154-239 -15183 559331m12925 …18 9其中m 的值为;(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数图象,解决问题:当2x +1x2= 4 时,x 的值约为.(东城)25.如图,点 E 在弦 AB 所对的优弧上,且 B E 为半圆,C 是 B E 上一动点,连接 CA ,CB ,已知AB =4cm ,设 B ,C 两点间的距离为 c m x ,点 C 到弦 AB 所在直线的距离为 y 1 cm ,A ,C 两点间的距离为 y 2 cm .小明根据学习函数的经验,分别对函数 y 1 , y 2 ,随自变量 x 的变化而变化的规律进行了探究. (1) 按照下表中自变量 的值进行取点、画图、测量,分别得到了 与 x 的几组对应值;(2) 在同一平面直角坐标系函数 1, 2的图象;中,描出补全后的表中各组数值所对应的点(x , 1),(x , 2)并画出(3) 结合函数图象,解决问题:①连结 BE ,则 BE 的长约为 cm . ②当以 A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为cm .x y 1 , y 2 x /c 0 1 2 3 4 5 6 m 1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47 2/cm 4 4.69 5.26 5.96 5.94 4.47 xOyy 1 (x ,y 2 ) (x ,y 1 ) xOy y 1 y 2 y 1 AQ ⊥ CP AB x /cm 0 0.30.5 0.8 1 1.5 2 3 4 5(海淀)24.如图,线段 AB 及一定点 C , P 是线段 上一动点,作直线 CP ,过点 A 作 于点 Q .已知 AB = 7 cm ,设 A ,P 两点间的距离为 x cm , A ,Q 两点间的距离为 y 1 cm , 的距离为 y 2 cm .两点间小明根据学习函数的经验,分别对函数 下面是小明的探究过程,请补充完整:y 1 , y 2 随自变量 x 的变化而变化的规律进行了探究. (1) 按照下表中自变量 x 的值进行取点、画图、测量,分别得到了 , 与x 的几组对应值: /cm/cm(2) 在同一平面直角坐标系 中,描出补全后的表中各组数值所对应的点 , ,并画出函数 , y 2 的图象;1 00 76 6.415.334.201.820.730.290.060.090.08y 2 2.78 2.76 2.72 2.61 2.37 1.87 1.48 0.790.49 0.28 P ,Q的长度约为cm.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2019年北京中考数学真题模拟题汇编专题9:函数之解答题(含解析)

2019年北京中考数学真题模拟题汇编专题9:函数之解答题(含解析)

2019年北京中考数学真题模拟题汇编专题09 函数之解答题一.解答题(共73小题)1.(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 2.3和4cm.【答案】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,从图和表格可以看出位置4和位置6符合要求,即AD的长度为2.3和4.0.【点睛】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.2.(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【答案】解:(1)A(0,)点A向右平移2个单位长度,得到点B(2,);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=﹣2a,∴y=ax2﹣2ax,①a>0时,当x=2时,y<2,当y时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax2,x或x当2时,a;∴当a时,抛物线与线段PQ恰有一个公共点;【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.3.(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【答案】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;【点睛】本题考查一次函数图象上点的特征;能够数形结合解题,根据k变化分析W区域内整数点的情况是解题的关键.4.(2019•朝阳区校级一模)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当△PBM的面积为1时,PM的长度约为 1.1或3.7cm.【答案】解:(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=0.故答案为4;0.(2)函数图象如图所示:(3)如图,在Rt△BQM中,∵∠Q=90°,∠MBQ=60°,∴∠BMQ=30°,∴BQ BM=2,观察图象可知y=2时,对应的x的值为1.1或3.7.故答案为1.1或3.7.【点睛】本题考查圆综合题,垂径定理、相似三角形的判定和性质、直角三角形30度角的性质、坐标与函数图象问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.5.(2019•怀柔区二模)研究发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的注意力激增,中间有一段时间,学生的注意力保持平稳状态,随后开始分散.学生注意力指标数y随时间x变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分;当10≤x≤20和20≤x≤45时,图象是线段.根据图象回答问题:(1)课堂上,学生注意力保持平稳状态的时间段是10到20分钟.(2)结合函数图象回答,一道几何综合题如果需要讲25分钟,老师最好在上课后大约第4分钟到第29分钟讲这道题,能使学生处于注意力比较集中的听课状态.【答案】解:(1)由图象可知,学生注意力保持平稳状态的时间段为:10到20分钟时,故答案为:10到20分钟.(2)当0≤x≤10时,设抛物线的函数关系式为y=ax2+bx+c,∵图象过点(0,20),(5,39),(10,48)∴解得a,b,c=20∴y x220,(0≤x≤10).当20≤x≤45,设其函数解析式为y=kx+b将(20,48),(45,20)代入得解得∴y=﹣1.12x+70.4令y=39得x5∴老师最好在上课后大约第4分钟到第29分钟讲这道题,能使学生处于注意力比较集中的听课状态.故答案为4,29.【点睛】本题是一次函数,二次函数结合函数图象在实际问题中的应用,理论联系实际是解决此类问题的关键.6.(2019•朝阳区校级一模)如图,在平面直角坐标系xOy中,过点A(2,0)的直线l:y=mx﹣3与y轴交于点B.(1)求直线l的表达式;(2)若点C是直线l与双曲线的一个公共点,AB=3AC,求n的值.【答案】解:(1)∵直线l:y=mx﹣3过点A(2,0),∴0=2m﹣3.∴m.∴直线l的表达式为y x﹣3;(2)当x=0时,y=﹣3,∴点B(0,﹣3),如图1,当点C在BA延长线上时,作CD⊥y轴于点D,则△BAO∽△BCD,∴,即,解得:CD,OD=1,∴点C(,1),则n1;如图2,当点C在线段AB上时,作CE⊥y轴于点E,则△BAO∽△BCE,∴,即,解得:CE,BE=2,∴OE=BO﹣BE=1,∴点C的坐标为(,﹣1),则n(﹣1),综上,n或.【点睛】本题主要考查直线和双曲线的交点问题,熟练掌握待定系数法求函数解析式和相似三角形的判定与性质是解题的关键.7.(2019•西城区二模)某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为 1.41微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约7.75小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为 4.25微克.【答案】解:(1)如图所示:(2)①由函数图象得:某病人第一次服药后5小时,每毫升血液中的含药量约为1.41微克;当y=0.5时,t或8,87.75,∴则第一次服药后治疗该疾病有效的时间共持续约7.75小时;故答案为:1.41,7.75;②第一次服药8小时后2小时,即10小时含药量为0.25微克,第二次服药2小时含药量为4微克,所以第二次服药后2小时,每毫升血液中的含药量约为:4+0.25=4.25微克;故答案为:4.25.【点睛】本题主要考查利用函数的模型解决实际问题的能力和读图能力.要先根据坐标画出图象,解题的关键是要分析题意,并会根据图示得出所需要的信息.8.(2019•海淀区二模)有这样一个问题:探究函数y的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数y的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数y的自变量x的取值范围是;(2)如图,在平面直角坐标系xOy中,完成以下作图步骤:①画出函数y和y的图象;②在x轴上取一点P,过点P作x轴的垂线l,分别交函数y和y的图象于点M,N,记线段MN的中点为G;③在x轴正半轴上多次改变点P的位置,用②的方法得到相应的点G,把这些点用平滑的曲线连接起来,得到函数y在y轴右侧的图象.继续在x轴负半轴上多次改变点P的位置,重复上述操作得到该函数在y轴左侧的图象.(3)结合函数y的图象,发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为(保留小数点后一位);②该函数还具有的性质为:当x>0时,y随x的增大而增大(一条即可).【答案】解:(1)∵x在分母上,∴x≠0.故函数y的自变量x的取值范围是x≠0;(2)画出该函数在y轴左侧的图象如图:(3)①点的横坐标约为﹣1.6;(在﹣1.9至﹣1.3之间即可)②该函数的其它性质:当x>0时,y随x的增大而增大.故答案为:当x>0时,y随x的增大而增大.【点睛】本题考查了分式有意义的条件、反比例函数的图象、二次函数的图象以及函数的最值,解题的关键是:(1)根据分母不为0,找出x的取值范围;(2)连点,画出函数图象;(3)根据函数图象,寻找函数的性质.9.(2019•丰台区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得点P在射线BC上,且∠APB∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.(1)当⊙O的半径为1时,①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D、E、F中,⊙O的依附点是E,F;②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,直接写出圆心C的横坐标m的取值范围.【答案】解:(1)①如图1中,根据P为⊙C的依附点,可知:当r<OP<3r(r为⊙C的半径)时,点P 为⊙C的依附点.∵D(﹣1,0),E(0,﹣2),F(2.5,0),∴OD=1,OE=2,OF=2.5,∴1<OE<3,1<OF<3,∴点E,F是⊙C的依附点,故答案为:E、F;②如图2中,当点T在第四象限,OT′=1时,作T′N⊥x轴于N,易知N(,0),OT=3时,作TM⊥x轴于M,易知M(,0),∴满足条件的点T的横坐标t的取值范围:<t<.当点T在第二象限时,同法可得满足条件的t的取值范围为<t<,综上所述,满足条件的t的值的范围为:<t<或<t<.(2)如图3﹣1中,当点C在点M的右侧时,由题意M(2,0),N(0,2)当CN=6时,OC4,此时C(4,0),当CM=2时,此时C(4,0),∴满足条件的m的值的范围为4<m<4.如图3﹣2中,当点C在点M的右侧时,当⊙C与直线MN相切时,易知C′(2﹣2,0),当CM=6时,C(﹣4,0),∴满足条件的m的值的范围为﹣4<m<2﹣2,综上所述,满足条件的m的值的范围为:4<m<4或﹣4<m<2﹣2.【点睛】本题属于一次函数综合题,考查了直线与圆的位置关系,解直角三角形,P为⊙C的依附点的定义等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会利用特殊位置解决数学问题,属于中考压轴题.10.(2019•昌平区二模)如图,在平面直角坐标系xOy中,函数(x>0)的图象与直线y=2x﹣2交于点为A(2,m).(1)求k,m的值;(2)点B为函数(x>0)的图象上的一点,直线AB与y轴交于点C,当AC=2AB时,求点C的坐标.【答案】解:(1)∵直线y=2x﹣2过点A(2,m),∴m=2×2﹣2=2∴A(2,2),∵(x>0)过点A(2,2),∴k=2×2=4;(2)∵AC=2AB,∴B点的横坐标为1或3,把x=1或3代入y得,y=4或,∴B(1,4),或(3,),设直线AB为y=ax+b,把A、B的坐标代入求得解析式为y=﹣2x+6或y x,令x=0,则C(0,6)或C(0,).【点睛】本题考查反比例函数与一次函数的综合问题,解题的关键是求出B点的坐标.11.(2019•通州区三模)如图,在平面直角坐标系xOy中,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,函数y(x<0)的图象经过点A.(1)求k的值;(2)若过点A的直线l平行于直线OB,且交函数y(x<0)的图象于点D.①求直线l的表达式;②定义:横、纵坐标都是整数的点叫做整点.记函数y(x<0)的图象在点A,D之间的部分与线段AD围成的区域(含边界)为W.结合函数图象,直接写出区域W内(含边界)的整点个数.【答案】解:(1)∵B(3,﹣3),C(5,0),四边形OABC是平行四边形,∴AB=OC=5,∴点A的坐标为(﹣2,﹣3),∴k=6;(2)①设直线OB的表达式为y=mx,由B点坐标(3,﹣3),可求m=﹣1,∵过点A的直线l平行于直线OB,∴设直线l的表达式为y=﹣x+b,把点A的坐标(﹣2,﹣3)代入上式并解得:b=﹣5,故:直线l的表达式为y=﹣x﹣5;②将函数表达式:y与直线表达式:y=﹣x﹣5联立并整理得:x2+5x+6=0,解得:x=﹣2或﹣3,故点D的坐标为(﹣3,﹣2),而点A(﹣2,﹣3),由图象分析可见:在点A,D之间的部分与线段AD围成的区域(含边界)为W内,只有D、A两个整点.【点睛】本题考查的是反比例函数综合应用,涉及到一次函数、一元二次方程、平行四边形的知识,综合性强、难度适中.12.(2019•房山区二模)在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【答案】解:(1)由函数解析式y=x2﹣2mx+m2﹣2,可求顶点坐标为(m,﹣2);(2)当m≤0时,抛物线F与线段AB有公共点时,令x=0,则m2﹣2≤2,∴﹣2≤m≤2,∴﹣2≤m≤0;当0<m<2时,抛物线F与线段AB有公共点时,m2﹣2>2或m2﹣4m+2>2,∴m>2或m<﹣2或m>4或m<0,∴m不存在;当m≥2时,抛物线F与线段AB有公共点时,令x=2,则m2﹣4m+2≤2,∴0≤m≤4,∴2≤m≤4;综上所述:﹣2≤m≤0,2≤m≤4;【点睛】本题考查二次函数图象及性质;分情况讨论函数图象与线段的交点的存在,并将问题转化为不等式求解是关键.13.(2019•通州区三模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a≠0)与y轴交于点A.(1)求点A的坐标和抛物线的对称轴;(2)过点B(0,3)作y轴的垂线l,若抛物线y=ax2﹣4ax+4(a≠0)与直线l有两个交点,设其中靠近y 轴的交点的横坐标为m,且|m|<1,结合函数的图象,求a的取值范围.【答案】解:(1)y=ax2﹣4ax+4=a(x﹣2)2+4﹣4a.∴点A的坐标为(0,4),抛物线的对称轴为直线x=2.(2)当a>0时,临界位置如右图所示:将点(1,3)代入抛物线解析式得3=a=4a+4.a.当a<0时,临界位置如右图所示:将点(﹣1,3)代入抛物线解析式得3=a+4a+4.a.∴a的取值范围为a<或a>.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及抛物线与y轴的交点.14.(2019•房山区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC=30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(,),E(2,0),F(0,)中,⊙O的半角关联点是D,E;(2)直线l:交x轴于点M,交y轴于点N,若直线l上的点P(m,n)是⊙O的半角关联点,求m的取值范围.【答案】解:(1)由题意可知在圆上存在点A使∠ADO=30°和∠AEO=30°,∴D,E是,⊙O的半角关联点,故答案为D,E;(2)由直线解析式可直接求得,,,,以O为圆心,ON长为半径画圆,交直线MN于点G,可得m≤0,设小圆⊙O与y轴负半轴的交点为H,连接OG,HG∵M(,0),N(0,2)∴OM,ON=2,tan∠OMN∴∠OMN=30°,∠ONM=60°∴△OGN是等边三角形∴GH⊥y轴,∴点G的纵坐标为﹣1,代入,可得,横坐标为,∴m,∴m≤0;【点睛】本题考查一次函数的综合,新定义,圆的基本概念;理解题意,结合图形,构造三角形求解;15.(2019•昌平区二模)在平面直角坐标系xOy中,直线y=x+1与抛物线y=ax2+bx+3a交于点A和点B,点A 在x轴上.(1)点A的坐标为(﹣1,0).(2)①用等式表示a与b之间的数量关系,并求抛物线的对称轴;②当AB时,结合函数图象,求a的取值范围.【答案】解:(1)令y=0,x+1=0,则A点坐标为(﹣1,0);故答案为(﹣1,0);(2)①将(﹣1,0)代入y=ax2+bx+3a,∴a﹣b+3a=4a﹣b=0,∴b=4a,∵x2;②设B(m,m+1),AB|m+1|,∵m+1=am2+4am+3a,m+1=a(m+1)(m+3),∵m≠﹣1,∴m3,∴AB|2|,∵AB,∴|2|,∴或;【点睛】本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握交点坐标的含义,不等式的解法是解题的关键.16.(2019•房山区二模)在平面直角坐标系xOy中,函数>的图象G与直线l:y=﹣x+7交于A(1,a),B两点.(1)求k的值;(2)记图象G在点A,B之间的部分与线段AB围成的区域(不含边界)为W.点P在区域W内,若点P 的横纵坐标都为整数,直接写出点P的坐标.【答案】解:(1)把A(1,a)代入y=﹣x+7得,a=﹣1+7=6,∴A(1,6),把(1,6)代入y中可得k=6;(2)画出直线y=﹣x+7和函数y(x>0)的图象如图:由图象可知:点P的坐标.(2,4),(3,3),(4,2).【点睛】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,并利用数形结合的思想.17.(2019•西城区二模)在平面直角坐标系xOy中.已知抛物线y=ax2+bx+a﹣2的对称轴是直线x=1.(1)用含a的式子表示b,并求抛物线的顶点坐标;(2)已知点A(0,﹣4),B(2,﹣3),若抛物线与线段AB没有公共点,结合函数图象,求a的取值范围;(3)若抛物线与x轴的一个交点为C(3,0),且当m≤x≤n时,y的取值范围是m≤y≤6,结合函数图象,直接写出满足条件的m,n的值.【答案】解:(1)∵1,∴b=﹣2a.∴抛物线为y=ax2﹣2ax+a﹣2,当x=1时,y=a﹣2a+a﹣2=﹣2,∴抛物线的顶点坐标为:(1,﹣2).答:b=﹣2a;抛物线的顶点坐标为:(1,﹣2).(2)若a>0,抛物线与线段AB没有公共点;若a<0,当抛物线经过点B(2,﹣3)时,它与线段Ab恰有一个公共点,此时﹣3=4a﹣4a+a﹣2,解得a=﹣1.∵抛物线与线段AB没有公共点,∴结合函数图象可知,﹣1<a<0或a>0.(3)抛物线与x轴的一个交点为C(3,0),代入y=ax2﹣2ax+a﹣2得0=9a﹣6a+a﹣2,∴a,∴抛物线为y x2﹣x,∵当m≤x≤n时,y的取值范围是m≤y≤6,令y=6得:6═x2﹣x,解得x=﹣3(舍)或x=5∴由自变量的最小值为m与函数值的最小值也为m,由得x2﹣4x﹣3=0,∴x=2或x=2>2,此时顶点(1,﹣2)包含在范围内,不符合要求,故舍去;故满足条件的m,n的值为:m=2,n=5;或m=﹣2,n=5.【点睛】本题属于二次函数压轴题,综合性较强,需要数形结合来分析,并准确利用二次函数的性质来解题.18.(2019•朝阳区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x(a≠0)的对称轴与x轴交于点P.(1)求点P的坐标(用含a的代数式表示);(2)记函数(﹣1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.【答案】解:(1)抛物线y=ax2﹣2a2x的对称轴是直线,∴点P的坐标是(a,0);(2)由题意可知图形M为线段AB,A(﹣1,3),B(3,0).当抛物线经过点A时,解得或a=1;当抛物线经过点B时,解得.……………………………………………………(3分)如图1,当时,抛物线与图形M恰有一个公共点.如图2,当a=1时,抛物线与图形M恰有两个公共点.如图3,当时,抛物线与图形M恰有两个公共点.结合函数的图象可知,当或0<a<1或>时,抛物线与图形M恰有一个公共点.【点睛】本题考查了二次函数图象与系数关系,熟练掌二次函数图象性质是解题的关键.19.(2019•怀柔区二模)阅读材料:1903年,英国物理学家卢瑟福通过实验证实,放射性物质放出射线后,这种物质的质量将减少,物质所剩的质量与时间成某种函数关系.镭的质量由m0缩减到m0需1620年,由m0缩减到m0需1620年,由m0缩减到m0需1620年,即镭的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣1620年,一般把1620年称为镭的半衰期.实际上,所有放射性物质都有自己的半衰期.铀的半衰期为4.5×109年,蜕变后的铀最后成为铅.科学家们测出一块岩石中现在含铀和铅的质量,便可以利用半衰期算出从原来含铀量到现在含铀量经过了多少时间,从而推算出这块岩石的年龄.根据以上材料回答问题:(1)设开始时岩石中含有铀的质量为m0千克,经过n个半衰期后,剩余的铀的质量为m1千克,下表是m1随n的变化情况,请补充完整:(2)写出矿石中剩余的铀的质量m1与半衰期n之间的函数关系;(3)设铀衰变后完全变成铅,如图是岩石中铅的质量m2与半衰期n的函数关系图象,请在同一坐标系中,利用描点法画出岩石中含铀的质量m1与半衰期n的函数关系图象:(4)结合函数图象,估计经过个半衰期(精确到0.1),岩石中铀铅质量相等.【答案】解:(1)剩余的铀的质量为:.故答案为:;(2)根据题意可知:;(3)如图所示:;(4)大约经过个1.1半衰期,岩石中铀铅质量相等.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.(2019•顺义区二模)在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3(m>0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,该抛物线的顶点D的纵坐标是﹣4.(1)求点A、B的坐标;(2)设直线与直线AC关于该抛物线的对称轴对称,求直线的表达式;(3)平行于x轴的直线b与抛物线交于点M(x1,y1)、N(x2,y2),与直线交于点P(x3,y3).若x1<x3<x2,结合函数图象,求x1+x2+x3的取值范围.【答案】解:(1)∵抛物线y=mx2+2mx﹣3(m>0)的顶点D的纵坐标是﹣4,∴4,解得m=1,∴y=x2+2x﹣3,令y=0,则x=﹣3或1,∴A(﹣3,0)B(1,0);(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的对称轴为x=﹣1,∵点C(0,﹣3)关于抛物线的对称轴的对称点坐标是E(﹣2,﹣3),点A(﹣3,0)关于该抛物线的对称轴的对称点坐标是B(1,0),设直线的表达式为y=kx+b,∵点E(﹣2,﹣3)和点B(1,0)在直线上∴,解得,∴直线的表达式为y=x﹣1;(3)由对称性可知1,∴x1+x2=﹣2,∵x1<x3<x2,∴﹣2<x3<1,∴﹣4<x1+x2+x3<﹣1.【点睛】本题考查了抛物线和x轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,熟练掌握二次函数的性质是解题的关键.21.(2019•朝阳区二模)M(﹣1,),N(1,)是平面直角坐标系xOy中的两点,若平面内直线MN上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.(1)在点,,,,,,A4(2,2)中,线段MN的可视点为A1,A3;(2)若点B是直线y=x上线段MN的可视点,求点B的横坐标t的取值范围;(3)直线y=x+b(b≠0)与x轴交于点C,与y轴交于点D,若线段CD上存在线段MN的可视点,直接写出b的取值范围.【答案】解:(1)如图1,以MN为直径的半圆交y轴于点E,以E为圆心,EM长为半径的⊙E交y轴于点F,∵MN是⊙G的直径,∴∠MA1N=90°,∵M(﹣1,),N(1,)∴MN⊥EG,EG=1,MN=2∴EM=EF,∴∠MFN∠MEN=45°,∵45°≤∠MPN≤90°,∴点P应落在⊙E内部,且落在⊙G外部∴线段MN的可视点为A1,A3;故答案为A1,A3;(2)如图,以(0,)为圆心,1为半径作圆,以(0,)为圆心,为半径作圆,两圆在直线MN上方的部分与直线分别交于点E,F.过点F作FH⊥x轴,过点E作EH⊥FH于点H,∵FH⊥x轴,∴FH∥y轴,∴∠EFH=∠MEG=45°,∵∠EHF=90°,EF,∴EH=FH=1,∴E(0,),F(1,).只有当点B在线段EF上时,满足45°≤∠MBN≤90°,点B是线段MN的可视点.∴点B的横坐标t的取值范围是0≤t≤1.(3)如图,⊙G与x轴交于H,与y轴交于E,连接GH,OG,GH=1,∴OH,∴H(,0).E(0,)当直线y=x+b(b≠0)与x轴交于点C,与y轴交于点D,若线段CD上存在线段MN的可视点,①直线y=x+b与y轴交点在y负半轴上将H(,0)代入y=x+b得b=0,解得b1,将N(1,)代入y=x+b得1+b,解得b2∴<b②直线y=x+b与y轴交点在y正半轴上将E(0,)代入得b,当直线y=x+b与⊙E相切于T时交y轴于Q,连接ET,则ET⊥TQ,∵∠EQT=45°,∴TQ=ET=EM,∴EQ2∴OQ=OE+EQ2∴综上所述:或<.【点睛】本题是一次函数综合题,考查了一次函数图象上点的坐标特征,圆周角、圆心角的性质,解题关键要将可视点转化为圆内点、圆上点、圆外点分别对弦的视角问题.22.(2019•丰台区二模)在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B.(1)求点B的坐标;(2)求抛物线C1的对称轴;(3)把抛物线C1沿x轴翻折,得到一条新抛物线C2,抛物线C2与抛物线C1组成的图象记为G,若图象G 与线段AB恰有一个交点时,结合图象,求a的取值范围.【答案】解:(1)∵点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B,∴点B的坐标为(2,2);(2)∵抛物线C1:y=ax2﹣2ax﹣3a,∴对称轴是直线x1;(3)当抛物线C1:y=ax2﹣2ax﹣3a过点A(0,﹣3)时,此时﹣3a=﹣3,得a=1,∵对称轴是直线x=1,∴当x=2时,y<3,点B在抛物线C2下方,此时抛物线C1与线段AB一个交点,抛物线C2与线段AB没有交点,当抛物线C1:y=ax2﹣2ax﹣3a过点(0,﹣2)时,﹣3a=﹣2,得a,∵对称轴是直线x=1,∴当x=2时,y=2,点B在抛物线C2上,此时抛物线C1与线段AB一个交点,抛物线C2与线段AB有一个交点,∴a的取值范围是<;同理可得,当抛物线C2:y=﹣ax2+2ax+3a过点A(0,﹣3)或(0,﹣2)时,可以求得a=﹣1或a,∴a的取值范围是﹣1≤a<,由上可得,a的取值范围是﹣1≤a<或<.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.23.(2019•东城区二模)在平面直角坐标系xOy中,直线y=kx+2与双曲线y的一个交点是A(m,3).(1)求m和k的值;(2)设点P是双曲线y上一点,直线AP与x轴交于点B.若AB=3PB,结合图象,直接写出点P的坐标.【答案】解:(1)把点A(m,3)的再把代入y得到m=2,再把A(2,3)的再把代入y=kx+2,3=2k+2,解得k,所以m=2,k.(2)①当点P在第三象限时,如图1,作AE⊥x轴于E,PF⊥x轴于F,∵AE∥PF,∴3,∴3,∴PF=1,∴P(﹣6,﹣1).②当点P在第一象限时,如图2,作AE⊥x轴于E,PF⊥x轴于F,∵AE∥PF,∴3,∴3,∴PF=1,∴P(6,1),综上所述,满足条件的点P坐标为(﹣6,﹣1)或(6,1).【点睛】本题考查一次函数与反比例函数图象的交点,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,学会用分类退了的思想思考问题,属于中考常考题型.24.(2019•朝阳区二模)在平面直角坐标系xOy中,反比例函数y的图象经过点P(3,4).(1)求k的值;(2)求OP的长;(3)直线y=mx(m≠0)与反比例函数的图象有两个交点A,B,若AB>10,直接写出m的取值范围.【答案】解:(1)∵反比例函数的图象经过点P(3,4),∴k=12,(2)过点P作PE⊥x轴于点E.∵点P(3,4),∴OE=3,PE=4.∴在Rt△EOP中,由勾股定理可求OP=5;(3)由(2)可知,当A(﹣3,﹣4),B(3,4)或A(﹣4,﹣3),B(4,3)时,AB=10,m或m 若AB>10,则>或<<.【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求反比例函数的解析式,勾股定理的应用.25.(2019•东城区二模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.【答案】解:(1)∵y=x2﹣2mx+m2﹣1=(x﹣m)2﹣1,∴抛物线的顶点坐标为(m,﹣1);(2)由对称性可知,点C到直线y=﹣1的距离为4,∴OC=3,∴m2﹣1=3,∵m>0,∴m=2;(3)∵m=2,∴抛物线为y=x2﹣4x+3,当抛物线经过点A(2k,0)时,k或k;当抛物线经过点B(0,k)时,k=3;∵线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点,∴k<或k>3.【点睛】本题考查二次函数图象与几何变换,二次函数的性质,数形结合解题是解决本题的关键.26.(2019•西城区二模)已知关于x的一元二次方程x2﹣(k+5)x+3k+6=0.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于﹣2且小于0,k为整数,求k的值.【答案】(1)证明:∵△=[﹣(k﹣5)2]﹣4(3k+6)=k2﹣2k+1=(k﹣1)2≥0,∴无论k为何值,方程总有两个实数根;(2)设方程的两个根分别是x1,x2,解方程得x,∴x1=k+2,x2=3.。

北京市各区2019届中考数学一模试卷精选汇编函数操作专题

北京市各区2019届中考数学一模试卷精选汇编函数操作专题

函数操作专题东城区25. 如图,在等腰△ABC 中,AB =AC ,点D ,E 分别为BC ,AB 的中点,连接AD .在线段AD 上任取一点P ,连接PB ,PE .若BC =4,AD =6,设PD =x (当点P 与点D 重合时,x 的值为0),PB +PE =y .小明根据学习函数的经验,对函数y 随自变量x 的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表: (说明:补全表格时,相关数值保留一位小数). (参考数据:1.414≈1.732≈2.236≈)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y 的最小值为______________(保留一位小数),此时点P 在图1中的位置为________________________.25.解:(1)4.5 . --------------------2分 (2)--------------------4分(3) 4.2,点P 是AD 与CE 的交点. --------------------6分 西城区25.如图,P 为⊙O 的直径AB 上的一个动点,点C 在»AB 上,连接PC ,过点A 作PC 的垂线交⊙O 于点Q .已知5cm AB =,3cm AC =.设A 、P 两点间的距离为cm x ,A 、Q 两点间的距离为cm y .BA某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当2AQ AP =时,AP 的长度均为__________cm .【解析】(1)图5(3)2.42. 海淀区25.在研究反比例函数1y x=的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量x 的取值范围是全体非零实数,因此函数图象会被y 轴分成两部分;其次,分析解析式,得到y 随x 的变化趋势:当0x >时,随着x 值的增大,1x的值减小,且逐渐接近于零,随着x 值的减小,1x的值会越来越大,由此,可以大致画出1y x=在0x >时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y=的图象与性质. 通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A;(画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:____________________;(3)若关于x(1)a x=-有两个不相等的实数根,结合图象,直接写出实数a的取值范围:__________.25.(1)如图:………………2分x>时,y随着x的增大而减小;(答案不唯一)………………4分(2)当1a≥. ………………6分(3)1丰台区25.如图,Rt△ABC中,∠ACB = 90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E.已知∠A = 30°,AB = 4cm,在点D由点A到点B运动的过程中,设AD = x cm,AE = y cm.CED小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AE =12AD 时,AD 的长度约为 cm . 25.解:(1)1.2; ………………………2分 (2)如右图; ………………………4分 (3)2.4或3.3 ………………………6分 石景山区25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60 时,PM的长度约为cm.25.解:(1)4; 0. ………………2分(2)………………4分(3)1.1或3.7 . ………………6分朝阳区25.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x cm,DE=y cm(当x的值为0或3时,y的值为2),探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:的图象;(3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为 cm (结果保留一位小数).25. 解:本题答案不唯一,如:(1)………………………………………………1分(2)Array…………………………………………4分(3)3.5.……………………… 6分燕山区26.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,下表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是-2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=(4)结合函数的图象,写出该函数的一条性质:____________ .26.解:(1)当自变量是-2时,函数值是32…………………………………1′(2)如图,该函数的图象; (略) …………………………………3′(3)标出x=2时所对应的点…………………………………4′且m= …………………………………5′(4)写出该函数的性质(一条即可):_____ .…………………………………7′ 门头沟区25.在正方形ABCD 中,4AB cm = AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,连接PM 、PB , 设A 、P 两点间的距离为xcm ,PM PB +长度为ycm .小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.D A(3)结合画出的函数图象,解决问题:PM PB 的长度最小值约为__________cm .25.(本小题满分6分)(1)5 ……………………………………………………………………1分(2)坐标系正确 ……………………………………………………3分描点正确 ……………………………………………………4分 连线正确 ……………………………………………………5分 (3)4.5 ……………………………………………………………………6分 大兴区25.如图,在△ABC 中,AB=4.41cm,BC=8.83cm ,P 是BC 上一动点,连接AP ,设P ,C 两点间的距离为x cm ,P ,A 两点间的距离为y cm .(当点P 与点C 重合时,x 的值为0) 小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出 该函数的图象;(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为cm.(结果保留一位小数)25.(1)(答案不唯一)(2)………………………………………………………………4分(3) 4.4 ………………………………………………………………6分 (答案不唯一)平谷区25.如图,在△ABC 中,∠C =60°,BC =3厘米,AC =4厘米,点P 从点B 出发,沿B →C →A 以每秒1厘米的速度匀速运动到点A .设点P 的运动时间为x 秒,B 、P 两点间的距离为y 厘米.B小新根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:的值是 (保留一位小数)(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC 中画出点P 所在的位置.25.解:(1)3.0; ···························· 1 (2)如图所示; ··························4(3)如图 ····························· 5 怀柔区25、如图,在等边△ABC 中, BC=5cm ,点D 是线段BC 上的一动点,连接AD ,过点D 作DE ⊥AD ,垂足为D ,交射线AC 与点E .设BD 为x cm ,CE 为y cm .小聪根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y 的几组值,如下表:(说明:补全表格上相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当线段BD 是线段CE 长的2倍时,BD 的长度约为________cm . 25.(1)约1.1; ………………………………………………………………………………………1分 (2)如图:–11234512345O (4)分(3)约1.7. ………………………………………………………………………………………5分 延庆区25.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =6cm ,设弦AP 的长为x cm ,△APO 的面积为y cm 2,(当点P 与点A 或点B 重合时,y 的值为0).OA B小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整;与y的几组值,如下表:(1)通过取点、画图、测量、计算,得到了x那么m= ;(保留一位小数)(2)建立平面直角坐标系,描出以表中各组对应值为坐标的点,画出该函数图象.(3)结合函数图象说明,当△APO的面积是4时,则AP的值约为.(保留一位小数)25.(1)m= 约4.3 ;……1分4321(画此函数图象时要体现出x约为4.2时,y有最大值,为4.5)……4分(3) 3.1或是5.1 ……6分顺义区25.如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为x cm,B,C两点间的距离为y cm.A小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是.25.(1)4.6.……………………………………………………………………… 1分(2)…………………………………………………………………………… 3分(3)6<C<12.…………………………………………………………… 5分。

2019年北京市中考数学试卷附答案

2019年北京市中考数学试卷附答案

2019年北京市中考数学试卷附答案一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1062.下表是某学习小组一次数学测验的成绩统计表:分数/分708090100人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁4.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分5.若点P1(x1,y1),P2(x2,y2)在反比例函数kyx(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2 6.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.23C.32D.67.下列各曲线中表示y是x的函数的是()A .B .C .D .8.如果关于x 的分式方程11222ax xx有整数解,且关于x 的不等式组0322(1)x a xx 的解集为x >4,那么符合条件的所有整数a 的值之和是()A .7B .8C .4D .59.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是()A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)10.如图,将?ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD48o,CFD40o,则E 为()A .102oB .112oC .122oD .92o11.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A .140B .120C .160D .10012.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为()A .5米B .6米C .8米D .(3+5)米二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111nna a a a a a a L L ,则1232014a a a a L L __________.15.如图,添加一个条件:,使△ADE ∽△ACB ,(写出一个即可)16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.19.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD=∠MAP +∠PAB ,则AP =_____.20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N →P →Q →M 方向运动至点 M处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)2估计光明中学全体学生社会实践活动成绩的总分.23.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.25.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.2.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.3.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x=2221·1x x x x x =2212·1x xx x x=221·1x x x x x=2x x=2xx,∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.4.B解析:B 【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B .【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.D解析:D 【解析】由题意得:1212k k y y x x ,故选 D.6.B解析:B 【解析】【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAM=30°,∴AM=262333AD ,故选:B .【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,7.D解析:D 【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确.故选D .8.C解析:C 【解析】【分析】解关于x 的不等式组0322(1)x axx ,结合解集为x >4,确定a 的范围,再由分式方程11222ax xx有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】由分式方程11222ax x x可得1﹣ax+2(x ﹣2)=﹣1解得x =22a,∵关于x 的分式方程11222ax xx有整数解,且a 为整数∴a =0、3、4关于x 的不等式组322(1)x ax x 整理得4x a x∵不等式组0322(1)xa xx 的解集为x >4∴a ≤4于是符合条件的所有整数a 的值之和为:0+3+4=7故选C .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9.D解析:D 【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称;由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D10.B解析:B 【解析】【分析】由平行四边形的性质和折叠的性质,得出ADBBDF DBC ,由三角形的外角性质求出1BDF DBCDFC 202o,再由三角形内角和定理求出A ,即可得到结果.【详解】AD //BC Q ,ADBDBC ,由折叠可得ADBBDF ,DBCBDF ,又DFC 40o Q,DBCBDF ADB20o,又ABD48oQ,ABD V 中,A1802048112oooo ,E A112o ,故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB的度数是解决问题的关键.11.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得12.A解析:A【解析】试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=22AB AD=8米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理二、填空题13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】解:123412311111,,2,1,1211a a a a a a a …由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112.故答案为20112.考点:规律性:数字的变化类.15.∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A (公共角),则添加:∠ADE=∠ACB 或∠AED=∠ABC ,利用两角法可判定△ADE ∽△ACB ;添加:AD AE ACAB,利用两边及其夹角法可判定△ADE ∽△ACB.16.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l ∵r=3h=4∴母线l=∴S 侧=×2πr ×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线l=225r h,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9= 4×3-3按照这个规律即可求出第n各图形中有多少三角形【详解】分解析:43n【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x.故答案为:13201320304060x x.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,解得k1,b40,∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90); 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,解得:m2,n200,故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.14,4;23150分.【解析】【分析】1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:中位数众数随机抽取的50人的社会实践活动成绩4 4(单位:分)2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(分).50估计光明中学全体学生社会实践活动成绩的总分是: 3.59003150(分).【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n,解得:237m n,∴y 1=﹣23x+7;将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13,∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13.∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73.∵﹣13<0,∴当x=5时,y 1﹣y 2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2.设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.24.(1)证明见解析(2)93﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到?BD CD,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=23,得到∠BDF=∠DBP=30°,在Rt△DBP中得到PD=3,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC可设AB=4x,AC=3x,设BF=y,由??BD CD得到CD=BD=23,由△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴?BD CD,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=23,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=577,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD,即57571257DF,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)23604=932;(3)连结CD,如图2,由43ABAC可设AB=4x,AC=3x,设BF=y,∵?BD CD,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD,即23323yx,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF,即848y yy x y,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.25.(1)280名;(2)补图见解析;108°;(3)0.1.【解析】【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.。

2019年北京市中考数学试卷(含答案与解析)

2019年北京市中考数学试卷(含答案与解析)

数学试卷 第1页(共22数学试卷 第2页(共22页)绝密★启用前2019年北京市高级中等学校招生考试数 学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( ) A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯ 2.下列倡导节约的图案中,是轴对称图形的是( )AB CD3.正十边形的外角和为( )A .180︒B .360︒C .720︒D .1440︒4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .3-B .2-C .1-D .15.已知锐角AOB ∠如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .COM COD ∠=∠B .若OM MN =,则20AOB ︒∠=C .MN CD ∥D .3MN CD =6.如果1m n +=,那么代数式()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭的值为( )A .3-B .1-C .1D .37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公下面有四个推断:学生类别5毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A .①③B .②④C .①②③D .①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为 .10.如图,已知ABC △,通过测量、计算得ABC △的面积约为 2cm .(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠=+ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题08 函数之填空题
一.填空题(共21小题)
1.(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y上,点A关于x轴的对称点B在双曲线y,则k1+k2的值为.
2.(2019•昌平区二模)“五一黄金周”期间李师傅一家开车去旅游,出发前查看了油箱里有50升油,下面的两幅图分别描述了行驶里程及耗油情况,行驶130公里时,油箱里剩油量为升.
3.(2019•通州区三模)已知二次函数y=ax2+bx﹣2(a≠0)的图象的对称轴在y轴的左侧,请写出满足条件的一组a,b的值,这组值可以是a=,b=.
4.(2019•朝阳区二模)世界上大部分国家都使用摄氏温度(℃),但美、英等国的天气预报仍然使用华氏温度(℉),两种计量之间有如下的对应表:
由上表可以推断出,华氏0度对应的摄氏温度是℃,若某一温度时华氏温度的值与对应的摄氏温度的值相等,则此温度为℃.
5.(2019•东城区二模)如图,在平面直角坐标系xOy中,若直线y1=﹣x+a与直线y2=bx﹣4相交于点P (1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是.
6.(2019•门头沟区二模)如图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(﹣2,﹣3),表示朝阳门的
点的坐标为(3,2),那么表示西便门的点的坐标为.
7.(2019•怀柔区二模)在平面直角坐标系xOy中,将抛物线y=3(x+1)2﹣2平移后得到抛物线y=3x2+1.请你写出一种平移方法.
8.(2019•平谷区二模)如图,在平面直角坐标系xOy中,直线l:y=x+1交y轴于点A1,点A2,A3,…,
A n在直线l上,点B1,B2,B3,…,
B n在x轴的正半轴上,若△OA1B1,△A2B1B2,△A3B2B3,…,△
A n
B n﹣1B n依次均为等腰直角三角形,则点B1的坐标是;点B n的坐标是.
9.(2019•西城区二模)已知y是x的函数,其函数图象经过(1,2),并且当x>0时,y随x的增大而减小.请写出一个满足上述条件的函数表达式:.
10.(2019•平谷区二模)2019年4月29日中国北京世界园艺博览会在北京延庆开幕,大会以“绿色生活,美丽家园”为主题.如图,是北京世界园艺博览会部分导游图,若国际馆的坐标为(4,2),植物馆的坐标为(﹣4,﹣1),则中国馆的坐标为.
11.(2019•石景山区二模)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y,则选取点D为坐标原点时的抛物线表达式为,水管AB的长为m.
12.(2019•大兴区一模)函数y=2中自变量x的取值范围是.
13.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.14.(2019•东城区一模)为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:
某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为元.15.(2019•海淀区一模)如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(﹣6,1),表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为.
16.(2019•燕山区模拟)写出经过点(0,0),(﹣2,0)的一个二次函数的解析式(写一个即可)17.(2019•燕山区模拟)在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标.
18.(2019•朝阳区二模)点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)
19.(2019•朝阳区二模)函数y中,自变量x的取值范围是.
20.(2019•门头沟区一模)请写出一个图象经过点(1,1),且在第一象限内函数值随着自变量的增大而减小的函数解析式:.
21.(2019•门头沟区二模)函数中,自变量x的取值范围是.。

相关文档
最新文档