汇总中考一轮复习圆.ppt

合集下载

部编版语文 中考一轮复习 名篇名句复习 (共83张PPT).ppt

部编版语文 中考一轮复习 名篇名句复习    (共83张PPT).ppt

基础知识复习
4.《庄子》一则 ①鹏之背,不知其几千里也。 ②怒而飞,其翼若垂天之云。 ③抟扶摇而上者九万里,去以六月息者也。 ④《北冥有鱼》中运用夸张修辞手法,生动形象地渲染了“鹏” 的巨大,使文章充满了浪漫主义色彩的句子是“鹏之背,不知其几 千里也”。
基础知识复习
5.《礼记》一则 ①虽有嘉肴,弗食,不知其旨也;虽有至道,弗 学,不知其善也。 ②是故学然后知不足,教然后知困。 ③知不足,然后能自反也;知困,然后能自强也 ④这篇短文给我们讲述的道理是“教学相长”。
基础知识复习
7.《送杜少府之任蜀州》 王勃 ①海内存知已,天涯若比邻。 ②与君离别意,同是宦游人 ③城阙辅三秦,风烟望五津 ④无为在歧路,儿女共沾巾。 ⑤诗人与入川的朋友作别的句子是:海内存知己,天 涯若比邻。 ⑥临近毕业,请从《送杜少府之任蜀州》中选连续 的两句作为临别赠言送给同窗好友:海内存知己,天涯若
基础知识复习
18.《湖心亭看雪》 张岱 ①雾淞流,天与云与山与水,上下一白。 ②湖上影子,惟长堤一痕、湖心亭一点,与余舟一芥、舟 中人两三粒而已。 ③及下船,舟子喃喃曰:“莫说相公痴,更有痴似相公者!” ④文中从听觉着眼,生动地写出大雪后静寂的意境的句子 是:“大雪三日,湖中人鸟声俱绝”
基础知识复习
基础知识复习
8.《登幽州台歌》 陈子昂 ①前不见古人,后不见来者。 ②念天地之悠悠,独怆然而泣下! ③写诗人登楼远眺,表现内心孤单悲苦心结的句子 是:念天地之悠悠,独怆然而泣下!
基础知识复习
14.《小石潭记》 柳宗元 ①潭中鱼可百许头,皆若空游无所依,日光下澈,影布石上。 ②凄神寒骨,悄怆幽邃。 ③全石以为底,近岸,卷石底以出,为城. ④斗折蛇行,明灭可见。 ⑥写溪流曲曲折折,一段看得见,一段又看不见的句子是:斗折蛇 行,明灭可见。 ⑦文中运用比喻的修辞手法,写小石潭源流的溪身和岸势的句子 是:“斗折蛇行,明灭可见”和“其岸势犬牙参互,不可知其源”。

数学中考一轮复习学案 第24节 圆的有关概念与性质(含解析)

数学中考一轮复习学案 第24节 圆的有关概念与性质(含解析)

第四章图形的性质第24节圆的有关概念与性质■知识点一:圆的有关概念(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.(2)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(3)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(4)相关概念:同心圆、弓形、等圆、等弧.(5)圆心角:顶点在圆心的角叫做圆心角.(6)圆周角:顶点在圆上,并且两边和圆相交的角是圆周角.(7)确定圆的条件:过已知一点可作无数个圆,过已知两点可作无数个圆,过不在同一条直线上的三点可作一个圆.(8)圆的对称性:圆是轴对称图形,其对称轴是直径所在的直线;圆是中对称图形,对称中心为圆心,并且圆具有旋转不变性.■知识点二:垂径定理及推论:①垂直于弦的直径平分弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,③弦的垂直平分线经过圆心,并且平分弦所对的两条弧.④平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑤圆的两条平行弦所夹的弧相等.■知识点三:圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.■知识点四:圆周角定理及推论①圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.推论2:直径所对的网周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.②圆内接四边形的任意一组对角互补.■考点1.圆的有关概念◇典例:(2017年黑龙江大庆)如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ 为正方形.若半圆的半径为,则正方形的边长为.【考点】正方形的性质;勾股定理;圆的认识.【分析】连接OP,设正方形的边长为a,则ON=,PN=a,再由勾股定理求出a的值即可.解:连接OP,设正方形的边长为a,则ON=,PN=a,在Rt△OPN中,ON2+PN2=OP2,即()2+a2=()2,解得a=2.故答案为:2.【点评】本题考查的是正方形的性质,勾股定理;圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.◆变式训练(2017•宁夏)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 __________■考点2.垂径定理及其推论◇典例:(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)如图,AB为⊙O 的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.【考点】垂径定理,勾股定理【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.◆变式训练1.(2018年山东省烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为.2.(2018年浙江省绍兴市)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)■考点3. 圆心角、弧、弦的关系◇典例(2017•牡丹江)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.【考点】圆心角、弧、弦的关系;垂径定理.【分析】连接OC,先根据=得出∠AOC=∠BOC,再由已知条件根据AAS定理得出△COD ≌△COE,由此可得出结论.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.◆变式训练(2017•宜昌)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C. D.∠BCA=∠DCA■考点4. 圆周角定理及其推论◇典例:1.(2018 年广西梧州市)如图,已知在⊙O 中,半径 OA=2,弦 AB=2,∠BAD=18°,OD 与AB 交于点 C,则∠ACO=__________度.【考点】圆周角定理,勾股定理的逆定理,等腰三角形的性质【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.解:∵OA=2,OB=2,AB=2,∴OA 2+OB2=AB2,OA=OB,∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.◆变式训练1.(2018年四川省南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B 的度数是()A.58° B.60° C.64° D.68°2.(2017•锦州)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A.55°B.50°C.45°D.40°一、选择题1.(2018年广西柳州市)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°2.(2018年内蒙古赤峰市)如图,AB是⊙O的直线,C是⊙O上一点(A.B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°3.(2018年浙江省衢州市)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°4.(2018年湖北省襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C. D.25.(2018年四川省甘孜州)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD二、填空题6.(2018年广东省)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.7.(2018年青海省)如图,A.B、C是错误!未找到引用源。

连线中考数学一轮复习系列专题19圆的基本性质

连线中考数学一轮复习系列专题19圆的基本性质

基础知识知识点一、圆的有关概念1. 圆的定义①(动态定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.以点O为圆心的圆记做“⊙O”.②(静态定义)圆是到定点的距离等于定长的点的集合.即:圆上各点到圆心的距离都等于定长(半径),反之到圆心距离等于半径的点一定在圆上;2.等圆:能够完全重合的圆叫等圆.同圆或等圆的半径相等.3.确定圆的条件确定一个圆有两个基本条件①圆心(定点)——用来确定圆的位置;②半径(定长)——用来确定圆的大小.经过不在同一直线上的三点确定一个圆.知识点二、弦、弧、圆心角等相关概念1. 弦与直径:①弦:连接圆上任意两点的线段叫做弦,记做:弦AB,弦CD等.②直径:经过圆心的弦叫做直径,直径等于半径的2倍.直径是圆中最长的弦.2. 弧与半圆①弧:圆上任意两点之间的部分叫做圆弧,简称弧,用符号“”表示,如以A、B为端点的弧记做AB,②半圆:圆上任意一条直径的两个端点把圆分成两条弧,其中的每条弧都叫做半圆.③劣弧、优弧:小于半圆的弧叫做劣弧,用弧上的两点表示;大于半圆的弧叫做优弧,用弧上三点表示.④等弧:能够完全重合的弧叫等弧.知识点三、弧、弦、圆心角之间的关系1. 圆的旋转不变性把圆绕着圆心旋转任意一个角度,都与原来的图形重合,我们把这种性质称为圆的旋转不变性.圆是中心对称图形,圆心是它的对称中心.2. 弧、弦、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角的度数与它所对的弧的度数相等.知识点四、垂径定理1. 圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.如图,用符号语言叙述为:∵ CD为⊙O的直径,CD⊥AB于点E∴ AE=EB,AC BC,AD DB3. 垂径定理基本图形的性质:(1)有4对全等的直角三角形:Rt△CAD与Rt△CBD;Rt△CAM与Rt△CBM;Rt△OAM与Rt△OBM;Rt△MAD与Rt△MBD;特别在Rt△CAD与Rt△CBD中,直径CD是它们公共的斜边,AM、BM是CD上的高.(2)有3个等腰三角形;△CAB、△OAB、△DAB.弦AB是它们的公共底边,直径CD是它们的顶角平分线和底边AB的垂直平分线.(3)有3对弧相等:AC BC,AD BD,CAD CBD.(4)添加辅助线的方法:连接半径或作垂直于弦的直径,是两种重要的添线方法.知识点五.圆周角定理1. 定义:顶点在圆上,并且两边都与圆相交的角叫圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等,3. 圆周角定理的推论①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.②圆内接四边形的对角互补.典型例题解析例1.(菏泽)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD弧的度数为_____.例2. (山西)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为( )A.30° B.40° C.50° D.80°例3. (绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图,⊙O与矩形ABCD边BC,AD分别相切和相交(E,F是交点).已知EF=CD=8,则⊙O的半径为___________.例4. (黑龙江)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.例5. (济南) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2. 3 C. 32D.3例6. (安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.例7. 如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.巩固练习1. (湖州)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A. 35 °B.45°C. 55°D.65°2. 如图所示,在⊙O中,,那么()A.AB>2CD B.AB<2CD C.AB=2CD D.无法比较3. (嘉兴)如图,○O的直径CD垂直弦AB于点E,且CE=2,DE=8则AB的长为()(A)2 (B)4 (C)6 (D)84. (钦州)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60° B.45° C.30° D.20°5. (南通)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______度.6. (广元)若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为 .7 . (龙岩) 如图,A、B、C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC= 。

2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质

2024年中考数学一轮复习考点精讲课件—圆的相关概念及性质
3)圆周角定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所
对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
考点二 圆的性质
题型01 由垂径定理及推论判断正误
【例1】(2023·浙江·模拟预测)如图,是⊙ 是直径,是弦且不是直径, ⊥ ,则下列结论不一定正
【详解】解:如图,连接,
∵线段是⊙ 的直径, ⊥ 于点E, = 16,
1
1
∴ = = 2 = 2 × 16 = 8,
∴在Rt △ 中,可有 = 2 + 2 = 62 + 82 = 10,
∴⊙ 半径是10.
故选:D.
考点二 圆的性质
题型03 根据垂径定理与全等三角形综合求解
直径)(4)平分弦所对的优弧(5)平分弦所对的劣弧,若已知五个条件中的两个,那么可推出其中三个,简
称“知二得三”,解题过程中应灵活运用该定理.
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;
2)有弦中点,连中点和圆心,得垂直平分.
考点二 圆的性质
3. 弧、弦、圆心角的关系
即的最小值是8.故选:C.
考点二 圆的性质
1. 圆的对称性
内容
补充
圆的轴对称 经过圆心任意画一条直线,并沿此直线圆对折,直线两旁的部分能够 ①圆的旋转不变性是其他中心对称图形所

完全重合,因此圆是轴对称图形,每一条直径所在的直线都是它的 没有的性质.
对称轴,圆有无数条对称轴.
圆的中心对 将圆绕圆心旋转180°能与自身重合,因此它是中心对称图形,它
①圆心,它确定圆的位置.
②半径,它确定圆的大小.
的点组成的图形.

中考数学一轮复习 第二部分 热点专题突破 专题3 题中无圆,用圆解题数学课件

中考数学一轮复习 第二部分 热点专题突破 专题3 题中无圆,用圆解题数学课件
一个动点,且满足∠PAB=∠PBC.则线段CP长的最小值为 (
)
3
A.2
B.2
8 13
C.
13
12/9/2021
12 13
D.
13
类型1
类型2
类型3
【解析】由∠PAB=∠PBC,易得∠APB=90°,即P点在△ABP的外接圆上.△ABP外接圆的
圆心O为AB的中点,如图,连接OC,OC与△ABP的外接圆在△ABC内部交于点P,这时线
12/9/2021
类型1
类型2
类型3
命题拓展
考向一 利用圆的对称性解题
2.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M,N分别为AC,BD的中点,求证:MN垂直平
分BD.
【答案】∵∠ABC=∠ADC=90°,易得Rt△ABC和Rt△ADC有同一个外接圆( 如图 ), M为
圆心,
∵N为BD的中点,由垂径定理得MN垂直平分BD.
12/9/2021
类型1
类型2
类型3
考向二 利用有公共斜边的两个直角三角形外接圆解题
3.如图,在△ABC中,AD,BE是两条高,M,N分别是AB,DE的中点.给出如下结论:




① = ;② = ;③MN垂直平分DE;④∠ANB>90°.其中正确结论的序号是
②③④
.( 把所有正确结论的序号都填在横线上 )
【名师点拨】 考向二中的问题就是将考向一中的一个直角三角形沿斜边折叠,折叠后
这两个直角三角形仍有同一个外接圆,我们仍可以用圆的知识答题.
12/9/2021
类型1
类型2
类型3
利用圆的定义解题
典例3 ( 2016·安徽第23题节选 )如图1,点A,B分别在射线OM,ON上,且∠MON为钝角,

2022年中考物理一轮复习课件:知识汇总(55张ppt)

2022年中考物理一轮复习课件:知识汇总(55张ppt)

欧姆定律
导体中的电流,跟导体两端的电压成正比,跟导体的电阻成 反比I=UR
长量成正比 故分度值为0.2 N
使用前:观察指针是否在 读数:
0刻度线处,若不在,需 3 N+3×0.2 N=3.6 N
调零之后才可使用
1
仪器
电流表
读数步骤
注意事项
确定分度值: 接线柱接“3”,量程为0~3 A,1 A 分为10个小格,分度值为0.1 A(若 接线柱接“0.6”,则量程为0~0.6 A,分度值为0.02 A) 读数: 1 A+6×0.1 A=1.6 A
分度值为0.5 V) 元件或电源并联;
读数: ②电流正进负出
2 V+6×0.1 V=2.6 V
1
仪器
电能表
读数步骤
注意事项
表盘参数的意义:
①电能表上最后一位
①220 V表示这个电能表应在220 V的电路中 数字表示小数点后一
使用,2.5(10)A表示这个电能表的标定电流 位.如图所示的电能
为2.5 A,额定最大电流为10 A,电能表工 表示数为248.6 kW·h,
1
(7)功的公式 W=Fs 变形公式:求运动距离 s=WF ;求力 F=Ws 注意:s 必须是物体在力 F 的方向上移动的距离.
1
(8)功率公式 P=Wt 变形公式:①求功 W=Pt;②求做功所用时间 t=WP 推导公式:P=Wt =Fts=Fv(v 为物体在力 F 作用下匀速运动的速度,单 位一定为 m/s)
1
(3)密度公式 ρ=mV 变形公式:求质量 m=ρV;求体积 V=mρ 注意:密度是物质的一种属性,与质量、体积无关.
(4)压强公式 p=FS 变形公式:求压力 F=pS;求受力面积 S=Fp 注意:受力面积 S 的单位一定要换算为 m2,1 Pa=1 N/m2.

2024成都中考数学第一轮专题复习之第六章 微专题 圆的综合题 练习课件

2024成都中考数学第一轮专题复习之第六章 微专题 圆的综合题 练习课件

第2题图
微专题 圆的综合题
(2)若AC=4,EF= 8 3 ,求CE的长.
3
(2)解:∵AC=4,EF= 8 3 ,∴BD=AC=4,DH=EH= 4 3 .
3
3
∵∠BDH=90°,
∴tan ∠DBH= DH 3 ,∴∠DBH=30°,
BD 3
∴∠DHE=60°,∴△DHE是等边三角形,
∴∠HDE=60°,DE=DH= 4 3 ,
∴∠CBO=∠BCD+∠D=4α. ∵OB=OC, ∴∠CBO=∠OCB=4α, ∴∠CBO+∠OCB+∠COB=4α+4α+2α=10α=180°, ∴α=18°, ∴∠ACD=∠ACB+∠BCD=90°+2α
=90°+36°=126°;
第6题图
微专题 圆的综合题
(3)求
OD AD
的值.
(3)解:设⊙O的半径为r,BD=a,则CD=r.
第6题图
微专题 圆的综合题
(2)求∠ACD的度数; (2)解:如图,连接CB. 设∠CAO=α. 根据(1)可知∠EAC=∠CAO=∠ACO=α, ∠EAO=∠EAC+∠CAO=2α, ∴∠COB=∠CAO+∠ACO=2α. ∵CD=OA, ∴CD=OC. ∴∠COB=∠D=2α.
第6题图
微专题 圆的综合题
第5题图
微专题 圆的综合题
(2)若OA=5,tan
D=
1 2
,求CE的长.
(2)解:如图,连接AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴tan B=tan D= AC 1 ,
BC 2
∴BC=2AC.
∵AB=2OA=10,
在Rt△ABC中,AC2+BC2=AB2,

中考数学一轮复习资料第38讲 与圆有关的概念(解析版)

中考数学一轮复习资料第38讲 与圆有关的概念(解析版)

2020届中考数学一轮复习讲义考点三十八:与圆有关的概念聚焦考点☆温习理解1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、弦连接圆上任意两点的线段叫做弦。

(如图中的AB)3.直径经过圆心的弦叫做直径。

(如图中的CD)直径等于半径的2倍。

4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)5、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

6、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

3、弦心距从圆心到弦的距离叫做弦心距。

名师点睛☆典例分类考点典例一、垂径定理【例1】(2019•广西北部湾经济区•3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为______寸.【答案】26【解析】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.【举一反三】(2018年湖北省黄梅濯港镇中心学校数学中考模拟)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A. ①③B. ②③C. ①④D. ②④【答案】C【解析】垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考点典例二、求弦心距【例2】(2018贵州黔东南中考模拟)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cm B.43cm C.63cm D.83cm【答案】B.考点:三角形的外接圆与外心;等边三角形的性质.【点睛】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径. 【举一反三】如图,半径为5的⊙A 中,弦B C ,ED 所对的圆心角分别是∠BAC ,∠EAD. 已知DE=6,∠BAC+∠EAD=180°,则弦BC 的弦心距等于( )A.241B. 234C. 4D. 3 【答案】D .考点:1.圆周角定理;2.全等三角形的判定和性质;3.垂径定理;4.三角形中位线定理. 【分析】如答图,过点A 作AH ⊥BC 于H ,作直径CF ,连接BF ,∵∠BAC+∠EAD=180°,∠BAC+∠BAF=180°, ∴∠DAE=∠BAF.在△ADE 和△ABF 中,∵AD ABDAE BAF AE AF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ABF(SAS).∴DE=BF=6. ∵AH⊥BC,∴CH=BH.又∵CA=AF,∴AH为△CBF的中位线. ∴AH=12BF=3.故选D.考点典例三、最短路线问题【例3】(2019年黄冈市中考模拟)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B 为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A.B.1 C. 2 D. 2【答案】A.【解析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=12∠AON=12×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴22×2,即PA+PB的最小值2.故选A.【点睛】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键. 【举一反三】(2018浙江温州中考模拟)如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A . 6B . 1132C . 9D . 332【答案】C . 【解析】试题分析:如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1﹣OQ 1,∵AB =10,AC =8,BC =6,∴AB 2=AC 2+BC 2,∴∠C =90°,∵∠OP 1B =90°,∴OP 1∥AC∵AO =OB ,∴P 1C =P 1B ,∴OP 1=12AC =4,∴P 1Q 1最小值为OP 1﹣OQ 1=1,如图,当Q 2在AB 边上时,P 2与B 重合时,P 2Q 2最大值=5+3=8,∴PQ 长的最大值与最小值的和是9.故选C .考点:切线的性质;最值问题.课时作业☆能力提升一.选择题1.(山东省济南市长清区2018届九年级3月质量(模拟)检测数学试题)如图,直径为10的A 经过点C 和点O ,点B 是y 轴右侧A 优弧上一点,∠OBC=30°,则点C 的坐标为( )A. ()0,5B. ()0,53 C. 50,32⎛⎫⎪⎝⎭ D. 50,33⎛⎫⎪⎝⎭【答案】A故选A .点睛:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.2. 如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A. 35°B. 45°C. 55°D. 65° 【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.3.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) A. 25cm B. 45cm C. 25cm 或45cm D.5 23cm 或43cm 【答案】C . 【解析】试题分析:根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论 连接AC ,AO ,∵⊙O 的直径CD=10cm ,AB ⊥CD ,AB=8cm ,∴AM=12AB=12×8=4cm ,OD=OC=5cm. 当C 点位置如答图1所示时,∵OA=5cm ,AM=4cm ,CD ⊥AB ,∴2222OM OA AM 543=-=-=cm.∴CM=OC+OM=5+3=8cm. ∴在Rt △AMC 中,2222AC AM CM 4845=+=+=cm. 当C 点位置如图2所示时,同理可得OM=3cm , ∵OC=5cm ,∴MC=5﹣3=2cm.∴在Rt △AMC 中,2222AC AM CM 4225=+=+=. 综上所述,AC 的长为25cm 或45cm . 故选C .考点:1.垂径定理;2.勾股定理;3.分类思想的应用.4. (2019•黄冈)如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40 m,点C是AB的中点,且CD=10 m,则这段弯路所在圆的半径为A.25 m B.24 m C.30 m D.60 m【答案】A【解析】∵OC⊥AB,∴AD=DB=20 m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r-10)2+202,解得r=25 m,∴这段弯路的半径为25 m,故选A.5. 如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=22,则PA+PB的最小值是()A.22B.2C.1 D.2【答案】D.6. (西藏拉萨北京实验中学等四校2018届九年级第一次联考数学试题)如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A. 80B. 60C. 50D. 40【答案】D【解析】试题解析:由圆周角定理得,1402A BOC∠=∠=,故选D.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.学&科网二.填空题7.(安徽省合肥市2018届九年级第五次十校联考)如图,⊙O是△ABC的外接圆,∠BAC=120°,若⊙O的半径为2,则弦BC的长为__________.【答案】23.∵四边形ABEC 是圆内接四边形, 120BAC ∠=,60E ∴∠=,120BOC ∴∠=,又∵OD ⊥BC ,602BOD BC BD ∴∠==,,3sin60232BD OB ∴=⨯=⨯=, 22 3.BC BD ∴==故答案为: 2 3.点睛:圆内接四边形的对角互补.8. (新疆乌鲁木齐市第九十八中学2018届九年级下学期第一次模拟考试)如图,△ABC 是⊙O 的内接锐角三角形,连接AO ,设∠OAB=α,∠C=β,则α+β=______°。

2023年九年级中考一轮复习数学课件圆的基本性质

2023年九年级中考一轮复习数学课件圆的基本性质

例 4 如图,正方形 ABCD 内接于⊙O,E 为 AB 的中点,连结 CE 交 BD 于点 F,延长 CE 交⊙O 于点 G,连结 BG.
(1)求证:FB2=FE·FG; (2)若 AB=6,求 FB 和 EG 的长.
解:(1)证明:∵四边形 ABCD 是正方形, ∴AD=BC,
∴A︵D=B︵C.
(2)如图,连结 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD, ∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10,∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中,52-t2=(2 5)2-(5-t)2,解得 t=3, ∴BF=4.∴BC=8.

相等的圆周角所对的弧相等..
推 1、半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径. 论 2、圆内接四边形的对角互补,并且任何一个外角等于它的内对角.
常 见 图 形
圆中常用辅助线:
遇到 弦时
有作垂直于弦的 半径(或直径)或再连接过弦的端点
的半径.
常连弦心距
【解】如图 1,当 PA,PB 不在同一个半圆时,过点 P 作直径 PQ,连结
AQ,BQ.
∵PQ 是⊙O 的直径,
∴∠PAQ=∠PBQ=90°.
∵⊙O 的半径 r=1,
∴PQ=2r=2.
图1
∵PA= 3,PB= 2,
∴cos∠APQ=PPAQ= 23,
cos∠BPQ=PPQB=
2 2.
∴∠APQ=30°,∠BPQ=45°.
∴∠APB=∠APQ+∠BPQ=75°.

九年级数学中考一轮复习 微专题二讲义:圆的基本性质

九年级数学中考一轮复习 微专题二讲义:圆的基本性质

微专题二:圆的基本性质【知识点扫描】1. 圆上各点到圆心的距离都等于.2. 圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.6. 半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.8.圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .9.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .10.圆锥的侧面积公式:S=rlπ.(其中为的半径,为的长);圆锥的全面积:S全=S侧+S底=πrl+πr2.【难点突破】重难点1垂径定理及其应用一.选择题:1.如图,AB是⊙O的直径,弦CD⊙AB于点G,点F是CD上一点,且满足CF:FD =3:7,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=3,给出下列结论:⊙FG=2;⊙5 tanE;⊙495DEFS=;其中正确的是( )A. ⊙⊙B. ⊙⊙C. ⊙⊙D.⊙⊙⊙二、填空题:1.在半径为1的⊙O中,两条弦AB,AC的长分别为3和2,则弧BC的长度为.三、解答题:1.已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊙CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:⊙ADG⊙⊙AFD;(3)当点G是弧AD的中点时,求⊙ADG得面积与⊙AFD的面积比.重难点2圆周角定理及其推论一、选择题1. 如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设⊙BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α2.如图,点C为⊙ABD外接圆上的一点(点C不在上,且不与点B,D重合),且⊙ACB=⊙ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5B.5C.4D.二、填空题1.如图,⊙O是⊙AB C的外接圆,AD⊙B C于D,CE⊙AB于E,AD交CE于H点,交⊙O于N,OM⊙B C于M,BF为⊙O的直径,下列结论:⊙四边形AH CF为平行四边形;⊙AH=2OM,⊙BF=2F C;⊙DN=DH;其中正确的有______(第1题) (第2题)2.如图,在平面直角坐标系中,已知点A (0,2)、B(0,2+m)、C(0,2-m)(m>0),点P 在以D(4,6)为圆心,1 为半径的圆上运动,且始终满足⊙BPC=90°,则m的最大值是3.如图,AB,BC是⊙O的弦,⊙B=60°,点O在⊙B内,点D为上的动点,点M,N,P 分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是三.解答题1.请完成以下问题:(1)如图1,=,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.2.如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是⊙ABP 的外接圆⊙O 的直径.(1)求证:⊙APE 是等腰直角三角形; (2)若⊙O 的直径为2,求PC 2+PB 2的值.3.如图1,已知四边形ABCD 内接于圆0,AD=BC ,延长AB 到E ,使BE=AB ,连接EC ,F 是EC 的中点,连接BF(1)若圆0的半径为3,⊙DAB=120°,求劣弧BD 的长; (2)如图2,连接BD ,求证:BF=21BD ; (3)如图3,G 是BD 的中点,过B 作AE 的垂线交圆0于点P ,连接PG ,PF ,求证:PG=PF图1 图2 图34.如图1,圆O的两条弦AC、BD交于点E,两条弦所成的锐角或者直角记为⊙α(1)点点同学通过画图和测量得到以下近似数据:的度数30.2°40.4°50.0°61.6°的度数55.7°60.4°80.2°100.3°⊙α的度数43.0°50.2°65.0°81.0°猜想:、、⊙α的度数之间的等量关系,并说明理由﹒(2)如图2,若⊙α=60°,AB=2,CD=1,将以圆心为中心顺时针旋转,直至点A与点D 重合,同时B落在圆O上的点,连接CG﹒⊙求弦CG的长;⊙求圆O的半径.重难点3 三角形的外接圆及圆内接四边形 一、选择题1.如图,点A 的坐标为A (8,0),点B 在y 轴正半轴上,且AB=10,点P 是⊙AOB 外接圆上一点,且⊙BOP=45°,则点P 的坐标为( )A .(7,7)B .(7,7)C .(5,5)D .(5,5)2.如图所示,四边形ABCD 中,DC⊙AB ,BC=2,AB=AC=AD=3.则BD 的长为( ) A.13 B.5 C.23 D.243.如图,⊙ABC 内接于圆O ,延长AO 交BC 于点P ,交圆O 于点D ,连结OB ,OC ,BD ,DC ( )A .若AB=AC ,则BC 平分ODB .若OCBD ,则CD :AB=:3C .若⊙ABO=30°,则OC BDD .若BC 平分OD ,则AB=AC二.填空题1.在⊙ABC 中,45AB =5AC =,11BC =,则⊙ABC 的外接圆半径为____________2、如图,⊙ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊙AC于M,下列结论中正确的是.⊙DB=DC;⊙AC+AB=2CM;⊙AC﹣AB=2AM;⊙S⊙ABD=S⊙ABC.重难点4弧长及扇形面积的有关计算一.选择题1.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.2π﹣2D.π﹣2二.填空题1、如图,一根长为a的竹竿AB斜靠在墙上,竹竿AB的倾斜角为α,当竹竿的顶端A下滑到点A'时,竹竿的另一端B向右滑到了点B',此时倾斜角为β.(1)线段AA'的长为.(2)当竹竿AB滑到A'B'位置时,AB的中点P滑到了P',位置,则点P所经过的路线长为(两小题均用含a,α,β的代数式表示)2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为_ __3、如图,AB为半圆O的直径,C为AO的中点,CD⊙AB交半圆与点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分面积为cm2.三、简答题1、在⊙O中,己知弦BC所对的圆周角⊙BAC与圆心角⊙BOC互补.(1)求⊙BOC的度数.(2)若⊙O的半径为4,求弦BC和劣弧BC组成的弓形面积.。

2025年九年级中考数学一轮复习考点突破课件+第26讲 与圆有关的计算(7年7考,3~5分)

2025年九年级中考数学一轮复习考点突破课件+第26讲 与圆有关的计算(7年7考,3~5分)
面积为( D )
A. 4
B. 6
C. π
D. π
D
3. (2022·玉林16题3分)数学课上,老师将如图边长为1的正方形铁
丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不
计),则所得扇形DAB的面积是 ⁠.
1
4. (2019·北部湾经济区23题8分)如图,△ABC是☉O的内接三角
∴ 的长为 = π.
圆锥的有关计算(7年1考,3分)
5. (2022·柳州10题3分)如图,圆锥底面圆的半径AB=4,母线长
AC=12,则这个圆锥的侧面积为( C )
A. 16π
B. 24π
C. 48π
D. 96π
C
6. (2021·北部湾经济区17题3分·源自人教九上P116第10题)如图,
3. [源自人教九上P的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 ⁠.
4. 若圆锥的底面圆半径为4,母线长为5,则该圆锥的侧面积
为 ⁠.
2
20π
考点梳理
3. 正多边形和圆
(1)正多边形每一边所对的圆心角叫作正多边形的中心角,正n边
形的中心角α的度数为 ;
(2)正多边形中心到正多边形的一边的距离叫作正多边形的边
心距;
(3)正多边形的外接圆的半径R、边心距r、边长a之间的关系:
r2+()2=R2.
对点训练
5. 如果正多边形的中心角是36°,那么这个正多边形的边数
是 ⁠.
是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC
分别交于E,F两点,则图中阴影部分的面积为( C )
A.
B.
C.
D.
C
8. (2020·百色16题3分)如图,正方形ABCD的边长为2.以点A为

中考数学一轮复习第二部分空间与图形第六章圆第24讲圆的基本性质课件

中考数学一轮复习第二部分空间与图形第六章圆第24讲圆的基本性质课件
边和圆相交的角叫做圆心角.
圆周角:顶点在圆上且角的两
边和圆相交的角叫做圆周角.
3.(1)如图,在☉O 中,
∠BOD=80°,则∠A= 40°,
∠C= 140°;
(2)圆周角定理
定理:一条弧所对的圆周角等于它
所对的圆心角的 一半 .
推论:
①同弧或等弧所对的圆周角相等.
②半圆(或直径)所对的圆周角
是 直角 ,90°的圆周角所对的弦
③平分弦所对的一条弧的直径,垂
直 平分 弦,并且 平分 弦所
对的另一条弧.
2.(1)如图,在☉O 中,
弦 AB 的长为 8 cm,
圆心 O 到 AB 的距离
为 3 cm,则☉O 的半
径为 5 cm ;
(3)推论 2:圆的两条平行弦
所夹的 弧 相等.
注意:轴对称Leabharlann 是圆的基本性质,垂径定理及其推论就
是根据圆的轴对称性总结
劣弧.
(6)连接圆上任意两点的线段叫做弦,经过
圆心的弦叫做直径.
(7)弧、弦、圆心角的关系
定理:在同圆或等圆中,相等的圆心角所对
的 弧 相等,所对的 弦 也相等.
推论:在同圆或等圆中,两个 圆心角 、两条
弧、两条 弦 中如果有一组量相等,则
它们所对应的其余各组量也分别相等.
(3)如果∠AOB=
∠COD,那么
材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,
锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径

26
寸.
圆心角和圆周角
4.(2020眉山)如图,四边形ABCD的外接圆为☉O,BC=CD,
∠DAC=35°,∠ACD=45°,则∠ADB的度数为( C )

2020深圳中考数学一轮复习宝典课件 第1部分 第6章 第3讲 与圆有关的计算

2020深圳中考数学一轮复习宝典课件 第1部分  第6章  第3讲 与圆有关的计算

度数为( C )
A.30°
B.45°
C.60°
D.90°
︵ 2.如图,圆内接正方形 ABCD,在BC上有一点 E,则 tan∠AEB
的值为( A )
A.1
B.
3 3
C.
3 2Leabharlann D. 33.已知扇形的弧长为 6π cm,该弧所对的圆心角为 90°,则此扇
形的面积为( A )
A.36π cm2
B.72π cm2
线 BD 于点 E,则阴影部分的面积为( C )
A.π
B.32π
C.6-π
D.2 3-π
——基于深圳考纲的 1 个中考考点
考点 1 与圆有关的计算(6 年 1 考) 2014 年 2015 年 2016 年 2017 年 2018 年 2019 年
考情分析 11 题
1.(2016·深圳,11 题,3 分)如图,在扇形 AOB 中∠AOB=90°,
第一部分 单元知识复习
第六章 圆
第3讲 与圆有关的计算
——基于课程标准的 4 个复习要点
知识清单
序号 知识点名称
序号
知识点名陈
正多边形的相
混淆正多边形的有关
知识点 1
易错点 1
关概念
概念,在求解时出错
求不规则图形的面积 知识点 2 圆的相关计算 易错点 2
时出错
导学对点练 知识点 1:正多边形的相关概念
A.1
B.1.5
C. 3
D.2
6.数学与我们的日常生活息息相关,汽车雨刮器摆动的轨迹是以点
O 为圆心的扇形,如图所示,已知雨刮器摆动的角度为 120°,
雨刮器的总长为 1,雨刮器上有橡胶的部分(即线段 AC 的长)为35.

中考数学一轮复习6.1圆的有关概念及性质课件随堂演练全面版

中考数学一轮复习6.1圆的有关概念及性质课件随堂演练全面版
有一组量相等,那么它们所对应的其余各组量都分别_____. 相等
3.垂径定理及其推论
(1)垂径定理:垂直于弦的直径_平__分__弦及弦所对的两条弧.
(2)推论:①平分弦(不是直径)的直径_____于弦,并且_____
垂直
平分
弦所对的弧;
②弦的垂直平分线经过_____,并且平分弦所对的两条弧;
③平分弦所对的一条弧的圆直心径垂直平分弦,并且_____
性质
知识点一 圆的有关概念
1.圆:平面上到定点的距离等于定长的所有点组成的图形
叫做圆.其中,定点称为_____,定长称为_____.
圆心
半径
2.与圆有关的概念
(1)弧:圆上任意_两__点__间__的部分叫做圆弧,简称弧. (2)弦:连接圆上任意两点的_____叫做弦.
线段 (3)直径:经过_____的弦叫做直径. (4)等圆:能够重圆合心的圆叫做等圆.在同圆或等圆中,能够
(2)性质:圆内接四边形的对角_____;圆内接四边形的外角
等于它的_______.
互补
内对角
知识点三 确定圆的条件
1.不在同一条直线上的三个点确定一个圆.
2.三角形的三个顶点确定一个圆,这个圆叫做三角形的外
接圆.外接圆的圆心是三角形三边___________的交点,叫
做三角形的外心.
垂直平分线
考点一 圆心角、弧、弦之间的关系 (5年1考) 例1 (2017·潍坊)点A,C为半径是3的圆周上两点,点B为
8.如图,四边形ABCD内接于⊙O,E为DC延长线上一点, ∠A=50°,则∠BCE的度数为( B )
A.40°
B.50°
C.60°
D.130°
9.(2017·凉山州)如图,已知四边形ABCD内接于半径为4

中考数学总复习第一轮第六单元圆第课圆的证明课件

中考数学总复习第一轮第六单元圆第课圆的证明课件

点 , 过 点 C 作 ⊙ O 的 切 线 交 AB 的 延 长 线 于 点 D. 若
∠A=32°,则∠D= 26
度.
4.(2020·益阳)如图,在圆O中,AB为直径,AD为弦,
过点B的切线与AD的延长线交于点C,AD=DC,则
∠C=
45
度.
5.(2020·巴中)如图,在矩形ABCD中,以AD为直径
∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC, ∴∠OAC=∠OCA=30°,又∵AP=AC, ∴∠P=∠ACP=30°,∴∠OAP=∠AOC-∠P=90°, ∴OA⊥PA,∴ PA是⊙O的切线.
(2)若PD= 5 ,求⊙O的直径.
解:在Rt△OAP中,∠P=30°, ∴ PO=2OA=OD+PD,又∵OA=OD,∴ OA=PD,
∠A=32°,则∠D= 26°

4.(2020·黄冈)如图,AD是⊙O的直径,AB为⊙O的弦, OP⊥AD,OP与AB的延长线交于点P,过B点的切线交 OP于点C.
(1)求证:∠CBP=∠ADB.
证明:如图,连接OB,
∵AD是⊙O的直径,∴∠ABD=90°, ∴∠A+∠ADB=90°,∵BC为切线, ∴OB⊥BC,∴∠OBC=90°, ∴∠OBA+∠CBP=90°, 而OA=OB,∴∠A=∠OBA, ∴∠CBP=∠ADB.
半径的直线是圆的切线.
切线的性质 切线垂直于经过切点的半径 .
切线长
过圆外一点作圆的切线,这点和切点之间 的线段长叫做这点到圆的切线长.
从圆外一点可以引圆的两条切线,它们的 切线长定理 切线长相等,这一点和圆心的连线平分两
条切线的夹角.
知识点4 三角形与圆
确定圆 不在同一直线的三个点确定一个圆. 的条件

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

第27讲 与圆有关的位置关系(课件)中考数学一轮复习(全国通用)

第27讲 与圆有关的位置关系(课件)中考数学一轮复习(全国通用)
【说明】掌Байду номын сангаас已知点的位置,可以确定该点到圆心的距离与
1. 点和圆的位置关系
已知⊙O的半径为r,点P到圆心O的距离为d,则:
位置关系
图形
半径的关系,反过来已知点到圆心的距离与半径的关系,可
以确定该点与圆的位置关系.
定义
性质及判定
点在圆的外部
d > r 点P在圆外
点在圆周上
d = r 点P在圆上
点在圆的内部
内切
内含
O2
d
性质及判定

> + ⇔两圆外离
1个切点
= + ⇔两圆外切
两个交点
− < < + ⇔两圆相交
1个切点
= − ⇔两圆内切
R
r
O1
O2
d
r
相交
公共点个数
O1
R
d
O2
rd R
O1 O2
R
r d
O1 O2

0 ≤ < − ⇔两圆内含
∴圆A与圆C外切,圆B与圆C相交,圆A与圆B外离,
故选:D.

考点二 切线的性质与判定
1.切线的性质与判定
定义
线和圆只有一个公共点时,这条直线叫圆的切线,这个公共点叫做切点.
圆的切线垂直于过切点的半径.(实际上过切点的半径也可理解为过切点的直径或经过切点与圆心的直线.)
解题方法:当题目已知一条直线切圆于某一点时,通常作的辅助线是连接切点与圆心(这是圆中作辅助线的一
∴不能判定BC是⊙A切线;
故选:D.

考点二 切线的性质与判定
题型02 利用切线的性质求线段长

中考数学大一轮数学复习专题ppt课件:一元二次方程根的判别式及根与系数的关系

中考数学大一轮数学复习专题ppt课件:一元二次方程根的判别式及根与系数的关系

夯实基本 知已知彼
基础知识回顾
1. 一元二次方程根的判别式
关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为________.
(1)b2-4ac>0⇔一元二次方程ax2+bx+c=0(a≠0)有两个________实数
根,即x1,2=________. (2)b2-4ac=0⇔一元二次方程ax2+bx+c=0(a≠0)有____________相等
1 2 3
13
中考大一轮复习讲义◆ 数学
热点看台 快速提升
易错题跟踪 1. (2014·湖北襄阳)若正数a是一个一元二次方程x2-5x+m=0的一个根,-a 是一元二次方程x2+5x-m=0的一个根,则a的值是____5____. 2. (2014·湖北鄂州)一元二次方程mx2-2mx+m-2=0. (1)若方程有两实数根,求m的取值范围. (2)设方程两实根为x1,x2,且|x1-x2|=1,求m.
课后总结
1
学生:同伴之间相互交流学习心得。
2 师生:共同归纳本课学习知识。
16
中考大一轮复习讲义◆ 数学
作业
1
教科书本课课后习题。
2
课时达标册本课练习习题。
17
中考大一轮复习讲义◆ 数学
下课啦!
18
中考大一轮复习讲义◆ 数学
谢谢 指导
2022
19
中考大一轮复习讲义◆ 数学 20
D. m≤12
1
5. (2013·山东滨州)对于任意实数 k,关于 x 的方程 x2-2(k+1)x-k2+2k
-1=0 的根的情况为( C )
A. 有两个相等的实数根
B. 没有实数根
C. 有两个不相等的实数根

中考数学一轮复习专题解析—圆的证明与计算

中考数学一轮复习专题解析—圆的证明与计算

中考数学一轮复习专题解析—圆的证明与计算复习目标1.了解圆的定义及点与圆的位置关系。

2.掌握圆的基本性质。

3.掌握圆中复杂证明及两圆位置关系中证明。

考点梳理一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作①O,线段OA叫做半径;①圆是到定点的距离等于定长的点的集合.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.①直径:经过圆心的弦叫做直径,如AC是①O的直径,直径是圆中最长的弦.①弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC、BAC都是①O中的弧,分别记作BC,BAC.①半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC是半圆.①劣弧:像BC这样小于半圆周的圆弧叫做劣弧.①优弧:像BAC这样大于半圆周的圆弧叫做优弧.①同心圆:圆心相同,半径不相等的圆叫做同心圆.①弓形:由弦及其所对的弧组成的图形叫做弓形.①等圆:能够重合的两个圆叫做等圆.①等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中①AOB,①BOC是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中①BAC、①ACB都是圆周角.例1.已知:如图所示,在①O中,弦AB的中点为C,过点C的半径为OD.(1)若AB=23,OC=1,求CD的长;(2)若半径OD=R,①AOB=120°,求CD的长.【答案】解:①半径OD经过弦AB的中点C,①半径OD①AB.(1)①AB=3AC=BC3①OC=1,由勾股定理得OA=2.①CD=OD-OC=OA-OC=1,即CD =1.(2)①OD①AB ,OA =OB , ①①AOD =①BOD .①①AOB =120°,①①AOC =60°. ①OC =OA·cos①AOC =OA·cos60°=12R , ①1122CD OD OC R R R =-=-=.二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:在图中(1)直径CD ,(2)CD①AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径. 3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;①在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.①圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.例2.如图所示,AB=AC,O是BC的中点,①O与AB相切于点D,求证:AC与①O相切.【答案】证明:连接OD,作OE①AC,垂足为E,连结OA.①AB与①O相切于点D,①OD①AB.①AB=AC,OB=OC,①①1=①2,①OE=OD.①OD为①O半径,①AC与①O相切.三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r(1)圆的确定:①过一点的圆有无数个,如图所示.①过两点A、B的圆有无数个,如图所示.①经过在同一直线上的三点不能作圆.①不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.①圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是①O的切线,必须符合两个条件:①直线l经过①O上的一点A;①OA①l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.①三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.3.三角形外心、内心有关知识比较4.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.①同心圆是内含的特殊情况.①圆与圆的位置关系可以从两个圆的相对运动来理解.①“r1-r2”时,要特别注意,r1>r2.四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360 n °.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比. 3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形. 正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n°的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长.圆锥的全面积是它的侧面积与它的底面积的和.1.(2022·四川省宜宾市第二中学校九年级)如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,1CE =,6AB =,则O 的半径为( )A.3B.4C.5D.无法确定【答案】C【分析】连接OA,由垂径定理得AE=3,设OA=OC=x,根据勾股定理列出方程,进而即可求解.【详解】连接OA,①CD为O的直径,弦AB CD⊥,AB=3,①AE=12设OA=OC=x,则OE=x-1,①()222x x-+=,解得:x=5,13①O的半径为5.故选C.2.(2022·河南九年级期末)如图,AD为①O的直径,6cmAD=,DAC ABC∠=∠,则AC的长度为()A.2B.22C.32D.33【答案】C【分析】连接CD,由圆周角定理可知90∠=∠可知AC CD=,由∠=︒,再根据DAC ABCACD勾股定理即可得出AC的长.【详解】解:连接CD,AD是O的直径,∴∠=︒,ACD90∠=∠,DAC ABC∠=∠,ABC ADC∴∠=∠,DAC ADC∴CD AC=,∴=,AC CD又222AC CD AD+=,22∴=,2AC ADAD=,6∴=AC故选:C.3.(2022·全国九年级课时练习)O的半径为10cm,弦//AB CD.若==,则AB和CD的距离为()AB CD12cm,16cmA.2cm B.14cm C.2cm或14cm D.2cm或10cm 【答案】C【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心异侧时,如图1,过点O作OE①AB于点E,反向延长OE交CD于点F,连接OA,OC,①AB①CD,①OF①CD,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=10cm,①在Rt①AOE中,由勾股定理可得;8EO cm,在Rt①COF中,由勾股定理可得:6OF===cm,①EF=OF+OE=8+6=14cm.当弦AB和CD在圆心同侧时,如图2,过点O作OF①CD,垂足为F,交AB于点E,连接OA,OC,①AB①CD,①OE①AB,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=5cm,在Rt①AOE中,由勾股定理可得:2222=-=-=cm,1068EO OA AE在Rt①COF中,由勾股定理可得:2222=-=-=cm,OF OC CF1086①EF=OE﹣OF=8﹣6=2cm;故选C.4.(2022·全国九年级课时练习)如图,在ABC中,10,8,6===,经过AB AC BC点C且与边AB相切的动圆与,CB CA分别相交于点E,F,则线段EF长度的最小值是()A.42B.4.75C.5D.4.8【答案】D【分析】设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,则有OD①AB,由勾股定理逆定理知,ABC是直角三角形,OC+OD=EF,而OC+OD≥CD,只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知求出CD的长即可.【详解】解:设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,①10,8,6===,AB AC BC①AC2+BC2=AB2,①ABC 是直角三角形,①ACB =90°, ①EF 是①O 的直径, ①OC +OD =EF , ①①O 与边AB 相切, ①OD ①AB , ①OC +OD ≥CD ,即当点O 在直角三角形ABC 的斜边AB 的高上时,OC +OD =EF 有最小值, 此时最小值为CD 的长, ①CD =864.810AC BC AB ⋅⨯==, ①EF 的最小值为4.8. 故选D .5.(2020·沭阳县怀文中学九年级月考)有下列说法:①直径是圆中最长的弦;①等弧所对的弦相等;①圆中90°的角所对的弦是直径;①相等的圆心角对的弧相等;①平分弦的直径垂直于弦;①任意三角形一定有一个外接圆.其中正确的有( ) A .2个 B .3个C .4个D .5个【答案】B 【分析】根据直径的定义对①进行判断;根据圆心角、弧、弦的关系对①①进行判断;根据圆周角定理对①进行判断;根据垂径定理对①进行判断;根据三角形外接圆的定义对①进行判断. 【详解】解:①直径是圆中最长的弦;故①正确,符合题意;①能够重合的弧叫做等弧,等弧所对的弦相等;故①正确,符合题意; ①圆中90°的圆周角所对的弦是直径;故①错误,不符合题意;①在同圆或等圆中,相等的圆心角所对的弧相等;故①错误,不符合题意; ①平分弦(弦不是直径)的直径垂直于弦;故①错误,不符合题意; ①任意三角形一定有一个外接圆;故①正确,符合题意; 其中正确的有①①①, 故选:B .6.(2022·厦门海沧实验中学九年级开学考试)四边形ABCD 中,ACD △是边长为6的等边三角形,ABC 是以AC 为斜边的直角三角形,则对角线BD 的长的取值范围是( ) A .33BD <≤+B .36BD << C .63BD <≤+D .3BD <≤【答案】C 【分析】由①ABC 是以AC 为斜边的直角三角形可知点B 在以AC 为直径的圆上,然后结合点到圆上点的距离求出对角线BD 长度的取值范围. 【详解】①①ABC 是以AC 为斜边的直角三角形, ①点B 在以AC 为直径的圆上,如图中①O ,连接OD 并延长,交①O 于点E 和点B ,①等边①ACD的边长为6,①AC=BE=6,OB=OE=OA=OC=3,OD①AC,①①COD=90°,①OD=2222CD OC-=-=,6333①BD=OD+OB=333+,△是边长为6的等边三角形,ACD当B与,A C重合时,BD最小6=①对角线BD的长度的取值范围为6<BD≤333+.故选:C.7.(2022·河南九年级期末)如图,在ABC∠=︒,30Rt△中,90ACB∠=︒,3ABCAB=,将ABCRt△绕直角顶点C顺时针旋转,当点A的对应点A'落在AB边上时,停止转动,则点B经过的路径长为__.3【分析】首先根据勾股定理计算出BC 长,再根据等边三角形的判定和性质计算出60ACA ∠'=,进而可得60BCB ∠'=,然后再根据弧长公式可得答案.【详解】解:30B ∠=,3AB =,①ACB=90° ①1322AC AB ==,60A ∠=,①22332BC AB AC =-=AC A C =',AA C ∴'是等边三角形, 60ACA ∴∠'=,60BCB ∴∠'=,∴弧长3360321802l ππ⋅⋅==, 故答案为:32π. 8.(2022·河南九年级期末)如图,在ABC 中,90ACB ∠=︒,60B ∠=︒,以AC 为直径做半圆交AB 于点D ,若1BC =,则图中阴影部分的面积为__.3π+【分析】连接OD ,CD ,根据圆周角定理得到90ADC ∠=︒,解直角三角形求得AC =CD OC OD =,32AD =,60COD ∠=︒,然后根据扇形的面积和三角形的面积公式即可得到结论. 【详解】解:连接OD ,CD ,在ABC 中,90ACB ∠=︒,60B ∠=︒, ①9030A B ∠=︒-∠=︒, 又①1BC =, ①22BA BC ==,①AC =AC 为O 的直径,90ADC ∴∠=︒,12OA AC =,又①30A ∠=︒,12CD AC ∴==①32AD , ①30A ∠=︒,260COD A ︒∴∠=∠=,∴阴影部分的面积()()ABC AOD AOD COD COD S S S S S S ∆∆=++--+△半圆扇形扇形 122ABC ACD COD S S S S ⎛⎫=+-+ ⎪⎝⎭△△半圆扇形22601111321222360222ππ⎛⋅ =⨯⋅-+⨯⨯⎪⎝⎭38π+=, 故答案为:38π+.9.(2022·河南九年级期末)如图,在ABC 中,AB BC =,以AB 为直径的①O 交BC 于点D ,交AC 于点F ,过点C 作//CE AB ,且CAD CAE ∠=∠. (1)求证:AE 是①O 的切线; (2)若5AB =,4=AD ,求CE 的长.【答案】(1)见解析;(2)2 【分析】(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明AEC △和ADC 全等即可得到结论;(2)由勾股定理求出2CD =,根据全等三角形的性质可得出答案. 【详解】(1)证明:AB BC =,BAC BCA ∴∠=∠,//CE AB ,BAC ACE ∴∠=∠,ACB ACE ∴∠=∠,在AEC △和ADC 中,CAD CAE AC ACACB ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADC AEC ASA ∴≅△△,ADC E ∴∠=∠, AB 是O 的直径,90ADB ADC ∴∠=∠=︒,90E ∴∠=︒,//AB CE ,180BAE E ∴∠+∠=︒,90BAE ∴∠=︒,AE ∴是O 的切线;(2)解:90ADB ∠=︒,5AB =,4=AD ,3BD ∴==,532CD BC BD ∴=-=-=,①ADC AEC ≅△△,2CE CD ∴==.10.(2022·安庆市第四中学九年级)如图,①O 是①ABC 的外接圆,FH 是①O 的切线,切点为F ,FH ①BC ,连结AF 交BC 于E ,①ABC 的平分线BD 交AF 于D ,连结BF .(1)求证:AF平分①BAC;(2)若EF=4,DE=3,求AD的长.【答案】(1)证明见详解;(2)AD =214.【分析】(1)连结OF,由FH是①O的切线,可得OF①FH,由FH∥BC,可得OF垂直平分BC,根据垂径定理可得BF FC=,根据圆周角性质可得①1=①2即可;(2)根据①ABC的平分线BD,可得①4=①3,可证①FDB=①FBD,可得BF=FD,再证①BFE①①AFB,根据性质可得BF AFFE BF=,再求BF=DF= 7,可求494FA=,即可求AD.【详解】(1)证明:连结OF,①FH是①O的切线,①OF①FH,①FH∥BC,①OF垂直平分BC,①BF FC=,①①1=①2,①AF平分①BAC,(2)解①①ABC 的平分线BD 交AF 于D , ①①4=①3,①1=①2,①①1+①4=①2+①3,①①5=①2,①①1+①4=①5+①3 ,①①FDB =①FBD ,①BF =FD ,在①BFE 和①AFB 中,①①5=①2=①1,①AFB =①EFB , ①①BFE ①①AFB , ①BF AF FE BF=, ①2BF FE FA =⋅, ①2BF FA FE= , ①BF =DF =EF +DE =7,①274944FA ==, ①AD=AF -DF =4974-=214.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.精品课件.
·新课标 9
第29讲 │ 考点随堂练
考点2 圆的对称性
对称性
圆是轴对称图形,它的对称轴是过__圆__心__的__直__线_, 它也是中心对称图形,对称中心在_圆__心______.
同圆或等圆中,弦、弧以及圆心角这三个量
弦、弧以及圆 心角的关系
中,只要有___一_____个量相等,就可以得出其
羊吃到菜,拴羊的绳子可以选用( A )
A.3 m
B.5 m
C.7 m
D.9 m
图29-1
[解析] 依据题意,让羊吃不到菜,就是说羊的活动范围最多 只能在以A为圆心,AP为半径的圆内.由已知得,OB=OP= 6,AB=8,则AO= AB2+OB2 =10,AP=AO-OP=10-6 =4.所以,为了不让羊吃到菜,拴羊的绳子应小于4 m.
余的量也相等.
直线:①经过圆心,②垂直于弦,③平分劣
垂直于弦的直 弧,④平分优弧,⑤平分弦(弦不是直径),只要

其中的两个条件成立,就可以得出其余的三个
结论.
.精品课件.
·新课标 10
第29讲 │ 考点随堂练
6.如图29-5所示,如果⊙( A )
A. 1
图29-6 [解析] 连接OA,OM=35OD=35×52=32,根据勾股定理AM=
522-322=2,所以AB=4 cm.
.精品课件.
·新课标 12
第29讲 │ 考点随堂练
8.如图29-7所示,已知AB、CD是⊙O的两条直径,弦DE∥AB, ∠DOE=70°,则∠BOD=__1_2_5_°_.
图29-7
[解析] 弧包括半圆、优弧和劣弧,等弧是能够重合的弧, 而经过圆内一点只能作一条直径或无数条直径(圆内的一点 正好是圆心).
.精品课件.
·新课标 5
第29讲 │ 考点随堂练
2.[2010·新疆]如图29-1,王大爷家屋后有一块长
12 m,宽8 m的矩形空地,他在以BC为直径的半圆
内种菜,他家养的一只羊平时拴在A处,为了不让
圆心角 圆的两条__半__径_____所夹的角,叫做圆心角.
等圆 能够完全___重__合____的圆叫等圆.
.精品课件.
·新课标 4
第29讲 │ 考点随堂练
1.下列语句中,不正确的个数是( C )
①弦是直径;②半圆是弧;③长度相等的弧是等弧;④经过
圆内一定点可以作无数条直径.
A.1
B.2
C.3
D.4
.精品课件.
·新课标 6
第29讲 │ 考点随堂练
3.[2010·乐山]如图29-2,一圆弧过方格的格 点A、B、C,试在方格中建立平面直角坐标 系,使点A的坐标为(-2,4),则该圆弧所在圆 的圆心坐标是( C ) A.(-1,2) B.(1,-1) C.(-1,1) D.(2,1)
图29-2
[解析] 首先利用A点坐标建立坐标系,坐标原点为C点下4格 的格点,再利用“垂径定理”得出圆心在原点左1上1的格点 上,所以圆心坐标为(-1,1).
在一个平面内,线段OA绕它固定的一个端点O旋转一
圆 周,另一个端点A随之旋转所形成的图形叫做圆,固
定的端点O叫做_圆__心____,线段OA叫做___半__径____.
弦 连接圆上任意两点的__线__段_______叫做弦.

圆上任意两点之间的部分叫做圆弧,简称弧,弧有 __优__弧___和__劣__弧____两种. 等弧是指__能__够__重__合__的弧.
.精品课件.
·新课标 14
第29讲 │ 考点随堂练
10.如图29-9,AB是⊙O的直径,BC是弦, OD⊥BC于E,交弧BC于 D. (1)请写出五个不同类型的正确结论; (2)若BC=8,ED=2,求⊙O的半径.
图29-9 解:(1)不同类型的正确结论有: ①BE=CE;②∠BED=90°; ③∠BOD=∠A;④AC∥OD;⑤AC⊥BC;⑥OE2+BE2=OB2; ⑧△BOD是等腰三角形等.
[解析]∵DE∥AB,∠DOE=70°,∴∠BOE=∠DEO=55°, ∴∠DOE+∠BOE=70°+55°=125°.
.精品课件.
·新课标 13
第29讲 │ 考点随堂练
9.如图29-8,将半径为4 cm的圆形纸片折叠后,圆弧恰好经过 圆心O,则折痕AB的长为_4__3___cm.
图29-8
[解析] 由折叠圆弧恰好经过圆心O可得,点O到AB的距离等 于半径的一半,再根据垂径定理易计算得AB=2 42-22 = 4 3.
第29讲 第30讲 第31讲 第32讲
圆的有关性质 直线与圆的位置关系 圆与圆的位置关系 正多边形、扇形的面积、圆锥 的计算问题
.精品课件.
1
.精品课件.
·新课标 2
第29讲 │ 圆的有关性质
第29讲 圆的有关性质
.精品课件.
·新课标 3
第29讲 │ 考点随堂练
│考点随堂练│
考点1 圆的基本概念
.精品课件.
·新课标 8
第29讲 │ 考点随堂练
5.如图29-4,点A、B和点C、D分别在两个同心圆上,且 ∠AOB=∠COD.∠C与∠D相等吗?为什么?
图29-4
解: ∠C与∠D相等,∵∠AOB=∠COD. ∴ ∠BOC=∠AOD.又∵OB=OA,OC=OD(同圆的半径 相等),∴△BOC≌△AOD.∴∠C=∠D.
(2)∵OD⊥BC, ∴BE=CE=12BC=4.设⊙O的半径为R, 则OE=OD-DE=R-2.在Rt△OEB中,由勾股定理得 OE2+BE2=OB2,即(R-2)2+42=R2.解得R=5. ∴⊙O的半径为5.
.精品课件.
·新课标 7
第29讲 │ 考点随堂练
4.如图29-3所示,在△ABC中,∠ACB=90°,∠B= 25°,以C为圆心,CA为半径的圆交AB于点D,则∠ACD= ___5_0_°___.
图29-3
[解析] ∵∠B=25°,则∠A=65°,∠ADC=∠A=65°, ∴∠ACD=180°-∠A-∠ADC=50°.
B. 3
C.12
D. 2
3 ,那么圆
图29-5 [解析] 由垂径定理可得OE= OA2-AE2=1.
.精品课件.
·新课标 11
第29讲 │ 考点随堂练
7.[2011·临沂]如图29-6,⊙O的直径CD=5 cm,AB是⊙O的 弦,AB⊥CD,垂足为M,OM∶OD=3∶5,则AB的长是( C ) A.2 cm B.3 cm C.4 cm D.2 21 cm
相关文档
最新文档