七年级数学期中考试试题
河北省保定2024-2025学年上学期期中教学质量检测七年级数学试题(含答案)
2024-2025学年度第一学期期中教学质量监测七年级数学注意事项:1.全卷满分120分,答题时间为120分钟。
2.请将各题答案填写在答题卡上。
3.本次考试设卷面分,答题时要书写认真、工整、规范、美观一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,形状为圆锥的是( )A .B .C .D .2.1不是的( )A .绝对值B .相反数C .倒数D .到原点的距离3.下列现象属于面动成体的是( )A .雨滴滴下来形成雨丝B .旋转门的旋转C .汽车雨刷的转动D .流星划过夜空4.在代数式,,,,,中,多项式的个数是( )A .6B .5C .4D .35.绿色建筑是实现“双碳”目标的重要发力点之一,作为“中国低碳城市发展项目”首批试点城市,保定牢固树立和践行绿水青山就是金山银山的发展理念,全市绿色建筑累计面积已达4994万平方米,绿色建筑占新建建筑面积的比例达到100%.数据“4994”万用科学记数法表示为( )A .B .C .D .6.下列整式变形正确的是( )A .B .C .D .7.如图,这是一种转盘型密码锁,每次开锁时需要先把表示“0”的刻度线与固定盘上的标记线对齐,再按顺时针或逆时针方向旋转带有刻度的转盘三次.例如,按逆时针方向旋转5个小格记为“”,此时标记线对准的数是5,再顺时针旋转2个小格记为“”,再逆时针旋转3个小格记为“”,锁可以打开,那么开锁密码就可以记为“,,”.如果一组开锁密码为“,,”,那么打开锁时标记线对准的刻度线表示的数是( )1-a a b +2ab 22a b -312abc 5a +74.99410⨯64.99410⨯80.499410⨯649.9410⨯()22a b c a b c-+=-+()222a b c a b c +-=++()2222a b c a b c --=-+()44a b c a b c--=-+5+2-3+5+2-3+10-5+7-A .B .C .D .128.成安草莓果实呈心形,色泽鲜红,香味浓郁,口感细软,酸甜可口,产量高,品质优,嘉嘉和琪琪周末相约去采摘草莓,已知嘉嘉每小时采摘草莓口个,琪琪每小时比嘉嘉多采摘草莓5个,则嘉嘉和琪琪2小时共摘草莓的个数为( )A .B .C .D .9.当时,的值为4,则时,的值为( )A .4B .5C .6D .710.如图,点和点表示的数分别为和,下列式子中错误的是( )A .B .C .D .11.如图,小明在写作业不小心打翻了墨水,导致一部分内容看不清楚,则被墨水遮住的多项式为( )A .B .C .D .12.若,,且为负有理数,则( )A .B .3C .或3D .或3二、填空题(本大题共4个小题,每小题3分,共12分)13.若单项式与是同类项,则____________.14.计算的结果为____________.15.如图,这是由若干个小立方体搭起来的几何体的正面、侧面所看到的图,那么这个几何体至少应该由____________个小立方体组成.10-12-15-a 25a +210a +410a +45a +1x =31mx nx -+1x =-37mx nx -+A B ab 21a <0a b +<1b -<-20ab <2625x x +-2525x x +-263x x +262x +12x -=15y +=y x x y +=3-3-136m x y -466x y m =20242025122⎛⎫-⨯ ⎪⎝⎭16.如图,用一个表格中的表示的次数,表示的次数,例如,表格中的;.若都是系数为1的关于,的单项式,由规律可知,的次数为___________,若多项式★为,其中,,为3个不同的正整数,且多项式的值为75,则的最大值为____________.三、解答题(本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:.18.(8分)计算:.19.(8分)如图,这是一个正方体展开后的平面示意图,相对的面上的数相等.已知,求的值.20.(8分)周末,明明的父母带明明去革命圣地西柏坡参观。
山东省济南市历下区2023-2024学年七年级上学期期中数学试题(含答案)
2023~2024学年第一学期七年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的相反数是()A.B.C.5D.2.在中,负数共有()A.2个B.3个C.4个D.5个3.杭州奥体中心体育场又称“大莲花”,为杭州第19届亚运会主会场.座席数为80800个.将数据80800用科学记数法表示为()A.B.C.D.4.下列四个数中,最小的是()A.B.C.D.5.下列图形中,能够折叠成一个正方体的是()A.B.C.D.6.已知有理数在数轴上的位置如图所示,则从大到小的顺序为()第6题图A.B.C.D.7.用一平面去截下列几何体,其截面可能是长方形的有()圆柱圆锥长方体球体第7题图A.1个B.2个C.3个D.4个5-155-15-112, 2.4,,0.72,2,0, 1.834-+---48.0810⨯48.810⨯58.810⨯58.0810⨯3-7-()3--13-,a b,,,a b a b--b a a b>->>-a b b a->->>b a a b->>->b a a b>>->-8.下列运算正确的是()A .B .C .D .9.某商店出售一种商品,有以下几种方案,调价后价格最低的方案是()A .先提价,再降价B .先降价,再提价C .先提价,再降价D .先提价,再降价10.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折次,可以得到折痕的条数是()第一次对折第二次对折 第三次对折第10题图A .B .C .D .第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.朱自清的《春》中有描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种现象可以用数学知识解释为______.12.单项式的次数是______.13.杭州亚运会于2023年10月顺利落幕,中国队获金牌和奖牌榜双第一,如图是一个正方体的表面展开图,与“亚”字相对面上的汉字是______.第13题图14.若,则的值为______.15.若,则代数式的值为______.16.如图,将两张边长分别为5和4的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为______.2222m n mn mn-=-22523y y -=277a a a +=325ab ab ab+=10%10%10%10%15%15%20%20%n n 1n -21n -121n --312ab ()2230a b ++-=ba 2310x y -+=246x y -+AB AD ,m n 1S 2S 4m n -=12S S -5 4 图①图②第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)(1);(2).18.(本小题满分6分)(1);(2).19.(本小题满分6分)先化简,再求值:,其中.20.(本小题满分8分)如图是由一些相同的小正方体组成的几何体. 从正面看 从正面看 从左面看 从上面看(1)请在指定位置画出该几何体从正面、左面和上面看到的形状图;(2)在这个几何体上再添加一些相同的小正方体,如果从左面和从上面看到的形状图不变,那么最多可以再添加______个小正方体.21.(本小题满分8分)气候变暖导致全球大部分地区极端强降水事件增多,由此引发的洪涝等灾害风险已倍受各界广泛关注.为揭示气候变暖背景下极端降水的变化规律,查阅山东省气象信息中心1961——2020年降水量资料发现,夏季出现极端降水次数最多.(1)若设定100次为标准次数,试完成表1:地区济南潍坊青岛日照淄博菏泽次数100961029588()()6109-+---()2118623⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭231134624⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭()2023323137-+⨯---()()22222332x y xyxy x y ---+1,3x y ==-与标准次数的差值0表1 1961——2020年极端降水出现次数(2)极端降水出现次数最多的地区与最少的地区相差______次;(3)以上地区出现极端降水的平均次数是多少?22.(本小题满分8分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为、宽为、厚为,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含的代数式表示)(2)若封面和封底沿虚线各折进去,剪掉阴影部分后,包书纸的面积是多少?第一步 第二步23.(本小题满分10分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在处.规定以向东的方向为正方向,步行记录如下(单位:米):(1)小明离主席台最远是______米;(2)以主席台为原点,用1个单位长度表示,请在数轴上表示点;(3)在主席台东边5米处是仲裁处,小明经过仲裁处______次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(本小题满分10分)随着生活水平的日益提高,人们的健康意识逐渐增强,越来越多的人把健身作为一种时尚的生活方式,某商家2+19+5-12-26cm 18.5cm 1cm cm x x 2cm A 10,8,6,13,7,12,2,2+-+-+-+-1m A抓住机遇推出促销活动,向客户提供了两种优惠方案:方案一:买一件运动外套送一件卫衣;方案二:运动外套和卫衣均在定价的基础上打8折.运动外套每件定价300元,卫衣每件定价100元.在开展促销活动期间,某俱乐部要到该商场购买运动外套100件,卫衣件().(1)方案一需付款:______元,方案二需付款:______元;(2)当时,请计算并比较这两种方案哪种更划算;(3)当时,如果两种方案可以组合使用,你能帮助俱乐部设计一种最省钱的方案吗?请直接写出你的方案.25.(本小题满分12分)【阅读】可理解为数轴上表示所对应的点与所对应的点之间的距离;如可理解为数轴上表示6所对应的点与2所对应的点之间的距离;可以看作,可理解为数轴上表示6所对应的点与所对应的点之间的距离;【探索】回答下列问题:(1)可理解为数轴上表示所对应的点与______所对应的点之间的距离.(2)若,则数______.(3)若,则数______.(4)如图所示,在数轴上,若点表示的数记为两点的距离为8,且点在点的右侧,现有一点以每分钟2个单位长度的速度从点向右出发,点以每分钟1个单位长度的速度从点向右出发,求分钟后点与点的距离.(结果用含的代数式表示,并化到最简)26.(本小题满分12分)【概念学习】定义新运算:求若干个相同的非零有理数的商的运算叫做除方.比如,类比有理数的乘方,我们把写作,读作“2的圈3次方”;写作,读作“的圈4次方”.一般地,把记作;,读作“的圈次方”.特别地,规定:.【初步探究】x 100x ≥150x =300x =a b -a b 62-62+()62--2-1x +x 25x -=x =219x x -++=x =A ,a A B 、B A P A Q B t P Q t 222++2③()()()()3333-+-+-+-()3-④()3-n a a a a a +++⋅⋅⋅+ 个a ⓝa n a a =①(1)直接写出计算结果:______,______;(2)若为任意正整数,下列关于除方的说法中,正确的有______;(填写正确的序号)①任何非零数的圈2次方都等于1;②任何非零数的圈3次方都等于它的倒数;③圈次方等于它本身的数是1或;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:______;(4)计算:.2023~2024学年第一学期七年级期中教学质量检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)题号12345678910答案C C A A B A B D D C二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案点动成线4真416三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤)17.(本小题共2道题,每小题3分,满分共6分)解:(1)(2)18.(本小题满分6分)解:(1)(2)2=②()3-=③n n 1-()0a a ≠()3n n ≥a =ⓝ()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②8-()()61091697-+-+-=-+=-()()()()31118686321820234⎛⎫⎛⎫-⨯-+÷-=⨯-+⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭()23112312416184234624346⎛⎫⎛⎫⎛⎫-+÷-=-+⨯-=-+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()2023323137831483415-+⨯---=-+⨯---=---=-19.(本小题满分6分)解:当时,原式20.(本小题8分)解:(1)从正面看 从左面看 从上面看(2)421.(本小题8分)解:(1) 119(2)31(3)(次)100答:以上地区出现极端降水的平均次数是100次.22.(本小题8分)解:(1)小海所用包书纸的周长:答:小海所用包书纸的周长为.(2)当时,包书纸长为:包书纸宽为:所以面积为:答:需要的包书纸的面积为.23.(本小题10分)解:(1)10(2)如图所示,点即为所求.()()22222222223326236x y xy xy x y x y xy xy x y xy ---+=-+-=1,3x y ==-()2139=⨯-=4-()()()()()100604219512600⎡⎤⨯++-+++++-+-=⎣⎦()()218.52122262x x ⨯++++()()23822262x x =+++()8128cmx =+()8128cm x +2cm x =()18.5212242cm ⨯++⨯=()262230cm +⨯=()242302242121240cm⨯-⨯⨯-⨯⨯=21240cm A(3)4(4)(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.24.(本小题10分)解:(1);(2)方案一:方案二:25.(本小题满分12分)解:(1)(2)或7(3)或5(4)因为两点的距离为8,点在点的右侧所以点表示的数为:所以分钟后,点对应的数为:,点对应的数为:所以点与点的距离为:所以当时,当时,当时,26.(本小题满分12分)【解答】解:(1),;(2)①②④;(3)或;(4).()10861370.12204.422++-+++-+++-⨯-=+++10020000x +8024000x +1001502000035000⨯+=801502400036000⨯+=1-3-4-A B 、B A B 8a +t P 2a t +Q 8a t ++P Q ()288a t a t t +-++=-80t ->80t -=80t -<2221=÷=②()()()()133333-=-÷-÷-=-③21n a -⎛⎫ ⎪⎝⎭21n a -()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②()()()()()()111120232023422222222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=-÷⨯-÷-÷-÷---÷-÷-÷-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1144416124=-⨯--÷=-+=。
湖北省武汉市七年级上学期期中考试数学试题(含答案)
七年级上学期数学期中考试试卷一、单选题1.-2020 的相反数是()A. -2020B. 2020C.D.2.单项式的系数和次数分别是()A. 1,9B. 0,9C. ,9D. ,243.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆,数36000用科学记数法表示为( )A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.下列运算结果错误的是()A. B. C. D.5.按括号内的要求用四舍五入法取近似数,其中正确的是()A. (精确到个位)B. (精确到十分位)C. (精确到0.1)D. (精确到0.0001)6.下列运算中正确的是()A. B. C. D.7.已知,且,那么等于()A. 8B. -2C. 8或-2D. -8或-28.某药厂计划对售价为元的药品进行降价销售,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二;第一次降价20%,第二次降价15%﹔方案三:第一、二次降价均为20%三种方案哪种降价最多()A. 方案一B. 方案二C. 方案三D. 不能确定9.如图,都是由棱长为1的正方体叠成的图形.例如:第①个图形由1个正方体叠成,第②个图形由4个正方体叠成,第③个图形由10个正方体叠成…,低此规律,第10个图形由个正方体叠成,则的值为()A. 220B. 165C. 120D. 5510.把两张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为,宽为)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是()A. B. C. D.二、填空题11.若零上8℃记作+8℃,则零下5℃记作________℃.12.在有理数中,绝对值最小的数是________.13.两船从同一个港口同时出发反向而行,甲船顺水航行了小时,乙船逆水航行了小时,两船在静水中的速度都是,水流速度是则两船一共航行了________ .(用含的式子表示). 14.一个两位数M的个位上的数是、十位上的数是,把这个两位数的十位上的数与个位上的数交换位置,所得的新数记为,则________.(用含的式子表示)15.如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5则________,第2019个格子填入的整数为________16.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:,…,我们把第一个数记为,第二个数记为,第三个数记为,…,第个数记为,则 1 2三、解答题17.计算(1)(2)(3)(4)18.先化简,再求值(1),其中(2),其中19.食品厂从生产的袋装食品中抽出样品袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表;(1).这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2).若每袋标准质量为450克,求抽样检测的样品总质量是多少?20.一辆货车从龙信广场出发负责送货,向西走了2千米到达光华小区,继续向西走了3.5千米到达实验初中,然后向东走了6.5千米到达商和广场,最后返回龙信广场.(1).以龙信广场为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出光华小区、实验初中,商和广场的位置.(光华小区点表示,实验初中用点表示,商和广场用点表示)(2).光华小区与商和广场相距多远?(3).若货车每千米耗油升,那么这辆货车此次送货共耗油多少升?21.已知是有理数.(1).当时,先判断的正、负符号,再求的值;(2).当时,直接写出的值.22.一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.(1).小强和小明分别买了50本和200本,他们俩分别花了多少钱?(2).如果小红买这种笔记本花了380元,她买了多少本?(3).如果小红买这种笔记本花了n元,她又买了多少本?23.如图是某年某月的月历,用如图所示的“凹”字型在月历中任意圈出5个数,设“凹“字型框中的五个数分别(1).若,则 1 2 ,若,则 3 (用含的式子表示);(2).在移动“凹”字型框过程中,小胖说被框住的5个数字之和可能为106,大胖说被框住的5个数字之和可能为90,你同意他们的说法吗?请说明理由;(3).若另一个“凹”字型框框住的五个数分别为,且,则符合条件的的值为 124.(问题背景)在数轴上,点表示数在原点的左边,点表示数在原点的右边,如图1所示,则有:① ;②线段的长度(1)(问题解决)点、点,点在数轴上的位置如图2所示,三点对应数分别为①线段的长度为________②若点为线段的中点,则点表示的数是________(用含的式子表示);③化简(2)(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应数为,点对应数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要秒,完全经过线段需要秒,求的值;②已知,当式子取最小值时,相应的的取值范围是________,式子的最小值是________.(用含的式子表示)答案解析部分一、单选题1.【答案】B【解析】【解答】解:-2020 的相反数是:2020.故答案为:B.【分析】根据相反数的定义:只有符号不同的两个数互为相反数,即可得出结论.2.【答案】C【解析】【解答】解:系数为:;次数为2+3+4=9。
人教版七年级下册数学期中考试试卷含答案
人教版七年级下册数学期中考试试题一、单选题1.下列图形中,能将其中一个图形平移得到另一个图形的是()A .B .C .D .2.﹣8的立方根是()A .﹣2B .±2C .2D .﹣123.在11.4143π,,)A .1个B .2个C .3个D .4个4.如果用有序数对(3,2)表示教室里第3列第2排的座位,则位于第5列第4排的座位应记作()A .(4,5)B .(5,4)C .(3,2)D .(2,3)5.如图,直线//a b ,1120∠=︒,则2∠的度数是()A .60︒B .80︒C .120︒D .50︒6.下面计算正确的是()A 6=±B .6=C .6=-D 36=-7.若y 轴上的点P 到x 轴的距离为3,则点P 的坐标是()A .(3,0)B .(0,3)C .(3,0)或(﹣3,0)D .(0,3)或(0,﹣3)8.一个正方形的面积是15,估计它的边长大小在()A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CD B.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BC D.由AD∥BC得到∠3=∠410.把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则点N 的坐标为()A.(-4,4)B.(-5,3)C.(1,-1)D.(-5,-1) 11.已知:∠AOC=90°,∠AOB:∠AOC=2:3,则∠BOC的度数是()A.30°B.60°C.30°或60°D.30°或150°12.如图,给出下列四个条件:①∠BAC=∠DCA;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的条件是()A.①②B.③④C.②④D.①③④二、填空题13.已知P(3,-2),则点P在第_____________象限.14.如图,直线AB、CD、EF相交于点O,∠AOE的对顶角是____.15.(-2)2的算术平方根是________.16.点(-2,1)关于x轴对称的点坐标为__________.17.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式,正确的改写应为______.18.计算:(32)2=_____________.19.在平面直角坐标系中,若点M(1,x)与点N(1,3)之间的距离是5,则x的值是_____________.20.如图,AB∥EF∥CD,∠ABC=46°,∠BCE=20°,则∠CEF=____________.三、解答题21.计算:220193327(4)(1)---22.求下列各式中x 的值:(1)225360x -=;(2)3338x -=.23.如图,已知:∠1=∠2,∠3=108°,求∠4的度数.24.在平面直角坐标系xOy 中,已知△ABC 三个顶点的坐标分别为A (-2,0),B (-4,4),C (3,-3).(1)画出△ABC ;(2)画出△ABC 向右平移3个单位长度,再向上平移4个单位长度后得到的△A 1B 1C 1;(3)求出△A 1B 1C 1的面积.25.完成下面的证明:已知:如图,∠AED=∠C ,∠DEF=∠B .求证:∠1=∠2.证明:∵∠AED=∠C (已知),∴∥(),∴∠B+∠BDE=180°(),∵∠DEF=∠B (已知),∴∠DEF+∠BDE=180°(等量代换),∴∥(),∴∠1=∠2().26.如图,AD //BC ,1C ∠∠=,B ∠=60°.()1求C ∠的度数;()2如果DE 是ADC ∠的平分线,那么DE 与AB 平行吗?请说明理由.27.在平面直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a ,b ,c 满足关系式:2(2)40a c --=.(1)求A ,B ,C 三点的坐标;(2)如果在第二象限内有一点P (m ,12),若四边形ABOP 的面积与三角形ABC 的面积相等,求点P 的坐标.参考答案1.A 【详解】解:A 、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B 、图形由轴对称得到,不属于平移得到,不属于平移得到;C 、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D 、图形的大小发生变化,不属于平移得到;故选:A .2.A 【详解】因为3(2)8-=-,所以﹣8的立方根是﹣2.故选A.3.B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:13,1.414,和π这两个数是无理数.故选B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B 【解析】【分析】根据第一个数表示列数,第二个数表示排数写出即可.【详解】∵()3,2表示教室里第3列第2排的座位∴第5列第4排的座位应记作()5,4.故选:B【点睛】本题考查了点的坐标,理解有序数对的两个数的实际意义是解题的关键,要注意两个数之间用逗号隔开,而不是顿号.5.A【解析】【分析】如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.【详解】解:∵a∥b∴∠3=∠2,∵∠3=180°-∠1,∠1=120°,∴∠2=∠3=180°-120°=60°,故选A.【点睛】本题考查平行线的性质,利用两直线平行同位角相等是解题的关键,记住平行线的性质,注意灵活应用,属于中考常考题型.6.C【解析】【分析】根据算术平方根和平方根的定义求出每个式子的值,再判断即可.【详解】,故该选项计算错误,,故该选项计算错误,,故该选项计算正确,=36,故该选项计算错误,故选C.【点睛】本题考查了算术平方根和平方根的计算,主要考查学生的计算能力和理解能力.7.D【解析】【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点睛】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.8.B【解析】【详解】解:∵一个正方形的面积是15∵9<15<16∴34故选:B.9.D【解析】【分析】根据平行线的性质与判定,逐一判定.【详解】A.由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B.由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C.由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D.由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选:D.【点睛】此题考查了平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角.10.C【解析】【分析】利用点平移的坐标规律,把点M的横坐标加3,纵坐标减2即可得到对应点N的坐标【详解】解:把点M(-2,1)向右平移3个单位长度,即横坐标加3.向下平移2个单位长度,即纵坐标减2.因此N点的坐标为(1,-1).故选:C【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.11.D【解析】【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC=90°,∠AOB:∠AOC=2:3,可得当B在∠AOC内侧时,可以知道∠AOB23=⨯90°=60°,∠BOC=30°;当B在∠AOC外侧时,∠BOC=150°.故选:D.【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.12.C【解析】【分析】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.【详解】解:①∠BAC=∠DCA,可得到AB∥CD,不能判断AD与BC平行,故错误;②∠DAC=∠BCA,根据内错角相等,两直线平行可得AD∥BC,故正确;③∠ABD=∠CDB,可得到AB∥CD,不能判断AD与BC平行,故错误;④∠ADB=∠CBD,根据内错角相等,两直线平行可得AD∥BC,故正确,故选:C.【点睛】此题考查平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.四【解析】【分析】根据平面直角坐标系中各个象限内点的符号特点进行解答.【详解】解:点P(3,-2)在第四象限.故答案为:四.【点睛】本题考查点的坐标,解决本题的关键是熟记平面直角坐标系中各个象限内点的符号,第一、二、三、四象限内点的符号分别为:(+,+)、(-,+)、(-,-)、(+,-).14.∠BOF.【解析】【分析】对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,依此即可求解.【详解】由图形可知,∠AOE的对顶角是∠BOF.故答案为:∠BOF.【点睛】此题考查了对顶角、邻补角,判断对顶角和邻补角的关键是看准是由哪两条直线相交而成的角.15.2【解析】【分析】根据算术平方根的定义进行解答.【详解】(-2)2的算术平方根是2,故答案为2.【点睛】此题考查算术平方根,解题关键在于要熟练掌握其性质.16.(-2,-1)【解析】【分析】关于x轴对称的点的横坐标坐标相同,纵坐标互为相反数.【详解】(-2,1)点关于x轴对称的点坐标为(-2,-1).故答案为:(-2,-1).【点睛】本题考查的是关于x轴对称的点的坐标,属于基础应用题,只需学生熟练掌握关于x轴对称的点的坐标的特征,即可完成.17.如果两个角是对顶角,那么这两个角相等【解析】【详解】解:把命题“对顶角相等”改写成“如果⋯那么⋯”的形式为:如果两个角是对顶角,那么这两个角相等.故答案为:如果两个角是对顶角,那么这两个角相等.【点睛】本题考查了把一个命题写成“如果⋯那么⋯”的形式,如果部分是题设,那么部分是结论,准确找出题设部分和结论部分是解决本题的关键.18【解析】【详解】+==19.﹣2或8.【解析】【详解】解:∵点M(1,x)与点N(1,3)的横坐标都是1,∴MN∥y轴,点N在点M的上方时,x=3−5=−2,点N在点M的下方时,x=3+5=8,综上所述,x的值是−2或8.故答案为−2或8.【点睛】本题考查了坐标与图形的性质,判断出直线MN∥y轴是解本题的关键,较难的是要注意分情况讨论.20.154°【解析】【分析】根据平行线的性质求∠BCD ,则可得∠DCE ,再由EF ∥CD 得∠DCE +∠CEF =180°即可求解.【详解】解:∵AB ∥CD ,∴∠ABC =∠DCB ,∵∠ABC =46°,∴∠DCB =46°∴∠DCE =∠DCB -∠DCE =46°-20°=26°∵EF ∥CD ,∴∠DCE +∠CEF =180°,∴∠CEF =180°-26°=154°.故答案为154°.【点睛】本题考查了平行线的性质,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直角平行,同旁内角互补.21.1【解析】【分析】先化简绝对值,同时进行开立方,开平方以及乘方运算,最后进行加减运算即可得出结果.【详解】解:原式=3+3-4-1=1.【点睛】本题考查了实数的混合运算,掌握基本运算法则是解题的关键.22.(1)65x =±;(2)32x =【解析】【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1)225360x -=,∴23625x =,∴65x =±;(2)3338x -=,∴3278x =,∴32x =.【点睛】本题考查了平方根与立方根的定义,理解相关定义是解决本题的关键,注意一个正数的平方根有两个,它们互为相反数,不要漏解.23.72°【解析】【分析】利用平行线的判定与性质求解即可.【详解】12∠=∠ ,∴AB ∥CD ,∴34180∠+∠=︒,3=108∠︒ ,∴4=72∠︒.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是正确解题的关键.24.(1)详见解析;(2)详见解析;(3)7【解析】【分析】(1)根据A ,B ,C 三点坐标描出各点,顺次连接各点即可;(2)根据图形平移的性质先画出三个对应顶点A 1,B 1,C 1,再顺次连接即可得到△A1B1C1;(3)过点B 1作x 轴的垂线,过点C 1作y 轴的垂线,两垂线相交于点D ,连接A 1D ,利用割补法即111111111A B C B C D A B D A C D s s s s =-- ,可求得△A1B1C1的面积.【详解】解:(1)△ABC 如图所示;(2)△A 1B 1C 1如图所示;(3)过点B 1作x 轴的垂线,过点C 1作y 轴的垂线,两垂线相交于点D ,连接A 1D ,∴111111111A B C B C D A B D A C D s s s s =-- =12×7×7﹣12×7×2﹣12×7×3=4921722--=7.故△A 1B 1C 1的面积为7.【点睛】本题考查的是作图-平移变换以及求三角形的面积,熟知图形平移不变性的性质以及利用割补法求面积是解答此题的关键.25.DE ;BC ;同位角相等,两直线平行;两直线平行,同旁内角互补;EF ;AB ;同旁内角互补,两直线平行;两直线平行,内错角相等.【解析】【分析】先判断出DE ∥BC 得出∠B+∠BDE=180°,再等量代换,即可判断出EF ∥AB ,最后利用平行线的性质可得出结果.【详解】解:∵∠AED=∠C (已知),∴DE ∥BC (同位角相等,两直线平行),∴∠B+∠BDE=180°(两直线平行,同旁内角互补),∵∠DEF=∠B (已知),∴∠DEF+∠BDE=180°(等量代换),∴EF ∥AB (同旁内角互补,两直线平行),∴∠1=∠2(两直线平行,内错角相等).故答案为:DE ;BC ;同位角相等,两直线平行;两直线平行,同旁内角互补;EF ;AB ;同旁内角互补,两直线平行;两直线平行,内错角相等.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.26.()160°;()2DE//AB ,理由见解析.【解析】【分析】()1根据平行线的性质和已知求出C 1B ∠∠∠==,即可得出答案;()2求出1B 60∠∠== ,根据平行线的性质求出ADC ∠,求出ADE ∠,即可得出1ADE ∠∠=,根据平行线的判定得出即可.【详解】()1AD //BC ,1B ∠∠∴=,1C ∠∠= ,B 60 ∠=,C B 60∠∠∴== ;()2DE //AB ,理由是:AD //BC ,B 60 ∠=,1B 60∠∠∴== ,AD //BC ,C 60∠= ,ADC 180C 120 ∠∠∴=-=,DE 平分ADC ∠,1ADE ADC 602∠∠∴== ,1ADE ∠∠∴=,DE //AB ∴.【点睛】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.27.(1)A (0,2),B (3,0),C (3,4);(2)点P 的坐标为(-3,12).【解析】【分析】(1)利用非负数的性质求解可得a ,b ,c 的值,从而得出A ,B ,C 三点的坐标;(2)把四边形ABOP 的面积看成两个三角形面积和,用m 来表示,依据四边形ABOP 的面积与三角形ABC 的面积相等,列方程求解即可.【详解】解:(1)∵2(2)40a c --=,2(2)0a -≥0≥,40c -≥,∴a-2=0,b-3=0,c-4=0,∴a=2,b=3,c=4,∴A (0,2),B (3,0),C (3,4);(2)如图,由(1)中A ,B ,C 的坐标可得,AO=2,BO=3,BC=4,∵S △ABO=1232⨯⨯=3,S △APO=12()2m ⨯⨯-=-m ,∴S 四边形ABOP=S △ABO+S △APO=3+(-m)=3-m ;∵S △ABC=1432⨯⨯=6,S 四边形ABOP=S △ABC ,∴3-m=6,∴m=-3,∴点P 的坐标为(-3,12).【点睛】本题考查了坐标与图形性质,三角形的面积公式以及非负数的性质等知识,关键根据题意画出图形,认真分析解答.。
2024-2025学年七年级第一学期期中考试试题(数学)
七年级数学试题(时间:90分钟 满分:100分)卷面要求:1.整张试卷整洁美观,格式规范,布局和谐;2.字迹清晰工整,标点符号准确;3.避免随意勾画,胡乱涂改.卷首语:相信你会静心、尽力做好答卷,动手就有希望,努力就会成功!一、 选择题:本大题共10道小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填入下表,每小题选对得3分、不选或选出的答案超过一个均记零分,本大题共30分.题号 1 2 3 4 5 6 7 8 9 10 答案1. 在跳远测试时,合格的标准是4.00米,王杨跳出了4.20米,记为+0.2米,小伟跳出了3.95米,记作:A.-0.05米B.-3.95米C.+0.05米D.+3.95米 2. 下列各组数中相等的是:A.-2与)2(--B.-2与2-C.2-与2--D.2-与2 3. 如果x=2是方程21x+a=-1的解,则a 的值是( ) A.0 B.2 C.-2 D.-6 4.下列变形正确的是:A.由3+x=7,得x=7+3B. 由3=x-2,得x=2+3C. 由3x=-2,得x=23-D. 由3443=x ,得x=1 5. 已知a 、b 都是有理数,且021=++-b a ,则a+b 的值是: A.-1 B.1 C.3 D.5 6.下列各式中正确的是:A.33a a = B.a 3=(-a)3 C. –a 2=2a - D. a 2=(-a)27.用四舍五入法按要求对0.05019分别取近似值,其中错误的是: A.0.1(精确到0.1) B.0.05(精确到百分位) C.0.05(精确到千分位) D.0.0502(精确到0.0001) 8. 计算20092008)1()1(-+-所得结果是:A.-2B.0C.1D.29. 一个两位数,十位数字是x ,个位数字比十位数字的2倍少3,这个两位数是: A.x(2x-3) B.x(2x+3) C. 12x+3 D. 12x-310.如图是超市中“丝美”洗发水的价格标签,服务员不小心将墨水滴在了标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是: A.22元 B.23元 C.24元 D.26元二、填空题:本大题共8道小题,每小题3分,共24分,要求只写出最后结果.11. 已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高m. 12. 太阳光的速度是300000000米/秒,用科学记数法表示为米/秒. 13. 设三个连续整数的中间一个数是n,则它们三个数的和是. 14.比较有理数的大小:109-1110-. 15. 计算⨯++-)6143121(12=. 16. 规定一种关于a 、b 的运算:a*b=22b a -,那么3 *(-2)=. 17.如果a=b,那么=1-43b. 18.甲、乙两人都从A 地去B 地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时行 千米.三、解答题:本大题共7道小题,满分46分,解答应写出文字说明和推理步骤. 19.(6分)计算: (1)214314)211(321-+-+ (2)()2431513297-⨯--÷-)(20.(4分)解方程:3x+7=32-2x21.(6分)(1)在数轴上表示出:0, -1.5, -2, 311; (2)将(1)中各数用“<”号连接起来.22.(4分)求.32,2)3123()31(22122=-=+-+--y x y x y x x 的值,其中23.(8分)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9. (1)最后一名老师送到目的地时,小王距出租车出发点的距离是多少?在什么地方?(2)若汽车耗油量为0.4升/千米,这天下午小王的汽车共耗油多少升?24.(8分)某金融机构发行两种债券:甲种债券面值1000元,买入价为1000元,一年到期本息和为1140元;乙种面值为1000元,但买入价为880元,一年到期本息和为1000元,收益率=(到期本息和-买入价)÷(到期日期-买入日期)÷买入价×100%,日期以年为单位,你能利用已学过的知识分析哪种债券收益率更大吗?25.(10分)下表所示是某年11月份的日历表.星期六星期日星期一星期二星期三星期四星期五1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 2829 30请回答下列问题:(1)若一竖列的三个数的和为42,则这三个数分别是多少?若和为44,你能求出这三天是几号吗?为什么?(2)若一竖列的四个数之和为74,这四个数分别是多少?(3)若上表中一个2×2的矩形块四个数之和为80,求出这四个数;七年级数学参考答案及评分标准一、选择题:ACCBA DCBDC二、填空题:11、350 12、3×108 13、3n 14、> 15、10 16、5 17、1―a 4318、30. 解答题:19.解:(1)214314)211(321-+-+=)()(214211314321+-+…………………2分 =6―6=0……………………………3分 (2)()2431513297-⨯--÷-)(=3161531097--÷……………………………2分 =311-……………………………3分 20.解:移项,得 3x+2x=32―7, ……………………………2分 合并,得 5x=25, ……………………………3分 系数化为1,得 x=5……………………………4分 21.解:(1)表示正确,……………………………3分(2)―2<―1.5<0<321.……………………………6分 22.解:)3123()31(22122y x y x x +-+--=22312332221y x y x x +-+- =23y x +-……………………………3分当x=―2,y=32时,原式=―3×(―2)+232)(=946……………………………4分23.解(1)+5+(―4)+3+(―10)+3+(―9)= ―12∴最后一名老师送到目的地时,小王在出租车出发点西12米的地方.………………………4分 (2)4.09310345⨯-+++-+++-++)( =34×0.4=13.6(升).∴这天下午小王的汽车共耗油13.6升. ……………………………8分 24.解:甲种债券的收益率=(1140-1000)÷1÷1000×100% =140÷1000×100%=14%……………………………3分乙种债券的收益率=(1000-880)÷1÷880×100%=120÷880×100%≈13.64%……………………………7分∴甲种债券的收益率更大些. …………………………………………8分25.解:(1)设中间的一个数为x,则上面的一个数为x-7,下面的一个数为x+7.根据题意,得x-7+ x + x+7=42,解得x=14,因此这三天分别是7号、14号、21号. ……………………………3分若和为44,则x的解不是整数,所以不能求出这三天是几号. ……………………………4分(2)设这四个依次是为:x+14,x+7,x,x-7.根据题意,得x+14+x+7+x+x-7=74,解得x=15,因此这四天分别是8号、15号、22号、29号. ……………………………7分(3)设这四个数分别是x,x+1,x+7,x+8.根据题意,得x+ x +1 + x +7+x+8=80,解得x=16,因此这四天分别是16号、17号、23号、24号. ……………………………10分。
初中七年级数学期中考试试题及答案
2020~2021学年度上学期期中阶段质量检测试题七年级数学2020.11注意事项:1.本试卷分第Ⅰ 卷(选择题)和第Ⅱ 卷(非选择题)两部分,共6页,满分100分,考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置.考试结束后,将本试卷和答题纸一并交回.2.答题注意事项见答题纸,答在本试卷上不得分.第Ⅰ 卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡中.1.-12的相反数是A.2B.-2C.-12D.122.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是3.这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载,积极打卡,兴起了一股全民学习的热潮.据不完全统计,截止4月2号,华为官方应用市场“ 学习强国APP”下载量已达8830万次,将8830万次用科学记数法表示为A.0.883× 109次B.8.83× 108次C.8.83× 107次D.88.3×106次4.下列说法中,正确的是狓+狔是单项式不是单项式A.2B.-5C.-π 狓2的系数为-1D.-π 狓2的次数为25.下列各式中,不是同类项的是A.-2019和2020B.犪和πC.-4狓3狔2和5狓3狔2D.犪2犫和-3犫犪26.若数轴上点犃表示的数是-3,则与点犃相距4个单位长度的点表示的数是A.±4B.±1C.-7或1D.-1或77.设狓,狔,犮是实数,下列说法正确的是A.若狓=狔,则狓犮=狔犮B.若狓=狔,则狓+犮=狔-犮C.若狓=狔,则狓=狔犮犮D.若狓=狔2犮3犮,则2狓=3狔8.下列去括号正确的是A.犪+(-3犫+2犮-犱)=犪-3犫+2犮-犱B.-(-狓2+狔2)=-狓2-狔2C.犪2-(2犪-犫+犮)=犪2-2犪-犫+犮D.犪-2(犫-犮)=犪+2犫-犮狓20219.若狓,狔满足|狓-3|+(狔+3)2=0则(狔)的值是A.1B.-1C.2019D.-201910.观察图中正方形四个顶点所标的数字规律,可知数2020应标在A.第505个正方形的左下角B.第505个正方形的右下角C.第506个正方形的右下角D.第506个正方形的左下角(第 Ⅱ 卷 ( 非 选 择 题 共 70 分 )注 意 事 项 :1 .第 Ⅱ 卷 分 填 空 题 和 解 答 题 .2 .第 Ⅱ 卷 所 有 题 目 的 答 案 ,考 生 须 用 0 .5 毫 米 黑 色 签 字 笔 答 在 答 题 纸 规 定 的 区 域 内 , 在 试 卷 上 答 题 不 得 分 .二 、填 空 题 (本 题 共 6 小 题 ,每 小 题 3 分 ,共 18 分 )11 . 已 知 多 项 式 - 3 2 犿 3 狀 2 + 2 犿 狀 2 - 12 , 它 是次 三 项 式 , 最 高 次 项 的 系 数 是, 常 数 项 为.12 . 如 果 | 狓 | = | - 5| , 那 么 狓 等 于.13 . 绝 对 值 大 于 4 且 小 于 7 的 所 有 整 数 之 和 是.14 . 已 知 关 于 狓 的 方 程 3 狓 - 2 犽 = 2 的 解 是 狓 = 2 , 则 犽 的 值 是 .15 . 一 个 两 位 数 , 个 位 数 字 为 犪 , 十 位 数 字 为 犫 , 把 这 个 两 位 数 的 个 位 数 字 与 十 位 数 字 交 换 ,得 到 新 的 两 位 数 , 则 新 数 比 原 数 大.16 . 若 犪 + 犫 = 2019 ,犮 + 犱 = 2 , 则 (犪 - 3 犮 )- (3 犱 - 犫 )= .三 、解 答 题 (本 大 题 共 7 小 题 ,共 52 分 )17 .(本 题 满 分 5 分 )在 数 轴 上 表 示 下 列 各 数 ,并 将 它 们 用 “> ”连 接 :(- 2 )2 , - (+ 5 ) , - - 1 12) , 0 ,- | - 3 .5| .18 .(本 题 满 分 10 分 )计 算 : (1 )- 1 2 - (1 - 0 .5 )÷ 1 5× 2 ;(2 )- 11 × - 22 + 19 × - 22+ 6 × -22.( 7 ) ( 7 ) ( 7 )19.(本题满分6分)先化简,再求值:-1(狓狔-狓2)+3狔2-1狓2+21狓狔-1狔2,其中狓=2,狔=1.2(2)(42)220.(本题满分6分)临沂兰山区李官镇的黄桃闻名全国.现有20筐黄桃,以每筐25千克为标准,超过或不足的千克数分别用正数或负数来表示,记录如下:(1)与标准重量比较,20筐黄桃总计超过或不足多少千克?(2)若黄桃每千克售价4元,则这20筐可卖多少元?如图所示,池塘边有块长为20米,宽为10米的长方形土地,现在将其余三面留出宽都是狓米的小路,中间余下的长方形部分做菜地.(1)用含狓的式子表示菜地的周长;(2)求当狓=1米时,菜地的周长.22.(本题满分9分)某工厂第一车间有狓人,第二车间比第一车间人数的2少30人,如果从第二车间调3出10人到第一车间,那么(1)两个车间共有人;(2)调动后,第一车间的人数为人,第二车间的人数为人;(3)求调动后,第一车间的人数比第二车间的人数多几人?(要求:答案用含有狓的代数式表示)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款;现某客户要到该卖场购买微波炉10台,电磁炉狓台(狓>10).(1)若该客户按方案一、方案二购买,分别需付款多少元(用含狓的式子表示)?(2)若狓=30,通过计算说明此时哪种方案购买较为合算?(3)当狓=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?(2020 ~ 2021 学 年 度 上 学 期 期 中 阶 段 质 量 检 测 试 题七年级数学参考答案及评分标准2020. 11一 、选 择 题 (每 小 题 3 分 ,共 30 分 )1 .D 2 .A 3 .C 4 .D 5 .B 6 .C 7 .A 8 .A 9 .B 10 .A 二 、填 空 题 (每 小 题 3 分 ,共 18 分 ) 11 .五- 9 - 1212 .± 5 13 .0 14 .2 15 .9 犪 - 9犫 16 .2013三 、 解 答 题 ( 共 52 分 )17 .………………………… 3 分(- 2 )2 > - - 1 12)> 0 > - | - 3 .5| > - (+ 5 ). …………………………… 5 分 18 .(1 )- 1 2 - (1 - 0 .5 )÷ 1× 25= - 1 - 12 = - 1 - 12× 5 × 2 × 5 × 2 ………………………………………………………………… 2 分………………………………………………………………… 3 分= - 1 - 5 = - 6 ; ………………………………………………………………………… 4 分 …………………………………………………………………………… 5 分 (2 )- 11 × - 22 + 19 × - 22 + 6 × - 22( 7 )( 7 ) ( 7 ) = [(- 11 )+ 19 + 6 ]× - 22 ………………………………………………… 2 分 ( 7 ) = 14 × - 22…………………………………………………………………… 4 分( 7 )= - 44 . …………………………………………………………………………… 5 分19 . 解 : 原 式 = - 1 狓 狔 + 1 狓 2 + 3 狔 2 - 3 狓 2 + 1狓 狔 - 狔 22 2 2 2 = - 狓 2 + 2 狔 2. ……………………………………………………………… 3 分当 狓 = - 2 ,狔 = 1 , 2原 式 = - 4 + 2 × 1 4 = - 4 + 1 2= - 3 .5 . ………………………………………… 6 分20 .解 :(1 )1 × (- 3 )+ 4 × (- 2 )+ 2 × (- 1 .5 )+ 3 × 0 + 2 × 1 + 8 × 2 .5= - 3 - 8 - 3 + 2 + 20 = 8 (千 克 ). …………………………………………… 2 分(答:20筐南果梨总计超过8千克.……………………………………………3分(2)4× (25× 20+8)=2032(元).……………………………………………… 5分答:这20筐南果梨可卖2032元.…………………………………………… 6分21.解:(1)设菜地的长犪m,菜地的宽犫m,菜地的长犪=(20-2狓)m,菜地的宽犫=(10-狓)m,…………………………………………………… 2分所以菜地的周长为2(20-2狓+10-狓)=(60-6狓)m.…………………… 4分(2)当狓=1时,菜地的周长犆=60-6× 1=54(m).………………………… 6分22.(1)5狓狓-30);……………………………………………………………………… 2分(2)(狓+10);2狓-40;…………………………………………………………… 6分(3)(3)根据题意可得:(狓+10)-2狓-40=1狓+50,(3)3则调动后,第一车间的人数比第二车间的人数多1狓+50人.…………… 9分(3)23.(1)方案一:800× 10+200(狓-10)=200狓+6000(元),方案二:(800× 10+200狓)× 90%=180狓+7200(元);………………………… 4分(2)当狓=30时,方案一:200× 30+6000=12000(元),方案二:180× 30+7200=12600(元),………………………………………… 6分所以,按方案一购买较合算.…………………………………………………… 7分(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台微波炉,共10×800+200×20×90%=11600(元).……………………………………10分。
山东省济南章丘市2024-2025学年七年级上学期期中考试数学试题(文档版)
章丘区2024-2025学年第一学期期中考试七年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分 共40分一、选择题(本大题共10小题,每小题4分,共40分.每个小题给出四个选项中,只有一项符合题目要求)1.中国是最早使用正负数表示具有相反意义的量的国家,早在我国秦汉时期的《九章算术》中就引入了负数.若在粮谷计算中,益实二斗(增加2斗)记为+2斗,那么损实5斗(减少5斗)记为( )A .+5斗B .﹣5斗C .+3斗D .﹣3斗2.下列长方体、圆柱体和圆锥体木料,切开后截面形状与其他三个不同的是( )A .B .C .D .3.2024年6月4日嫦娥六号完成世界首次从月球背面采样盒起飞,这趟往返76万公里的旅途中,是轨道器,着陆器,上升器,返回器,四器分工协作,完成了极其复杂,极具挑战的任务.“760000”用科学记数法表示正确的是( )A .7.6×106B .76×106C .7.6×105D .76×1054. 下列数,﹣21,25%,3.1415926,0,-,﹣|﹣10|,|﹣6|中,负有理数有( )A .3个B .4个C .5个D .2个5.下列计算中,正确的是 A .B .C .D .6. 小轩制作了一个正方体灯笼,六个面上写有“祝福祖国万岁”,其平面展开图如图所示,那么在该几何体中和“福”字相对的字是( )4π-3.0 ()6410a b ab +=2242734x y x y x y -=22770a b ba -=2248816x x x +=A .祖B .国C .万D .岁7.下列判断中正确的是( )A .3a 2bc 与b 2ca 2是同类项 B.是整式C .单项式﹣2π2xyz 2的系数为﹣2π D .多项式a 4﹣2a 2b 2c+b 4是四次三项式8.有理数a ,b ,c 的位置如图所示,则下列各式:①ab <0 ②b ﹣a +c >0 ③ ④|a ﹣b |﹣|c +a |+|b ﹣c |=-2a ,其中正确的有( )个.A .1B .2C .3D .49.新定义:符号“”表示一种新运算,它对一些数的运算结果如下:运算(一,,,(1),(2),运算(二,,,,利用以上规律计算:( );A. -4049 B. 4049 C. 0 D. -110.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( ).A .2024B .6070 C.2022 D.606952n m 1=++cc b b a a f ):(2)213f -=--=-(1)112f -=--=-(0)011f =-=-f 110=-=f 211=-=⋯1):(33f -=-1()22f -=-1(22f =1()33f =⋯1(2024)(2025f f ---=章丘区2024-2025学年第一学期期中考试七年级数学非选择题部分 共110分二.填空题(本大题共5小题,每小题4分,共20分)11.如果 12.如图,将一刻度尺放在数轴上.若刻度尺上0cm 和5cm 对应数轴上的点表示的数分别为﹣3和2,则刻度尺上7cm 对应数轴上的点表示的数是 .13. 已知单项式与单项式的和仍为单项式,则 14.已知,则= 15.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,如图所示的运算程序中,若开始输入x 的值为3,则第2024次输出的结果是( )三.解答题(本大题共10小题,共90分. 解答应写出文字说明、证明过程或演算步骤)16.(本小题满分7分)(1)把数1,﹣2,0,+(﹣1),|﹣5|,表示在下面的数轴上.(2)比较这六个数的大小,并用“>”连接.=+<==b ,0,5,2a ab b a 则且272m x y 685n x y -=+n m 22224x y -=23621x y --)213(--17.(本小题满分7分)先化简,再求值:,其中.18.(本小题满分7分)如图是由一些相同的棱长均为1cm 的小正方体组成的几何体.(1)请在方格纸中用粗实线画出该几何体的从正面、从左面、从上面看到的形状图;(2)这个几何体的表面积(包括底面)为______.19.计算:(本小题满分8分)(1)﹣12024﹣|1﹣0.5|×(2).222223[22(4)]5a b ab a b ab ab ---+-()0122=+++b a []2)3(221--⨯53(8.0)31(321422-÷⎥⎦⎤⎢⎣⎡+-⨯-⨯20.(本小题满分8分)已知关于x ,y 的多项式A =2x 2+ax ﹣5y +b ,(其中a ,b 为有理数).(1)求4A ﹣(3A +2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求的值.21.(本小题满分9分)随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(2)根据记录的数据可知前三天共卖出 斤;本周实际销售总量达到了计划数量没有?(3)若冬枣每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?(4)小明想知道销售量的变化情况,请你用表格表示出来:星期一二三四五六日销售量变化(与前一天比)325232--+-=y x bx B )52()51(B b A a ++-22.(本小题满分10分)【观察思考】【规律发现】(1)第10个图案中“△”的个数为 ;(2)第n(n为正整数)个图案中“〇”的个数为 ,”△”的个数为 ;(用含n 的式子表示)【规律应用】(3)结合上面图案中“〇”和“△”的排列方式及规律,第35个图案中共需要多少个“〇”和“△”才能组成?23.(本小题满分10分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价40元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠两盒乒乓球;乙店的优惠办法是:全部商品按定价的8.5折(8.5折即按原价的85%计算)出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于8盒).(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款 元;在乙店购买需付款 元.(用含x的代数式表示)(2)当购买乒乓球盒数为20盒时,去哪家商店购买较合算?请计算说明.(3)当购买乒乓球盒数为20盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.(本小题满分12分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示,单位:米)留下一个“T”型图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的周长;(2)若此图作为某施工图,“T”型图形的周边需围上单价为每米20元的栅栏,原长方形周边的其余部分需围上单价为每米15元的栅栏.请用含x,y的代数式表示材料所需的造价.(3)当x=5,y=7,工人4人(每人每天150元)工作3天,请你计算这次施工的总费用。
2024年第一学期七年级数学期中考试数学试题卷
2024年第一学期七年级数学期中考试试题卷一、选择题(3×10=30分)1.的相反数是( )A .2024B .C .D .2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作元,那么元表示( )A .支出60元B .收入60元C .支出1060元D .收入1060元3.在,,0,,,中,有理数有( )A .2个B .3个C .4个D .5个4.2024年9月25日8时44分,中国人民解放军火箭军向太平洋相关公海海域,成功发射1发携载训练模拟弹头的洲际弹道导弹,准确落入预定海域,从发射点和导弹落点粗略估算,这次导弹飞行射程大概有12000公里,数据12000用科学记数法表示为( )A .B .C .D .5.精确到百分位是( )A .B .C .D .6.单项式的系数和次数分别是( )A .,4B .,7C .5,7D .5,47.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3a−b 2B .3(a−b)C .(3a−b)2D .3a−b8.已知一个代数式加上x 2−y 2等于x 2+y 2,则这个代数式为()A.−3y 2B.3y 2C.2x 2+y 2D.2y 29.小王利用计算机设计了一个计算程序,输入和输出的数据如下表那么,当输入数据是8时,输出的数据是( )A .B .C .D .输入12345输出2024-2024-1202412024-1000-1060+π6 3.14-23-32-22750.1210⨯51.210⨯41.210⨯31210⨯0.06540.070.060.0650.1345x y -5-5-861865867869⋅⋅⋅⋅⋅⋅⋅⋅⋅1225310417526⋅⋅⋅10.在矩形内,将一张边长为和两张边长为的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为,若要知道的值,只要测量图中哪条线段的长 A .B .C .D .二、填空题(3×6=18分)11.比较大小:1101 |−1100|12.小华同学写作业时不慎将墨水滴在数轴上,根据图中的数值判断,被墨迹盖住的两部分的整数有 个.13.一个数在数轴上表示的点离原点的距离是5,这个数是.14.比-2大的负整数是 ;比-3.45小的最大负整数是 。
人教版七年级上学期期中考试数学试题(含答案)
人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。
七年级上册数学期中考试试题(含答案)
七年级上册数学期中考试试题(含答案)一、选择题。
(共10题;共20分)1. 3的相反数是()A. ﹣3B. 3C. ﹣D.2.﹣3的绝对值是()A. B. 3 C. D. ﹣33.下列各数中,既不是正数也不是负数的是()A. 0B. ﹣1C.D. 24.下面是小林做的4道作业题:①2ab+3ab=5ab;②2ab﹣3ab=﹣ab;③2ab﹣3ab=6ab;④2ab÷3ab= .做对一题得2分,则他共得到()A. 2分B. 4分C. 6分D. 8分5.计算3-3的结果是().A. -9B. -27C.D.6.-2的相反数是()A. -2B.C.D. 27.如果代数式4y2-2y+5的值为7,那么代数式2y2-y+1的值等于()A. 2B. 3C. -2D. 48.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房4800000平方米,把4800000用科学记数法表示应是()A. 0.48×107B. 4.8×106C. 4.8×107D. 48×1059.下列各组量中:①身高增加3cm与体重减少2kg;②向东走2m与向西走3m;③盈利50元与亏损100元;④-6与7;⑤升与降.其中具有相反意义的有()A. 1组B. 2组C. 4组D. 3组10.如图,△ABC中,∠C=90°,AE平分∠BAC,BD⊥AE交AE的延长线于D.若∠1=24°,则∠EAB等于()A. 66°B. 33°C. 24°D. 12°二、填空题(共5题;共12分)11.根据幂的意义,(-3)4表示________ ,-43表示________ ;12.下列各数中:,,,,,13.方程2x+3=7的解是________.14.三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是________.15.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是 ________.三、解答题(共9题;共88分)16.计算题:(1)0-1+2-3+4-5;(2)-4.2+5.7-8.4+10.2;(3)-30-11-(-10)+(-12)+18;17.①②18.上海股民杨百万上星期五交易结束时买进某公司股票1000股,每股50 元,下表为本周内每日该股的涨跌情况(星期六、日股市休市) (单位:元)(1)星期三收盘时,每股是多少元(2)本周内每股最高价多少元?最低价是多少元?(3)已知买进股票还要付成交金额2‰ 的手续费,卖出时还需付成交额2‰ 的手续费和1‰交易税,如果在星期五收盘前将全部股票卖出,他的收益情况如何?(注意:‰不是百分号,是千分号)19.解下列方程:(1)(2)20.先化简,再求值:(1)3c2﹣8c+2c3﹣13c2+2c﹣2c3+3,其中c=﹣4;(2)﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.21.计算或化简下列各题:(1)(2).22.①计算:(-1)2+ --︱-5︱②用适当的方法解方程:x2=2x+35.23.根据问题,设未知数,列出方程:(1)环形跑道一周长400m,沿跑道跑多少周,路程为3000m?(2)一个长方形的周长是20厘米,长比宽多2厘米,求这个长方形的宽.24.某出租车司机从公司出发,在东西方向的人民路上连续接送5批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?答案一、选择题。
七年级数学期中考试试题及答案
七年级数学期中考试试题及答案姓名: 班级:一、 选择题(每小题3分,共30分)1、下列方程中,是一元一次方程的是( )A 、;342=-x x B 、;0=x C 、;12=+y x D 、.11xx =- 2、方程042=-+a x 的解是2-=x ,则a 等于( ) A 、;8- B 、;0 C 、;2 D 、.83、解方程2631x x =+-,去分母,得( ) A 、;331x x =--B 、;336x x =--C 、;336x x =+-D 、.331x x =+- 4、21=x是方程23)2(6+=+m m x 的解,求关于y 的方程)21(2y m my -=+的解为:( ) A 、61=y B 、65=y C 、 65-=y D 、无法确定5、下列方程变形中,正确的是( )A 、方程1223+=-x x ,移项,得;2123+-=-x x B 、方程()1523--=-x x,去括号,得;1523--=-x x C 、方程2332=t ,未知数系数化为1,得;1=x D 、方程15.02.01=--x x 化成.63=x 6、若方程432+=-x ymx 是二元一次方程,则m 满足 ( ) A 、0≠m B 、2-≠m C 、3≠m D 、4≠m7、已知-4x m+n y m-n 与23x 7-m y n+1是同类项,则m ,n 的值为( ). A 、m=-1,n=-7 B 、m=3,n=1 C 、m=2910,n=65 D 、m=54,n=-2 8、力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )A 、;323x x -=B 、();3253x x -=C 、();3235x x -=D 、.326x x -=9、根据“x 的3倍与-5的绝对值的差等于2”的数量关系可得方程( )A 、2)5(3=--xB 、253=--xC 、253=--xD 、253=-x10、在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了%10,乙班比去年多种了%12,结果甲班比乙班还是多种100树棵.设甲班去年植树x 棵,乙去年植树y 棵,则下列方程组中正确的是 ( )A 、 100%12%10100=-=-y x y xB 、 100%10%12100=-=-y x y xC 、 100%110%112100=-=-y x y xD 、 100%112%110100=-=-y x y x 二、填空题(每题3分,共24分)11、1230a a )x -+-=(是一元一次方程,则a=_____________. 12、当=x 时,代数式24+x 与93-x 的值互为相反数.13、的值是的解,那么是方程如果a x x a x 53)2(4-=-= . 14、已知方程0353=-+y x ,用含x 的代数式表示y 的式子是_________________;当35=x 时,._______________=y15、若()02122=-+-+y x y x ,则22y xy x ++的值为_____________________. 16、方程3x+y=8的正整数解是_______.17、若方程组342,312,25210x y ax by x y ax by +=-=⎧⎧⎨⎨-=+=⎩⎩与方程组有相同的解,则a=_____,b=______. 18、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是 元.三、解答题(共66分)19、解方程(4×5分)(1)()()x x2152831--=-- (2)3.04.05233.12.188.1-=---x x x(3) 12131222131=-+-=-++y x y x (4) .0522;54;22=--=+-=++z y x z y x z y x20、(6分)已知21=x 是方程32142m x m x -=--的解,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值.21、(6分)若方程组322,543x y k x y k +=⎧⎨+=+⎩的解之和为x+y=-5,求k 的值,并解此方程组.22、(6分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?23、(8分)某牛奶加工厂现有鲜奶9t ,若在市场上直接销售鲜奶,每吨可获利润500元,制成酸奶销售,每吨可获利润1200元;制成奶片销售每吨可获利润2000元。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
山东省济南市章丘区2023-2024学年七年级上学期期中考试数学试题(含答案)
章丘区2023-2024学年第一学期期中质量监测七年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分共40分一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出四个选项中,只有一项符合题目要求)1.若汽车向东行驶2km记作+2km,则向西行驶3km记作()A.+2kmB.-2kmC.+3kmD.-3km2.用一个平面去截下列选项中的几何体,截面不可能是圆的是( )3.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猎成交额高达2135亿元.将数据“2135亿”用科学记数法表示为( )A.2.135×1011B.2.135×107C.2.135×1012D.2.135×1034.在数8,- 0.5,-|-2|,0,(- 3)2,-12中,负数的个数是( )A.2B.3C.4D.55.如图是一个正方体的展开图,在原正方体中,与“祝”字所在面相对的面上的汉字是( )A.考B.试C.成D.功6.下列说法正确的有( )① 的系数和次数分别是,4;② -的底数是-2; ③两个数比较大小,绝对值大的反而小; ④最大的负整数是-1.A.1个B.2个C.3个D.4个7.实数a 、b 在数轴上的位置如图所,则下列结论不正确的是( ),A. a<-bB. b>1C. |a|<|b|D. a>-18.下列运算中,正确的是(C”A.3a+b=3abB.-3-2= -5C.D. -2(x-4) =-2x-89.已知|x|=2,y 是3的相反数,则xy 的值为( )A.-1B.-5C.±6D.-5或110小文在做多项式减法运算时,将减去2a 2+3a-5误认为是加上2a 2+3a-5,求得的答案是a 2+a- 4(其他运算无误),那么正确的结果是( )A.B.C.D.章丘区2023-2024学年第一学期期中质量监测七年级数学试题祝你考试成功23x y π-13-202022a 2a 4a 22232ab a b a b-+=-221a a --+234a a -+-24a a +-2356a a --+非选择题部分共110分二、填空题(本大题共6小题,每小题4分,共24分)I1.数插上与原点的距离等于5的点所表示的数是 .12.单项式的系数是 .13.已知x,y 是有理数,若,则的值 .14.将如图所示的平面展开图按虚线折叠成正方体,若其相对面上两个数之和为8,则x-y+2z 的值为 .15,若与-7xm-3y3是同类项,则m+n = .16.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27。
七年级数学期中测试题
七年级数学期中测试题一、选择题(每题2分,共20分)1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 一个长方形的长是12cm,宽是8cm,那么它的周长是多少?A. 20cmB. 40cmC. 60cmD. 80cm3. 以下哪个选项是正确的等式?A. 2x + 3 = 5x - 1B. 4x - 2 = 2x + 6C. 3x + 1 = 2x + 5D. 5x - 7 = 3x + 24. 一个班级有40名学生,其中25%是女生,那么这个班级有多少名男生?A. 10名B. 15名C. 20名D. 25名5. 一个数除以4的结果是0.5,那么这个数是多少?A. 1B. 2C. 3D. 46. 一个正方形的边长是6cm,那么它的面积是多少?A. 12平方厘米B. 24平方厘米C. 36平方厘米D. 48平方厘米7. 以下哪个选项是2的倍数?A. 19B. 33C. 41D. 558. 一个圆的半径是7cm,那么它的直径是多少?A. 14cmB. 10cmC. 7cmD. 21cm9. 以下哪个选项是正确的因数和倍数关系?A. 6是12的因数,12是6的倍数B. 12是6的因数,6是12的倍数C. 6是6的因数,6是6的倍数D. 12是12的因数,12是12的倍数10. 一个三角形的内角和是多少度?A. 90度B. 180度C. 270度D. 360度二、填空题(每题2分,共20分)11. 一个分数的分子是8,分母是它的2倍,这个分数是_______。
12. 一个长方形的长是15cm,宽是9cm,那么它的面积是_______平方厘米。
13. 一个数的平方是49,这个数是_______。
14. 一个圆的半径是10cm,那么它的周长是_______πcm。
15. 一个班级有60名学生,其中30%是男生,那么这个班级有_______名女生。
16. 一个数除以5的结果是0.3,那么这个数是_______。
河南省濮阳市2024-2025学年七年级上学期11月期中考试数学试题
2024-2025 学年第一学期期中考试试卷七年级数学注意事项:1.本卷分试题卷和答题卡两部分,试题卷共6页,三大题,满分120分,考试时间100分钟;2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效;3.答题前,考生务必将本人所在学校、姓名、考场、座号、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共30分)1.2024的相反数是A.-2024B.2024C.12024D.−120242. 比较--12,-2,13的大小,结果正确的是A.−12<13<−2B.−12<−2<13C.−2<−12<13D.−2<13<−123.拒绝“餐桌浪费”,刻不容缓.节约一粒米的账:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年. “3240万”这个数据用科学记数法表示为A.0.324×10⁸B.3.24×10⁷C.32.4×10⁶D.324×10⁸4.在--10.1,-|-12|,(-3)²,-3²|中,不是负数的是A.-10.1B.−|−12| C.(-3)² D.-3²5.有理数a,b在数轴上的位置如图所示,则下列结论中正确的是A.-a+b>0B. a-b>0C. ab>0D.a÷b>06.已知|a|=5,b²=16,且 ab>0,则a-b 的值为A.1B.1或9C.1或9D.1或-17.2024年巴黎奥运会乒乓球比赛已经圆满落幕,中国乒乓球队再次展现了其王者之师的风采,更以史无前例的壮举——包揽全部五块金牌,为这场体育盛宴划上了最为辉煌的句号.七年级数学第1页 (共6页)比赛中,所采用的乒乓球的标准尺寸是40mm±0.05mm,下列尺寸的乒乓球中哪一个是不合格的A.40.06mmB.40.02mmC.39.97mmD.39.95mm8.下列说法中:①倒数等于它本身的数是±1;②可以写成分数形式的数称为有理数,比如π/3;③我们称用运算符号把数或表示数的字母连接起来的式子为代数式,这里的运算符号包括加、减、乘、除、乘方、开方.比如-π³-2; ④a÷b=a/b;(⑤代数式 3x²−4x 的值为7,那么 6x²−8x −9的值为5;⑥将 1.8965精确到百分位为1.89;⑦长方体的体积一定,长方体的底面积与高成反比例关系.其中正确的有A.3个B.4个C.5个D.6个9.下列图案是用长度相同的小棒按一定规律摆成的.摆图案(1)需8根小棒,摆图案(2)需15 根小棒……按此规律,摆图案(n)需要的小棒的根数是A.7n+8B.7n+4C.7n+1D.7n-1 10. 下列问题情境中,不能用代数式“4b”表示的是 A.购买4瓶单价为b 元的饮料所需的钱数 B.购买b 瓶单价为4元的饮料所需的钱数C.若一个正方形的边长为b ,则4b 表示该正方形的周长D.若一个两位数的十位数字是4,个位数字是b ,则4b 表示这个两位数 二、填空题(每小题3分,共15分)11.手机移动支付给生活带来便捷. 如图所示是某用户微信的账单情况,+41.00元表示收款41.00元, 则-5.50 元表示 .12. 中国是历史上最早认识和使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》在“方程”一章中提出了正数、负数的概念及其加减运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值: −1+(−2)³= .13.已知有理数a ,b ,c ,d ,m ,它们之间有如下关系:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则(a+b+ cd)m-cd 的值为 .14. 国际数学教育大会是全球数学教育水平最高、规模最大的学术盛会,每四年一届,ICME -14于2021年在中国上海举办,这是国际数学大会第一次在中国举办.大会标识中蕴含七年级数学 第2页 (共6页)9月15日11-52唐晋惠维客多超市 -5.509月14日1519二维码收款 +41.00着很多数学文化元素,以中国传统文化中《洛书》与《河图》为原本,并将其与体现我国早期哲学思想的八卦进行了融合,体现了我国传统文化的博大精深.大会标识右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数 字.八进制数3745换算成十进制数是 3×8³+7×8²+4×8¹+5×8⁰=2021, 表示ICME-14的举办年份.八进制数2356换算成十进制数是 .15.有理数的乘法运算,除了用乘法口诀外,现有一种“划线法”:图1 表示的乘法算式是12×23=276,图2表示的是 123×24=2952.则图3 表示的乘法算式是 . 12×23=276 123×24=2952三、解答题(本题共八大题,共75分)16.(6分)所有正有理数组成正有理数集合,所有负有理数组成负有理数集合.请你把下面的数填入所属的集合内:15, - 19, - 5 , 0.5 , 4.2 , 3. i2, 3 14, 2025 ,19% 0正有理数集合:{ …}; 负有理数集合:{ …}; 整数集合:{ …}.17.(12分)计算:(1)(-51)+(+12)-(-7)+(+36); (2)(−4)2023×(14)2024;(3)(−112+14)÷32; (4)−24−0.5÷13×|−(−2)|.七年级数学 第3 页 (共6页)18.(6分)对于有理数a,b,定义一种新运算:例如:3※1=3−1=2 ,5※4=5+4-6=3.根据上面的材料,请完成下列问题:(1)7※3;(2)(-3)※(−3)419.(8分)大正方形的边长为a,小正方形的边长为b.(1)用含a,b的代数式表示图中阴影部分的面积;(2)若a=8,b=6,根据你列出的代数式求出阴影部分的面积.20.(9分)河南新郑大枣,又名鸡心大枣、鸡心枣,是河南省郑州市新郑的特产,素有“灵宝苹果潼关梨,新郑大枣甜似蜜”的盛赞.红枣味甜、性温,是补血健脾美容的滋补佳果,而新郑大枣以其皮薄、肉厚、核小、味甜备受人们青睐,成为枣类中的佼佼者.某超市采购了8筐新郑大枣,若以每筐10kg为基准,把超过10kg的千克数记为正数,不足10kg的千克数记为负数,记录如下:①+3;②-1.4;③+2;④-4;⑤+5;⑥-3.5;⑦+1;⑧-0.5.(1)这8筐新郑大枣中,重量最重的是 kg,比重量最轻的重了 kg;(2)这8筐新郑大枣的总重量是多少 kg?七年级数学第4页 (共6页)21.(10分)将一个边长为1的正方形分割成5个部分,部分①的面积是边长为1的正方形面积的一半,部分②的面积是部分①的面积的一半,部分③的面积是部分②的面积的一半,以此类推.(1)求阴影部分的面积;(2)类比(1),利用几何方法探究12+122+123+⋯+12n的值.22.(13分)如图,用48dm长的绳子分别围出1个,2个,3个……正方形.(1)正方形个数1234…每个正方形的边长/ dm126…所有正方形的顶点总数47…所有正方形的总面积/dm²14472(2)正方形的个数与边长;正方形的个数与顶点总数;正方形的边长与总面积 .(填“成正比例关系”“成反比例关系”或“不成比例”)(3)若正方形的个数是n,顶点总数是m,试用一个等式表示n与m的关系.七年级数学第5页 (共6页)23.(11分)数轴是非常重要的“数形结合”的工具之一,它揭示了数与点之间的内在联系,同时我们发现数轴上两点之间的距离也与这两点所表示的数有关.借助数轴完成下列任务:实验与操作(1)a2-34-2b60-1-5A ,B两点之间的距离观察与发现(2)观察上表,A,B两点之间的距离可以表示为 (用含a,b的代数式表示).理解与应用(3)利用发现的结论,逆向思维解决下列问题:①|x-3|表示数轴上有理数x对应的点与有理数对应的点之间的距离;②求满足等式|x-2|=5 的x的值;③|x-2l+|x+4|=6表示数轴上有理数x对应的点分别到2 和-4对应的点的距离之和为6,请直接写出所有符合条件的整数x.七年级数学第6页 (共6页)。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)
仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。
初一上册数学期中试题及答案【四篇】
【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
2022-2023学年度第一学期期中考试七年级数学试题
2021-2022学年度第一学期期中考试七年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分120分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分) 1.﹣2的倒数是( ▲ ) A .2B .﹣2C .21-D .212.在﹣3,﹣1,0,1这四个数中,最小的数是( ▲ ) A .﹣3B .﹣1C .0D .13.单项式﹣5ab 的系数与次数分别为( ▲ ) A .5,1B .﹣5,1C .5,2D .﹣5,24.下列各组是同类项的一组是( ▲ )A .mn 2与21-m 2nB .﹣2ab 与baC .a 3与b 3D .3a 3b 与﹣4a 2bc5.下列去括号正确的是( ▲ ) A .﹣3(b ﹣1)=﹣3b ﹣3 B .2(2﹣a )=4﹣aC .﹣3(b ﹣1)=﹣3b +3D .2(2﹣a )=2a ﹣46.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( ▲ ) 范围内保存才合适. A .18℃~20℃B .18℃~22℃C .18℃~21℃D .20℃~22℃7.已知关于x 的方程3x +m =2的解是x =﹣1,则m 的值是( ▲ ) A .1B .﹣1C .﹣5D .58.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x 的值为( ▲ )A .1B .3C .4D .6二、填空题(本大题共8小题,每小题3分,共24分)9.预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为 ▲ . 10.原价为a 元的书包,现按8折出售,则售价为 ▲ 元.11.盐都区某周四天中每天的最高气温与最低气温如表,则日温差最大的是星期 ▲ .星期一 二 三 四 最高气温 10℃ 12℃ 11℃ 8℃ 最低气温3℃0℃﹣2℃﹣3℃12.在下列代数式:2,t s ,3b -a ,yz 5-,n m +3中,是单项式的有 ▲ 个. 13.已知方程(m ﹣2)x |m |﹣1+16=0是关于x 的一元一次方程,则m 的值为 ▲ .14.若a 2+3a =﹣5,则2﹣2a 2﹣6a 的值为 ▲ .15.按照如图所示的操作步骤,若输出y 的值为11,则输入x 的值为 ▲ .16.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子.第②个图案有9个黑棋子,第③个图案有14个黑棋子,按照这样的规律,第n 个图案有199个黑棋子,则n = ▲ .学校___________ 班级____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤....................) 17.(本题满分6分)请将下列各数填入相应的集合内:47-,0,π,113,﹣1.010010001…,•5.0 有理数集合:{ …}; 无理数集合:{ …}; 非负数集合:{ …}. 18.(本题满分6分)计算: (1)7﹣(﹣8)+(﹣4); (2)|﹣4|+23+3×(﹣5). 19.(本题满分6分)计算: (1)(5a +b )+6a ﹣2b ;(2)3(4a 2b ﹣2ab 2)﹣2(﹣3ab 2+a 2b ). 20.(本题满分6分)解方程: (1)2x =9﹣x ;(2)1615312=--+x x .21.(本题满分6分)先化简,再求值:3(x 2y +xy )﹣(2x 2y ﹣xy )﹣5xy ,其中x =﹣1,y =1. 22.(本题满分6分)对于任意有理数a ,b ,定义运算:a ⊙b =a (a +b )﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙213的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = ▲ (用含m ,n 的式子表示).23.(本题满分8分)已知:A ﹣2B =3a 2﹣2ab ,且B =﹣a 2+2ab +1; (1)求A 等于多少?(2)若|a +1|+(b ﹣2)2=0,求A 的值.24.(本题满分6分)如图,点A 、B 、C 分别表示有理数a 、b 、c . (1)填空:①c ▲ 0;②|a | ▲ |b |;(填“>”、“<”或“=”)(2)化简:|a +b |﹣|c ﹣b |﹣|c ﹣a |.25.(本题满分10分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库): +27,﹣32,﹣18,+34,﹣38,+20.(1)经过这3天,仓库里的粮食是增加了还是减少了?变化了多少吨? (2)如果进出的装卸费都是每吨30元,那么这3天要付装卸费多少元?26.(本题满分12分)已知多项式4x 6y 2﹣3x 2y ﹣x ﹣7,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示数a ,点B 表示数b . (1)a = ▲ ,b = ▲ ;(2)若小蚂蚁甲从点A 处以2个单位长度/秒的速度向右运动,同时小蚂蚁乙从点B 处以1.8个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O 处放置一颗饭粒,甲在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,乙在碰到饭粒后立即停止运动.设运动的时间为t 秒,则t = ▲ 时,甲、乙两只小蚂蚁的距离为8个单位长度.(3)若小蚂蚁甲和乙约好分别从A ,B 两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s 时一起重新回到原出发点A 和B ,设小蚂蚁们出发t (s )时的速度为v (mm /s ),v 与t 之间的关系如下图.(其中s 表示时间单位秒,mm 表示路程单位毫米)t (s ) 0<t ≤2 2<t ≤5 5<t ≤16v (mm /s )10168①当2<t ≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t 的代数式表示); ②当t 为 ▲ 时,小蚂蚁甲乙之间的距离是42mm .(请直接写出答案)七年级数学试卷参考答案一.选择题(共8小题)1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.A二.填空题(共8小题)9.4.6×108 10.0.8a 11.三12.2 13.﹣2 14.12 15.4或﹣4 16.40三.解答题(共10小题)17.有理数集合:{﹣,0,,0.…};————2分无理数集合:{π,﹣1.010010001……};————2分非负数集合:{0,π,,0.…}.————2分18.(1)原式=7+8﹣4————2分=11;————1分(2)原式=4+8﹣15————2分=﹣3.————1分19.(1)(5a+b)+6a﹣2b=5a+b+6a﹣2b————2分=11a﹣b;————1分(2)3(4a2b﹣2ab2)﹣2(﹣3ab2+a2b)=12a2b﹣6ab2+6ab2﹣2a2b————2分=10a2b.————1分19.(1)x=3.————3分(2)x=﹣3.————3分21.3(x2y+xy)﹣(2x2y﹣xy)﹣5xy=3x2y+3xy﹣2x2y+xy﹣5xy————2分=x2y﹣xy;————1分当x=﹣1,y=1时,原式=1×1﹣(﹣1)×1————2分=2.————1分22.(1)∵a⊙b=a(a+b)﹣1,∴(﹣2)⊙3=(﹣2)×[(﹣2)+3]﹣1————1分=(﹣2)×﹣1————1分=(﹣3)﹣1————1分=﹣4;————1分(2)3m+2+n.(答案不唯一)————2分23.(1)∵A﹣2B=3a2﹣2ab,且B=﹣a2+2ab+1,∴A=3a2﹣2ab+2B————1分=3a2﹣2ab+2(﹣a2+2ab+1)————1分=3a2﹣2ab﹣2a2+4ab+2————1分=a2+2ab+2;————1分(2)∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,————1分b=2,————1分∴A=(﹣1)2+2×(﹣1)×2+2————1分=1﹣4+2=﹣1.————1分24.<;————1分>;————1分(2)由数轴可得:a<c<0<b,∴|a +b |﹣|c ﹣b |﹣|c ﹣a |=﹣a ﹣b +c ﹣b ﹣c +a ————3分 =﹣2b ————1分25.(1)+27+(﹣32)+(﹣18)+34+(﹣38)+20=﹣7(吨),————4分 答:库里的粮食是减少了,减少了7吨;————1分(2)(|+27|+|﹣32|+|﹣18|+|+34|+|﹣38|+|+20|)×30=169×30=5070(元),——4分答:这3天要付装卸费5070元.————1分26.已知多项式4x 6y 2﹣3x 2y ﹣x ﹣7,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示数a ,点B 表示数b .(1)a = ﹣2 ;————2分b = 8 ;————2分 (2)t =1910或5 ;————2分 (3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于: 10×2+16×3+8×11=156(mm ),∵原路返回,刚好在16s 时一起重新回到原出发点A 和B , ∴小蚂蚁甲和乙返程的路程都等于78mm ,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t ﹣2)×2=32t ﹣14;————2分 ②设a 秒时小蚂蚁甲和乙开始返程,由(3)①可知: 10×2+16×3+8(a ﹣5)=78, 解得:a =;以下分情况讨论:当8﹣(﹣2)+10t ×2=42, 解得:t =1.6;当32t ﹣14=42时,解得:t =;当t =时,小蚂蚁甲和乙还没有开始返程,故舍去t =; 当t >时,8﹣(﹣2)+78×2﹣8(t ﹣)×2=42,解得:t =14;综上所述,当t =1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm .————4分。
七年级数学期中测试题
七年级数学期中测试题一、选择题(每小题 3 分,共 30 分)1、下列各数中,是负数的是()A (-3)B |-3|C |-3|D (-3)²2、下列计算正确的是()A 3a + 2b = 5abB 5y² 3y²= 2C 7a + a = 7a²D 3x²y 2yx²= x²y3、有理数a,b 在数轴上的位置如图所示,下列各式成立的是()A a + b > 0B a b > 0C ab < 0D b / a > 0(数轴略)4、下列去括号正确的是()A a +(b c) = a + b + cB a (b c) = a b cC a (b + c) = a + b cD a +(b c) = a b + c5、若代数式 2x²+ 3x + 7 的值是 8,则代数式 4x²+ 6x 9 的值是()A -7B -5C -4D -36、一个多项式与 x² 2x + 1 的和是 3x 2,则这个多项式为()A x² 5x + 3B x²+ 5x 3C x²+ x 1D x² 5x 137、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,则式子 m² cd +(a + b) / m 的值为()A -3B 3C -5D 3 或-58、下列方程中,是一元一次方程的是()A x² 4x = 3B 3x 1 = 2 / xC x + 2y = 1D xy 3 = 59、把方程 2x 1 / 3 = 1 x + 2 / 4 去分母,正确的是()A 24x 4 = 12 3(x + 2)B 24x 1 = 12 3(x + 2)C 8x 1 = 12 3(x + 2)D 8x 4 = 12 3(x + 2)10、某商店有两个进价不同的计算器都卖了 80 元,其中一个盈利60%,另一个亏本 20%,在这次买卖中,这家商店()A 不赔不赚B 赚了 10 元C 赔了 10 元D 赚了 50 元二、填空题(每小题 3 分,共 24 分)11、比较大小:-3 / 4 ____ 4 / 5 (填“>”“<”或“=”)12、单项式2πxy² / 5 的系数是____,次数是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
学校 班级 学号 姓名____________ 得分 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------
中山市翔鸿学校2010年春季
七年级数学期中考试测试题
一、选择题(3×8=24分)
1、已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( ) A 、(-3,4) B 、(4,3) C 、(-4,3) D 、(3,4)
2、将下列长度的三条线段首尾顺次相接,能组成三角形的是( ) A 、4cm 3cm 5cm B 、1cm 2cm 3cm C 、25cm 12cm 11cm D 、2cm 2cm 4cm
3、用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A 、正三角形 B 、正方形 C 、正五边形 D 、正六边形
4、已知ΔABC 的三个内角∠A、∠B、∠C 满足关系式∠B+∠C=3∠A, 则此三角形( ) A 、 一定有一个内角为45︒
B 、一定有一个内角为60︒
C 、一定是直角三角形
D 、一定是钝角三角形
5、如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=( ) A 、 70° B 、110° C 、100° D 、以上都不对
6、如图,直线EF 分别交CD 、AB 于M 、N ,且∠EMD=65°,∠MNB=115°,则下列结论正确的是( ) A 、∠A=∠C B 、∠E=∠F C 、AE ∥FC D 、AB ∥DC
第5题 第6题
7m 个交点,最少有n 个交点,则m+n 等于( )
A 、1
B 、2
C 、3
D 、4
8、若一个n 边形的所有内角与某个外角的和等于1350°
,则n 为( )
A 、七
B 、八
C 、九
D 、十
二、填空题(4×7=28分)
9、剧院里5排2号可以用(5,2)表示,则7排4号用 表示。
10、如果两个角是对顶角,且互补,则这两个角都是 角。
11、△ABC 中,若∠B=∠A+∠C,则△ABC 是 三角形。
12、在三角形已知两边的长分别为3cm 和4cm ,若第三边的长为偶数则第
三边的长是 。
13、每个外角都是36°
的多边形的边数为 ,它的内角和
为 。
14、如图,已知AB ∥CD ,CM 平分∠BCD ,∠B=74°,CM ⊥CN ,则∠NCE 的
度数是 。
15、已知如图平行直线a 、b 被直线l 所截,如果∠1=75°,则
∠2= 。
第14题 第15题 三、解答题(共42分)
16、作图题(6分):如图△ABC,按图中所指方向把△ABC 平移3cm 得到△DEF Q
1 3 2
4
E
M D
B
N
A
F
A B N M
D C
E a
b 2
1
2
17、作图题(6分)如图,在△ABC 中,∠BAC 是钝角,画出:
⑴∠BAC 的平分线AD ; ⑵AC 边上的中线BE ;
⑶AB 边上的高CF .
18、如图,直线AB ∥CD ,EF 分别交AB 、CD 于点M 、G ,MN 平分∠EMB ,
GH 平分∠MGD ,求证:MN ∥GH 。
(6分)
证明:∵AB ∥CD (已知)
∴∠EMB=∠EGD ( )
∵MN 平分∠EMB ,GH 平分∠MGD (已知)
∴∠1=21∠EMB ,∠2=2
1
∠MGD ( )
∴∠1=∠2
∴MN ∥GH (
) 19、(9分)如图,已知∠DAB+∠D=180°,AC 平分∠DAB ,且∠CAD=25° ,∠B=95。
(1)求∠DCA 的度数
(2)求∠DCE 的度数。
20、已知:如图,在△ABC 中,∠BAC=900
,AD ⊥BC 于D ,AE 平分∠DAC ,
∠B=500
,
求∠AEC 的度数.(9分)
21、(12分)在图所示的平面直角坐标系中表示下面各点 A (0,3) B (1,-3) C (3,-5) D (-3,-5) E (3,5) F (5,7) (1)A 点到原点O 的距离是 。
(2)将点C 向x 轴的负方向平移6个单位,它与点 重
合。
(3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?
E
D C
B
A
A C
D
F G
2 E N B
1 M
H A
B D
C E C
B A。