线性代数二次型习题及答案
线性代数二次型习题及问题详解
第六章 二次型1.设方阵1A 与1B 合同,2A 与2B 合同,证明12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T1111=B C A C ,因为2A 与2B 合同,所以存在可逆矩2C ,使T2222=B C A C .令 12⎛⎫=⎪⎝⎭C C C ,则C 可逆,于是有 TT 1111111T2222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭B C A C C AC B C A C C A C 1T 2⎛⎫= ⎪⎝⎭A C C A 即 12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同.2.设A 对称,B 与A 合同,则B 对称证:由A 对称,故T=A A .因B 与A 合同,所以存在可逆矩阵C ,使T=B C AC ,于是T T T T T T ()====B C AC C A C C AC B即B 为对称矩阵.3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵.证:因为A 是正定矩阵,所以存在可逆矩阵M ,使E AM M =T记T1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使T 11diag(,,)n D μμ==Q B Q LT 11,,.n μμ=B M BM L 其中为的特征值令P=MQ ,则有D BP PE AP P ==T T ,,A B 同时合同对角阵.4.设二次型2111()mi in n i f ax a x ==++∑L ,令()ij m n a ⨯=A ,则二次型f 的秩等于()r A .证:方法一 将二次型f 写成如下形式:2111()mi ij j in n i f a x a x a x ==++++∑L L设A i = 1(,,,,)i ij in a a a L L ),,1(m i Λ=则 1111111j n i ij in i m mj mj m a a a a a a aa a ⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭L L MM M M LL M M M M LLA A A A 于是 1T T T TT 11(,,,,)mi m i i i i m =⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∑M L L M A A A A A A A A A A故 2111()mi ij j in n i f a x a x a x ==++++∑L L =1211[(,,)]i m j n ij i in a x x x a a =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑M L L M=11111[(,,)(,,)]i m j n ij i ij in j i in n a x x x x a a a a x a x =⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑M M L L L L M M =1T11(,,)()mj n i i j i n x x x x x x =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑M L L M A A=X T(A TA )X因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .方法二 设11,1,,i i in n y a x a x i n =++=L L . 记T1(,,)m y y =Y L ,于是=Y AX ,其中T 1(,,)n x x =X L ,则222T T T 11()mi m i f y y y ===++==∑Y Y X A A X L .因为A A T 为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .5.设A 为实对称可逆阵,Tf x x =A 为实二次型,则A 为正交阵⇔可用正交变换将f 化成规形.证:⇒设i λ是A 的任意的特征值,因为A 是实对称可逆矩阵,所以i λ是实数,且0,1,,i i n λ≠=L .因为A 是实对称矩阵,故存在正交矩阵P ,在正交变换=X PY 下,f 化为标准形,即T T T T T1()diag(,,,,)i n f λλλ====X AX Y P AP Y Y DY Y Y L L 22211i i n n y y y λλλ=++++L L (*)因为A 是正交矩阵,显然T1diag(,,,,)i n λλλ==D P AP L L 也是正交矩阵,由D 为对角实矩阵,故21i λ=即知i λ只能是1+或1-,这表明(*)恰为规形.⇐因为A 为实对称可逆矩阵,故二次型f 的秩为n . 设在正交变换=X QY 下二次型f 化成规形,于是T T()f ==X AX Y Q AQ Y 222211r r n y y y y +=++---L L T =Y DY其中r 为f 的正惯性指数,diag(1,,1,1,,1)=--D L L .显然D 是正交矩阵,由T=D Q AQ ,故T=A QDQ ,且有T T ==A A AA E ,故A 是正交矩阵.6.设A 为实对称阵,||0<A ,则存在非零列向量ξ,使T0<ξAξ. 证:方法一因为A 为实对称阵,所以可逆矩阵P ,使T 1diag(,,,,)i n λλλ==P AP D L L其中(1,,)i i n λ=L 是A 的特征值,由||0<A ,故至少存在一个特征值k λ,使0k λ<,取010⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ξP M M ,则有T T 0(0,,1,,0)10⎛⎫⎪ ⎪⎪= ⎪⎪⎪⎝⎭ξAξP AP M L L M 1(0,,1,0,0)kn λλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O L L O010⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭M M 0k λ=< 方法二(反证法)若∀≠X 0,都有T0≥X AX ,由A 为实对称阵,则A 为半正定矩阵,故||0≥A 与||0<A 矛盾.7.设n 元实二次型AX X T=f ,证明f 在条件122221=+++n x x x Λ下的最大值恰为方阵A 的最大特征值.解:设f n 是λλλ,,,21Λ的特征值,则存在正交变换=X PY ,使2222211T T T )(n n y y y f λλλ+++===ΛY AP P Y AX X设k λ是n λλλ,,,21Λ中最大者,当122221T =+++=n x x x ΛX X 时,有122221T T T T =+++===n y y y ΛY Y PY P Y X X因此k n k n n y y y y y y f λλλλλ≤+++≤+++=)( 222212222211ΛΛ这说明在22221n x x x +++Λ=1的条件下f 的最大值不超过k λ.设 TT 10)0.,0,1,0,,0(),,,,(ΛΛΛΛ==n k y y y Y则 10T0=Y Yk n n k k y y y y f λλλλλ=+++++=22222211ΛΛ令00PY X =,则1T 00T0==Y Y X X并且k f λ===0T T 00T00)()(Y AP P Y AX X X这说明f 在0X 达到k λ,即f 在122221=+++n x x x Λ条件下的最大值恰为方阵A 的最大特征值.8.设A 正定,P 可逆,则T P AP 正定.证:因为A 正定,所以存在可逆矩阵Q ,使T=A Q Q , 于是 TTTT()==P AP P Q QP QP QP ,显然QP 为可逆矩阵,且T T T T ()()==P AP QP QP P AP ,即T P AP 是实对称阵,故T P AP 正定.9.设A 为实对称矩阵,则A 可逆的充分必要条件为存在实矩阵B ,使AB +A B T 正定.证:先证必要性取1-=B A ,因为A 为实对称矩阵,则2E A A E A B AB =+=+-T 1T )(当然A B AB T+是正定矩阵. 再证充分性,用反证法.若A 不是可逆阵,则r (A )<n ,于是存在00,≠=X AX 使00因为A 是实对称矩阵,B 是实矩阵,于是有0 )()()(0T T 00T 00T T 0=+=+AX B X BX AX X A B AB X这与AB T+AB B A 是正定矩阵矛盾.10.设A 为正定阵,则2*13-++A A A 仍为正定阵.证:因为A 是正定阵,故A 为实对称阵,且A 的特征值全大于零,易见2*1,,-A A A全是实对称矩阵,且它们的特征值全大于零,故2*1,,-A A A 全是正定矩阵,2*13-++A A A 为实对称阵. 对∀≠X 0,有T 2*1T 2T *T 1(3)0--++=++>X A A A X X A X X A X X A X即 2*13-++A A A 的正定矩阵.11.设A 正定,B 为半正定,则+A B 正定.证:显然,A B 为实对称阵,故+A B 为实对称阵. 对∀≠X 0,T0>X AX ,T 0≥X BX ,因T ()0+>X A B X ,故+A B 为正定矩阵.12.设n 阶实对称阵,A B 的特征值全大于0,A 的特征向量都是B 的特征向量,则AB 正定.证:设,A B 的特征值分别为,(1,,)i i i n λμ=L . 由题设知0,0,1,,i i i n λμ>>=L .因为A 是实对称矩阵,所以存在正交矩阵1(,,,,)i n =P P P P L L ,使T 1diag(,,,,)i n λλλ=P AP L L即 ,i i i i λ=AP P P 为A 的特征向量,1,,i n =L .由已知条件i P 也是B 的特征向量,故1,,,i i ii i n μ==BP P L L因此 ()i i i i i i μλμ==ABP A P P ,这说明i i λμ是AB 的特征值,且0i i λμ>,1,,i n =L .又因为 T 111diag(,,,,),i i n n λμλμλμ-==ABP P P P L L .故 11diag(,,,,)i i n n λμλμλμ=AB P P L L ,显然AB 为实对称阵,因此AB 为正定矩阵. 13.设n n ij a ⨯=)(A 为正定矩阵,n b b b ,,,21Λ为非零实数,记()ij i j n n a b b ⨯=B则方阵B 为正定矩阵.证:方法一 因为A 是正定矩阵,故A 为对称矩阵,即ji ij a a =,所以i j ji j i ij b b a b b a =,这说明B 是对称矩阵,显然211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫⎪ ⎪=⎪ ⎪ ⎪⎝⎭B L L M M M L =1111110000n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L L MO M M O M MO M L L L 对任给的n 维向量1(,,)T0n x x =≠X L ,因n b b b ,,,21Λ为非零实数,所以),,(11n n x b x b ΛT 0≠,又因为A 是正定矩阵,因此有1111110000T T n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭LL L MO MM O M MO M L LL X BX X X =),,(11n n x b x b Λ1111n n nn a a a a ⎛⎫ ⎪ ⎪⎝⎭LM OM L 11n n b x b x ⎛⎫ ⎪⎪⎝⎭M 0>即B 是正定矩阵.方法二 记211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭B L L MM M L 则因为A 是实对称矩阵,显然B 是实对称矩阵,B 的k 阶顺序主子阵k B 可由A 的阶顺序主子阵分别左,右相乘对角阵100n b b ⎛⎫⎪ ⎪⎝⎭L MO ML 而得到,即=k B 1111110000k k k kk k a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L L MO M M O M MO M L L L计算k B 的行列式,有012>=∏=k k A B ni i b故由正定矩阵的等价命题知结论正确.14.设A 为正定矩阵,B 为实反对称矩阵,则0>+B A .证:因为M 是n 阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M 的特征值及特征向量写成复数形式,进一步可以证明对于n 阶实矩阵M ,如果对任意非零列向量X ,均有0T >MX X可推出M 的特征值(或者其实部)大于零. 由于M 的行列式等于它的特征值之积,故必有0>M .因为A 是正定矩阵,B 是反对称矩阵,显然对任意的 非零向量X ,均有,0)(T >+X B A X而A +B 显然是实矩阵,故0>+B A .15.设A 是n 阶正定矩阵,B 为n ⨯m 矩阵,则r (B TAB )=r (B ).证:考虑线性方程组T00==BX B ABX 与,显然线性方程组0=BXT 0=B ABX 的解一定是的解.考虑线性方程组T0=B ABX ,若0X 是线性方程组T 0=B ABX 的任一解,因此有0T 0=B ABX .上式两端左乘有T0XT 00()()0=BX A BX因为A 是正定矩阵,因此必有00=BX ,故线性方程组0=BX 与 T0=B ABX 是同解方程组,所以必有r (B T AB )= r (B ).16.设A 为实对称阵,则存在实数k ,使||0k +>A E . 证:因为A 为实对称阵,则存在正交矩阵P ,使11diag(,,,,)i i λλλ-=P AP L L .其中i λ为A 的特征值,且为实数,1,,2i =L . 于是11diag(,,,,)i n λλλ-=A P P L L11||||||i n kk kkλλλ-++=++A E P P OO1()ni i k λ==+∏取1max{||1}i i nk λ≤≤=+,则1()0nii k λ=+>∏,故 ||0k +>A E .17.设A 为n 阶正定阵,则对任意实数0k >,均有||nk k +>A E .证:因为A 为正定矩阵,故A 为实对称阵,且A 的特征值0,1,,i i n λ>=L . 则存在正交矩阵P ,使1111,iin n λλλλλλ--⎛⎫⎛⎫⎪⎪⎪⎪⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP A P P O O OO于是对任意0k >,有11||||||i n kk kkλλλ-++=++A E P P OO1()n i i k λ==+∏1ni k =>∏n k =.18.设A 为半正定阵,则对任意实数0k >,均有||0k +>A E . 证:因为A 为半正定矩阵,故A 为实对称矩阵,且A 的特征值0i λ≥,1,,i n =L . 则存在正交矩阵P ,使11diag(,,,,)i n λλλ-=P AP L L ,11diag(,,,,)i n λλλ-=A P P L L于是对任意0k >,有11||||diag(,,,,)||i n k k k k λλλ-+=+++A E P PL L 1()ni i k λ==+∏n k ≥0>.19.A 为n 阶实矩阵,λ为正实数,记Tλ=+B E A A ,则B 正定. 证:TTTT()λλ=+=+=B E A A E A A B ,故B 是实对称矩阵. 对∀≠X 0,有(,)0,(,)0>≥X X AX AX ,因此有TTT()λ=+X BX X E A A X T T Tλ=+X X X A AX (,)(,)λ=+X X AX AX 0>故 Tλ=+B E A A 为正定矩阵.20.A 是m ⨯n 实矩阵,若A A T 是正定矩阵的充分必要条件为A 是列满秩矩阵. 证:先证必要性方法一设A A T 是正定矩阵,故00∀≠X ,有0)()()(0T 00T T 0>=AX AX X A A X由此00≠AX ,即线性方程组0=AX 仅有零解,所以r (A )=n ,即A 是列满秩矩阵.方法二因为A A T是正定矩阵,故r(A A T)=n ,由于n r r n ≤≤≤)()(T A A A所以r (A )=n . 即A 是列满秩矩阵.再证充分性:因A 是列满秩矩阵,故线性方程组仅有零解,0∀≠X ,X 为实向量,有0≠AX .因此0),()()()(T T T >==AX AX AX AX X A A X显然A A T 是实对称矩阵,所以A A T是正定矩阵.21.设A 为n 阶实对称阵,且满足2640-+=A A E ,则A 为正定阵.证:设λ为A 的任意特征值,ξ为A 的属于特征值λ的特征向量,故≠ξ0,则22,λλ==A ξξA ξξ由 2640-+=A A E 有 264-+=A ξAξξ02(64)λλ-+=ξ0由 ≠ξ0,故2640λλ-+=.30λ=>. 因为A 为实对称矩阵,故A 为正定阵.22.设三阶实对称阵A 的特征值为1,2,3,其中1,2对应的特征向量分别为T T 12(1,0,0),(0,1,1)==ξξ,求一正交变换=X PY ,将二次型Tf =X AX 化成标准形.解:设T3123(,,)x x x =ξ为A 的属于特征值3的特征向量,由于A 是实对称矩阵,故123,,ξξξ满足正交条件12312310000110x x x x x x ⋅+⋅+⋅=⎧⎨⋅+⋅+⋅=⎩ 解之可取3(0,1,1)=-ξ,将其单位化有T T T123(1,0,0),,===P P P令123100(,,)0⎛⎫⎪⎪⎪== ⎪⎪⎝P P P P.则在正交变换=X PY下,将f化成标准形为T T T222123()23f y y y===++X AX Y P AP Y23.设1222424aa-⎛⎫⎪=- ⎪⎪⎝⎭A二次型Tf=X AX经正交变换=X PY化成标准形239f y=,求所作的正交变换.解:由f的标准形为239f y=,故A的特征值为1230,9λλλ===.故2122||24(9)24aaλλλλλλ---=--=----E A令0λ=,则12224024aa----=---解之4a=-.由此122244244-⎛⎫⎪=--⎪⎪-⎝⎭A对于12λλ==有1221220244000244000---⎛⎫⎛⎫⎪ ⎪-=-→⎪ ⎪⎪ ⎪--⎝⎭⎝⎭E A可得A的两个正交的特征向量12222,112-⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ对于39λ=,可得A 的特征向量为122⎛⎫ ⎪- ⎪ ⎪⎝⎭将特征向量单位化得1232211112,1,2333122-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P P P则1232211(,,)2123122-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P P P P 为正交矩阵, 正交变换=X PY 为22112123122-⎛⎫ ⎪=- ⎪ ⎪⎝⎭X Y . 注:因特征向量选择的不同,正交矩阵P 不惟一.24.已知二次型22212312132(1)22f x x k x kx x x x =++-++正定,求k .解:二次型的表示矩阵1120101kk k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A由A 正定,应有A 的各阶顺序主子式全大于0. 故 102||0k k A ⎧>⎪⎨⎪>⎩,即2220(2)0k k k k ⎧-<⎪⎨-->⎪⎩. 解之 10k -<<.25.试问:三元方程2221231213231233332220x x x x x x x x x x x x +++++---=,在三维空间中代表何种几何曲面.解:记222123121323123333222f x x x x x x x x x x x x =+++++---则 111232233311(,,)131(1,1,1)113x x f x x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=+--- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设 311131113⎛⎫ ⎪= ⎪ ⎪⎝⎭A .则2||(2)(5)λλλ-=--E A . 故A 的特征值为1232,5λλλ===.对于122λλ==,求得特征向量为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.由Schmidt 正交化得1212111,201⎛⎫- ⎪-⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ββ.对于35λ=得特征向量3111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,标准化得123,,0⎛⎛ ⎪=== ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭P P P 令123(,,)0⎛ ==⎝P P P P则在正交变换=X PY 下2221233225f y y y =++于是0f =为2221233225(1020y y y ++-= 为椭球面.26.求出二次型222123123123(2)(2)(2)f x x x x x x x x x =-+++-+++-的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有2221231213234442f x x x x x x x x x =++--+2221231213234424x x x x x x x x x +++-+-2221231213234244x x x x x x x x x ++++--222123121323666666x x x x x x x x x =++---2221231213236()x x x x x x x x x =++---2221232323113336[()]22442x x x x x x x =--++-22123231196()()222x x x x x =--+- 令 1123223331122y x x x y x x y x⎧=--⎪⎪=-⎨⎪=⎪⎩即 11223311122011001y x y x y x ⎛⎫--⎪⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则可逆变换为1122331112011001x y x y x y ⎛⎫ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭在此可逆线性变换下f 的标准形为2212962f y y =+. 27.用初等变换和配方法分别将二次型(1)222112412142432442f x x x x x x x x x =--++-+ (2)2122313262f x x x x x x =-+化成标准形和规形,并分别写出所作的合同变换和可逆变换. 解:先用配方法求解(1)2221112142424(44)322f x x x x x x x x x =-+--++2221242424(22)66x x x x x x x =--+++-222124244(22)(3)3x x x x x x =--++--令 11242243344223y x x x y x x y x y x =-+⎧⎪=-⎪⎨=⎪⎪=⎩ 即11242243344243x y y y x y y x y x y =++⎧⎪=+⎪⎨=⎪⎪=⎩令 1204010300100001⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型f 经可逆线性变换=x Py 化成标准形22211243f y y y =-+-若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即11223344y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 则原二次型1f 经可逆线性变换=x PQz 化成规形2221124f y y y =-+-.(2)先线性变换11221233x y y x y y x y=+⎧⎪=-⎨⎪=⎩原二次型化成22212132313232()6622f y y y y y y y y y y =--+++221213232248y y y y y y =--+2221322332()282y y y y y y =--+-222132332()2(2)6y y y y y =---+令113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,即113223332y z z y z z y z =+⎧⎪=+⎨⎪=⎩. 令1110110001⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,2101012001⎛⎫ ⎪= ⎪⎪⎝⎭P则原二次型2f 经可逆线性变换12=x P P z 化成标准形2222123226f z z z =-+若再令112233w w w ⎧=⎪⎪=⎨⎪=⎪⎩ 即11223322z w z w z w ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令22⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎝⎭Q则原二次型2f 经可逆线性变换12=x P P Qw 化成规形2222123f w w w =-+.用初等变换法求解(1)设1202230100002102--⎛⎫⎪- ⎪=⎪⎪ ⎪-⎝⎭A41202100023010100()0000001021020001--⎛⎫⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭A E M2121221021000010321000000001023020001r r c c +⨯+⨯--⎛⎫⎪- ⎪−−−→⎪⎪⎪--⎝⎭4141(2)(2)10001000010321000000001003062001r r c c +-⨯+-⨯-⎛⎫⎪- ⎪−−−−→ ⎪ ⎪ ⎪--⎝⎭42423310001000010021000000001000034301r r c c +⨯+⨯-⎛⎫ ⎪⎪−−−→ ⎪ ⎪ ⎪-⎝⎭331000100001002100000000100001033r c -⎛⎫⎪⎪ ⎪→- ⎝⎭令 T11000210000104301⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P ,T21000210000100⎛⎫ ⎪⎪ ⎪=P则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211233f y y y =-+-. 二次型经过可逆线性变换2=x P z 化成规形2221124f z z z =-+-.(2)设011103130⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A3011100()103010130001⎛⎫⎪=- ⎪ ⎪-⎝⎭A E M3232(1)(1)010100103010036011r r c c +-⨯+-⨯⎛⎫⎪−−−−→- ⎪ ⎪--⎝⎭ 313133010100100010006311r r c c +⨯+⨯⎛⎫ ⎪−−−→ ⎪ ⎪-⎝⎭1212210100100010006311r r c c ++⎛⎫⎪−−−→ ⎪ ⎪-⎝⎭21211()21()2200110111000222006311r r c c +-⨯+-⨯⎛⎫⎪⎪−−−−→-- ⎪ ⎪-⎝⎭112233,,,10000100001266r c r c r c ⎛⎫⎪ ⎪ ⎪→- ⎪ - ⎝⎭令 T111011022311⎛⎫ ⎪ ⎪=-⎪ ⎪-⎝⎭P ,T200⎛⎫ ⎪ ⎪ ⎪= ⎪⎝P 则原二次型2f 经过可逆线性变换1=x P y 化成标准形22221231262f y y y =-+ 二次型经过可逆线性变换2=x P z 化成规形2222123f z z z =-+28.用三种不同方法化下列二次型为标准形和规形.(1)2221122332343f x x x x x =+++(2)222221234121423342222f x x x x x x x x x x x x =++++--+解:先用配方法求解(1)222112233423()33f x x x x x =+++22212332523()33x x x x =+++ 令 112233323y x y x x y x =⎧⎪⎪=+⎨⎪=⎪⎩ 即 112233323x y x y y x y =⎧⎪⎪=-⎨⎪=⎪⎩令 1002013001⎛⎫⎪⎪=- ⎪ ⎪⎝⎭P则二次型1f 经可逆线性变换=x Py 化成标准形 22211235233f y y y =++ 若再令1122333z z z y ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩ 即1122335y z y z y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩ 令35⎫⎪ ⎪ ⎪= ⎪ ⎝⎭Q原二次型1f 经可逆线性变换=x PQz 化成规形2221123f z z z =++.(2)22222112142342334(22)22f x x x x x x x x x x x x =+-+++-+ 221243233424()222x x x x x x x x x x =+-+-++ 2222124324244()()(2)3x x x x x x x x x =+-+-+--+令 11242243234442y x x x y x x y x x x y x =+-⎧⎪=-⎪⎨=-++⎪⎪=⎩ 即11242243234442x y y y x y y x y y y x y =--⎧⎪=+⎪⎨=++⎪⎪=⎩令 110101020*******--⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型2f 经可逆线性变换=x Py 化成标准形2222212343f y y y y =-++若再令11223344z y z yz y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即112233443y z y z y z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩ 令1113⎛⎫ ⎪⎪⎪= ⎪⎪ ⎪⎝⎭Q 原二次型2f 经可逆线性变换=x PQz 化成规形222221234f z z z z =-++. 用初等变换法求解(1)设200032023⎛⎫ ⎪= ⎪ ⎪⎝⎭A3200100()032010023001⎛⎫ ⎪= ⎪ ⎪⎝⎭A E M32322()32()320010003001052000133r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪- ⎪⎝⎭112310000010000010155r c r c ⎛⎫ ⎪ ⎪⎪→ ⎪ - ⎝⎭令TT1200100010,0020130⎫⎪⎛⎫ ⎪⎪ ⎪⎪== ⎪⎪ ⎪ - ⎪ ⎝⎭⎝P P 则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211235233f y y y =++. 二次型经过可逆线性变换2=x P z 化成规形2221123f z z z =++.(2)设1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A 41101100011100100()0111001010110001-⎛⎫ ⎪- ⎪= ⎪- ⎪ ⎪-⎝⎭A E M2121(1)(1)10011000001111000111001011110001r r c c +-⨯+-⨯-⎛⎫ ⎪-- ⎪−−−−→ ⎪- ⎪ ⎪-⎝⎭414110001000001111000111001001101001r r c c ++⎛⎫⎪-- ⎪−−−→ ⎪- ⎪ ⎪⎝⎭ 323210001000001111000112111001201001r r c c ++⎛⎫ ⎪-- ⎪−−−→ ⎪--- ⎪ ⎪⎝⎭343410001000000111000032011101201001r r c c ++⎛⎫ ⎪- ⎪−−−→ ⎪ ⎪ ⎪⎝⎭ 3232(2)(2)10001000000111000030211101001001r r c c +-⨯+-⨯⎛⎫⎪- ⎪−−−−→ ⎪- ⎪ ⎪⎝⎭242410001000020101010030211101001001r r c c ++⎛⎫⎪ ⎪−−−→ ⎪- ⎪ ⎪⎝⎭42421()21()210001000020001010030211111100010222r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→ ⎪- ⎪ ⎪-- ⎪⎝⎭2233441000100001000000100001022r cr cr c⎛⎫⎪→--⎝⎭令T1100001012111111022⎛⎫⎪⎪= ⎪-⎪⎪-⎪⎝⎭PT210000022⎛⎫⎪=-⎝⎭P则原二次型2f可经可逆线性变换1=x P y化成标准形2222212341232f y y y y=++-.2f可经可逆线性变换2=x P z化成规形222221234f z z z z=++-用正交变换法求解(1)1f的矩阵为200032023⎛⎫⎪= ⎪⎪⎝⎭A,由200||032(1)(2)(5)023λλλλλλλ--=--=-----E A,知A的特征值为1,2,5.对11λ=,解123100002200220xxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,取111⎛⎫⎪= ⎪⎪-⎝⎭T,单位化1⎛⎫⎪⎪⎪= ⎪⎝P,对22λ=,解123000001200210xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得1231xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,取21⎛⎫⎪= ⎪⎪⎝⎭P,对35λ=解123300002200220xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭取311⎛⎫⎪= ⎪⎪⎝⎭T,单位化得322⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎝⎭P,令0102222⎛⎫⎪⎪⎪= ⎪⎪⎪- ⎪⎝⎭P,则P为正交阵,经正交变换=X PY,原二次型f化为T22212325f y y y==++X AX.(2)2f的矩阵为1101111001111011-⎛⎫⎪-⎪=⎪-⎪⎪-⎝⎭A由11011110||01111011λλλλλ-----=----E A2(1)(3)(1)λλλ=+--知A的特征值为1,3,1,1-.对11λ=-,解12342101012100,0121010120xxxx--⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-- ⎪⎪ ⎪=⎪⎪ ⎪--⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭得12341111xxkxx⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪-⎪ ⎪⎪⎪⎝⎭⎝⎭,取11111⎛⎫⎪- ⎪=⎪-⎪⎪⎝⎭T单位化得112121212⎛⎫⎪⎪⎪-⎪= ⎪⎪-⎪⎪⎪⎝⎭P,对23λ=,解12342101012100,0121010120xxxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪- ⎪⎪ ⎪=⎪⎪ ⎪-⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭得12341111xxkxx-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭.取 21111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭T 单位化得 212121212⎛⎫- ⎪ ⎪ ⎪- ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P . 对341λλ==,解12340101010100,010*******x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12123410011001x x k k x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取 341001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭T T , 再令340202,0202⎛⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎝⎭⎝⎭P P 令11022110222110222110222⎛⎫- ⎪ --⎪= ⎪- ⎪ ⎝⎭P ,则P 为正交阵,经正交变换=X PY , 原二次型f 化为T 222212343f y y y y ==-+++X AX .29.判断下列二次型正定,负定还是不定.(1)2221223121326422f x x x x x x x =---++解:二次型1f 的矩阵为211160104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭AA 的各阶顺序全子式2112120,110,1603801614---<=>-=-<--. 所以二次型1f 是负定二次型.(2)22222123412131424343919242612f x x x x x x x x x x x x x x =+++-++--解:二次型2f 的矩阵为11211303209613619-⎛⎫ ⎪--⎪= ⎪- ⎪ ⎪--⎝⎭A A 的各阶顺序主子式1110,2013->=>-,1121306029--=>,11211303240209613619---=>---所以二次型2f 是正定二次型.(3)222231234131423147644f x x x x x x x x x x =+++++-解:二次型3f 的矩阵为10320120321402007⎛⎫⎪- ⎪=⎪- ⎪ ⎪⎝⎭A A 的各阶顺序主子式1010,1001>=>,103012103214-=>-,1320120330321402007-=-<-. 所以二次型3f 是不定二次型.30.求一可逆线性变换=X CY ,把二次型2221123121325424f x x x x x x x =++--化成规形2221123f y y y =++,同时也把二次型22221231313233322242f x x x x x x x x x =++--- 化成标准形2222112233f k y k y k y =++.解:记T1f =X AX ,其中212150204--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A31213121121220021290115022040121001112010*********r r r r c c c c ++++⎛⎫ ⎪--⎛⎫ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪--⎛⎫ ⎪=−−−→ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭A E 323229292009002160091101292019001r r c c ++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123123343410001000156610363004r r r c c c ⨯⨯⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪−−−→⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭取5661036004⎛⎫⎪⎪⎪⎪= ⎪ ⎪3 ⎪ ⎪⎝⎭P ,则T =P AP E 记 T2f =X BX,其中3012032122⎛⎫- ⎪ ⎪=- ⎪ ⎪-- ⎪⎝⎭B则T150036601210032061225133006644⎛⎫⎫⎪⎪⎛⎫-⎪⎪ ⎪ ⎪⎪ ⎪ ⎪==-⎪ ⎪ ⎪ ⎪ ⎪--⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭B P BP5066104636113100234⎛⎫⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭314413444142⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪-⎪⎪⎭2311113442⎛⎫== ⎪⎭B 其中231132⎛⎫ = ⎪⎭B 显然12,B B 都是实对称矩阵,它们的特征值为14倍的关系,特征向量相同.231||13λλλ---=--EB 30(3)14)1(3)04)4λλλλλ---=----2(4)0λλ=-=则2B 的特征值为230,4λλλ===,故1B 的特征值为0,1,1. 以下求2B 的特征向量.对于10λ=,求得11⎛ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭α,单位化后11212⎛⎫- ⎪ ⎪ ⎪= ⎪ ⎪γ 对于234λλ==,求得2311,001⎛⎫⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα由Schmidt 标准正交化后得23121,20⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭γγ令123112211(,,)220⎛⎫- ⎪ ⎪ ⎪==-⎪ ⎪Q γγγ. 则Q 为正交矩阵,且有T T T 10()11⎛⎫ ⎪== ⎪ ⎪⎝⎭Q B Q Q P BP Q令511662*********304⎛⎫⎛⎫⎪- ⎪⎪ ⎪⎪ ⎪⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭CPQ 23130⎫⎪⎪=⎪⎪⎭于是 TTT==Q P APQ Q EQ E即 T=C AC ET 011⎛⎫ ⎪= ⎪ ⎪⎝⎭C BC在可逆线性变换=X CY 下2221123f y y y =++22223f y y =+.(注:经验算本题所得C 是正确的,需要注意的是C 并不惟一)31.求一可逆线性变换=X PY ,将二次型f 化成二次型g .2221231213232938410f x x x x x x x x x =+++--222123121323236448g y y y y y y y y y =++--+解:T f =X AX ,242495253-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A , Tg =Y BY ,222234246--⎛⎫⎪=- ⎪ ⎪-⎝⎭B将,A B 分别作合同变换如下:21313221323122242200200495011010253011000100121121010010011001001001r r r r r r c c c c c c -++-++-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E 在可逆线性变换1=X C Z 下22122f z z =+ 其中 1121011001--⎛⎫ ⎪= ⎪ ⎪⎝⎭C 21313221323122220020023401201024602400100111111010010012001001001r r r r r r c c c c c c ++++++--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B E 在可逆线性变换2=YC Z 下22122g z z =+.其中 2111012001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭C由 12-=Z C Y 得1112-==X C Z C C Y令 1112121111136011012003001001001-------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭P C C 在可逆线性变换=X PY 下22122f g z z ==+.32.A 是正定矩阵,AB 是实对称矩阵,则AB 是正定矩阵的充分必要条件是B 的特征值全大于零.证:先证必要性.设λ 为B 的任一特征值,对应的特征向量为,,0≠X X 则 且有X BX λ=用A X T 左乘上式有AX X X AB X T T )(λ=因为AB ,A 都是正定矩阵,故0,0)(T T >>AX X X AB X于是0>λ,即B 的特征值全大于零.再证充分性.因为A 是正定矩阵,所以A 合同于单位矩阵,故存在可逆矩阵P ,使E AP P =T (1)由AB 是对称矩阵,知P AB P )(T也是实对称矩阵,因此存在正交矩阵Q ,使),,,,diag(])([1T T n i μμμΛΛ==D Q P AB P Q (2)即有),,,,diag()()(1TT n i μμμΛΛ==D PQ B A P Q (3)其中n i μμμ,,,,1ΛΛ是P AB P )(T的特征值. 在(1)的两端左乘TQ ,右乘Q 有E PQ A P Q E Q AP P Q ==))(()(T T T T 即这说明)()(TTPQ A P Q 与互逆,也就是说1T T )()(-=PQ A P Q将上式代入(3),说明矩阵B 与对角阵D 相似,故它们的特征值相等;由条件知B 的特征值全大于零,因此对角阵D 的特征值也全大于零. 由(2)知AB 与D 合同,因此AB 的特征值全大于零.33.设,A B 为n 阶实正定阵,证明:存在可逆阵P ,使T =P AP E 且T 12diag(,,,)n λλλ=P BP L ,其中120n λλλ≥≥≥>L 为||0λ-=A B 的n 个实根.证:因A 正定,故存在可逆矩阵1P ,使T 11=P AP E因B 正定,故存在可逆矩阵2P ,使T 22=B P P于是T T T T 1112212121()()==P BP P P P P P P P P易见T11P BP 为正定矩阵,不妨设它的特征值为120n λλλ≥≥≥>L .则 TTT11111||||λλ-=-E P BP P AP P BP T11||||||λ=-P A B P 故 T11||0||0λλ-=⇔-=E P BP A B 即 120n λλλ≥≥≥>L 为||0λ-=A B 的几个实根.由 T11P BP 为正定阵,知其为实对称矩阵,所以存在正交矩阵Q ,使T T 1112()diag(,,,)n λλλ=Q P BP Q L令 1=P PQ ,则 TT 12,diag(,,,)n λλλ==P AP E P BP L34.设A 为n 阶实正定阵,B 为n 阶实半正定阵,则||||+≥A B A . 证:因为A 是n 阶正定矩阵,所以存在n 阶可逆矩阵C ,使得T =C AC E . 因为B 是n 阶半正定阵,则TC BC 仍是实对称半正定阵,故存在正交阵Q ,使得1T T T 1()()diag(,,,,)i n D -===Q C BC Q Q C BC Q L L λλλ其中 0,1,,i i n λ≥=L 为TC BC 的特征值,且有T T ()=Q C AC Q E令=P CQ ,则P 为可逆矩阵,于是T T ,==P AP E P BP DT T T ()+=+=+P A B P P AP P BP E D上式两端取行列式,得T1||||||||(1)1ni i λ=+=+=+≥∏P A B P E D ||||||T =P A P因 T||||0=>P P , 故 ||||+≥A B A .35.设,A B 均为实正定阵,证明:方程||0λ-=A B 的根全大于0.证:由33题知T11||0||0λλ-=⇔-=E P BP A B . 其中T11P BP 为正交矩阵,它的特征值0i λ>,1,,i n =L ,故||0λ-=A B 的根全大于0.36.设A 为n 阶正定矩阵,试证:存在正定矩阵B ,使2B A =. 证:因为A 是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P ,使12-1T n λλλ⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭O P AP P AP D其中n λλλ,,,21Λ为A 的n 个特征值,它们全大于零.令),,,2,1(n i i i Λ==λδ 则21111222222n n n n δλδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪=== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭O O O O D而 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪⎪⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭O O A PDP P P 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭O O P P P P 令 B =12Tn δδδ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭O P P显然B 为正定矩阵,且2B A =.37.设A 为n 阶可逆实方阵,证明:A 可表示为一个正定阵与一正交阵的乘积.证:因为A 是n 阶可逆实方阵,故TA A 是正定矩阵,所以存在n 阶正定矩阵B ,使T 2=A A B .于是有1T 11T T 11T 21()()()()------===AB AB B A AB B B B E这说明1-AB 是正交阵. 令 1-=ABQ则 =A QB ,其中Q 是正交矩阵,B 是正定矩阵.38.A 、B 为n 阶正定矩阵,则AB 也为n 阶正定矩阵的充分必要条件是: AB =BA ,即A 与B 可交换.证:方法一 先证必要性.由于A 、B 、AB 都是正定矩阵,所以知它们都是对称矩阵,因此有AB AB B B A A ===T T T )(,,于是BA A B AB AB ===T T T )(即A 与B 可交换.再证充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.因为,A B 是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P 、Q ,使Q Q B P P A T T ,==于是Q PQ P AB T T =上式左乘Q ,右乘1-Q 得)()()(T T T T T 1PQ PQ PQ QP Q AB Q ==-这说明AB 与对称矩阵)()(TTT PQ PQ 相似;因为P TQ 是可逆矩阵,故矩阵)()(T T T PQ PQ 是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零.综合上述知AB 正定. 方法二必要性同方法一,以下证明充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.由于A 正定,所以存在可逆矩阵Q ,使A=Q TQ于是T T T T 1()λλλ--=-=-E AB E Q QB E Q QBQ QT T 1T T T 1T T T 1T()()()()λλλ---=-=-=-Q E Q Q QBQ Q Q E QBQ Q E QBQT 00λλ-=⇔-=E AB E QBQ这说明AB 与TQBQ 有相同的特征值.因为B 是正定矩阵,易见TQBQ 也是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零.综合上述知AB 正定.39.设A 、B 为实对称矩阵,且A 为正定矩阵,证明:AB 的特征值全是实数. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=, 于是有T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ即T||0||0λλ-=⇔-=E AB E QBQ .因为B 是实对称矩阵,所以TQBQ 也是实对称矩阵,因此它的特征值都是实数,故AB 的特征值也都是实数.40.设A 是正定矩阵,B 是实反对称矩阵,则AB 的特征值的实部为零. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ因为B 是实反对称矩阵,所以TQBQ 也是实反对称矩阵,因此它的特征值实部为零,故AB 的特征值实部也为零.41.设A 是正定矩阵,B 是半正定的实对称矩阵,则AB 的特征值是非负的实数. 证:由于A 是正定的,所以1-A 也是正定的,于是存在可逆矩阵P ,使得P P A T 1=-,因此1T T T 11T T 111T 11T 111T 1()()()()()λλλλλλλλ-------------=-=-=-=-=-=-=-E AB A A B A P P B A P E P BP PA P P E P BP A A E P BP E P BP E P BP即0)(01T 1=-⇔=---BP P E AB E λλ.由于B 是半正定的实对称矩阵,故1T1)(--BPP 是半正定的实对称矩阵,因此0)(1T 1=---BP P E λ的根是非负实数.于是0=-AB E λ的根也是非负实数,即AB的特征值是非负的实数.42.求证实二次型∑∑==++=n r ns sr n xx s r krs x x f 111)(),,(Λ的秩和符号差与k 无关.证:二次型的矩阵为22334(1)2344652(2)3465963(3)(1)2(2)3(3)22k k k nk n k k k nk n k k k nk n nk n nk n nk n n k n +++++⎛⎫ ⎪+++++ ⎪+++++= ⎪⎪ ⎪+++++++⎝⎭L L L M M M M L A。
线性代数课后习题与答案
《线性代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式: (1)2345 (2)2163- (3)xxx x cos sin sin cos - (4)11123++-x x x x(5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 100110011001---.4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)335111243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
线性代数 第六章 二次型 例题
2
2
2
0 3. 设 A= 1 0 0
1 0 0 0 0 0 已知 A 一个特征值为 3, (1)求 y,(2)求可逆矩阵 P 及对角阵 Λ, 0 ������ 1 0 1 2
������
使(AP) AP=Λ。
2 1 3 ������ 4. 设 A= −1 1 0 求可逆矩阵 P 及对角阵 Λ,使(AP) AP=Λ。 −1 0 − 1
线性代数第六章二次型例题
1. 用配方法将以下二次型化为标准型,并写出所用可逆线性变换 (1) (2) (3) (4) (5) f(������1 , ������2 , ������3 )=������1 2 +2������2 2 +2������1 ������2 -2������1 ������3 f(������1 , ������2 , ������3 )=������1 2 +2������2 2 +4������3 2 + 2������1 ������2 +4������2 ������3 f(������1 , ������2 , ������3 )=2������1 2 +5������2 2 +4������3 2 + 4������1 ������2 -4������1 ������3 -8������2 ������3 f(������1 , ������2 , ������3 )=������1 ������2 -4������2 ������3 f(������1 , ������2 , ������3 )=������1 2 +4������2 2 +4������3 2 − 4������1 ������2 + 4������1 ������3 -4������2 ������3
线性代数第六章二次型试题及答案
第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii iij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。
实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。
规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只1,-1,0,称为二次型的规范型。
二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。
线性代数第 六章二次型试题及答案
特征值相同的实对称矩阵A和B一定相似,因为实对称矩阵 都能相 似对角化,特征值相同的实对称矩阵相似于同一个对角阵,根 据相似的传递性,A和B一定相似。
特征值相同的普通矩阵A和B可能相似,也可能不相似。 若A和B都能相似对角化,一定相似。 若一个能对角化,一个不能对角化,一定不相似。 若都不能对角化,可能相似,也可能相似。 例题:已知矩阵A和B,判断能否相似,
Abj=0, j=1,2,…,s b1,b2,…,bs均为Ax=0的解(r(A)+r(B)≤n) 若bj≠0且A为n阶方阵时,bj为对应特征值λj=0的特征向量 A的列向量组线性相关,B的行向量组线性相关。
AB=CA(b1, b2,…, br)=(C1, C2,…, Cr)
Abj=Cj,j=1,2,…,r bj为Ax=Cj的解. C1, C2,…, Cr可由A的列向量组α1, α2,…, αs线性表示.
因为(2,1,2)T是A的特征向量,所以,
,
二、化二次型为标准型
1.用配方法将下列二次型化为标准形,并判断正、负惯性指数的个数, 然后写出其规范形。
(1)Leabharlann 解:先集中含有x1的项,凑成一个完全平方,再集中含有x2的项,凑 成完全平方
=
设,, 标准型:,正惯性指数:,负惯性指数: 规范性:
(2) f(x1,x2,x3)= x12+2x22+2x1x2-2x1x3+2x2x3. 解:f(x1,x2,x3)= (x12+2x1x2-2x1x3)+2x22+2x2x3= 设 ,,标准型: 正惯性指数:,负惯性指数:,规范性: (3) f(x1,x2,x3)= -2x1x2+2x1x3+2x2x3. 解:像这种不含平方项的二次型,应先做线性变换: ,,, 设: , 标准型:,规范性: 2.设二次型f(x1,x2,x3)=X TAX=ax12+2x22-2x32+2bx1x3,(b>0),其中A的特征 值之和 为1, 特征值之积为-12.(1) 求a,b.(2) 用正交变换化f(x1,x2,x3)为标准型。 解:二次型的矩阵:,因为, (2)
线性代数第六章二次型试题及答案-二次型f
第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii i ij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。
实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。
规二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只 1,-1,0,称为二次型的规型。
二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …12 …n 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。
第五章 相似矩阵及二次型 线性代数 含答案
第五章 相似矩阵及二次型5.4.1 基础练习 1. (1223),(3151),(,)αβαβ==∠求.2. 若λ=2为可逆阵A的特征值,则1213A -⎛⎫⎪⎝⎭的一个特征值为 .3. 试证n阶方阵A的满足2A A =,则A的特征值为0或者1.4.已知三维向量空间中,12(111),(121)TTαα==-正交,试求3123,,αααα,使得是三维向量空间的一个正交基.5. 已知向量1(111)T α=,求3R 的一个标准正交基.6. 已知122224242A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,问A 能否化为对角阵?若能对角化,则求出可逆矩阵P ,使1P AP -为对角阵.7. 将二次型222123121323171414448f x x x x x x x x x =++---,通过正交变换x Py =化成标准型.8. 判别二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定?5.4.2 提高练习1. 设n 阶实对称矩阵A 满足2A A =,且A 的秩为r ,试求行列式det(2E -A).2. 设460350361A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭,问A 能否对角化?若能对角化,则求出可逆矩阵P ,使得-1P AP 为对角阵.3. 已知实对称矩阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,分别求出正交矩阵P ,使1P AP -为对角阵. 4. 化二次型()123121323,,f x x x x x x x x x =++为标准形,并求所作的可逆线性变换.5. 设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵ACB⎛⎫= ⎪⎝⎭是否为正定矩阵?6. 判别二次型22256444f x y z xy xz=---++的正定性.7. 判断下列两矩阵A,B是否相似11100111100,111100nA B⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第五章 参考答案5.4.1 基础练习 1.[,]cos ||||||||4αβπθθαβ===∴=2.34. 3.略.4. 设3123()0Tx x x α=≠,则[][]1223,0,,0αααα==,即 12313312321002001x x x x x x x x x α-⎛⎫++==-⎧⎧ ⎪⇒⇒=⎨⎨ ⎪-+==⎩⎩ ⎪⎝⎭5. 设非零向量23,αα都与2α正交,即满足方程11230,0T x x x x α=++=或者,其基础解 系为: 12100,111ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 令 121321101,0,1111ααξαξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1)正交化令 121122121111[,]1,0,[,]11βαβαβαβαββ⎛⎫⎛⎫⎪⎪===-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1323233312321122221[,][,][,]12[,][,][,]21βαβαβαβαββαβββββββ-⎛⎫⎪=--=-= ⎪ ⎪-⎝⎭2)标准化令1||||i i i ςββ=,则1231111,0,2111ςςς-⎛⎫⎛⎫⎛⎫⎪⎪⎪===⎪⎪⎪⎪⎪⎪--⎭⎭⎭6. 由2122224(2)(7)242A E λλλλλλ---=---=--+--得,1232,7λλλ===-将12λ=λ=2代入()1A-λE x=0,得方程组 12312312322024402440x x x x x x x x x --+=⎧⎪--+=⎨⎪+-=⎩解值得基础解系 12200,111αα⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 同理,对3λ=-7,由()3A-λE x=0,求得基础解系()31,2,2Tα=,由于201120112≠,所以123,,ααα线性无关,即A 有3个线性无关得特征向量,因而A 可对角化,可逆矩阵为:123201(,,)012112P ααα⎛⎫⎪== ⎪ ⎪⎝⎭7. 第一步,写出对应得二次型矩阵,并求其特征值 172221442414A --⎛⎫ ⎪=-- ⎪⎪--⎝⎭, ()()2172221441892414A E λλλλλλ---⎛⎫⎪-=---=-- ⎪⎪---⎝⎭,从而A 的全部特征值为1239,18λλλ===。
第六章二次型答案详解
【解析】上课已经证明过,自己看 ppt.
习题 6.5 正交线性替换
1.用正交线性替换化下列二次型为标准形:
x12 2x22 +3x32 4x1x2 4x2 x3
2
【答案】正交线性替换为:
x1 x2 x3
3 2 3 1 3
2 3 1 3 2 3
A 11
2 3
53
0 0
1 2
2 4
0 0
1 0
2 0
,秩为
2
3. 已知二次型 f (x1, x2 , x3 ) 5x12 5x22+cx32 2x1x2 6x1x3 6x2x3 的秩为 2 ,求常数 c 及此二次型
院系
班级
姓名
学号
第六章 二次型
习题 6.1 二次型及其标准形
1. 把下列二次型写成矩阵形式:
(1) f (x1, x2 , x3 ) x12 2x1x2 4x1x3 3x22+x2 x3 +7x32 ; (2) f (x, y, z) x2 4xy 2 y 2+4yz+3z 2 .
1 3 2 3
2 3
y1 y2 y3
,标准形为:
y12
2
y22
5
y32
.
2.已知实二次型 f (x1, x2 , x3 ) 2x12 3x22+3x32 2ax2x3 ,其中 a 0 ,经正交线性替换化成标准形 为 y12 2 y22 +5y32 ,求 a 及所用的正交线性替换.
考研数学三线性代数(二次型)模拟试卷2(题后含答案及解析)
考研数学三线性代数(二次型)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2一2A=0.则下列各标准二次型(1)2y12+2y22 (2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是( ).A.(1).B.(3),(4).C.(1),(3),(4).D.(2).正确答案:C解析:两个二次型可以用正交变换互相转化的充要条件是它们的矩阵相似,也就是特征值一样.从条件可知,A的特征值为0,2,2.(1),(3),(4)这3个标准二次型的矩阵的特征值都是0,2,2.(2)中标准二次型的矩阵的特征值是0,0,2.知识模块:线性代数2.设A.A与B既合同又相似.B.A与B合同但不相似.C.A与B不合同但相似.D.A与B既不合同又不相似.正确答案:A解析:A与B都是实对称矩阵,判断是否合同和相似只要看它们的特征值:特征值完全一样时相似,特征值正负性一样时合同.此题中A的特征值和B的特征值都是4,0,0,0,从而A与B既合同又相似.知识模块:线性代数3.A.A与B既合同又相似.B.A与B合同但不相似.C.A与B不合同但相似.D.A与B既不合同又不相似.正确答案:B 涉及知识点:线性代数4.A=.则( )中矩阵在实数域上与A合同.A.B.C.D.正确答案:D解析:用特征值看:两个实对称矩阵合同它们的特征值正负性相同.|A|=一3,对于2阶实对称矩阵,行列式小于0即两个特征值一正一负,于是只要看哪个矩阵行列式是负数就和A合同.计算得到只有(D)中的矩阵的行列式是负数.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
5.用配方法化下列二次型为标准型(1)f(x1,x2,x3)=x12+2x22+2x1x2—2x1x3+2x2x3.(2)f(x1,x2,x3) =x1x2+x1x3+x2x3.正确答案:(1)f(x1,x2,x3)=x12+2x22+2x1x2—2x1x3+2x2x3 = [x12+2x1x2—2x1x3+(x2一x3)2]一(x2一x3)2+2x22+2x23 =(x1+x2一x3)2+x22+4x2x3一x32 =(x1+x2一x3)2+x22+4x2x3+4x32一5x32=(x1+x2一x3)2+(x2+2x3)2—5x32.原二次型化为f(x1,x2,x3)=y12+y22一5y32.从上面的公式反解得变换公式:变换矩阵(2)这个二次型没有平方项,先作一次变换f(x1,x2,x3) =y12一y22+2y1y3.虽然所得新二次型还不是标准的,但是有平方项了,可以进行配方了:y12一y22+2y1y3=(y1+y3)2一y22一y32则f(x1,x2,x3)=z12一z22一z32.涉及知识点:线性代数6.已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.正确答案:原二次型的矩阵A和化出二次型的矩阵B相似.于是|A|=|B|=10.而|A|=2(9一a2),得a2=4,a=2.A和B的特征值相同,为1,2,5.对这3个特征值求单位特征向量.对于特征值1:得(A—E)X=0的同解方程组得属于1的一个特征向量η1=(0,1,一1)T,单位化得γ1=对于特征值2:得(A一2E)X=0的同解方程组得属于2的一个单位特征向量γ2=(1,0,0)T.对于特征值5:得(A一5E)X=0的同解方程组得属于5的一个特征向量η3=(0,1,1)T,单位化得γ3=令Q=(γ1,γ2,γ3),则正交变换X=QY把原二次型化为y12+2y22+5y32. 涉及知识点:线性代数7.设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为一12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.正确答案:由条件知,A的特征值之和为1,即a+2+(一2)=1,得a=1.特征值之积=一12,即|A|=一12,而|A|==2(一2一b2)得b=2(b>0).则(2)|λE—A|==(λ一2)2(λ+3),得A的特征值为2(二重)和一3(一重).对特征值2求两个单位正交的特征向量,即(A一2E)X=0的非零解.得(A一2E)X=0的同解方程组x1一2x3=0,求出基础解系η1=(0,1,0)T,η2=(2,0,1)T.它们正交,单位化:α1=η1,α2=方程x1一2x3=0的系数向量(1,0,一2)T和η1,η2都正交,是属于一3的一个特征向量,单位化得作正交矩阵Q=(α1,α2,α3),则作正交变换X=QY,则它把f化为Y的二次型f=2y12+2y22一3y32.涉及知识点:线性代数8.已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.正确答案:(1)此二次型的矩阵为则r(A)=2,|A|=0.求得|A|=-8a,得a=0.(2)|λE—A|==λ(λ一2)2,得A的特征值为2,2,0.对特征值2求两个正交的单位特征向量:得(A一2E)X=0的同解方程组x1一x2=0,求出基础解系η1=(0,0,1)T,η2=(1,1,0)T.它们正交,单位化:α1=η1,α2= 方程x1一x2=0的系数向量(1,一1,0)T和η1,η2都正交,是属于特征值0的一个特征向量,单位化得作正交矩阵Q=(α1,α2,α3),则作正交变换X=QY,则f化为Y的二次型f=2y12+2y22.(3)f(X)=x12+x22+2x32+2x1x2=(x1+x2)2+2x32于是f(x1,x2,x3)=0求得通解为:c任意.涉及知识点:线性代数9.二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.正确答案:标准二次型10y12一4y22一4y32的矩阵为则Q-1AQ=QTAQ=B,A和B相似.于是A的特征值是10,一4,一4.(1)Q的第1列α1=是A的属于10的特征向量,其倍η1=(1,2,3)T也是属于10的特征向量.于是A的属于一4的特征向量和(1,2,3)T正交,因此就是方程x1+2x2+3x3=0的非零解.求出此方程的一个正交基础解系η2=(2,一1,0)T,η3=建立矩阵方程A(η1,η2,η3)=(10η1,一4η2,一4η3),用初等变换法解得(2)将η2,η3单位化得α3=α3=则正交矩阵Q=(α1,α2,α3)满足要求.涉及知识点:线性代数10.A=,求作一个3阶可逆矩阵P,,使得PTAP是对角矩阵.正确答案:f(x1,x2,x3)=XTAX=x12+4x22一2x32一4x1x2+4x2x3=(x1一2x2)2一2x32+4x2x3 =(x1一2x2)2一2(x2一x3)2+2x22.原二次型化为f(x1,x2,x3)=y12一2y22+2y32.从上面的公式反解得变换公式:变换矩阵涉及知识点:线性代数11.已知求作可逆矩阵P,使得(AP)TAP是对角矩阵.正确答案:涉及知识点:线性代数12.二次型f(x1,x2,x2)=x12+ax22+x32+2x1x2+2x1x3+2x2x3的正惯性指数为2,a应满足什么条件?正确答案:f(x1,x2,x3)=(x1+x2+x3)2+(a一1)x22,原二次型化为f(x1,x2,x3)=y12+(a—1)y22,则正惯性指数为2a—1>0,即a>1.涉及知识点:线性代数13.设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(x1,x2,…,xn)= (1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?正确答案:(1)由于A是实对称矩阵,它的代数余子式Aij=Aji,,并且A-1也是实对称矩阵,其(i,j)位的元素就是Aij/|A|,于是f(x1,x2,…,xn)=XTA-1X.(2)A-1的特征值和A的特征值互为倒数关系,因此A-1和A 的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A-1和A合同,f(x1,x2,…,xn)和XTAX有相同的规范形.涉及知识点:线性代数14.判断A与B是否合同,其中正确答案:用惯性指数,看它们的正负惯性指数是否都一样.B的正惯性指数为2,负惯性指数为1.A的惯性指数可通过对二次型XTAX进行配方法化标准形来计算.XTAX=x12+4x22一2x32一4x1x2—4x2x3 =(x1一2x2)2—2x32一4x2x3 =(x1一2x2)2—2(x3+x2)2+2x22,则XTAX=y12一2y22+2y32,于是A的正惯性指数也为2,负惯性指数也为1.A与B合同.涉及知识点:线性代数15.二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.①求f(x1,x2,x3)的矩阵的特征值.②如果f(x1,x2,x3)的规范形为y12+y22,求a.正确答案:①f(x1,x2,x3)的矩阵为记B=则A=B+aE.求出B的特征多项式|λE一B|=λ3+λ2—2λ=λ(λ+2)(λ—1),B的特征值为一2,0,1,于是A 的特征值为a一2,a,a+1.②因为f(x1,x2,x3)的规范形为y12+y22时,所以A的正惯性指数为2,负惯性指数为0,于是A的特征值2个正,1个0,因此a=2.涉及知识点:线性代数16.a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?正确答案:就是看a为什么数时它们的矩阵合同.写出这两个二次型的矩阵B的特征值是2正1负.又看出1是A的特征值,于是A的另两个特征值应该1正1负,即|A|<0.求得|A|=6一a2,于是a满足的条件应该为:涉及知识点:线性代数17.已知A是正定矩阵,证明|A+E|>1.正确答案:此题用特征值较简单.设A的特征值为λ1,λ2,…,λn,则A+E的特征值为λ1+1,λ2+1,…,λn+1.因为A正定,所以λi>0,λi+1>1(i=1,2,…,n).于是|A+E|=(λ1+1)(λ2+1)…(λn+1)>1.涉及知识点:线性代数18.已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?正确答案:用顺序主子式.此二次型的矩阵它的顺序主子式的值依次为1,4一λ2,4(2一λ—λ2).于是,λ应满足条件4一λ2>0,2一λ—λ2>0,解出λ∈(一2,1)时二次型正定.涉及知识点:线性代数19.已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?正确答案:记y1=x1+a1x2,y2=x2+a2x3,…,yn=xn+anx1,则简记为Y=AX.则f(x1,x2,…,xn)=YTY=XTATAX.于是,实对称矩阵ATA就是f(x1,x2,…,xn)的矩阵.从而f正定就是ATA正定.ATA正定的充要条件是A可逆.计算出|A|=1+(一1)n-1a1a2…an.于是,f正定的充要条件为a1a2…an≠(一1)n.涉及知识点:线性代数20.设B=(A+kE)2.(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?正确答案:(1)A是实对称矩阵,它可相似对角化,从而B也可相似对角化,并且以B的特征值为对角线上元素的对角矩阵和B相似.求B的特征值:|λE一A|=λ(λ一2)2,A的特征值为0,2,2,于是B的特征值为k2和(k+2)2,(k+2)2.则B~D.(2)当k为≠0和一2的实数时,B是实对称矩阵,并且特征值都大于0,从而此时B正定.涉及知识点:线性代数21.设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.正确答案:用正定的定义证明.显然ATA,BTB都是n阶的实对称矩阵,从而ATA+BTB也是n阶实对称矩阵.由于r(A+B)=n,n元齐次线性方程组(A+B)X=0没有非零解.于是,当α是一个非零n维实的列向量时,(A+B)α≠0,因此Aα与Bα不会全是零向量,从而αT(ATA+BTB)α=αTATAα+αTBTBα=‖Aα‖2+‖Bα‖2>0.根据定义,ATA+BTB正定.涉及知识点:线性代数22.设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.正确答案:“”BTAB是n阶正定矩阵,则r(BTAB)=n,从而r(B)=n.“”显然BTAB是实矩阵,并且(BTAB)T=BTAT(BT)T=BTAB,因此,BTAB是实对称矩阵.因为r(B)=n,所以齐次线性方程组BX=0只有零解,即若X是n维非零实列向量,则BX≠0.再由A的正定性,得到XT(BTAB)X=(BX)TA(BX)>0.由定义知,BTAB正定.涉及知识点:线性代数23.设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A 的特征值.(2)当实数k满足什么条件时A+kE正定?正确答案:(1)因为A是实对称矩阵,所以A的特征值都是实数.假设λ是A的一个特征值,则λ2+2λ是A2+2A的特征值.而A2+2A=0,因此λ2+2λ=0,故λ=0或一2.又因为r(A一0E)=r(A)=2,特征值0的重数为3一r(A—0E)=1,所以一2是A的二重特征值.A的特征值为0,一2,一2.(2)A+kE 的特征值为k,k一2,k一2.于是当k>2时,实对称矩阵A+kE的特征值全大于0,从而A+kE是正定矩阵.当k≤2时,A+kE的特征值不全大于0,此时A+kE不正定.涉及知识点:线性代数24.设A,B是两个n阶实对称矩阵,并且A正定.证明:(1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;(2)当|ε|充分小时,A+εB仍是正定矩阵.正确答案:(1)因为A正定,所以存在实可逆矩阵P1,使得P1TAP1=E.作B1=P1TBP1,则B1仍是实对称矩阵,从而存在正交矩阵Q,使得QTB1Q是对角矩阵.令P=P1Q,则PTAP=QTP1TAP1Q=E,PTBP=QTP1TBP1Q=QTBtQ.因此P即所求.(2)设对(1)中求得的可逆矩阵P,对角矩阵PTBP对角线上的元素依次为λ1,λ3,…,λn,记M=max{|λ1|,|λ2|,…,|λn|}.则当|ε|<1/M时,E+εPTBP仍是实对角矩阵,且对角线上元素1+ελi>0,i=1,2,…,n.于是E+εPTBP正定,PT(A+εB)P=E+εPTBP,因此A+εB也正定.涉及知识点:线性代数25.设C=,其中A,B分别是m,n阶矩阵.证明C正定A,B都正定.正确答案:显然C是实对称矩阵A,B都是实对称矩阵.|λEm+n一C|==|λEm一A||λEn一B|于是A,B的特征值合起来就是C的特征值.如果C正定,则C的特征值都大于0,从而A,B的特征值都大于0,A,B都正定.反之,如果A,B都正定,则A,B的特征值都大于0,从而C的特征值都大于0,C 正定.涉及知识点:线性代数26.设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B一CTA-1C正定.正确答案:(1) (2)因为D为正定矩阵,P是实可逆矩阵,所以PTDP正定.于是由上例的结果,得B一CTA-1C正定.涉及知识点:线性代数27.二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q 的第3列为①求A.②证明A+E是正定矩阵.正确答案:①条件说明Q-1AQ=QTAQ=于是A的特征值为1,1,0,并且Q 的第3列=(1,0,1)T是A的特征值为0的特征向量.记α1=(1,0,1)T,它也是A的特征值为0的特征向量.A是实对称矩阵,它的属于特征值1的特征向量都和α1正交,即是方程式x1+x3=0的非零解.α2=(1,0,一1)T,α3=(0,1,0)T 是此方程式的基础解系,它们是A的特征值为1的两个特征向量.建立矩阵方程A(α1,α2,α3)=(0,α2,α3),两边做转置,得解此矩阵方程②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.涉及知识点:线性代数28.证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.正确答案:设A是A的一个特征值,η是属于它的一个特征向量,即有ATA η=λη,于是ηTATAη=ληTη,即(Aη,Aη)=λ(η,η).则λ=(A η,Aη)/(η,η)≥0.如果A秩为n,则AX=0没有非零解,从而Aη≠0,(Aη,Aη)>0,因此λ=(Aη,Aη)/(η,η)>0.涉及知识点:线性代数29.如果A正定,则Ak,A-1,A*也都正定.正确答案:从特征值看.设A的特征值为λ1,λ2,…,λn.λi>0,i=1,2,…,n.则Ak的特征值为λ1k,λ2k,…,λn-1.λi-1>0,i=1,2,…,n.设A-1的特征值为λ1-1,λ2-1,…,λn-1.λi-1>0,i=1,2,…,n.设A*的特征值为|A|/λ1,|A|/λ2,…,|A|/λn.|A|/λi>0,i=1,2,…,n.涉及知识点:线性代数30.设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.正确答案:A是正定矩阵,存在可逆实矩阵C,使得A=CCT,则AB=CCT B.于是C-1ABC=C-1CCTBC=CTBC.即AB相似于CTBC.而CTBC是实对称矩阵,相似于对角矩阵.由相似的传递性,AB也相似于对角矩阵.涉及知识点:线性代数31.设A,B都是n阶正定矩阵,则:AB是正定矩阵A,B乘积可交换.正确答案:“”先证明AB对称.(AB)T=BTAT=BA=AB.再证明AB的特征值全大于0.存在可逆实矩阵C,使得A=CCT.则AB=CCTB,相似于CTBC,特征值一样,而CTBC是正定的,特征值全大于0.“”AB正定,则对称.于是BA=BTAT=(AB)T=AB.涉及知识点:线性代数32.设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.正确答案:设n维实列向量α满足Aα=0,要证明α=0.αT(AT+A)α=αTATα+αTAα=(Aα)Tα+αTAα=0.由AT+A的正定性得到α=0.涉及知识点:线性代数33.设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B 可逆.正确答案:证明(A+B)X=0没有非零解.设n维实列向量α满足(A+B)α=0,要证明α=0.注意B是反对称矩阵,αTBα=0(因为αTBα=(αTBα)T=一αTB α.) αTAα=αTAα+αTBα=αT(A+B)α=0由A的正定性得到α=0.涉及知识点:线性代数。
东北大学线性代数_第六章课后习题详解二次型
教学基本要求:1.掌握二次型及其矩阵表示,了解二次型的秩的概念.2.了解合同变换和合同矩阵的概念.3.了解实二次型的标准形和规范形,掌握化二次型为标准形的方法.4.了解惯性定理.5.了解正定二次型、正定矩阵的概念及其判别方法.第六章二次型本章所研究的二次型是一类函数,因为它可以用矩阵表示,且与对称矩阵一一对应,所以就通过研究对称矩阵来研究二次型.“研究”包括:二次型是“什么形状”的函数?如何通过研究对称矩阵来研究二次型?二次型是“什么形状”的函数涉及二次型的分类.通过对称矩阵研究二次型将涉及矩阵的“合同变换”、二次型的“标准形”、通过正交变换化二次型为标准形、惯性定理、正定二次型等.一、二次型与合同变换1. 二次型n个变量x1,x2,…,x n的二次齐次函数f(x1,x2,…,x n)=a11x12+a22x22+…+a nn x n2+2a12x1x2+…+2a1n x1x n+…+…+2a n-1 n x n-1x n (6.1) 称为一个n元二次型.当系数a ij均为实数时,称为n元实二次型. (P131定义6.1)以下仅考虑n元实二次型.设11121n112222n21n2n nn na a a xa a a xA,xa a a x⎛⎫⎛⎫⎪ ⎪⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,那么f(x1,x2,…,x n)=x T A x. (6.2)式(6.2)称为n元二次型的矩阵表示.例6.1(例6.1 P 132)二次型f 与对称矩阵A 一一对应,故称A 是二次型f 的矩阵,f 是对称矩阵A 的二次型,且称A 的秩R(A)为二次型f 的秩. (定义6.2 P 132)由于二次型与对称矩阵是一一对应的,所以从某种意义上讲,研究二次型就是研究对称矩阵.定义6.2 仅含平方项的二次型f(x 1,x 2,…,x n )=a 11x 12+a 22x 22+…+a nn x n 2 (6.3)称为标准形.系数a 11,a 22,…,a nn 仅取-1,0,1的标准形称为规范形. (定义6.3 P 132)标准形的矩阵是对角矩阵.二次型有下面的结论:定理6.1 线性变换下,二次型仍变为二次型.可逆线性变换下,二次型的秩不变. (定理6.1 P 133) 这是因为T T x CyB C ACTT A B C AC C 0R(A)R(B)f x Axfy By ==↔=≠=⇒==⇐.2. 合同变换在可逆线性变换下,研究前后的二次型就是研究它们的矩阵的关系.定义6.3 设A,B 是同阶方阵,如果存在可逆矩阵C ,使B=C T AC ,则称A 与B 是合同的,或称矩阵B 是A 的合同矩阵.对A 做运算C T AC 称为对A 进行合同变换,并称C 是把A 变为B 的合同变换矩阵. (定义6.4 P 133)矩阵的合同关系具有反身性、对称性、传递性.注意:(1)合同的矩阵(必须是方阵)必等价,但等价的矩阵(不一定是方阵)不一定合同. (P 134)A 与B 合同 ⇔∃可逆矩阵C ,∂B=C T AC A 与B 等价 ⇔∃可逆矩阵P ,Q ,∂B=PAQ(2)合同关系不一定是相似关系,但相似的实对称矩阵一定是合同关系. (推论1 P 137)正交矩阵Q ,∂Q -1AQ= Q T AQ=B ⇒ A 与B 既相似又合同合同变换的作用:对二次型施行可逆线性变换等价于对二次型的矩阵施行合同变换.x Cy TT TT C 0T C 0f x Ax y C ACy y ByA C AC B=∆≠≠===⇔=如果B 是对角矩阵,则称f=y T B y 是f=x T A x 的标准形.二、用正交变换化二次型为标准形 1. 原理由第五章第三节知:对于实对称阵A ,存在正交矩阵Q ,使Q -1AQ 为对角矩阵(对角线上的元素为A 的n 个特征值).因此,二次型f=x T A x 经正交变换x =Q y 就能化为标准形f=y T (Q T AQ)y =y T (Q -1AQ)y .定理6.2 任意实二次型都可经正交变换化为标准形,且标准形中的系数为二次型矩阵的全部特征值. (定理6.2 P 134)推论1 任意实对称矩阵都与对角矩阵合同. (推论1 P 137)推论2 任意实二次型都可经可逆线性变换化为规范形. (推论2 P 137)正交变换既是相似变换又是合同变换.相似变换保证矩阵有相同的特征值,化标准形则必须经合同变换.所以,正交变换是能把二次型化为“系数为特征值”的标准形的线性变换.2.用正交变换化二次型为标准形的步骤用正交变换化二次型f=x T A x 为标准形的过程与将实对称阵A 正交相似对角化的过程几乎一致.具体步骤如下:(1)求出A 的全部互异特征值λ1,λ2…,λs ;(2)求齐次线性方程组(λi E-A)x =ο(i=1,2,…,s)的基础解系(即求A 的n 个线性无关特征向量); (3)将每一个基础解系分别正交化、规范化,得到n 个正交规范的线性无关特征向量ε1,ε2,…,εn ; (4)正交相似变换矩阵Q=(ε1,ε2,…,εn ),正交相似变换x =Q y 把二次型f=x T A x 变为标准形f=y T (Q T AQ)y .例6.2(例6.2 P 134) 例6.3(例6.3 P 135)三、用配方法化二次型为标准除了正交变换,事实上,还存在其它的可逆线性变换能把二次型化为标准形.举例说明如下.例6.4(例6.4 P 139) 例6.5(例6.5 P 139)总结:用配方法化二次型为标准形的过程分两种情形: (1)二次型中含有平方项例如,若二次型中含有平方项a 11x 12,则把所有含x 1的项集中起来配方,接下来考虑a 22x 22,并类似地配方,直到所有项都配成了平方和的形式为止.(2)二次型中不含平方项,只有混合项例如,若二次型中不含平方项,但有混合项2a 12x 1 x 2,则令112212ii x y y ,x y y ,x y ,i 3,...,n.=+⎧⎪=-⎨⎪==⎩ 那么关于变量y 1,y 2,…,y n 的二次型中就有了平方项,然后回到(1).四、正定二次型 1. 惯性定理虽然把二次型化为标准形的可逆线性变换不唯一,从而标准形也可能不唯一,但同一个二次型的所有标准形却总满足如下惯性定理.定理6.3(惯性定理) 设实二次型f=x T A x 的秩为r ,且在不同的可逆线性变换x =C y 和x =D y 下的标准形分别为f=λ1y 12+λ2y 22+…+λr y r 2, λi ≠0,f=μ1y 12+μ2y 22+…+μr y r 2, μi ≠0,则λ1,λ2…,λr 与μ1,μ2…,μr 中正数的个数相同. (定理6.3 P 142)定义6.4 二次型f 的标准形中的正(负)系数的个数称为f 的正(负)惯性指数. (定义6.5 P 143)惯性定理指出,可逆变换不改变惯性指数.推论 n 阶实对称阵A 与B 合同的充分必要条件是A 与B 有相同的正惯性指数和负惯性指数. (推论 P 143)正惯性指数+负惯性指数=R(A). 正惯性指数=正特征值的个数, 负惯性指数=负特征值的个数.2. 二次型的分类二次型(/二次型的矩阵)的分类:(定义6.6-6.7 P 143)f f f f f /A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A f 0,x 0(A A 0)/A x 0,f (x)0y 0,f (y)0⎧⇔>∀≠>⎪⇔≥∀≠≥⎪⎪⇔<∀≠<⎨⎪⇔≤∀≠≤⎪⎪⇔∃≠∂>∃≠∂<⎩正定正定记作半正定半正定记作负定负定记作半负定半负定记作不定且由此,根据惯性定理可知,合同变换不改变实对称矩阵的类型.3.正定二次型(正定矩阵)的判定定理6.4 n 元实二次型f=x T A x 为正定(负定)二次型的充分必要条件是f 的正(负)惯性指数等于n . (定理6.4 P 143)定理6.5 n 元实二次型f=x T A x 为半正定(半负定)二次型的充分必要条件是f 的正(负)惯性指数小于n ,且负(正)惯性指数为0. (推论1 P 143)推论2 n 阶实对称阵A 正定(负定)的充分必要条件是A 的n 个特征值全是正数(负数);A 半正定(半负定)的充分必要条件是A 的n 个特征值为不全为正数(负数)的非负数(非正数). (推论2 P 143)例6.6(例6.6 P 143) 例6.7(例6.7 P 144) 例6.8(例6.8 P 144) 例6.9(例6.9 P 144)定义6.4 设A=(a ij )n ,则行列式11121k 12222k k k1k2kka a a a a a D (k 1,2,,n)a a a ==称为A 的k 阶顺序主子式. (定义6.8 P 144)定理6.6 n 阶实对称矩阵A 正定的充分必要条件是A 的各阶顺序主子式都大于零;A 负定的充分必要条件是A 的所有顺序主子式中奇数阶的小于零而偶数阶的大于零. (定理6.5 P 144)例6.10(例6.10 P 145)五、二次型应用[实例6-1] 二次曲面图形的判定六、习题(P 148) 选择题:1.提示:110.5A 11000.50.50.51-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⇒|1|=1>0, 119901100=>, 100A 199100.51 1.25=<-- ⇒ 选D2.提示:f(x 1,x 2,x 3)= x 12+2x 22+3x 32-2x 1x 2+2x 2x 3 =(x 1-x 2)2+(x 2+x 3)2+2x 32⇒ 正惯性指数为3,故选A3.提示:方法一 特征值为2,-1,-1,故选C.方法二 011A 101110⎛⎫ ⎪= ⎪⎪⎝⎭⇒ |0|=0,排除A,B011010=-<, |A|=2>0,排除D ⇒ 选C4. B填空题:1.提示:f(x 1,x 2,x 3)= x 12+2x 22+3x 32+4x 1x 2+8x 1x 3-2x 2x 3.2. 1200221001300000⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. 错误的解答:120221012⎛⎫ ⎪⎪ ⎪⎝⎭3.提示:323221r r r r 2r r211211211A 121033033112033000-+-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⇒ 秩为2错误的解答:正惯性指数为3,故秩为3. 事实上,线性变换y1= x1+x2, y2= x2-x3, y3= x1+x3不可逆,故R(f)<3.4.提示:A可逆、对称⇒A-1=(A-1)T AA-1⇒x=A-1y.5.提示:tE-A的特征值为t-1, t-2,…, t-n ⇒t >n.6.提示:方法一a22A2a222a⎛⎫⎪= ⎪⎪⎝⎭与6⎛⎫⎪⎪⎪⎝⎭相似⇒3a=6 ⇒a=2方法二f(y1,y2,y3) =6y12⇒A有2个0特征值⇒R(A)=1 ⇒a=2方法三f(y1,y2,y3)=6y12⇒A的特征值为6,0,0二次型的特征值为a+4, a-2, a-2 ⇒a+4=0, a-2=0 ⇒a=27.提示:A的各行元素之和为3 ⇒A(1,1,…,1)T=3(1,1,…,1)TR(f)=1 ⇒3是A的唯一非零特征值⇒标准形为f(y1,y2,y3)=3y12或f(y1,y2,y3)=3y22或f(y1,y2,y3)=3y32解答题:1.参见P134-135的例6.2、例6.32.参见P139的例6.4、例6.53.参见P145的例6.104.(1)521A21111t-⎛⎫⎪=-⎪⎪--⎝⎭|5|=5>0,521021=>,101A211t2010t1=-=->-⇒t>2(2)1t 1A t 12125-⎛⎫ ⎪= ⎪ ⎪-⎝⎭|1|=1>0,21t1t 0t 1=->, 2A 5t 4t 0=--> ⇒ -4/5<t<05.提示:f=x T A x =x T U T U x =|U x |2≥0.因为U 可逆,故当x ≠ο时,U x ≠ο,从而f=|U x |2>0,所以f 为正定二次型(A=U T U 是正定矩阵).6.提示:因为A 正定,故存在正交矩阵Q 和正定对角矩阵D=diag(λ1,λ2,…,λn ),使A=QDQ T .令D 1=diag(12n ,,...,λλλ),则A=QDQ T = QD 1D 1T Q T =U T U ,其中U=(QD 1)T .5、6两题表明A 是正定矩阵的充分必要条件是存在可逆矩阵U 使A=U T U .7.提示:设对称矩阵A 与矩阵B 合同,则存在可逆矩阵C ,使C T AC=B. B T =(C T AC)T =C T AC=B ,所以与对称矩阵合同的矩阵必是对称矩阵.8.提示:方法一 矩阵A 与矩阵-A 合同,则存在可逆矩阵C ,使C T AC=-A .从而|C T AC|=|-A| ⇒ |C|2·|A|=(-1)n |A| ⇒ |A|(|C|2-(-1)n )=0A ⇒可逆|C|2=(-1)nC ⇒可逆|C|2>0,故n 为偶数方法二 A 的正惯性指数= -A 的负惯性指数A 的负惯性指数= -A 的正惯性指数 A 与-A 合同⇒ A 与-A 有相同的正惯性指数和负惯性指数 ⇒ A 的正惯性指数= A 的负惯性指数 ⇒ n 为偶数9.提示:513153 A153023 33k00k3---⎛⎫⎛⎫⎪ ⎪=--→-⎪ ⎪⎪ ⎪--⎝⎭⎝⎭因为R(A)=2,所以k=3.(或由R(A)=2,有|A|=0,得k=3.) 余下略.10.提示:20003a0a3⎛⎫⎪⎪⎪⎝⎭与125⎛⎫⎪⎪⎪⎝⎭相似a02200103a29a5a2 0a35>⇒=⇒-=⇒=余下略.11. 提示:1b1b a1111⎛⎫⎪⎪⎪⎝⎭与14⎛⎫⎪⎪⎪⎝⎭相似2a51b1a3b a1b1 111+=⎧⎪=⎧⎪⇒=⇒⎨⎨=⎩⎪⎪⎩余下略.12.提示:(1)A的特征值为1,1,0,Q的第3列是属于0的特征向量,1的特征向量与其正交,易知为(√2/2,0,-√2/2)T和(0,1,0)T,是Q的前两列.于是A=Qdiag(1,1,0)Q T=….(2)A+E的特征值为2,2,1,所以A+E为正定矩阵.13.提示:(1)a01E A0a111(a1)λ--λ-=λ--λ--222a 11(a)01110(a 1)a 12(a)01010(a 1)a2(a)1(a 1)(a)((2a 1)a a 2)(a)((2a 1)(a 2)(a 1))(a)((a 2))((a 1))λ--=λ--λ--λ--=λ--λ--λ--=λ--λ--=λ-λ--λ+--=λ-λ--λ+-+=λ-λ--λ-+ A 的特征值为a-2,a,a+1.(2)二次型f 的规范形为f(y 1,y 2,y 3)=y 12+y 22,所以A 有2个正特征值,一个0特征值.由于a-2<a<a+1,所以a-2=0,故a=2.14.提示:A 正定 ⇔ A 的任意特征值λ>0 ⇒ |A|>0⇒ A -1的任意特征值1/λ>0 ⇒ A -1正定A*的任意特征值|A|/λ>0 ⇒ A*正定15.提示:∀x ≠ο,x T (A+B)x =x T A x +x T B x >0 ⇒ A+B 正定16.提示:A 与对角矩阵diag(λ1,λ2,…,λn ) (λ1≥λ2≥…≥λn )相似⇔ ∃正交矩阵Q ,∂Q AQ=diag(λ1,λ2,…,λn )ny Qx T T2i i i 1n n 22i i 1i i n x 1y 1x 1y 1i 1i 1f x Ax y Dy y max f max y ,min f min y ========⇒===λ⇒=λ≤λ=λ≥λ∑∑∑ 当分别取T1y e =和T n y e =时,得1n x 1x 1max f ,min f ===λ=λ.17.提示:设λ是A 的特征值,则λ3+λ2+λ-3=0,λ的值为1或复数. 因为A 是实对称矩阵,所以A 的特征值全为1,因此A 为正定矩阵.18.提示:A,B 实对称 ⇒ A,B 的特征值都是实数A 的特征值都大于a ,B 的特征值都大于b⇒ A-aE 和B-bE 正定 (若λ是A 的特征值,则λ-a 是A-aE 的特征值)15⇒第题 (A-aE)+(B-bE)正定,即A+B-(a+b)E 正定⇒ A+B 的特征值都大于a+b.19.提示:必要性 设R(A)=n ,令B=A ,则AB+B T A=2A 2为正定矩阵.充分性 设AB+B T A 是正定矩阵,若R(A)<n ,那么A x =ο有非零解y . 因此,y T (AB+B T A)y =(A y )T By+ y T B T (A y )=ο,这与AB+B T A 正定矛盾,所以R(A)=n.20.提示:考虑二次型g(x,y,z)=2x 2+4y 2+5z 2-4xz ,由于202E A 040(1)(4)(6)205λ-λ-=λ-=λ-λ-λ-λ-,⇒ A 的特征值全为正数⇒ g(x,y,z)=2x 2+4y 2+5z 2-4xz 是椭球曲面⇒ f(x,y,z)=2x 2+4y 2+5z 2-4xz+2x-4y+1是椭球曲面附加题:1.设A 为m 阶正定矩阵,B 为m×n 实矩阵,证明:B T AB 为正定矩阵的充分必要条件为R(B)=n .提示:B T AB 正定⇔ ∀x ≠ο, x T B T AB x =(B x )T A(B x )>0⇔ ∀x ≠ο,有B x ≠ο⇔ B x =ο只有零解⇔ R(B)=n七、计算实践实践指导:(1)掌握二次型及其矩阵表示,了解二次型的秩的概念.(2)了解实二次型的标准形式及其求法.(3)了解合同变换和合同矩阵的概念.(4)了解惯性定理和实二次型的规范形.(5)了解正定二次型、正定矩阵的概念及其判别法.例6.1 设12A 21⎛⎫= ⎪⎝⎭, 则在实数域上与A 合同的矩阵为[D ]. (A)2112-⎛⎫ ⎪-⎝⎭; (B)2112-⎛⎫ ⎪-⎝⎭; (C)2112⎛⎫ ⎪⎝⎭; (D)1221-⎛⎫ ⎪-⎝⎭.(2008 数二 三 四)提示:合同的矩阵有相同的秩,有相同的规范形,从而有相同的正惯性指数与负惯性指数.故选D .例6.2 已知二次型f(x 1,x 2,x 3)=(1-a)x 12+(1-a)x 22+2x 32+2(1+a)x 1x 2的秩为2.(1)求a 的值;(2)求正交变换x =Q y ,把f 化成标准形;(3)求方程f(x 1,x 2,x 3)=0的解. (2005 数一)解 (1) 1a 1a 0220A 1a 1a 01a 1a 0002002-+⎛⎫⎛⎫ ⎪ ⎪=+-→+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭R (A )2=⇒1+a=1-a ⇒ a=0(2) 略.(3) f(x 1,x 2,x 3)=0⇔ (x 1+x 2)2+2x 32=0 ⇔ x 1=-x 2, x 3=0 ⇒ 解为k(-1,1,0)T , k ∈R例6.3 若二次曲面的方程x 2+3y 2+z 2+2axy+2xz+2yz=4经正交变换化为y 12+4z 12=4,则a= 1 . (2011 数一)提示:二次型f(x,y,z)=x 2+3y 2+z 2+2axy+2xz+2yz 经正交变换化为标准形f=y 12+4z 12,因此二次型矩阵1a 1A a 31111⎛⎫ ⎪= ⎪ ⎪⎝⎭与014⎛⎫ ⎪ ⎪ ⎪⎝⎭相似.所以 1a 1a 310a 1111=⇒=.例6.4 设矩阵211100A 121,B 010112000--⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B [B ].(A)合同且相似; (B)合同但不相似;(C)不合同但相似; (D)既不合同也不相似. (2007 数一)解 211E A 121121112112λ-λλλλ-=λ-=λ-λ-λ-2111030(3)003=λλ-=λλ-λ-即A 的特征值为0,3,3.故A 与B 不相似.由于A 与B 有相同的正惯性指数与负惯性指数,所以A 与B 合同.故选B .例6.5 设A 为3阶非零矩阵,如果二次曲面x (x y z)A y 1z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如下图,则A 的正特征值个数为[B ]. (2008 数一)(A) 0; (B) 1; (C) 2;(D)3.提示:图形是双曲抛物面,说明A 的秩为2,正惯性指数为1,所以选B.例6.6 设A 为三阶实对称矩阵, 且满足条件A 2+2A=O .已知A 的秩R(A)=2,(1)求A 的全部特征值;(2)当k 为何值时,矩阵A+kE 为正定矩阵.解 (1)设λ是A 的特征值,则λ2+2λ=0,λ=0或-2R(A)=2 ⇒ A 的特征值为0,-2,-2(2) A+kE 的特征值则为k, k-2, k-2 ⇒ 当k>2时,A+kE 为正定矩阵例6.7 设101A 020101=⎛⎫ ⎪ ⎪ ⎪⎝⎭,矩阵B=(kE+A)2,其中k 为实数,E 为单位矩阵. 求对角矩阵Λ,使B 与Λ相似,并问k 为何值时,B 为正定矩阵.解 A 是实对称矩阵,则kE+A 是实对称矩阵,(kE+A)2是实对称矩阵.A 与diag(0,2,2)相似⇒ kE+A 与diag(k,k+2,k+2)相似⇒ (kE+A)2与diag(k 2,(k+2)2,(k+2)2)相似⇒ Λ=diag(k 2,(k+2)2,(k+2)2)⇒ 当k ≠0且k ≠-2时,B 为正定矩阵例6.8 设A ,B 分别为m 阶和n 阶正定矩阵, 试判定分块矩阵A O C O B =⎛⎫ ⎪⎝⎭的正定性. 解 ∀x ≠ο, y ≠ο,有x T A x >0, x T B x >0⇒ x ≠ο或y ≠ο,有(x T ,y T )≠ο, (x T ,y T )C ⎛⎫ ⎪⎝⎭x y =x T A x +x T B x >0 ⇒ A O C O B =⎛⎫ ⎪⎝⎭正定例6.9 设T A C D CB =⎛⎫ ⎪⎝⎭为正定矩阵,其中A,B 分别为m 阶与n 阶对称矩阵,C 为m ⨯n 矩阵. (1) 计算P T DP ,其中1m n E A C P OE --=⎛⎫⎪⎝⎭. (2) 利用(1)的结果,判断矩阵B-C T A -1C 是否为正定矩阵,并证明你的结论. (2005 数三)。
考研数学三线性代数(二次型)模拟试卷4(题后含答案及解析)
考研数学三线性代数(二次型)模拟试卷4(题后含答案及解析)题型有:1.jpg />,则在正交变换X=Qy下,二次型f(x1,x2,x3)化为标准形f(x1,x2,x3)=xTAx=yTAy=2y12+2y22。
涉及知识点:二次型3.求方程f(x1,x2,x3)=0的解。
正确答案:由f(x1,x2,x3)=x12+x22+2x32+2x12=(x1+x2)2+2x32=0,得所以方程f(x1,x2,x3)=0的通解为k(1,一1,0)T,其中k为任意常数。
涉及知识点:二次型4.已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
正确答案:二次型xTAx的秩为2,即r(A)=2,所以λ=0是A的特征值。
所以3是A的特征值,(1,2,1)T是与3对应的特征向量;一1也是A的特征值,(1,一1,1)T是与一1对应的特征向量。
因为实对称矩阵不同特征值的特征向量相互正交,设λ=0的特征向量是(x1,x2,x3)T,则有(x1,x2,x3)=0,(x1,x2,x3)=0,由方程组解出λ=0的特征向量是(1,0,一1)T。
那么,所以A=因此xTAx=(x12+10x22+x32+16x1x2+2x1x3+16x2x3),令则经正交变换x=Qy,有xTAx=yTAy=3y12一y32。
涉及知识点:二次型5.设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
正确答案:因为3是A的特征值,故|3E—A|=8(3一y一1)=0,解得y=2。
于是由于AT=A,要(AP)T(AP)=pTA2P=Λ,而A2=是对称矩阵,即要A2一Λ,故可构造二次型xTA2x,再将其化为标准形。
由配方法,有xTA2x=x12+x22+532+542+8x3x4=y12+y22+5y32+2y42,其中y1=x1,y2=x2,y3=x3+x4,y4=x4,即于是(AP)T(AP)=PTA2P= 涉及知识点:二次型设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q 的第三列为。
自考-线性代数-第六章-实二次型
例 2阶方阵
1 0
0
0
对应
例 2阶方阵
cos sin
sin
cos
y
x1 y1
x, 0.
0
投影变换
P(x, y)
P1( x1 , y1 )
x
对应
x
y
x1 x1
cos sin
y1 sin , y1 cos .
y
P(x, y)
以原点为中心逆时针
旋转 角的旋转变换
k1
( y1 ,
y2 ,L
,
yn
)
k2 O
y1
y2
M
kn yn
问题:对于对称阵 A,寻找可逆矩阵 C,使 CTAC 为对角阵,
(把对称阵合同对角化).
定义:如果 n 阶矩阵A 满足 ATA = E,即 A−1 = AT, 则称矩阵A 为正交矩阵,简称正交阵. 定理:设 A 为 n 阶对称阵,则必有正交阵 P,使得
•
成立,则称
xn f (x1, x2 ) xT Ax
称为二次型.
令 aij = aji,则 2 aij xi xj = aij xi xj + aji xi xj ,于是
f ( x1 , x2 ,L , xn ) a11 x12 a22 x22 L ann xn2 2a12 x1 x2 2a13 x1 x3 L 2an1,n xn1 xn a11 x12 a12 x1 x2 L a1n x1 xn a21 x2 x1 a22 x22 L a2n x2 xn L an1 xn x1 an2 xn x2 L ann xn2
如果标准形的系数 k1 , k2 , … , kn 只在−1, 0, 1三个数中取值,
线性代数 二次型
T 不定矩阵. 不定矩阵 f = x2 Ax2 < 0, 则称f 为不定二次型 A为不定矩阵 不定二次型, 不定二次型
(2). 可逆线性变换不改变二次型的正定性
f = xT Ax经过可逆线性变换x = Cy 化成 yT CT ACy 二次型
(4).正(负)定二次型及正 负)定矩阵的充要条件 正 负 定二次型及正 定二次型及正(负 定矩阵的充要条件 f = xT Ax 是正定二次型(A是正定矩阵) ⇔ A的正惯性指数p = n (A的阶数) = r (A的秩) ⇔A E ⇔ 存在可逆阵D, 使得 A = DT D ⇔ A的顺序主子式大于零, 即
即xT Ax
x = Cy
T T yT CT ACy,此时二次型 xT Ax 和 y C ACy
且 A和 CT AC(C为可逆阵)也有相同的 有相同的正定性. 的正定性.即可逆线性变换不改变二次型的正定性. (3). A是正定矩阵的必要条件 是正定矩阵的必要条件 A是n阶正定矩阵,则 aii > 0 (i =1,2,L, n), 且 |A| > 0 . (即 A 是实对称矩阵, 且 A 是可逆矩阵.)
其中 则p与q 是由A唯一确定的. (4) 正惯性指数、负惯性指数、符号差 正惯性指数、负惯性指数、 二次型化为标准形以后, 标准形中正项项数称为正惯 正惯 性指数, 负惯性指数, 性指数 负项项数称为负惯性指数 正、负惯性指数的 负惯性指数 差称为符号差 符号差. 符号差
3. 正定二次型、正定矩阵 正定二次型、
简记为 其中A是实对称矩阵 是实对称矩阵 称为二次型对应的矩阵,
且二次型 f 与实对称矩阵A存在一一对应的关系. (2)线性变换 设两组变量 线性变换 有关系
《线性代数》第五章相似矩阵及二次型精选习题及解答
故, β 3 = ( −
1 3
1 3
1 3
1) T ⇒ γ 3 =
β3 3 = (− 6 β3
3 6
3 3
3 T ) 2
⎛ 3 2 4⎞ ⎜ ⎟ 例 5.3 计算 3 阶矩阵 A= 2 0 2 的全部特征值和特征向量. ⎜ ⎟ ⎜ 4 2 3⎟ ⎝ ⎠
n n
f ( x) = xT Ax ,其中 A T = A .
6.熟悉矩阵 A 合同(或相合)于 B 的定义,理解合同关系是等价关系. 7.熟练掌握化二次型 xT Ax 为平方和(标准形)或求实对称矩阵 A 的相合标准形的 3 种方法:正交变换法;配方法;和同型初等行、列变换法. 8.了解惯性定理,会求矩阵 A 的正、负惯性指数和符号差,会求二次型的规范形. 9.熟练掌握正定二次型(正定矩阵)的定义和判别方法. 10.熟悉实对称矩阵 A 正定(二次型正定)的各种等价命题(正定的充要条件). 11.理解 A 正定的必要条件: a ii > 0( i = 1, 2, L , n ); det( A ) > 0 . 12. 会利用正交变换化二次型为标准型和极坐标平移方法判别一般二次曲线和曲面的类 型.
故 A 是正交矩阵. 例 5.2 已知向量 α 1 = (1,1, 0, 0 ) , α 2 = (1, 01, 0 ) , α 3 = ( − 1, 0, 0,1) 是线性无关向
T T T
量组,求与之等价的正交单位向量组. 解法一 先正交化,再单位化 (1) 取 β 1 =
α1
(2) 令 β 2 = k β 1 + α 2 ,使得 β2 与 β 1 正交
T −1 ∗
5.3 例题分析
例 5.1 设 a 是 n 阶列向量, E 是 n 阶单位矩阵,证明 A = E −
线性代数二次型
(2) f2 ( x1, x2 , x3 ) 2x1x2 2x2 x32x1x3;
(3) f 3 ( x1 , x 2 , x3 ) x 3 x 5 x .
第六章 二次型 1、二次型的理论起源于解析几何中对二次 曲线和二次曲面的研究,它在线性系统 理论和工程技术的许多领域中都有应用。
2、下面讨论关于n个未知量的二次型的一 般形式及其化简问题。
2 2 3. 将f ( x1 , x2 , x3 ) x12 2 x1 x2 6 x1 x3 x2 4 x2 x3 x3
(1)自反性: A~A (2)对称性:, A~B 则 B~A ; (3)传递性: A~B, B~C 则 , 。 A~C 2)合同矩阵有相同的秩 3)矩阵之间的合同关系与相似关系是两种 不同的关系。
例2 设
1 0 1 0 A , B 0 4 , 0 1
则存在可逆矩阵
4)对于二次型我们有 定理6.7(主轴定理) 实二次型 X T AX X CY化为标准形,即 必可由正交变换
f(x1 , x 2 , , x n) X T AX X CY
其中
1 , 2 ,, n 为A的特征值。
2 11 2 2 n 2 2 n
用矩阵表示。
§6.1 二次型及其矩阵表示 1)定义6.1 设F是一个数域,以F中的数作为系 数 x1 , x2 ,, xn 的二次齐次多项式
f(x1 , x 2 , x n) a x a1 2 x1 x 2 a1n x1 x
2 11 1
2 a 2 1x 2 x1 a 2 2 x 2 a 2 n x 2 x
线性代数考试练习题带答案大全
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数习题册(第五章 相似矩阵及二次型参考答案)
二、计算题
7. 用施密特(Schimidt)正交化过程将向量= 组α1
1 = 1 ,α2 1
1 = 2 ,α3 3
1
4
规范正交化.
9
解:根据施密特正交化方法,
1
b=1
a=1
1
,
1
−1
b2
= a2 − [[bb11,,ab12
−1
=
1 2
0 1
,
b3
=
= b3 | b3 |
1
1 6
−2 1
。
三、证明题
8. 设α 是一个 n 维非零列向量,试证 A=
E
−
α
2 Tα
αα
T
是一个正交矩阵.
解:
AT
A
= E − α2Tα αα
T
T
E
−
2 αTα
αα
T
( A) λ −1 A n
(B) λ −1 A
(C ) λ A
( D) λ −1 A n−1
分析:设 Aξ = λξ ,又 A 可逆,所以 A−1ξ = 1 ξ , | A | A−1ξ =| A | 1 ξ
λ
λ
⇒ A*ξ = | A | ξ , λ
5. 设 3 阶矩阵 A 的特征值为1, 3, 5 ,则 A 的行列式 A 等于( D ).
第五章 相似矩阵及二次型
单元 12 向量的内积与正交性
一、选择题
1. 设 x, y ∈ Rn , [ x, y] 表示向量 x 与 y 的内积,则下列不正确的是( D ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 二次型1.设方阵1A 与1B 合同,2A 与2B 合同,证明12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T1111=B C A C ,因为2A 与2B 合同,所以存在可逆矩2C ,使T2222=B C A C .令 12⎛⎫=⎪⎝⎭C C C ,则C 可逆,于是有 TT 1111111T2222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭B C A C C AC B C A C C A C 1T 2⎛⎫= ⎪⎝⎭A C C A 即 12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同.2.设A 对称,B 与A 合同,则B 对称证:由A 对称,故T =A A .因B 与A 合同,所以存在可逆矩阵C ,使T=B C AC ,于是T T T T T T ()====B C AC C A C C AC B即B 为对称矩阵.3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵.证:因为A 是正定矩阵,所以存在可逆矩阵M ,使E AM M =T记T1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使T 11diag(,,)n D μμ==Q B QT 11,,.n μμ=B M BM 其中为的特征值令P=MQ ,则有D BP PE AP P ==T T ,,A B 同时合同对角阵.4.设二次型2111()mi in n i f a x a x ==++∑,令()ij m n a ⨯=A ,则二次型f 的秩等于()r A .证:方法一 将二次型f 写成如下形式:2111()mi ij j in n i f a x a x a x ==++++∑设A i = 1(,,,,)i ij in a a a ),,1(m i =则 1111111jn i ij in i m mj mj m a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A于是 1T T T TT 11(,,,,)mi m i i i i m =⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∑A A A A A A A A A A故 2111()mi ij j in n i f a x a x a x ==++++∑=1211[(,,)]i m j n ij i in a x x x a a =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑=11111[(,,)(,,)]i m j n ij i ij in j i in n a x x x x a a a a x a x =⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑=1T11(,,)()mj n i i j i n x x x x x x =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑A A=X T(A TA )X因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .方法二 设11,1,,i i in n y a x a x i n =++=. 记T 1(,,)m y y =Y ,于是=Y AX ,其中T 1(,,)n x x =X ,则222T T T 11()m i m i f y y y ===++==∑Y Y X A A X .因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) . 5.设A 为实对称可逆阵,Tf x x =A 为实二次型,则A 为正交阵⇔可用正交变换将f 化成规范形.证:⇒设i λ是A 的任意的特征值,因为A 是实对称可逆矩阵,所以i λ是实数,且0,1,,i i n λ≠=.因为A 是实对称矩阵,故存在正交矩阵P ,在正交变换=X PY 下,f 化为标准形,即T T T T T1()diag(,,,,)i n f λλλ====X AX Y P AP Y Y DY Y Y22211i i n n y y y λλλ=++++ (*)因为A 是正交矩阵,显然T1diag(,,,,)i n λλλ==D P AP 也是正交矩阵,由D 为对角实矩阵,故21i λ=即知i λ只能是1+或1-,这表明(*)恰为规范形.⇐因为A 为实对称可逆矩阵,故二次型f 的秩为n . 设在正交变换=X QY 下二次型f 化成规范形,于是T T()f ==X AX Y Q AQ Y 222211r r n y y y y +=++---T =Y DY其中r 为f 的正惯性指数,diag(1,,1,1,,1)=--D .显然D 是正交矩阵,由T =D Q AQ ,故T=A QDQ ,且有T T ==A A AA E ,故A是正交矩阵.6.设A 为实对称阵,||0<A ,则存在非零列向量ξ,使T0<ξAξ.证:方法一因为A 为实对称阵,所以可逆矩阵P ,使T 1diag(,,,,)i n λλλ==P AP D其中(1,,)i i n λ=是A 的特征值,由||0<A ,故至少存在一个特征值k λ,使0k λ<,取010⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ξP ,则有T T0(0,,1,,0)10⎛⎫⎪⎪⎪= ⎪⎪⎪⎝⎭ξAξP AP 1(0,,1,0,0)kn λλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭010⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭0k λ=< 方法二(反证法)若∀≠X 0,都有T0≥X AX ,由A 为实对称阵,则A 为半正定矩阵,故||0≥A 与||0<A 矛盾.7.设n 元实二次型AX X T=f ,证明f 在条件122221=+++n x x x 下的最大值恰为方阵A 的最大特征值.解:设f n 是λλλ,,,21 的特征值,则存在正交变换=X PY ,使2222211T T T )(nn y y y f λλλ+++=== Y AP P Y AX X设k λ是n λλλ,,,21 中最大者,当122221T =+++=n x x x X X 时,有122221T T T T =+++===n y y y Y Y PY P Y X X因此k n k n n y y y y y y f λλλλλ≤+++≤+++=)( 222212222211这说明在22221n x x x +++ =1的条件下f 的最大值不超过k λ.设 TT 10)0.,0,1,0,,0(),,,,( ==n k y y y Y 则 10T0=Y Yk n n k k y y y y f λλλλλ=+++++=22222211令00PY X =,则1T 00T0==Y Y X X并且k f λ===0T T 00T00)()(Y AP P Y AX X X这说明f 在0X 达到k λ,即f 在122221=+++n x x x 条件下的最大值恰为方阵A 的最大特征值.8.设A 正定,P 可逆,则T P AP 正定.证:因为A 正定,所以存在可逆矩阵Q ,使T=A Q Q ,于是 T T T T()==P AP P Q QP QP QP ,显然QP 为可逆矩阵,且T T T T ()()==P AP QP QP P AP ,即T P AP 是实对称阵,故T P AP 正定.9.设A 为实对称矩阵,则A 可逆的充分必要条件为存在实矩阵B ,使AB +A B T正定.证:先证必要性取1-=B A ,因为A 为实对称矩阵,则2E A A E A B AB =+=+-T 1T )(当然A B AB T+是正定矩阵.再证充分性,用反证法.若A 不是可逆阵,则r (A )<n ,于是存在00,≠=X AX 使00因为A 是实对称矩阵,B 是实矩阵,于是有0 )()()(0T T 00T 00T T 0=+=+AX B X BX AX X A B AB X这与AB T+AB B A 是正定矩阵矛盾.10.设A 为正定阵,则2*13-++A A A 仍为正定阵.证:因为A 是正定阵,故A 为实对称阵,且A 的特征值全大于零,易见2*1,,-A A A全是实对称矩阵,且它们的特征值全大于零,故2*1,,-A A A 全是正定矩阵,2*13-++A A A 为实对称阵.X0,有对∀≠T 2*1T 2T *T 1(3)0--++=++>X A A A X X A X X A X X A X即 2*13-++A A A 的正定矩阵.11.设A 正定,B 为半正定,则+A B 正定.证:显然,A B 为实对称阵,故+A B 为实对称阵. 对∀≠X 0,T0>X AX ,T 0≥X BX ,因T ()0+>X A B X ,故+A B 为正定矩阵.12.设n 阶实对称阵,A B 的特征值全大于0,A 的特征向量都是B 的特征向量,则AB 正定.证:设,A B 的特征值分别为,(1,,)i i i n λμ=.由题设知0,0,1,,i i i n λμ>>=.因为A 是实对称矩阵,所以存在正交矩阵1(,,,,)i n =P P P P ,使T 1diag(,,,,)i n λλλ=P AP即 ,i i i i λ=AP P P 为A 的特征向量,1,,i n =. 由已知条件i P 也是B 的特征向量,故1,,,i i ii i n μ==BP P因此 ()i i i i i i μλμ==ABP A P P ,这说明i i λμ是AB 的特征值,且0i i λμ>,1,,i n =.又因为 T 111diag(,,,,),i i n n λμλμλμ-==ABP P P P .故 11diag(,,,,)i i n n λμλμλμ=AB P P ,显然AB 为实对称阵,因此AB 为正定矩阵. 13.设n n ij a ⨯=)(A 为正定矩阵,n b b b ,,,21 为非零实数,记 ()ij i j n n a b b ⨯=B则方阵B 为正定矩阵.证:方法一 因为A 是正定矩阵,故A 为对称矩阵,即ji ij a a =,所以i j ji j i ij b b a b b a =,这说明B 是对称矩阵,显然211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫⎪ ⎪= ⎪ ⎪⎪⎝⎭B =1111110000n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 对任给的n 维向量1(,,)T 0n x x =≠X ,因n b b b ,,,21 为非零实数,所以),,(11n n x b x b T 0≠,又因为A 是正定矩阵,因此有1111110000T Tn n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X BX X X=),,(11n n x b x b 1111n n nn a a a a ⎛⎫⎪ ⎪⎝⎭11n n b x b x ⎛⎫ ⎪ ⎪⎝⎭0> 即B 是正定矩阵. 方法二 记211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫ ⎪= ⎪⎪ ⎪⎝⎭B则因为A 是实对称矩阵,显然B 是实对称矩阵,B 的k 阶顺序主子阵k B 可由A 的阶顺序主子阵分别左,右相乘对角阵100n b b ⎛⎫⎪ ⎪⎝⎭而得到,即=k B 1111110000k k k kk k a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 计算k B 的行列式,有012>=∏=k k A B ni i b故由正定矩阵的等价命题知结论正确.14.设A 为正定矩阵,B 为实反对称矩阵,则0>+B A .证:因为M 是n 阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M 的特征值及特征向量写成复数形式,进一步可以证明对于n 阶实矩阵M ,如果对任意非零列向量X ,均有0T >MX X可推出M 的特征值(或者其实部)大于零. 由于M 的行列式等于它的特征值之积,故必有0>M .因为A 是正定矩阵,B 是反对称矩阵,显然对任意的 非零向量X ,均有,0)(T >+X B A X而A +B 显然是实矩阵,故0>+B A .15.设A 是n 阶正定矩阵,B 为n ⨯m 矩阵,则r (B TAB )=r (B ).证:考虑线性方程组T00==BX B ABX 与,显然线性方程组0=BXT 0=B ABX 的解一定是的解.考虑线性方程组T0=B ABX ,若0X 是线性方程组T 0=B ABX 的任一解,因此有0T 0=B ABX .上式两端左乘有T0XT 00()()0=BX A BX因为A 是正定矩阵,因此必有00=BX ,故线性方程组0=BX 与 T0=B ABX 是同解方程组,所以必有r (B T AB )= r (B ).16.设A 为实对称阵,则存在实数k ,使||0k +>A E . 证:因为A 为实对称阵,则存在正交矩阵P ,使11diag(,,,,)i i λλλ-=P AP .其中i λ为A 的特征值,且为实数,1,,2i =. 于是11diag(,,,,)i n λλλ-=A P P11||||||i n kk kkλλλ-++=++A E PP 1()ni i k λ==+∏取1max{||1}i i nk λ≤≤=+,则1()0nii k λ=+>∏,故 ||0k +>A E .17.设A 为n 阶正定阵,则对任意实数0k >,均有||nk k +>A E . 证:因为A 为正定矩阵,故A 为实对称阵,且A 的特征值0,1,,i i n λ>=. 则存在正交矩阵P ,使1111,iin n λλλλλλ--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP A P P 于是对任意0k >,有11||||||i n kk kkλλλ-++=++A E PP 1()n i i k λ==+∏1ni k =>∏n k =.18.设A 为半正定阵,则对任意实数0k >,均有||0k +>A E . 证:因为A 为半正定矩阵,故A 为实对称矩阵,且A 的特征值0i λ≥,1,,i n =. 则存在正交矩阵P ,使11diag(,,,,)i n λλλ-=P AP ,11diag(,,,,)i n λλλ-=A P P于是对任意0k >,有11||||diag(,,,,)||i n k k k k λλλ-+=+++A E P P 1()ni i k λ==+∏n k ≥0>.19.A 为n 阶实矩阵,λ为正实数,记Tλ=+B E A A ,则B 正定.证:T T TT()λλ=+=+=B E A A E A A B ,故B 是实对称矩阵. 对∀≠X 0,有(,)0,(,)0>≥X X AX AX ,因此有TTT()λ=+X BX X E A A X T T Tλ=+X X X A AX (,)(,)λ=+X X AX AX 0>故 Tλ=+B E A A 为正定矩阵.20.A 是m ⨯n 实矩阵,若A A T 是正定矩阵的充分必要条件为A 是列满秩矩阵. 证:先证必要性方法一设A A T是正定矩阵,故00∀≠X ,有0)()()(0T 00T T 0>=AX AX X A A X由此00≠AX ,即线性方程组0=AX 仅有零解,所以r (A )=n ,即A 是列满秩矩阵.方法二因为A A T 是正定矩阵,故r(A A T )=n ,由于n r r n ≤≤≤)()(T A A A所以r (A )=n . 即A 是列满秩矩阵.再证充分性:因A 是列满秩矩阵,故线性方程组仅有零解,0∀≠X ,X 为实向量,有0≠AX .因此0),()()()(T T T >==AX AX AX AX X A A X显然A A T是实对称矩阵,所以A A T是正定矩阵.21.设A 为n 阶实对称阵,且满足2640-+=A A E ,则A 为正定阵.证:设λ为A 的任意特征值,ξ为A 的属于特征值λ的特征向量,故≠ξ0,则22,λλ==A ξξA ξξ由 2640-+=A A E 有 264-+=A ξAξξ02(64)λλ-+=ξ0由 ≠ξ0,故 2640λλ-+=.30λ=>. 因为A 为实对称矩阵,故A 为正定阵.22.设三阶实对称阵A 的特征值为1,2,3,其中1,2对应的特征向量分别为T T 12(1,0,0),(0,1,1)==ξξ,求一正交变换=X PY ,将二次型T f =X AX 化成标准形.解:设T3123(,,)x x x =ξ为A 的属于特征值3的特征向量,由于A 是实对称矩阵,故123,,ξξξ满足正交条件12312310000110x x x x x x ⋅+⋅+⋅=⎧⎨⋅+⋅+⋅=⎩ 解之可取3(0,1,1)=-ξ,将其单位化有T T T123(1,0,0),,===P P P 令123100(,,)00⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎝P P P P .则在正交变换=X PY 下,将f 化成标准形为T T T 222123()23f y y y ===++X AX Y P AP Y23.设1222424a a -⎛⎫⎪=- ⎪ ⎪⎝⎭A二次型Tf =X AX 经正交变换=X PY 化成标准形239f y =,求所作的正交变换.解:由f 的标准形为239f y =,故A 的特征值为1230,9λλλ===.故 2122||24(9)24a a λλλλλλ---=--=----E A令0λ=,则 12224024a a ----=---解之 4a =-.由此 122244244-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A对于120λλ==有0244000244000-=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭E A可得A 的两个正交的特征向量12222,112-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ对于39λ=,可得A 的特征向量为122⎛⎫ ⎪- ⎪ ⎪⎝⎭将特征向量单位化得1232211112,1,2333122-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P P P则1232211(,,)2123122-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P P P P 为正交矩阵, 正交变换=X PY 为22112123122-⎛⎫ ⎪=- ⎪ ⎪⎝⎭X Y .注:因特征向量选择的不同,正交矩阵P 不惟一.24.已知二次型22212312132(1)22f x x k x kx x x x =++-++正定,求k .解:二次型的表示矩阵1120101kk k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A由A 正定,应有A 的各阶顺序主子式全大于0. 故 102||0kk A ⎧>⎪⎨⎪>⎩,即2220(2)0k k k k ⎧-<⎪⎨-->⎪⎩. 解之 10k -<<.25.试问:三元方程2221231213231233332220x x x x x x x x x x x x +++++---=,在三维空间中代表何种几何曲面.解:记222123121323123333222f x x x x x x x x x x x x =+++++---则 1232233(,,)131(1,1,1)113f x x x x x x x =+--- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设 311131113⎛⎫ ⎪= ⎪ ⎪⎝⎭A .则2||(2)(5)λλλ-=--E A . 故A 的特征值为1232,5λλλ===.对于122λλ==,求得特征向量为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.由Schmidt 正交化得1212111,201⎛⎫- ⎪-⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ββ.对于35λ=得特征向量3111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,标准化得123,,0⎛⎛ ⎪=== ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭P P P 令123(,,)0⎛ ==⎝P P P P 则在正交变换=X PY 下2221233225f y y y =++于是0f =为2221233225(20y y y ++-= 为椭球面.26.求出二次型222123123123(2)(2)(2)f x x x x x x x x x =-+++-+++-的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有2221231213234442f x x x x x x x x x =++--+2221231213234424x x x x x x x x x +++-+- 2221231213234244x x x x x x x x x ++++--222123121323666666x x x x x x x x x =++---2221231213236()x x x x x x x x x =++---2221232323113336[()]22442x x x x x x x =--++-22123231196()()222x x x x x =--+- 令 1123223331122y x x x y x x y x⎧=--⎪⎪=-⎨⎪=⎪⎩即 11223311122011001y x y x y x ⎛⎫--⎪⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则可逆变换为1122331112011001x y x y x y ⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭在此可逆线性变换下f 的标准形为2212962f y y =+. 27.用初等变换和配方法分别将二次型(1)222112412142432442f x x x x x x x x x =--++-+ (2)2122313262f x x x x x x =-+化成标准形和规范形,并分别写出所作的合同变换和可逆变换. 解:先用配方法求解(1)2221112142424(44)322f x x x x x x x x x =-+--++2221242424(22)66x x x x x x x =--+++-222124244(22)(3)3x x x x x x =--++--令 11242243344223y x x x y x x y x y x =-+⎧⎪=-⎪⎨=⎪⎪=⎩ 即 11242243344243x y y y x y y x y x y =++⎧⎪=+⎪⎨=⎪⎪=⎩令 1204010300100001⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型f 经可逆线性变换=x Py 化成标准形22211243f y y y =-+-若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即11223344y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 则原二次型1f 经可逆线性变换=x PQz 化成规范形2221124f y y y =-+-.(2)先线性变换11221233x y y x y y x y=+⎧⎪=-⎨⎪=⎩原二次型化成22212132313232()6622f y y y y y y y y y y =--+++221213232248y y y y y y =--+2221322332()282y y y y y y =--+-222132332()2(2)6y y y y y =---+令113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,即113223332y z z y z z y z =+⎧⎪=+⎨⎪=⎩. 令1110110001⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,2101012001⎛⎫ ⎪= ⎪ ⎪⎝⎭P则原二次型2f 经可逆线性变换12=x P P z 化成标准形2222123226f z z z =-+若再令112233w w w ⎧=⎪⎪=⎨⎪=⎪⎩即11223322z w z w z w ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令22⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎝⎭Q则原二次型2f 经可逆线性变换12=x P P Qw 化成规范形2222123f w w w =-+.用初等变换法求解(1)设120223010*******--⎛⎫⎪-⎪= ⎪⎪ ⎪-⎝⎭A41202100023010100()0000001021020001--⎛⎫⎪-⎪= ⎪ ⎪ ⎪-⎝⎭A E 2121221021000010321000000001023020001r r c c +⨯+⨯--⎛⎫⎪- ⎪−−−→⎪⎪⎪--⎝⎭4141(2)(2)10001000010321000000001003062001r r c c+-⨯+-⨯-⎛⎫⎪- ⎪−−−−→ ⎪ ⎪ ⎪--⎝⎭4242331001000010021000000001000034301r r c c +⨯+⨯-⎛⎫⎪⎪−−−→ ⎪⎪⎪-⎝⎭3310001000010021000000001000010r c -⎛⎫⎪⎪ ⎪→- ⎝令 T11000210000104301⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P ,T21000210000100⎛⎫ ⎪⎪ ⎪=P则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211233f y y y =-+-. 二次型经过可逆线性变换2=x P z 化成规范形2221124f z z z =-+-.(2)设011103130⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A3011100()103010130001⎛⎫⎪=- ⎪ ⎪-⎝⎭A E 3232(1)(1)01010103010036011r r c c +-⨯+-⨯⎛⎫⎪−−−−→- ⎪ ⎪--⎝⎭ 313133010100100010006311r r c c +⨯+⨯⎛⎫ ⎪−−−→ ⎪ ⎪-⎝⎭1212210100100010006311r r c c ++⎛⎫⎪−−−→ ⎪ ⎪-⎝⎭ 21211()21()2200110111000222006311r r c c +-⨯+-⨯⎛⎫⎪⎪−−−−→-- ⎪ ⎪-⎝⎭112233,,,10000100001266r c r c r c ⎛⎫⎪ ⎪ ⎪→- ⎪ - ⎝⎭令 T 111011022311⎛⎫ ⎪ ⎪=-⎪ ⎪-⎝⎭P ,T200⎛⎫ ⎪ ⎪ ⎪= ⎪⎝P 则原二次型2f 经过可逆线性变换1=x P y 化成标准形22221231262f y y y =-+ 二次型经过可逆线性变换2=x P z 化成规范形2222123f z z z =-+28.用三种不同方法化下列二次型为标准形和规范形.(1)2221122332343f x x x x x =+++(2)222221234121423342222f x x x x x x x x x x x x =++++--+解:先用配方法求解(1)222112233423()33f x x x x x =+++22212332523()33x x x x =+++ 令 112233323y x y x x y x =⎧⎪⎪=+⎨⎪=⎪⎩ 即 112233323x y x y y x y =⎧⎪⎪=-⎨⎪=⎪⎩令 1002013001⎛⎫ ⎪⎪=- ⎪ ⎪⎝⎭P则二次型1f 经可逆线性变换=x Py 化成标准形22211235233f y y y =++ 若再令112233z z z y ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩即11223335y z y z y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令5⎫⎪ ⎪ ⎪= ⎪ ⎝⎭Q原二次型1f 经可逆线性变换=x PQz 化成规范形2221123f z z z =++.(2)22222112142342334(22)22f x x x x x x x x x x x x =+-+++-+221243233424()222x x x x x x x x x x =+-+-++ 2222124324244()()(2)3x x x x x x x x x =+-+-+--+令 11242243234442y x x x y x x y x x x y x =+-⎧⎪=-⎪⎨=-++⎪⎪=⎩ 即11242243234442x y y y x y y x y y y x y =--⎧⎪=+⎪⎨=++⎪⎪=⎩ 令 110101020*******--⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型2f 经可逆线性变换=x Py 化成标准形2222212343f y y y y =-++若再令11223344z y z yz y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即112233443y z y z y z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩ 令111⎛⎫ ⎪⎪⎪=⎝Q 原二次型2f 经可逆线性变换=x PQz 化成规范形222221234f z z z z =-++. 用初等变换法求解(1)设200032023⎛⎫ ⎪= ⎪⎪⎝⎭A3200100()032010023001⎛⎫ ⎪= ⎪⎪⎝⎭A E 32322()32()320010003001052000133r r c c +-⨯+-⨯⎛⎫⎪ ⎪−−−−→ ⎪ ⎪- ⎪⎝⎭112310000010000010155r c r c ⎛⎫ ⎪ ⎪⎪→ ⎪ - ⎝⎭令TT1200100010,0020130⎫⎪⎛⎫ ⎪⎪ ⎪⎪== ⎪⎪ ⎪ - ⎪ ⎝⎭⎝P P 则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211235233f y y y =++. 二次型经过可逆线性变换2=x P z 化成规范形2221123f z z z =++.(2)设1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪⎪-⎝⎭A41101100011100100()0111001010110001-⎛⎫⎪-⎪= ⎪- ⎪⎪-⎝⎭A E2121(1)(1)10011000001111000111001011110001r r c c +-⨯+-⨯-⎛⎫⎪-- ⎪−−−−→ ⎪- ⎪ ⎪-⎝⎭41411001000001111000111001001101001r r c c ++⎛⎫ ⎪-- ⎪−−−→⎪- ⎪ ⎪⎝⎭323210001000001111000112111001201001r r c c ++⎛⎫ ⎪-- ⎪−−−→ ⎪--- ⎪ ⎪⎝⎭343410001000000111000032011101201001r r c c ++⎛⎫⎪- ⎪−−−→ ⎪ ⎪⎪⎝⎭ 3232(2)(2)10001000000111000030211101001001r r c c +-⨯+-⨯⎛⎫⎪- ⎪−−−−→ ⎪- ⎪ ⎪⎝⎭242410001000020101010030211101001001r r c c ++⎛⎫⎪ ⎪−−−→ ⎪- ⎪⎪⎝⎭ 42421()21()210001000020001010030211111100010222r r c c +-⨯+-⨯⎛⎫⎪⎪−−−−→ ⎪- ⎪⎪-- ⎪⎝⎭22334410001000010000001000010r c r c r c ⎛⎫⎪→- ⎝令 T 1100001012111111022⎛⎫⎪ ⎪= ⎪-⎪ ⎪- ⎪⎝⎭PT2100000022⎛⎫ ⎪= - ⎝⎭P 则原二次型2f 可经可逆线性变换1=x P y 化成标准形2222212341232f y y y y =++-. 2f 可经可逆线性变换2=x P z 化成规范形222221234f z z z z =++-用正交变换法求解(1)1f 的矩阵为200032023⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,由200||032(1)(2)(5)023λλλλλλλ--=--=-----E A,知A的特征值为1,2,5.对11λ=,解123100002200220xxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,取111⎛⎫⎪= ⎪⎪-⎝⎭T,单位化12⎛⎫⎪⎪⎪= ⎪⎪⎪- ⎪⎝⎭P,对22λ=,解123000001200210xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得1231xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,取21⎛⎫⎪= ⎪⎪⎝⎭P,对35λ=解123300002200220xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭取311⎛⎫⎪= ⎪⎪⎝⎭T,单位化得322⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎝⎭P,令0102222⎛⎫⎪⎪⎪= ⎪⎪⎪- ⎪⎝⎭P,则P为正交阵,经正交变换=X PY,原二次型f化为T22212325f y y y==++X AX.(2)2f的矩阵为1101111001111011-⎛⎫⎪-⎪=⎪-⎪⎪-⎝⎭A由11011110||01111011λλλλλ-----=----E A2(1)(3)(1)λλλ=+--知A的特征值为1,3,1,1-.对11λ=-,解12342101012100,0121010120x x x x --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 得 12341111x x kx x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪= ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,取11111⎛⎫ ⎪- ⎪= ⎪- ⎪ ⎪⎝⎭T 单位化得112121212⎛⎫ ⎪ ⎪ ⎪- ⎪= ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭P ,对23λ=,解12342101012100,0121010120x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12341111x x k x x -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 取 21111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭T 单位化得 212121212⎛⎫- ⎪ ⎪ ⎪- ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P . 对341λλ==,解12340101010100,010*******x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12123410011001x x k k x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取 341001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭T T ,再令340202,00⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪⎝⎭P P 令11022110221102211022⎛⎫-⎪ --⎪= ⎪-⎪ ⎝P ,则P 为正交阵,经正交变换=X PY , 原二次型f 化为T 222212343f y y y y ==-+++X AX .29.判断下列二次型正定,负定还是不定.(1)2221223121326422f x x x x x x x =---++解:二次型1f 的矩阵为211160104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭AA 的各阶顺序全子式2112120,110,1603801614---<=>-=-<--. 所以二次型1f 是负定二次型.(2)22222123412131424343919242612f x x x x x x x x x x x x x x =+++-++--解:二次型2f 的矩阵为11211303209613619-⎛⎫ ⎪--⎪= ⎪- ⎪ ⎪--⎝⎭A A 的各阶顺序主子式1110,2013->=>-,1121306029--=>,11211303240209613619---=>---所以二次型2f 是正定二次型.(3)222231234131423147644f x x x x x x x x x x =+++++-解:二次型3f 的矩阵为10320120321402007⎛⎫⎪- ⎪=⎪- ⎪ ⎪⎝⎭A A 的各阶顺序主子式1010,1001>=>,103012103214-=>-,1320120330321402007-=-<-. 所以二次型3f 是不定二次型.30.求一可逆线性变换=X CY ,把二次型2221123121325424f x x x x x x x =++--化成规范形2221123f y y y =++,同时也把二次型22221231313233322242f x x x x x x x x x =++--- 化成标准形2222112233f k y k y k y =++.解:记T1f =X AX ,其中212150204--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A31213121121220021290115022040121001112010*********r r r r c c c c ++++⎛⎫ ⎪--⎛⎫ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪--⎛⎫ ⎪=−−−→ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭A E323229292009002160091101292019001r r c c ++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123123343410001000156610363004r r r c c c ⨯⨯⎛⎫ ⎪ ⎪ ⎪ ⎪⎪⎪−−−→⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭取5661036004⎛⎫⎪⎪⎪⎪= ⎪ ⎪3 ⎪ ⎪⎝⎭P ,则T =P AP E 记 T2f =X BX,其中3012032122⎛⎫- ⎪ ⎪=- ⎪ ⎪-- ⎪⎝⎭B则T15003601210032063361225133006644⎛⎫⎫⎪⎪⎛⎫-⎪⎪ ⎪ ⎪⎪ ⎪ ⎪==-⎪ ⎪⎪ ⎪ ⎪--⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭B P BP5066106113100234⎛⎫⎫⎪⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭314413444142⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-⎪⎪⎭2311113442⎛⎫==⎪⎭B其中231132⎛⎫=⎪⎭B显然12,B B都是实对称矩阵,它们的特征值为14倍的关系,特征向量相同.231||13λλλ---=--EB30(3)14)1(3)04)4λλλλλ---=----2(4)0λλ=-=则2B的特征值为230,4λλλ===,故1B的特征值为0,1,1.以下求2B的特征向量.对于1λ=,求得11⎛⎪= ⎪⎪⎪⎪⎝⎭α,单位化后11212⎛⎫-⎪⎪⎪= ⎪⎪γ对于234λλ==,求得2311,001⎛⎫⎪== ⎪⎪⎪ ⎪⎝⎭⎝⎭αα由Schmidt标准正交化后得23121,2⎛⎫⎪⎪⎪==-⎪⎪⎪⎪⎝⎭γγ令123112211(,,)220⎛⎫- ⎪ ⎪ ⎪==-⎪ ⎪Q γγγ. 则Q 为正交矩阵,且有T T T 10()11⎛⎫ ⎪== ⎪ ⎪⎝⎭Q B Q Q P BP Q令511662*********304⎛⎫⎛⎫⎪- ⎪⎪ ⎪⎪ ⎪⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭CPQ 23130⎫⎪⎪=⎪⎪⎭于是 TTT==Q P APQ Q EQ E 即 T=C AC ET 011⎛⎫ ⎪= ⎪ ⎪⎝⎭C BC在可逆线性变换=X CY 下2221123f y y y =++ 22223f y y =+.(注:经验算本题所得C 是正确的,需要注意的是C 并不惟一) 31.求一可逆线性变换=X PY ,将二次型f 化成二次型g .2221231213232938410f x x x x x x x x x =+++-- 222123121323236448g y y y y y y y y y =++--+解:Tf =X AX ,242495253-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A , T g =Y BY ,222234246--⎛⎫⎪=- ⎪ ⎪-⎝⎭B 将,A B 分别作合同变换如下:21313221323122242200200495011010253011000100121121010010011001001001r rr r r r c c c c c c -++-++-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E 在可逆线性变换1=X C Z 下22122f z z =+ 其中 1121011001--⎛⎫ ⎪= ⎪ ⎪⎝⎭C21313221323122220020023401201024602400100111111010010012001001001r r r r r r c c c c c c ++++++--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B E 在可逆线性变换2=YC Z 下22122g z z =+.其中 2111012001-⎛⎫⎪=- ⎪ ⎪⎝⎭C由 12-=Z C Y 得1112-==X C Z C C Y令 1112121111136011012003001001001-------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭P C C 在可逆线性变换=X PY 下22122f g z z ==+.32.A 是正定矩阵,AB 是实对称矩阵,则AB 是正定矩阵的充分必要条件是B 的特征值全大于零. 证:先证必要性.设λ 为B 的任一特征值,对应的特征向量为,,0≠X X 则 且有X BX λ=用A X T左乘上式有AXX X AB X T T )(λ=因为AB ,A 都是正定矩阵,故0,0)(T T >>AX X X AB X于是0>λ,即B 的特征值全大于零.再证充分性.因为A 是正定矩阵,所以A 合同于单位矩阵,故存在可逆矩阵P ,使E AP P =T (1)由AB 是对称矩阵,知P AB P )(T也是实对称矩阵,因此存在正交矩阵Q ,使),,,,diag(])([1T T n i μμμ ==D Q P AB P Q (2)即有),,,,diag()()(1TT n i μμμ ==D PQ B A P Q (3)其中n i μμμ,,,,1 是P AB P )(T的特征值. 在(1)的两端左乘TQ ,右乘Q 有E PQ A P Q E Q AP P Q ==))(()(T T T T 即这说明)()(TTPQ A P Q 与互逆,也就是说1T T )()(-=PQ A P Q将上式代入(3),说明矩阵B 与对角阵D 相似,故它们的特征值相等;由条件知B 的特征值全大于零,因此对角阵D 的特征值也全大于零. 由(2)知AB 与D 合同,因此AB 的特征值全大于零.33.设,A B 为n 阶实正定阵,证明:存在可逆阵P ,使T =P AP E 且T 12diag(,,,)n λλλ=P BP ,其中120n λλλ≥≥≥>为||0λ-=A B 的n 个实根.证:因A 正定,故存在可逆矩阵1P ,使T 11=P AP E因B 正定,故存在可逆矩阵2P ,使T 22=B P P于是T T T T 1112212121()()==P BP P P P P P P P P易见T11P BP 为正定矩阵,不妨设它的特征值为120n λλλ≥≥≥>.则 TTT11111||||λλ-=-E P BP P AP P BP T11||||||λ=-P A B P 故 T11||0||0λλ-=⇔-=E P BP A B 即 120n λλλ≥≥≥>为||0λ-=A B 的几个实根.由 T11P BP 为正定阵,知其为实对称矩阵,所以存在正交矩阵Q ,使 T T 1112()diag(,,,)n λλλ=Q P BP Q 令 1=P PQ ,则 TT 12,diag(,,,)n λλλ==P AP E P BP34.设A 为n 阶实正定阵,B 为n 阶实半正定阵,则||||+≥A B A . 证:因为A 是n 阶正定矩阵,所以存在n 阶可逆矩阵C ,使得T =C AC E . 因为B 是n 阶半正定阵,则TC BC 仍是实对称半正定阵,故存在正交阵Q ,使得1T T T 1()()diag(,,,,)i n D -===Q C BC Q Q C BC Q λλλ其中 0,1,,i i n λ≥=为T C BC 的特征值,且有T T ()=Q C AC Q E令=P CQ ,则P 为可逆矩阵,于是T T ,==P AP E P BP DT T T ()+=+=+P A B P P AP P BP E D上式两端取行列式,得T1||||||||(1)1ni i λ=+=+=+≥∏P A B P E D ||||||T =P A P因 T||||0=>P P , 故 ||||+≥A B A .35.设,A B 均为实正定阵,证明:方程||0λ-=A B 的根全大于0.证:由33题知T11||0||0λλ-=⇔-=E P BP A B . 其中T11P BP 为正交矩阵,它的特征值0i λ>,1,,i n =,故||0λ-=A B 的根全大于0.36.设A 为n 阶正定矩阵,试证:存在正定矩阵B ,使2B A =. 证:因为A 是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P ,使12-1T n λλλ⎛⎫ ⎪===⎪ ⎪ ⎪⎝⎭P AP P AP D 其中n λλλ,,,21 为A 的n 个特征值,它们全大于零.令),,,2,1(n i i i ==λδ 则21111222222n n n n δλδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 1122T T n n δδδδδδ⎛⎫⎛⎫⎪⎪ ⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP PP1122T T n n δδδδδδ⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P令 B =12Tn δδδ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭P P显然B 为正定矩阵,且2B A =.37.设A 为n 阶可逆实方阵,证明:A 可表示为一个正定阵与一正交阵的乘积. 证:因为A 是n 阶可逆实方阵,故T A A 是正定矩阵,所以存在n 阶正定矩阵B ,使T 2=A A B .于是有1T 11T T 11T 21()()()()------===AB AB B A AB B B B E这说明1-AB 是正交阵. 令 1-=ABQ则 =A QB ,其中Q 是正交矩阵,B 是正定矩阵.38.A 、B 为n 阶正定矩阵,则AB 也为n 阶正定矩阵的充分必要条件是:AB =BA ,即A 与B 可交换.证:方法一 先证必要性.由于A 、B 、AB 都是正定矩阵,所以知它们都是对称矩阵,因此有AB AB B B A A ===T T T )(,,于是BA A B AB AB ===T T T )(即A 与B 可交换.再证充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.因为,A B 是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P 、Q ,使Q Q B P P A T T ,==于是Q PQ P AB T T =上式左乘Q ,右乘1-Q 得)()()(T T T T T 1PQ PQ PQ QP Q AB Q ==-这说明AB 与对称矩阵)()(TTT PQ PQ 相似;因为P TQ 是可逆矩阵,故矩阵)()(TTT PQ PQ 是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零. 综合上述知AB 正定. 方法二必要性同方法一,以下证明充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.由于A 正定,所以存在可逆矩阵Q ,使A=Q T Q于是T T T T 1()λλλ--=-=-E AB E Q QB E Q QBQ QT T 1T T T 1T T T 1T()()()()λλλ---=-=-=-Q E Q Q QBQ Q Q E QBQ Q E QBQT 00λλ-=⇔-=E AB E QBQ这说明AB 与TQBQ 有相同的特征值.因为B 是正定矩阵,易见TQBQ 也是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零. 综合上述知AB 正定.39.设A 、B 为实对称矩阵,且A 为正定矩阵,证明:AB 的特征值全是实数. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=,于是有T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ即T||0||0λλ-=⇔-=E AB E QBQ .因为B 是实对称矩阵,所以TQBQ 也是实对称矩阵,因此它的特征值都是实数,故AB 的特征值也都是实数.40.设A 是正定矩阵,B 是实反对称矩阵,则AB 的特征值的实部为零. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ因为B 是实反对称矩阵,所以TQBQ 也是实反对称矩阵,因此它的特征值实部为零,故AB 的特征值实部也为零.41.设A 是正定矩阵,B 是半正定的实对称矩阵,则AB 的特征值是非负的实数. 证:由于A 是正定的,所以1-A 也是正定的,于是存在可逆矩阵P ,使得P P A T 1=-,因此1T T T 11T T 111T 11T 111T 1()()()()()λλλλλλλλ-------------=-=-=-=-=-=-=-E AB A A B A P P B A P E P BP PA P P E P BP A A E P BP E P BP E P BP即0)(01T 1=-⇔=---BP P E AB E λλ.由于B 是半正定的实对称矩阵,故1T1)(--BPP 是半正定的实对称矩阵,因此0)(1T 1=---BP P E λ的根是非负实数.于是0=-AB E λ的根也是非负实数,即AB的特征值是非负的实数.42.求证实二次型∑∑==++=n r ns sr n xx s r krs x x f 111)(),,( 的秩和符号差与k 无关.证:二次型的矩阵为22334(1)2344652(2)3465963(3)(1)2(2)3(3)22k k k nk n k k k nk n k k k nk n nk n nk n nk n n k n +++++⎛⎫ ⎪+++++ ⎪+++++= ⎪⎪⎪+++++++⎝⎭A对矩阵A 作合同变换,即把A 的第1行的(-2),(-3),…,(-n )倍加到第2,3,…,n 行上;同时把A 的第1列的(-2),(-3),…,(-n )倍加到第2,3,…,n 列上,得到与矩阵A 合同的矩阵B 为212(1)10002000(1)00k n n +----⎛⎫ ⎪- ⎪=- ⎪⎪ ⎪--⎝⎭B对矩阵B 作合同变换,即把B 的第2行的)1(,2,22---+n k 倍依次加到第1,3,4,…,n 行上;同时把B 的第2列的)1(,2,22---+n k 倍依次加到第1,3,4,…,n列上,得到与矩阵B 合同的矩阵C 为100100000000000-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭C。