定积分的概念 ppt课件
合集下载
《定积分的定义》课件
总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看
微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积
《高数》定积分课件
《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被
1.5定积分的概念(4课时)ppt课件
作业: P45练习:2 .
1.5.3 定积分的概念
问题提出 1.求曲边梯形的面积和求变速直线运
动的路程,都可以通过“四步曲”解决, 这四个步骤是什么?其中哪个步骤是难 点?
分割→近似代替→求和→取极限.
2.求曲边梯形的面积与求变速直线运 动的路程是两类不同的问题,但它们有 共同的解决途径,我们可以此为基点, 构建一个新的数学理论,使得这些问题 归结为某个数学问题来解决,并应用于 更多的研究领域.
x 3)dx
(2x x )dx . 1
0
y sin( .x
)3
0
1
(2x
x 3)dx
0
1
2xdx
0
1x 3dx 1 1 3
0
44
小结作业
1.定积分是一个特定形式和的极限,其 几何意义是曲边梯形的面积,定积分的 值由被积函数,积分上限和下限所确定.
2.在实际问题中,定积分可以表示面积、 体积、路程、功等等,求定积分的值目 前有定义法和几何法两种,有时利用定 积分的性质进行计算,能简化解题过程.
B组:2,3.
i)
,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
思 做考 函数4:f(数x)学在上区,间把[a,nlimb]in上1 b的n定a f积( i )分,叫
记作
b
f (x)dx,即
a b
f (x)dx
a
lim
n
n i1
b
af( n
i)
其中a与b分别叫做积分下限与积分上限,
பைடு நூலகம்
区间[a,b]叫做积分区间,函数f(x)叫
2
(x 1)dx 的值.
1
定积分的概念PPT课件
(3 )
a
f ( x )dx
f ( x )dx
b a
f (x )dx
性质4: 性质5: 性质6:
a
a
b
f ( x )dx 0.
a
dx b a .
b
a
f ( x )dx f ( x )dx .
b
a
思考4:
r 0
2 xdx
2
?
r
2
1
0
1 x dx ?
i 1
b n
a
f ( i ) ,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
n
思考4:数学上,把
n
lim
i 1
b n
a
f( i)
叫
做函数f(x)在区间[a,b]上的定积分, 记作 即
a
b a
b
f (x )dx ,
n
f (x )dx
n
lim
i 1
b n
a
f( i)
b a
f (x )dx 其中
---积分号 a---积分下限 b---积分上限 区间[a,b] ---积分区间 函数f(x) ---被积函数 x---积分变量 f(x)dx---被积式
v=v(t)
n
s
n
lim
i 1
b n
a
v( i )
O a
i
b t
思考3:一般地,如果函数f(x)在区间[a, b]上连续,用分点 a=x0<x1<x2<„<xi<„<xn=b将区 间[a,b]等分成n个小区间,在每个小区 间[xi-1,xi](i=1,2,„,n)上任取一
《定积分的性质》课件
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
函数可加性
总结词
函数可加性是指定积分具有函数可加性,即对于任意分割的两个子区间[a,c]和 [c,b],其上的定积分之和等于整个区间[a,b]上的定积分。
定积分的几何意义
面积
01
定积分表示曲线与x轴所夹的面积,即曲线下方的区域面积。
体积
02
对于二维平面上的曲线,定积分表示的是面积;对于三维空间
中的曲面,定积分则表示的是体积。
物理应用
03
定积分在物理中有广泛的应用,如计算力矩、功、速度等物理量。Βιβλιοθήκη 定积分的性质线性性质
定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对 每个函数进行积分后再求和或求差。
详细描述
积分第二中值定理说明了一个函数在两个闭 区间上的定积分值相等时,该函数在这两个 区间上必须满足的条件。这个定理在解决一 些等式问题时非常有用,因为它提供了一种 将两个区间的积分等式转化为函数性质的途 径。
积分第三中值定理
总结词
该定理表明如果一个函数在一个闭区间上的定积分值为零,那么该函数在该区间内至少 存在两个点,使得在这些点的函数值等于零。
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则 ∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
03
定积分的比较性质
无穷区间上的比较性质
总结词
定积分在无穷区间上的比较性质是指,如果函数在无穷区间上的积分值与其在有限区间上的积分值相 等,则函数在无穷区间上的积分值也相等。
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
函数可加性
总结词
函数可加性是指定积分具有函数可加性,即对于任意分割的两个子区间[a,c]和 [c,b],其上的定积分之和等于整个区间[a,b]上的定积分。
定积分的几何意义
面积
01
定积分表示曲线与x轴所夹的面积,即曲线下方的区域面积。
体积
02
对于二维平面上的曲线,定积分表示的是面积;对于三维空间
中的曲面,定积分则表示的是体积。
物理应用
03
定积分在物理中有广泛的应用,如计算力矩、功、速度等物理量。Βιβλιοθήκη 定积分的性质线性性质
定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对 每个函数进行积分后再求和或求差。
详细描述
积分第二中值定理说明了一个函数在两个闭 区间上的定积分值相等时,该函数在这两个 区间上必须满足的条件。这个定理在解决一 些等式问题时非常有用,因为它提供了一种 将两个区间的积分等式转化为函数性质的途 径。
积分第三中值定理
总结词
该定理表明如果一个函数在一个闭区间上的定积分值为零,那么该函数在该区间内至少 存在两个点,使得在这些点的函数值等于零。
详细描述
设函数f(x)在区间[a,b]上可积,任意c∈[a,b],则 ∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx。
03
定积分的比较性质
无穷区间上的比较性质
总结词
定积分在无穷区间上的比较性质是指,如果函数在无穷区间上的积分值与其在有限区间上的积分值相 等,则函数在无穷区间上的积分值也相等。
《定积分课件》课件
03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
定积分概念、性质ppt课件
上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1
第一节-定积分的概念与性质PPT课件
A
C
oa
Ex
b
它们的面积计算都由公式给定,理解也相对简单。但是, 现实中还会有另外一些图形,它们的面积计算就无法由 给定的公式给出。如右上图。这样的图形面积应该怎么 计算呢?
考虑这样一个问题:
由连续曲线y=f (x) ( f(x)0,x [a,b])、x轴与两条直线
x=a、x=b所围成的图形,这个图像成为曲边梯形(如图),
Solution: Divide the interval to four equal interval [0,1],[1,2],[2,3] and [3,4].
Left Riemann sum:
Right Riemann sum:
Midpoint Riemann sum:
Example 2: The function is continuous on the closed interval [0,10] and has values as shown in the table above. Using the intervals [0,2] [2,5] [5,8] and [8,10],what is
通常称F(x)是f(x)的一个原函数
(2) 在计算定积分时,常常用符号
来表示
F(b)−F(a),牛顿—莱布尼茨公式也可以写作
常见函数的原函数
(1)0 的原函数=__c_; (2)1 的原函数=__x_+__c___;
xα+1
(3)xα 的原函数=__α_+__1___+c(α≠-1,x>0)
(4)1x的原函数=_____ln_|x_|+__c_______(x≠0);
(5)ex 的原函数=_____ex_+__c________; (6)ax 的原函数=____l_an_xa+__c________;
《定积分的概念》PPT课件
定积分的概念
一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质
一、引入定积分概念的实例
引例1 曲边梯形的面积 曲边梯形 设函数f(x)在区间[a,b](a<b)上非负且连 续,由曲线y=f(x),直线x=a,x=b及x轴围成的图形称 为曲边梯形,其中曲线弧y=f(x)称为曲边,线段ab称 为底边. 问题 求由x=a, x=b, y=0与y=f(x) 所围成的曲边 梯形的面积.
把各小区间上力F所做的功的近似值加起来,作 为力 在a, b上所做的功的近似值,即 W W i F ( i ) s i .
i 1 i 1 n n
(3)取极限 把所有小区间长度中的最大值记为 max( si ) 则 0时,和式 F ( i ) si的极限值定义为变力
0 i 1
n
我们同样可以用这种“分割,近似、求和,取极 限”的方法解决变力作功的问题.
引例2 变力做功
设某质点作直线运动,已知变力F ( s)是位移s的 连续函数,质点的位移区间为a, b,求变力F做的功.
计算步骤 (1)分割
将闭区间[a, b] 分成n个小区间, 分别为: [ s0 , s1 ],[ s1, s2 ],,[ si 1, si ],,[ sn 1, sn ] 分点为: a s0 s1 s2 si sn 1 sn b 小区间的长分别为: si si si 1 (i 1,2,, n).
b (1)定积分 a f ( x)dx 是积分和式的极限,是一个数值,
定积分值只与被积函数f(x)及积分区间[a,b]有关, 而与积分变量的记法无关.即有
a f ( x)dx a f (t )dt a f (u )du.
一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质
一、引入定积分概念的实例
引例1 曲边梯形的面积 曲边梯形 设函数f(x)在区间[a,b](a<b)上非负且连 续,由曲线y=f(x),直线x=a,x=b及x轴围成的图形称 为曲边梯形,其中曲线弧y=f(x)称为曲边,线段ab称 为底边. 问题 求由x=a, x=b, y=0与y=f(x) 所围成的曲边 梯形的面积.
把各小区间上力F所做的功的近似值加起来,作 为力 在a, b上所做的功的近似值,即 W W i F ( i ) s i .
i 1 i 1 n n
(3)取极限 把所有小区间长度中的最大值记为 max( si ) 则 0时,和式 F ( i ) si的极限值定义为变力
0 i 1
n
我们同样可以用这种“分割,近似、求和,取极 限”的方法解决变力作功的问题.
引例2 变力做功
设某质点作直线运动,已知变力F ( s)是位移s的 连续函数,质点的位移区间为a, b,求变力F做的功.
计算步骤 (1)分割
将闭区间[a, b] 分成n个小区间, 分别为: [ s0 , s1 ],[ s1, s2 ],,[ si 1, si ],,[ sn 1, sn ] 分点为: a s0 s1 s2 si sn 1 sn b 小区间的长分别为: si si si 1 (i 1,2,, n).
b (1)定积分 a f ( x)dx 是积分和式的极限,是一个数值,
定积分值只与被积函数f(x)及积分区间[a,b]有关, 而与积分变量的记法无关.即有
a f ( x)dx a f (t )dt a f (u )du.
定积分的概念课件
定积分的概念ppt课件
欢迎来到定积分的概念课件!本课件将带你深入探索定积分的定义、基本性 质、计算方法,并展示在不同领域中的应用和几何解释。
定积分的定义
定积分是将曲线下的面积划分成无穷多个矩形,然后通过取极限的方式来求 得曲线下的总面积。
定积分的基本性质
1 线性性质
定积分具有线性性质,可以对函数的和、差和常数倍进行运算。
定积分的概念在实际生活中的应用
统计学
定积分在统计学中有着广泛的 应用,例如求解概率密度函数、 计算累积分布函数。
工程学
工程学中常常使用定积分来计 算流体力学、电磁学以及结构 分析等问题。
经济学
经济学中利用定积分来计算总 产出、消费量和劳动力需求等 关键指标。
定积分在物理学中的应用
1
质量分布
通过定积分求解物体的质量分布,可以帮助
电荷密度
2
我们了解物体的物理特性和性能。
对于并进一步推导出
电场强度。
3
能量积分
定积分可以应用于物体内部的能量分布计算, 例如弹簧势能和微分力的功。
定积分的几何解释
定积分的几何解释是曲线下面积,这代表了函数图像与坐标轴之间的区域所占空间的大小。
2 区间可加性
若函数在闭区间[a, b]上可积,那么它在其中任一子区间上也可积。
3 保号性质
定积分的结果能够反映函数在区间上正负值的变化情况。
利用定积分求曲线下面积
几何解释
通过定积分,我们可以计算曲线与坐标轴之间的面积, 这在几何学上具有重要意义。
计算方法
定积分可以通过求解函数的原函数,并计算两个边界值 之差来实现。
欢迎来到定积分的概念课件!本课件将带你深入探索定积分的定义、基本性 质、计算方法,并展示在不同领域中的应用和几何解释。
定积分的定义
定积分是将曲线下的面积划分成无穷多个矩形,然后通过取极限的方式来求 得曲线下的总面积。
定积分的基本性质
1 线性性质
定积分具有线性性质,可以对函数的和、差和常数倍进行运算。
定积分的概念在实际生活中的应用
统计学
定积分在统计学中有着广泛的 应用,例如求解概率密度函数、 计算累积分布函数。
工程学
工程学中常常使用定积分来计 算流体力学、电磁学以及结构 分析等问题。
经济学
经济学中利用定积分来计算总 产出、消费量和劳动力需求等 关键指标。
定积分在物理学中的应用
1
质量分布
通过定积分求解物体的质量分布,可以帮助
电荷密度
2
我们了解物体的物理特性和性能。
对于并进一步推导出
电场强度。
3
能量积分
定积分可以应用于物体内部的能量分布计算, 例如弹簧势能和微分力的功。
定积分的几何解释
定积分的几何解释是曲线下面积,这代表了函数图像与坐标轴之间的区域所占空间的大小。
2 区间可加性
若函数在闭区间[a, b]上可积,那么它在其中任一子区间上也可积。
3 保号性质
定积分的结果能够反映函数在区间上正负值的变化情况。
利用定积分求曲线下面积
几何解释
通过定积分,我们可以计算曲线与坐标轴之间的面积, 这在几何学上具有重要意义。
计算方法
定积分可以通过求解函数的原函数,并计算两个边界值 之差来实现。
大学课件 定积分概念-PPT精品文档
图 4-1 PPT课件 大学各学科
迎收藏
x
持续更新 欢 3
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
大学各学科PPT课件 持续更新 欢迎收 藏 4
求解曲边梯形面积的步骤:
(1)分割:将曲边梯形分割成 n 个小曲边梯形。任取分 点 a x0 x1 xn1 xn b ,把底边 [a, b] 分成 n 个 小区间
f ( x ) dx
a
b
积分下限
被 积 函 数
被 积 [a,b] 积分区间 积 分 表 变 达 量 式 大学各学科PPT课件 持续更新 欢迎收
藏 12
有了这个定义,前面两个实际问题都可用定积分表示 为: 曲边梯形面积 A a f ( x)dx 变速直线运动的路程 S T V (t )dt
23
例4
解
2 1
1 1 x 1 2 x 1 设 f ( x) ,求 1 f ( x)dx 1 x 2 x2
因为 f ( x) 在[1,2]上分段连续 1 所以 f ( x)dx = ( x 1)dx dx x x x 1 3 = 2 2 x
1 2 1 1 2
2 1 2 1 1
练习 习 题4-2 (1)-(4)
大学各学科PPT课件 持续更新 欢迎收 藏
24
二、定积分的计算
1.定积分的换元积分法
例5 计算 sin 2 xdx
1 0
解 解法一 求 sin 2 x 的原函数。 1 1 1 sin 2 xdx= sin 2 xd 2 x u 2 x sin udu = cos u C 2 2 2
迎收藏
x
持续更新 欢 3
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
大学各学科PPT课件 持续更新 欢迎收 藏 4
求解曲边梯形面积的步骤:
(1)分割:将曲边梯形分割成 n 个小曲边梯形。任取分 点 a x0 x1 xn1 xn b ,把底边 [a, b] 分成 n 个 小区间
f ( x ) dx
a
b
积分下限
被 积 函 数
被 积 [a,b] 积分区间 积 分 表 变 达 量 式 大学各学科PPT课件 持续更新 欢迎收
藏 12
有了这个定义,前面两个实际问题都可用定积分表示 为: 曲边梯形面积 A a f ( x)dx 变速直线运动的路程 S T V (t )dt
23
例4
解
2 1
1 1 x 1 2 x 1 设 f ( x) ,求 1 f ( x)dx 1 x 2 x2
因为 f ( x) 在[1,2]上分段连续 1 所以 f ( x)dx = ( x 1)dx dx x x x 1 3 = 2 2 x
1 2 1 1 2
2 1 2 1 1
练习 习 题4-2 (1)-(4)
大学各学科PPT课件 持续更新 欢迎收 藏
24
二、定积分的计算
1.定积分的换元积分法
例5 计算 sin 2 xdx
1 0
解 解法一 求 sin 2 x 的原函数。 1 1 1 sin 2 xdx= sin 2 xd 2 x u 2 x sin udu = cos u C 2 2 2
定积分的概念-PPT精选
b
s a v(t)dt;
密 度 为 ( x ) 线 状 物 体 的 质 量 为
m b(x)dx. a 前页 后页 返回
关于定积分定义,应注意以下几点:
n
注1 表 达 式 JlT im 0i1f(i)xi 不 仅 与 n和 T有
关 , 还 与 { 1 ,2 , ,n } 有 关 , 因此定积分既不是数 列极限,也不是函数极限.
区 间 [xi1, xi]的长度不趋于 0 . 要 保 证 每 个 区 间 [ x i 1 , x i ] 的 长 度 趋 于 0 , 需 引 入 分 割 T 的 细 度 ( 模 ) :
T m a x x i i 1 ,2 , ,n .
则 当T0时 ,就能保证分割越来越细.
n
当v(t)v0为 匀 速 运 动 时 , s v 0 ( b a ) ; 当质量是
均 匀 分 布 时 , 即 x 为 常 数 时 , m(ba).
这就是说,在“常值”、“均匀”、“不变”的情况下
前页 后页 返回
可以用简单的乘法进行计算. 而现在遇到的问题 是“非常值” 、“不均匀”、“有变化”的情形, 如来何解决这些问题呢? 以下我们以求曲边梯形的面积为例,把这类问题 合理地归为一类特殊的和式的极限. 中心思想: 把曲边梯形看作许许多多小的曲边梯形之和,每 个小曲边梯形面积,可近似地用矩形的面积来替
与S的差距就会越来越小.
i 1
问题是:
(1 )如 何 刻 划 分 割 越 来 越细?
n
(2 )如 何 刻 划 f(i)x i越 来 越 逼 近 于 S ? i 1
下面依次讨论这两个问题.
前页 后页 返回
( 1 ) 对 于 一 般 的 T : a 0 x 0 x 1 x n b , 不 能 用n来表示分割 T 越来越细,因为可能某些
s a v(t)dt;
密 度 为 ( x ) 线 状 物 体 的 质 量 为
m b(x)dx. a 前页 后页 返回
关于定积分定义,应注意以下几点:
n
注1 表 达 式 JlT im 0i1f(i)xi 不 仅 与 n和 T有
关 , 还 与 { 1 ,2 , ,n } 有 关 , 因此定积分既不是数 列极限,也不是函数极限.
区 间 [xi1, xi]的长度不趋于 0 . 要 保 证 每 个 区 间 [ x i 1 , x i ] 的 长 度 趋 于 0 , 需 引 入 分 割 T 的 细 度 ( 模 ) :
T m a x x i i 1 ,2 , ,n .
则 当T0时 ,就能保证分割越来越细.
n
当v(t)v0为 匀 速 运 动 时 , s v 0 ( b a ) ; 当质量是
均 匀 分 布 时 , 即 x 为 常 数 时 , m(ba).
这就是说,在“常值”、“均匀”、“不变”的情况下
前页 后页 返回
可以用简单的乘法进行计算. 而现在遇到的问题 是“非常值” 、“不均匀”、“有变化”的情形, 如来何解决这些问题呢? 以下我们以求曲边梯形的面积为例,把这类问题 合理地归为一类特殊的和式的极限. 中心思想: 把曲边梯形看作许许多多小的曲边梯形之和,每 个小曲边梯形面积,可近似地用矩形的面积来替
与S的差距就会越来越小.
i 1
问题是:
(1 )如 何 刻 划 分 割 越 来 越细?
n
(2 )如 何 刻 划 f(i)x i越 来 越 逼 近 于 S ? i 1
下面依次讨论这两个问题.
前页 后页 返回
( 1 ) 对 于 一 般 的 T : a 0 x 0 x 1 x n b , 不 能 用n来表示分割 T 越来越细,因为可能某些
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[0 ,1][,1,2],,[i 1,i],,[n 1,n], n nn nn n n
每个区间的长度为
y x2
x i i 1 1 nn n
O 12 nn
k n
nx
n
过各区间端点作x轴的垂线,从而得到n个小 曲边梯形,他们的面积分别记作
S 1 , S 2 ,, S i,, S n .
(2) 以直代曲
解:1.分割
在时间区间 0 ,1上等间隔地插入 n 1个点,将区间
0 ,1等分成 n 个小区间:
0
,
1 n
,
1 n
,
2 n
,…,
n 1 n
, 1
记第 i 个区间为
i
n
1
,
i n
(i 1, 2 ,L
, n) ,其长度为 t
i i 1 nn
1 n
把汽车在时间段
0
,
1 n
,
1 n
y = f(x) y
A1
Ai
An
Oa
bx
将曲边梯形分成 n个小曲边梯形,并用小矩阵
形的面积代替小曲边梯形的面积, 于是曲边梯形
的面积A近似为
A A1+ A2 + + An
—— 以直代曲,无限逼近
例1.求抛物线y=x2、直线x=1和x轴所围成的
曲边梯形的面积。 y
(1)分割 把区间[0,1]等分成n个小区间:
,
2 n
,…,
n
1 n
, 1
上行
驶的路程分别记作: S1 , S2 ,…, Sn
n
显然, S Si i 1
( 2 ) 近 似 代 替 当 n 很 大 , 即 t 很 小 时 , 在 区 间
i
n
1
,
i n
上,可以认为函数 vt t2 2 的值变化很
小,近似的等于一个常数,不妨认为它近似的等于左端
问题:汽车以速度 v 组匀速直线运动时,经过时间 t 所行驶的路程为 S vt .如果汽车作变速直线运动,
在时刻 t 的速度为 vt t2 2 (单位:km/h),那
么它在 0≤ t ≤1(单位:h)这段时间内行驶的路程 S
(单位:km)是多少?
分析:与求曲边梯形面积类似,采取“以不变代 变”的方法,把求匀变速直线运动的路程问题,化归 为匀速直线运动的路程问题.把区间[0,1] 分成 n 个小 区间,在每个小区间上,由于 v(t) 的变化很小,可以 近似的看作汽车作于速直线运动,从而求得汽车在每 个小区间上行驶路程的近似值,在求和得 S (单位: km)的近似值,最后让 n 趋紧于无穷大就得到 S (单 位:km)的精确值.(思想:用化归为各个小区间上 匀速直线运动路程和无限逼近的思想方法求出匀变 速直线运动的路程).
y = f(x) y
A1
Oa
b
x
用一个矩形的面积A1近似代替曲边梯形的面积A,
得 A A1.
y = f(x) y
A1
A2
Oa
b
x
用两个矩形的面积 近似代替曲边梯形 的面积A,得 A A1+ A2
y = f(x)
y
A1
A2
A3
A4
Oa
b
x
用四个矩形的面积 近似代替曲边梯形 的面积A, 得 A A1+ A2+ A3+ A4
Si
Si
v
i
1 n
t
i
12 n
2
1 n
i
1 n
2
1 n
2 n
(i 1,2,L , n)
①
(3)求和 由①得,
Sn
n i 1
Si
n i 1
v
i
1 n
gt
n i 1
i
n
1
2
g1 n
2
n
=
0
1 n
1 n
2
1 n
L
n
1 n
2
1 n
2
= 1 n3
12 22 L
22
(n 1)2]
1 n3
1 (n 1)n(2n1) 6
1(1 1)(2 1) 1 6n n 3
所以S 1,即所求曲边三角面 形积 的为1。
3
3
小结:求由连续曲线yf(x)对应的曲边梯形面积的方法
(1)分 割
(2)求面积的和 (3)取极限n
引入
二、汽车行驶的路程
利 用 导 数 我 们 解 决 了 “ 已 知 物 体 运 动 路 程 与 时 间 的 关 系 , 求 物 体 运 动 速 度 ” 的 问 题 . 反 之 , 如 果 已 知 物 体 的 速 度 与 时 间 的 关 系 , 如 何 求 其 在 一 定 时 间 内 经 过 的 路 程 呢 ?
1 n
vLeabharlann i1 n lim
n
1 3
1
1 n
1
1 2n
2
5 3
思考
思 考 : 结 合 求 曲 边 梯 形 面 积 的 过 程 , 你 认 为 汽 车 行 驶 的 路 程 S与 由 直 线 t0,t1,v0
和 曲 线 vt22所 围 成 的 曲 边 梯 形 的 面 积 有 什 么 关 系 ?
结合上述求解过程可知,汽车行驶的路程
Si f(i n1)x(i n1)2n 1
(3)作和
n
S S1 S2 Sn Si i 1
n f( i -1) 1 n ( i -1)2 1
i1 n n i1 n n
1 n3
[02
12
22
(n
1)2 ]
(4)逼近
当分割无限变细, x即 0(亦即n )时,
1 n3
[02
12
1.5 定积分的概念
一. 求曲边梯形的面积
1. 曲 边 梯 形 : 在 直 角 坐 标 系 中 , 由 连 续 曲 线
y=f(x),直线x=a、x=b及x轴所围成的图形叫做曲边
梯形。
y
y=f (x)
x=a
Oa
x=b
bx
P 放大
P
再放大
P
因此,我们可以用这条直线L来代替点P附 近的曲线,也就是说:在点P附近,曲线可以看 作直线(即在很小范围内以直代曲).
点
i
1 n
处的函数值
v
i
1 n
i
1 n
2
2
,从物理意义
上看,即使汽车在时间段
i
n
1
,
i n
(i 1, 2 ,L , n) 上的
速度变化很小,不妨认为它近似地以时刻 i 1 处的速度 n
v
i
1 n
i
1 n
2
2
作匀速直线运动
即使汽车在时间段即在局部小范围内“以匀速代变 速”,于是的用小矩形的面积 Si 近似的代替 Si , 则有
n
12
2
=
1 n3
n
1 n2n
6
1
2
=
1 3
1
1 n
1
1 2n
2
从而得到 S 的近似值
S
Sn
1 3
1
1 n
1
1 2n
2
(4)取极限 当 n 趋 向 于 无 穷 大 时 , 即 t 趋 向 于 0 时 ,
Sn
1 3
1
1 n
1
1 2n
2
趋向于
S
,
从而有
S
lim
n
Sn
lim
n
n i 1
S
lim
n
Sn
在数据上等于由直线
t
0
,
t
1
,v
0
和曲线 v t2 2 所围成的曲边梯形的面积.
结论
一般地,如果物体做变速直线运动,速度函
数为v vt,那么我们也可以采用分割、近似代