5.3 直角坐标系中的图形(1)(2)

合集下载

5.3一次函数图像(1)翟赛花

5.3一次函数图像(1)翟赛花

§5.3一次函数的图象(1)【指导思想与理论依据】本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。

基于这一原则,我对本节课教学设计的指导思想如下:(1)以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

(2)以现代教育理论为依据:注重学生的心理活动过程,强调教学过程的有序性。

(3)以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。

(4)以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学有机结合,以实现教学最优化,从而提高教与学的质量。

【教材分析】一、教材分析(一)教学内容:本课是苏科版八年级上册第五章第3节本节内容知识结构如下:该课时主要内容是:一次函数的图象主要包括的知识点:一次函数图象的画法(二)本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。

本课时内容安排在一次函数的概念之后。

通过这一节课的学习使学生会用两点法画一次函数图象。

它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。

同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。

本节内容起着承上启下的作用。

更是学生进一步学习“数形结合”这一数学思想方法的很好素材。

5.3 变化的鱼2

5.3 变化的鱼2

(x,y) (x-3,y)
(0,2) (5,6) (3,2)
(5,3) (5,1) (3,2) (4,0) (0,2)
(-3,2) (2,6) (0,2) (2,3) (2,1) (0,2) (1,0) (-3,2)
y
6 5 4 3 2 1 -3 -2 -1 0 1 2 3 4 5 6 7 x -1 向左平移了3个单位长度
4
3 2 1 –3 –2 –1 0 –1 –2 –3 –4 1 2 3 4 –4 –3 –2 –1
4
3
(x,y)( x,y+1 )?
2 1 0 –1 –2 –3 –4 1 2 3 4
与左图三角形相比,右图中的三角形发生了怎样变化。 右图中的直角三角形顶点的坐标发生怎样变化。
4
3 2 1 –3 –2 –1 0 –1 –2 –3 –4 1 2 3 4 –4 –3 –2 –1
1 2 3 4 5 6 7 8
x
放大缩小:
(x,y) (k x, ky) 形状不变,放大或缩小k倍;
若k>1,图形整个被放大; 若 0<k<1,图形整个被压 0 1 2 3 4 5 -1
6
x
__ y 关于y 轴对称的两个图形:(x,y)(-x , __ )
对称:
y
11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5
整条鱼沿 y 轴 的方向被拉长 了2倍。
6 7 8
x
思考:
将 (0,2),(5,6),(3,2),(5,3),(5,1),(3,2),(4,0),(0,2)
1 各点,纵坐标保持不变,横坐标分别乘 ,再 2
将所得的点用线段依次连接起来,所得的图 案与原来的图案相比有什么变化 ? 1 简单表示为:(x,y) ( x,y) 2

鲁教版五四学制:2024-2025年七年级第一学期上册数学5.3轴对称与坐标变化(1)学案和答案

鲁教版五四学制:2024-2025年七年级第一学期上册数学5.3轴对称与坐标变化(1)学案和答案

2024--2025学年度七年级数学上册第五章学案5.3轴对称与坐标变化(1)【学习目标】1.在同一直角坐标系,感受图形上点的横、纵坐标的变化与图形的轴对称之间的关系;2.经历图形的坐标变化与图形的轴对称之间的关系的探索过程,发展形象思维能力和数形结合意识. 【自主学习】1.点P(a,b)关于x轴对称的点的坐标是;关于x轴对称的两个点的坐标特点:横坐标,纵坐标。

2.点P(a,b)关于y轴对称的点的坐标是;关于y轴对称的两个点的坐标特点:横坐标,纵坐标。

3.点P(a,b)关于原点对称的点的坐标是;关于原点对称的两个点的坐标特点:横坐标,纵坐标。

口诀:关于谁,谁不变;关于原点,都改变。

【课堂练习】知识点一轴对称与坐标变化1.关于x轴或y轴对称的两个点的坐标的关系如图,点A,B,C,D的坐标分别为_______,_______,_______,________,(1)作出点A,B,C,D关于x轴的对称点A1,B1,C1,D1,则A1,B1,C1,D1的坐标分别为________,________,________,_________.(2)作出点A,B,C,D关于y轴的对称点A2,B2,C2,D2,则A2,B2,C2,D2的坐标分别为________,________,________,________.(3)作出点A,B,C,D关于原点的对称点A3,B3,C3,D3,则A3,B3,C3,D3的坐标分别为________,________,________,________.【当堂达标】1.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个2.已知:△ABC在平面直角坐标系中的位置如图所示,如果△A1B1C1与△ABC关于y轴对称,那么点A 的对应点A1的坐标为( )A.(-4,2)B.(-4,-2)C.(4, 2)D.(4,2)3.点()2223A ,和点()2223B -,的位置关系是( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线22x =对称D .关于直线23y =对称4.已知点()1,3A a --和点()2,1B b -+关于y 轴对称,则()2023a b +的值是( ) A .0 B .1 C .1- D .()20223-5.在平面直角坐标系中,点()1,2A 向右平移3个单位长度,再向下平移2个单位长度后的对应点A '的坐标是 .【课后拓展】6. △ABC 各顶点的坐标分别是()2,3A -,()3,1B -,()1,2C -.(1)写出△ABC 关于x 轴对称的111A B C △的顶点1A ,1B ,1C 的坐标;(2)求△ABC 的面积;(3)在y 轴上作出一点P ,使PA PB +的值最小.(保留作图痕迹,不写作法)5.3轴对称与坐标变化(1)【自主学习】1. (a,-b ) 不变 互为相反数2. (-a,b ) 互为相反数 不变3.(-a,-b )互为相反数 互为相反数【课堂练习】1. A (3,2) B(4,5) C(5,3) D(-6,4)(1) A (3,-2) B(4,-5) C(5,-3) D(-6,-4)(2) A (-3,2) B(-4,5) C(-5,3) D(6,4)(3) A (-3,-2) B(-4,-5) C(-5,-3) D(6,-4)【当堂达标】1. B2.C3.(2,3) (-2,-3)4.A5.A【课后拓展】1. (1)4 2 (2)-4 -22.C3.A4.(1)C (-3,0)(2)BC=3-(-3)=6 (3)A(0,) 第6题图。

浙教版数学八年级上册5.3《一次函数》说课稿(2)

浙教版数学八年级上册5.3《一次函数》说课稿(2)

浙教版数学八年级上册5.3《一次函数》说课稿(2)一. 教材分析浙教版数学八年级上册5.3《一次函数》是学生在学习了平面直角坐标系、点的坐标、直线方程等知识的基础上,进一步学习一次函数的定义、性质、图象和应用。

本节内容是整个初中数学的重要基础,也是解决实际问题的重要工具。

教材从实际问题出发,引导学生认识一次函数,并通过探究一次函数的性质,让学生体会数学与生活的紧密联系。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系、点的坐标、直线方程等知识有一定的了解。

但学生在学习过程中,可能对一次函数的实际应用背景理解不够深入,对一次函数的性质探究可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知基础,引导学生从实际问题中认识一次函数,激发学生的学习兴趣,提高学生探究一次函数性质的积极性。

三. 说教学目标1.知识与技能:使学生掌握一次函数的定义、性质、图象,能运用一次函数解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,让学生经历一次函数性质的发现过程,培养学生的数学思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣,提高学生运用数学解决实际问题的能力。

四. 说教学重难点1.教学重点:一次函数的定义、性质、图象。

2.教学难点:一次函数性质的探究,一次函数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用观察、实验、探究、讲解、讨论等方法,引导学生自主学习、合作学习。

2.教学手段:利用多媒体课件、黑板、粉笔等辅助教学。

六. 说教学过程1.导入新课:从实际问题出发,引导学生认识一次函数,激发学生的学习兴趣。

2.探究一次函数的性质:让学生通过观察、实验、探究等方法,发现一次函数的性质,培养学生的数学思维能力。

3.讲解一次函数的性质:教师讲解一次函数的性质,帮助学生理解和掌握。

4.应用一次函数解决实际问题:让学生运用一次函数的知识解决实际问题,提高学生运用数学解决实际问题的能力。

5.2平面直角坐标系(二~三)(解析版)

5.2平面直角坐标系(二~三)(解析版)

5.2平面直角坐标系(二~三)【推本溯源】1、回顾上节如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)△ABC的面积是3;(2)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1的坐标(2,2);(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,写出C2的坐标(3,1).2.点的平移点P(a,b)先向右平移m个单位长度,再向上平移n个单位长度得到点(a+m,b+n);点P(a,b)先向左平移m个单位长度,再向下平移n个单位长度得到点(a-m,b-n);3.点的对称P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).4.一三、二四象限的角平分线第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a)。

5.坐标轴的平行平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同6.以不同的点作平面直角坐标系点的坐标、位置、与平面直角坐标系关系:(1)在同一个平面直角坐标系中,点的位置不变,则点的坐标不变;若点的位置改变,则点的坐标改变。

(2)建立不同的平面直角坐标系,则点的位置不变,点的位置改变。

【解惑】例1:在平面直角坐标系中,点(2,3)P -关于x 轴对称的点P '的坐标是()A .(2,3)--B .(2,3)-C .(2,3)-D .(2,3)【答案】D【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,即可求解.【详解】解:点(2,3)P -关于x 轴对称的点P '的坐标是(2,3),故选:D .【点睛】本题考查了关于x 轴对称的两个点的坐标特征,熟练掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.例2:已知点()3,2M -与(),N x y 在同一条平行于x 轴的直线上,且点N 到y 轴的距离等于4,那么点N 的坐标为()A .()4,2或()4,2-B .()4,2-或()4,2--C .()4,2-或()4,2-D .()4,2或()4,2--【答案】B【分析】根据平行于x 轴的直线上的点的纵坐标相等可得点N 的纵坐标为2-,再分点N 在y 轴的左边和右边两种情况求出点N 的横坐标,然后解答即可.【详解】解:∵点()3,2M -与点(),N x y 在同一条平行于x 轴的直线上,∴点N 的纵坐标为2-,∵点N 到y 轴的距离为4,∴点N 的横坐标为4或4-,∴点N 的坐标为()4,2-或()4,2--;故选:B .【点睛】此题考查了平面直角坐标系中点的坐标规律,熟练掌握平行于x 轴的直线上的点的纵坐标相等是解题的关键.例3:在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =()A .2B .3C .4D .5【答案】C【分析】先根据平移方式确定点B 的坐标,再根据点B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B ,∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点睛】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.例4:如图,在平面直角坐标系中,已知点(3,3)A ,(0,5)B ,若在坐标轴上找一点C ,使得ABC 是等腰三角形,则这样的点C 有()A .4个B .5个C .6个D .7个【答案】D 【分析】由题意知A 、B 是定点,C 是动点,所以要分情况讨论:以AC 、AB 为腰、以AC 、BC 为腰或以BC 、AB 为腰.则满足条件的点C 可求.【详解】解:由题意可知:以AC 、AB 为腰的三角形有3个;以AC 、BC 为腰的三角形有2个;(1)填空:点A 的坐标是______,点(2)将ABC 先向左平移3个单位长度,再向上平移(3)求ABC 的面积.【答案】(1)()41-,,()5,3(2)见解析(3)72ABC S =△【分析】(1)直接利用已知点的位置得出各点坐标即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)解:34212ABC S =⨯---△【点睛】此题主要考查了平移变换以及三角形面积求法,应点位置是解题关键.【摩拳擦掌】1.(2023·全国·七年级假期作业)已知点12A (,),过点A 向x 轴作垂线,垂足为M ,则点M的坐标为()A .10(,)B .20(,)C .(0,1)D .2(0,)【答案】A【分析】根据垂直于x 轴的直线上的点的横坐标都相等,x 轴上的点的纵坐标为0来进行求解.【详解】解:()1,2A ,点A 向x 轴作垂线,垂足为M ,M ∴点的纵坐标为0,横坐标与A 点相等,即()1,0M .故选:A .【点睛】本题主要考查了点的坐标,熟记垂直于x 轴的直线上的点的横坐标都相等是解答关∵()0,30A ,()20,10,B ∴130203002ABO S =⨯⨯=V ∵OA 上有31个格点,OB 上的格点有()2,1,(【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点(),P x y 关于y 轴的对称点P '的坐标是(),x y -,即可得出a ,b 的值,即可得出答案.【详解】解: 点(),2021A a 和点()2022,B b 关于y 轴对称,2022a \=-,2021b =,202220211a b ∴+=-+=-.故答案为:1-.【点睛】此题主要考查了关于y 轴对称点的性质,正确得出a ,b 的值是解题关键.6.(2022春·上海闵行·七年级上海市民办文绮中学校考阶段练习)已知点()3M m ,与点()4N n ,关于x 轴对称,那么m n +=______.【答案】1-【分析】根据关于x 轴对称的点的坐标特征即可解答.【详解】解:∵点()3M m ,与点()4N n ,关于x 轴对称,∴3n =,4m =-,∴431m n +=-+=-,故答案为1-;【点睛】本题考查了关于x 轴对称的点的坐标特征,熟记关于x 轴对称的点坐标特征是解题的关键.7.(2023·全国·七年级假期作业)已知点()2,3P a b -,先向左平移2个单位,再向下平移3个单位,恰好落在原点上,则P 点坐标为___________.【答案】()2,3【分析】根据平移的规律:上加下减,左减右加,列出方程即可求解.【详解】解:∵点()2,3P a b -,先向左平移2个单位,再向下平移3个单位得()22,33P a b ---,且改点恰好落在原点上,∴220a -=,330b --=,解得1a =,1b =-.∴22a =,33b -=,∴()2,3P .故答案为:()2,3.【点睛】此题主要考查了坐标的平移,关键是利用平移的规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.在x 轴的负半轴上的点的横坐标0<,纵坐标为0.8.(2023春·广东东莞·七年级校考期中)已知点()43A ,,AB y ∥轴,且5AB =,则点B 的坐标为__________.【答案】()48,或()4,2-【分析】分:①点B 在点A 的上边,②点B 在点A 的下边两种情况讨论求解.【详解】解:∵AB y ∥轴,∴设点()4,B y ,①点B 在点A 的上边时,∵5AB =,∴35y -=,解得8y =,点B 的坐标为()48,;②点B 在点A 的下边时,∵5AB =,∴35y -=-,解得=2y -,点B 的坐标为()4,2-;综上所述,点B 的坐标为()48,或()4,2-.故答案为()48,或()4,2-.【点睛】本题考查了坐标与图形性质,解题的关键是:利用平行于y 轴的点的横坐标相同的性质,分情况讨论.9.(2023春·广东肇庆·七年级校考期中)如图,在平面直角坐标系中,已知点()0,4A ,()8,0B ,(),C a b ,点C 在第一象限,CB x ⊥轴,且到x 轴的距离为6.(1)=a__________,b=_________的面积;(2)求ABC(3)如果在第二象限内有一点【知不足】2A .()2023,0B .()2021,1-C .()2022,1【答案】D 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点1当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为()6,0,…,∵202345053÷= ,∴P 的坐标是()2023,1-,故选:D .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2.(2023春·黑龙江佳木斯·七年级统考期中)在平面直角坐标系中,点()3,1M m m ++在y 轴上,则点M 的坐标为()A .()0,2-B .()2,0C .()4,0D .()0,4-【答案】A【分析】根据在y 轴上的点横坐标为0求出m 的值即可得到答案.【详解】解:∵点()3,1M m m ++在y 轴上,∴30m +=,∴3m =-,∴1312m +=-+=-,∴()0,2M -,故选A .【点睛】本题主要考查了y 轴上点的坐标特点,熟知在y 轴上的点横坐标为0是解题的关键.3.(2023·全国·七年级假期作业)把点A (),2m m +先向左平移2个单位长度,再向上平移3个单位长度得到点B ,点B 正好落在x 轴上,则点B 的坐标为()A .()50-,B .()70-,C .()40,D .()30,【答案】B 【分析】由平移方式可得平移后的坐标为()2,5m m -+,再根据x 轴上的点的纵坐标为0求出m 的值,即可得出点B 的坐标.【详解】解:点A (),2m m +先向左平移2个单位长度,对应点的坐标为()2,2m m -+,再向上平移3个单位长度得到点B 的坐标为()2,23m m -++,即()2,5m m -+, 点B 正好落在x 轴上,∴50m +=,∴5m =-,∴点B 的坐标为()52,0--,即()70-,.故选:B .【点睛】本题考查由平移方式确定点的坐标,解题的关键是根据平移方式用含m 的代数式表示出平移后的坐标.4.(2023春·湖北黄冈·七年级统考阶段练习)在平面直角坐标系中,将点(2,1)P 向右平移4个单位长度.再向上平移3个单位长度得到点P '的坐标是___________.【答案】(6,4)【分析】根据点的平移坐标变化规律:左减右加,上加下减解答可得.【详解】解:将点()2,1P 向右平移4个单位长度,再向上平移3个单位长度得到点P '的坐标是()24,13++,即()6,4P ',故答案为:()6,4.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的坐标变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.(2023春·黑龙江佳木斯·七年级统考期中)将点()3,2A --先向上平移3个单位长度,再向左平移2个单位长度得到点B ,则点B 的坐标为_________.【答案】()5,1-【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点()3,2A --先向上平移3个单位长度,再向左平移2个单位长度得到点B ,则点B 的坐标为()32,23---+,即()5,1-,故答案为:()5,1-.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;【答案】()101220,【分析】首先根据各点的坐标求出长度,找出这些长度之间的规律,然后根据规律即可求解.【详解】解:∵正方形OABC(1)将三角形ABC向右平移7个单位长度,再向下平移A B C.画出三角形111(2)直接写出点1B,1C的坐标.(3)在三角形ABC 内有一点(,)P a b ,请写出按(1)中所述步骤平移后的对应点1P 的坐标.【答案】(1)见解析(2)1(0,5)-B ,16(5,)C -(3)(7,3)a b +-【分析】(1)根据平移的性质作图即可.(2)由图可直接得出答案.(3)根据平移的性质可得答案.【详解】(1)解:如图,三角形111A B C 即为所求.(2)由图可得,点1(0,5)-B ,16(5,)C -.(3) 三角形ABC 向右平移7个单位长度,再向下平移3个单位长度得到三角形111A B C ,∴点1P 的坐标为(7,3)a b +-.【点睛】本题考查作图-平移变换,熟练掌握平移的性质是解答本题的关键.8.(2023春·广东东莞·七年级校考期中)如图,在单位正方形网格中,建立了平面直角坐标系xOy ,试解答下列问题:(1)若将ABC 向右平移6个单位,再向下平移2个单位后得到111A B C △,请画出平移后的111A B C △;(2)求ABC 的面积;(3)已知第一象限内有两点()32P n +,,()6Q n ,.平移线段PQ ,使点P ,Q 分别落在两条坐标轴上.请直接写出点P 平移后的对应点的坐标.【答案】(1)见详解(2)6(3)(0,2)P 或(3,0)-【分析】(1)求出平移后对应点的坐标为111(5,0),(2,3),(3,2)A B C -,再顺次连接各点即可;(2)利用割补法求ABC 的面积即可;(3)()32P n +,,()6Q n ,.两点的水平距离633-=,垂直距离22n n +-=,再分两种情况即可.【详解】(1)解:(1,2),(4,5),(3,0)A B C ---,平移后对应点的坐标为111(5,0),(2,3),(3,2)A B C -,平移后的图象如图所示:(2)解:1113515223222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯ (3)解:()32P n +,,()6Q n ,.两点的水平距离平移线段PQ ,使点P ,Q 分别落在两条坐标轴上,如图所示:点P 平移后的对应点的坐标为(0,2)P 或(3,0)-.【点睛】本题考查了平面直角坐标系内图形的平移问题,结为图形顶点的平移.【一览众山小】1.(2023·全国·七年级假期作业)已知()5,0P -,()4,2Q ,将线段PQ 平移到线段11PQ ,()14,P a -,()1,4Q b ,其中P 与1P 是对应点,则a b 的值是()A .25B .36C .18D .16【答案】AA .()0,10-B .【答案】B 【分析】根据勾股定理求得8PB PB t '==-,在Rt △【详解】解:∵点()6,0A∴8PB PB t'==-在Rt POB '△中,OP t =-,∴()()222168t t -+=-解得:12t =-,∴P 的坐标为()0,12-故选B.【点睛】本题考查了勾股定理与折叠问题,坐标与图形,熟练掌握折叠的性质是解题的关键.3.(2023·湖南长沙·统考三模)如图,在平面直角坐标系中,点()12A ,,()22B ,,()32C ,,()1,2D -,平移这四个点中的一个点,使得这四个点关于y 轴对称,则正确的平移过程是()A .将点A 向左平移3个单位长度B .将点B 向左平移4个单位长度C .将点C 向左平移5个单位长度D .将点D 向右平移6个单位长度【答案】C 【分析】根据轴对称的性质和平移的性质可得答案.【详解】解:A 、将点A 向左平移3个单位长度后坐标为()22A -,,这四个点不关于y 轴对称,错误;B 、将点B 向左平移4个单位长度后坐标为()22B -,,这四个点不关于y 轴对称,错误;C 、将点C 向左平移5个单位长度后坐标为()22C -,,这四个点关于y 轴对称,正确;D 、将点D 向右平移6个单位长度后坐标为()5,2D ,这四个点不关于y 轴对称,错误;故选:C .【点睛】本题考查了轴对称的性质和平移的性质,能够得出平移后的点的坐标是解题的关键.4.(2023·山西·统考中考真题)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系A .()33,2-B .()33,2C .(2,【答案】A 设正六边形的边长为a ,由正六边形的性质及点【点睛】本题考查了坐标与图形,正六边形的性质,勾股定理,含30度角直角三角形的性质等知识,掌握这些知识是解题的关键.5.(2023春·湖北襄阳·七年级襄阳四中校考阶段练习)已知ABC 的各顶点坐标分别为1()()()12121A B C --,,,,,,将它进行平移,平移后A 移到点()3a -,,B 移到点(3)b ,,则C 移到的点的坐标为_____.【答案】(05),【分析】根据图形平移的性质,利用A 、B 两点坐标平移规律得出点C 平移后的坐标.【详解】解:∵点A 由(12)-,平移到()3a -,,∴ABC 向左平移2个单位长度;∵点B 由(11)-,平移到(3)b ,,∴ABC 向上平移4个单位长度;∴点(21)C ,向左平移2个单位长度,向上平移4个单位长度得(05),;故答案为:(05),.【点睛】本题考查坐标系中图形平移的性质以及坐标系中点的平移与坐标的变化,根据已知确定平移是本题解题关键.6.(2023春·河北邢台·八年级统考期中)已知点()2,6P b ,(1)若点P 与点Q 关于x 轴对称,则Q 点纵坐标是____.(2)若点(),M a a b +与点P 关于原点对称,则b =_____.【答案】6-6【分析】(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--.【详解】解:(1) 点P 与点Q 关于x 轴对称,()2,6P b ,∴Q 点纵坐标是()2,6b -.故答案为:6-;(2) 点(),M a a b +与点P 关于原点对称,()2,6P b ,∴26a b a b =-⎧⎨+=-⎩,解得126a b =-⎧⎨=⎩.故答案为:6.【点睛】本题考查了关于原点对称的点的坐标以及关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(2023·全国·七年级假期作业)对于平面直角坐标系xOy 中的点(),M a b ,若N 的坐标为(),ka b k +,其中k 为常数,且0k ≠,则M 、N 互为“k 系关联点”,比如:()2,3M 的“2系关联点”为()22,32N ⨯+,即:()4,5N .若点(),2P m -的“1-系关联点”为(),Q x y ,且满足9x y +=-,则m 的值为_____.【答案】6【分析】由点(),2P m -的“1-系关联点”为(),Q x y ,可得x m =-,=3y -,再由9x y +=-,即可求得m 的值.【详解】∵点(),2P m -的“1-系关联点”为(),Q x y ,∴()=1x m ⨯-,()=21y -+-,∴x m =-,=3y -,又∵9x y +=-,∴()3=9m -+--,∴6m =,即m 的值是6.故答案为:6.【点睛】本题考查点的坐标与新定义,熟练掌握新定义并列出方程是解题的关键.8.(2023·四川成都·成都七中校考三模)已知第二象限内的点P 到x 轴的距离为4,到y 轴的距离为3,则P 点的坐标是______.【答案】(3,4)-【分析】根据坐标的表示方法,点P 到x 轴的距离为4,到y 轴的距离为3,且它在第二象限内即可得到点P 的坐标.【详解】解:∵点P 到x 轴的距离为4,到y 轴的距离为3,且它在第二象限内,∴点P 的坐标为(3,4)-.故答案为:(3,4)-.【点睛】此题考查了点的坐标,解题关键在于熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度.9.(2023·全国·七年级假期作业)如图,在平面直角坐标系中,点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A 第2023次跳动至点2023A 的坐标是___________.【答案】()506,1012【分析】设第n 次跳动至点n A ,根据部分点n A 坐标的变化找出变化规律“()412n A n n --,,()41121n A n n +--+,,()42121n A n n +++,,()43122n A n n +++,(n 为自然数)”,依此规律结合202350543=⨯+即可得出点2023A 的坐标.【详解】解:设第n 次跳动至点n A ,-,【答案】( 1.81)【分析】利用行程问题中的相遇问题,找出规律即可解答.【详解】解:由题意知:长方形的边长为图形“凸”的边上,则细线另一端所在位置的点的坐标是_________.【答案】()11-,【分析】根据坐标的特点,长度为2时,对应点为B ,确定长度为4时,对应点为C ,长度为6时,对应点为D ,长度为8时,对应点为E ,长度为11时,对应点为F ,长度为14时,对应点为G ,长度为16时,对应点为H ,长度为18时,对应点为P ,长度为20时,对应点为A ,循环节为20,计算202320÷,看余数判断即可.【详解】解:∵AB EG x ∥∥轴,BC DE HG AP y ∥∥∥∥轴,点D 、C 、P 、H 在x 轴上,()()()1,2,1,2,3,0A B D --,()()3,2,3,2E G ---,∴222233222AB BC CD DE EF FG GH PH AP =========,,,,,,,,,∴长度为2时,对应点为B ,确定长度为4时,对应点为C ,长度为6时,对应点为D ,长度为8时,对应点为E ,长度为11时,对应点为F ,长度为14时,对应点为G ,长度为16时,对应点为H ,长度为18时,对应点为P ,长度为20时,对应点为A ,循环节为20,∵2023201013÷=⋯,∴细线另一端在BC 上,且与B 相距1个单位长度,∴细线另一端所在位置的点的坐标是()11-,故答案为:()11-,.【点睛】本题考查了坐标的特点和坐标的规律,熟练掌握坐标的特点,准确计算出循环节是解题的关键.13.(2023春·广东东莞·七年级校考期中)若点P 到x 轴的距离为5,到y 轴的距离为3,点P 在y 轴的右侧,则点P 的坐标为__________.【答案】()3,5或()3,5-(1)画出ABC 关于x 轴的对称图形111A B C △;(2)画出111A B C △向左平移4个单位长度后得到的(3)如果AC 上有一点(),P m n 经过上述两次变换,那么对应【答案】(1)见解析(2)见解析(3)()4,m n --(2)如图所示,222A B C △即为所求,(3)AC 上有一点(),P m n 关于x 轴的对称的点为长度后得到的点2P 的坐标是()4,m n --,故答案为:()4,m n --【点睛】本题主要考查作图—轴对称变换和平移变换,变换的定义与性质及平面直角坐标系中点的坐标的平移、关于坐标轴对称的特点.16.(2023春·陕西西安·八年级统考阶段练习)如图,点B 的坐标为()3,b b +,且a ,b 满足3a b -+∴()()222203120AB =-+--=⎡⎤⎣⎦,()()22220039AP x x =-+-=+,()()222220145BP x x x =-++=-+,①若90PAB ∠=︒,∴222PA BA PB +=,即2292045x x x ++=-+,∴解得6x =-,∴(6,0)P -;②若90ABP ∠=︒,∴222AB BP AP +=,即2220459x x x +-+=+,∴解得4x =,(4,0)P ∴;综上所述,点P 的坐标为(6,0)-或(4,0).【点睛】本题是几何变换综合题,主要考查了非负数的性质,坐标和图形的性质,待定系数法,三角形的面积,相似三角形的判定与性质,平移的性质等知识,熟练掌握待定系数法和平移的性质是解题的关键.17(春·河北邢台·八年级统考期中)图1所示,在平面直角坐标系中,O 为原点,点()0,2A ,()2,0B -,()4,0C .将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D ,图2所示.(1)求D 点坐标;(2)连接AC 、CD 、AD ,(),4P m 是一动点,若PAD S △【答案】(1)()5,4()1,4P ()。

第五章一次函数5.3一次函数的图象(1)

第五章一次函数5.3一次函数的图象(1)

主备人:备课组成员签名:课题:§5.3一次函数的图象(1)教学目标1、知道一次函数的图象是一条直线,会选取适当的点画一次函数的图象。

2、经历作图过程,初步了解作函数图象的一般步骤。

3、理解一次函数的代数表达式与图象之间的对应关系。

4、能较熟练作出一次函数的图象。

教学重点1、能熟练地作出一次函数的图象。

2、归纳作函数图象的一般步骤。

3、理解一次函数的代数表达式与图象之间的对应关系。

教学过程1、情境创设点燃一支香,感受它的长度随着时间的变化而变化,帮助学生理解课本图片提供的信息,探索一次函数的图象。

书P192(1)图中共有几支香?(2)图片是怎样表示时间变化的?(3)这支香点燃5分钟后缩短了多少?点燃10分钟后呢?(4)用y(cm)表示香的长度,x(min)表示香燃烧的时间,你能写出y与x之间的函数关系式吗?(5)依次连接图片中香的顶端,你有什么发现?(6)你能利用平面直角坐标系,将图片揭示的信息以及你的发现告诉大家吗?2、作一次函数的图象例1:作出一次函数y=2x+1的图象解:1、列表(写出自变量x与函数值的对应表)先确定x的若干个值,对应的y值作为点的纵坐标,便可画出一个点。

也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

3、连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。

小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。

做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。

123、连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。

图象:3、议一议一次函数的图象是什么?是否可以简化作一次函数的图象的过程?小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y-kx+b。

八年级数学一次函数的图像

八年级数学一次函数的图像
是的!
(3)一次函数y=kx+b的图象有什么特点?
一次函数y=kx+b的图象是一条直线,直线上的点 与y=kx+b对应的x、y的值一一对应。 一次函数y=kx+b的图象是一条直线。因此作一次 函数图象时,只要确定两个点,再通过两个点作 直线就可以了。一次函数y=kx+b的图象也称为直 线y=kx+b。
3 2 1
0
1
2
3
4
x
总结 1、了解函数图象的概念,作函数图象的一 般步骤是:列表、描点、连线。 2、y=kx+b的图象是一条直线,满足y=kx+b 的点(x,y)都在这条直线上。 y=kx+b的图 象上所有的点都满足关系式y=kx+b。一次函 数y=kx+b的图象也称为直线y=kx+b。 作业 习题5.3第一题(1)、(2)
x Y=2x+1 … … -2 -3 -1 -1 0 1 1 3 2 5 … …
y 5
4
y=2x+1
3
2 1 -3 -2 -1 0 -1 -2 -3 1 2 3
x
作函数图象的一般步 骤: 列表、描点、连线
做一做
(1)作出一次函数y=-2x+5的图象。 (2)在所在的图象上取几个点,找出它 们的横坐标和纵坐标,并验证它们是否都满 足关系y=-2x+5. 经验证,(1,3)和(3,-1) 列表:
随堂练习
1 1、分别作出一次函数 y x与y 3 x 9 3 的图象。
y
解:
x
y
y
1 x 3


3 2 1
y
1 x 3
0
0

5.3 对数函数(第1课时 对数函数的概念、图象和性质)2024-2025学年高一上北师版必修1

5.3 对数函数(第1课时 对数函数的概念、图象和性质)2024-2025学年高一上北师版必修1
无理数e 为底的对数函数为自然对数函数,记作y=ln x.
3.反函数
指数函数y=2x和对数函数x=log2y刻画的是同一对变量x,y之间的关系,所不
同的是:在指数函数y=2x中,x是自变量,y是x的函数,其定义域是R;而在对数
函数x=log2y中,y是自变量,x是y的函数,其定义域是(0,+∞).我们称对数函数
规律方法
定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,偶次根式
被开方式大于或等于零等.
(2)遵循对数函数自身的要求:一是真数大于零;二是底数大于零且不等于1;
三是按底数的取值应用单调性,有针对性地解不等式.
探究点四
对数函数的图象
【例4】 函数y=log2x,y=log5x,y=lg x的图象如图所示.
(2)值域:R
(3)过定点(1,0),即x=1时,y=0
(4)当x>1时,y>0;当0<x<1时,y<0
(4)当x>1时,y<0;当0<x<1时,y>0
性质 (5)在定义域(0,+∞)上是增函数
(5)在定义域(0,+∞)上是减函数
当x值趋近于正无穷大时,函数值
当x值趋近于正无穷大时,函数值
趋近于正无穷大;
A.-7
B.-9
C.-11
D.-13
解析 由题意知f(x)=2x,
故当x>0时,g(x)=2x+x2.
∵g(x)为奇函数,∴g(-1)=-g(1)=-3,g(-2)=-g(2)=-(22+22)=-8.
∴g(-1)+g(-2)=-11.
探究点三
与对数函数有关的定义域、值域问题

5.3 一次函数的图象(1)

5.3 一次函数的图象(1)

O
x
O
x
O
x
(A)
(B)
(C)
(D)
8.试一试画出一次函数y=ax-a的图像草图。
9.如图,一个正比例函数与一个一次函数的图像, 它们相交于点A(4,3),一次函数的图像与y轴 相交于B,且OA=OB.求这两个函数关系式.
y A O B x
.当k不一样,b一样时:都经过同
一个点,即点(0,b)
练 1.函数y=kx-4的图像平行于直线y= 习 -2x,则其函数的表达式为
______________。 2.函数y=x+4的图像与直线y=-2x-m的 交点在y轴上,则m= .
3.一次函数y=kx+b的图像经过点(5,3), 且平行于直线y=3x-2。则k=______, b=______。
例题:已知一次函数y=(m-1)x+2m+1 (1)若图象经过原点,求m的值 (2)若图象平行于直线y=2x,求m的值 (3)若图象交y轴于正半轴,求m的取值范围 (5)若图象不经过第三象限,求m的取值范围
(4)若图象经过一、二、四象限,求m的取值范围
课堂练习 1.(1)一次函数 y 2 x 1 一定不经过第
2. 若k•b<0,且b-k>0,则一次函数y=kx+b的 大致图象是( y )
y y y
o
o (A) x o (B) x (C)
x
o (D)
x
3.已知一次函数y=kx+b, k<0,且与x轴的交 点在负半轴上,则它的图象经过第____象限. 4.已知一次函数y=(a-2)x+1的图象,不 经过第四象限,则a的范围为 .
y=2x+ 在同一坐标系中画出y=2x,y=2x+2和y=2x-3的图象 y 2

直角坐标系中的图形 函数与图像

直角坐标系中的图形  函数与图像

、一周知识概述1、用坐标表示平移(1)在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(2)一个图形进行平移,这个图形上所有的点的坐标都要发生相应的变化;反过来,如果图形上的点的坐标发生变化,那么这个图形进行了平移.(3)图形平移的特征:一个图形平移前后大小、形状完全相同,只是位置不同.2、常量和变量在问题研究过程中,可以取不同数值的量叫做变量;而数值始终保持不变的量称为常量.常量与变量必须存在于一个变化过程中,判断一个量是常量还是变量,需看两个方面:①看它是否在一个变化的过程中,②看它在这个变化过程中的取值情况.3、函数一般地,在一个变化过程中,如果有两个变量x与y,如果对于x在某个允许取值范围内,变量y随着x的变化而变化,它们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量.4、函数的图象(1)图象的概念:对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.(2)由函数解析式画其图象的一般步骤:①列表:列表给出自变量与函数的一些对应值;②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接.二、重难点知识归纳1、直角坐标系中的图形.2、画函数的图象3、利用函数的图象获取信息,解决实际问题.三、典型例题剖析例1、中国象棋棋盘中蕴含着直角坐标系,下图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A、B等处.若“马”的位置在C点,为了到达D点,请按“马”走的规则,在图中棋盘上用虚线画出一种你认为合理的行走路线.分析:棋子“马”向上、下平移两个单位时要向左或右平移一个单位,向上、下平移一个单位时要向左或右平移两个单位.答案:如图示(答案不惟一)例2、星期天晚饭后,小红从家里出去散步,下图中描述了她散步过程中离家的距离s (m)与散步所用的时间t(min)之间的函数关系,依据图象,下列说法符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找同学去了,18min后才开始返回分析:观察图中的时间t和离家的距离s的变化情形.可知,经过4min到离家300m的公共阅报栏,看了6min的报纸后向前走了一段路回家即到达横轴.答案:B例3、如图,在平面直角坐标系中,一个方格的边长为1个单位长度.三角形MNQ是三角形ABC经过某种变换后得到的图形,请分别写出点A与M,点B与点N,点C与点Q的坐标,并观察它们之间的关系,如果三角形ABC中一点P的位置如图. 那么对应点R的坐标为什么?并在△MNQ中表示出R来.猜想线段AC与线段MQ的关系.解析:根据平面直角坐标系,先写三角形ABC和三角形MNQ的坐标,从中发现它们的关系,再写出P的坐标,根据它们的关系写出R的坐标.解答:观察直角坐标系得A(-4,1),M(4,-1),B(-1,2),N(1,-2),C (-3,4),Q(3,-4),由它们的坐标可知两个对应点的横、纵坐标的和都为0,∵P的坐标为(-3,2),∴R的坐标为(3,-2),R表示在如图中.从坐标系观察可知AC//MQ并且AC=MQ.例4、在同一直角坐标系中,作出二次函数y=2x2-2和y=2x2+3的图象,观察图象,可得出哪些结论?解析:按作二次函数图象的三个步骤,列表,描点,连接可分别作出它们的图象,再由它们的形状,开口方向,对称轴,顶点坐标及平移等可得.解:(1)列表:(2)描点;(3)用光滑曲线连接,得两支抛物线.例5、小刚、爸爸和爷爷同时从家中出发到达同一目的地后都立即返回,小刚去时骑自行车,返回时步行;爷爷去时步行,返回时骑自行车;爸爸往返都步行.三个人步行的速度不等,小刚与爷爷骑车的速度相等.每个人的行走路程与时间的关系是图中所示的三个图象中的一个,走完一个往返.问:(1)三个图象中哪个对应小刚、爸爸、爷爷?(2)离家所去的地点多远?(3)小刚与爷爷骑自行车的速度各是多少?三人步行的速度各是多少?分析:读清题目,理解好题意,结合实际问题,再解决问题.解:(1)因为小刚去时骑自行车,返回时步行,所以去时需要的时间少于回来所需的时间,故图(2)对应小刚.用同样的方法可以判断爸爸对应图(3),爷爷对应图(1).(2)他们离家所去的地点有1200m远.(3)由图象知,小刚去时的时间是6min,所以小刚骑自行车的速度为:用同样的方法可以求得,爷爷骑自行车的速度为200m/min,小刚步行的速度为80m/min,爸爸步行速度为100m/min,爷爷步行的速度为60m/min.- 返回-。

八上5.3一次函数的图像(1)

八上5.3一次函数的图像(1)

5.3 一次函数的图像(1)[ 教案]班级_________姓名_____________学号_________学习目标1.知道一次函数的图象是一条直线;2.会选取两个适当的点画一次函数的图象;3.进一步理解正比例函数与一次函数的关系.学习难点会选取两个适当的点画一次函数的图象。

教学过程一、自主预习:1.自学课本1151~153页,会画画一次函数的图象。

2.一次函数y=5x+2的图象是一条经过第______象限的直线,它与x轴的交点坐标为_________,与y轴的交点坐标为__________。

3.一次函数y=kx+3的图象经过点(-1,5),则k=___________。

二、合作研讨:1.问题情境:观察书151页的图片,你能得到哪些信息?23.例题讲解:例、作出一次函数y=2x+1的图象解:(1)列表(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y(2为点的纵坐标,便可画出一个点。

也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

(3)连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。

方法小结:(1)一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y=kx+b。

(2)作一次函数的步骤:(1)列表;(2)描点;(3)连线。

(3)明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点即点(0,),点(,0)就可以了。

4.自主练习:(1)同一坐标系中,画一次函数y=4x-4、y=-4x+4的图象.(2)点(1,2)、(2,-4)是否在所画的图象上?在哪一个函数的图象上?(3)如果(a,5)在y=4x-4的图象上,求a的值.(4)你能写出它们的交点坐标吗?5.自主小结:(1)这一节课你学到了什么?(2)你还存在哪些疑问?。

5.3一次函数的图象(1) 课件

5.3一次函数的图象(1) 课件

思考:如何在直角坐标系中画一次函数 y=2x+1的图象?
回忆:
什么是函数图象?
在直角坐标系中,如果描出以自变量的值为横 坐标、相应的函数值为纵坐标的点,那么所有这 样的点组成的图形叫做这个函数的图象
为了确定这些点的坐标,我们通常先列表
x y=2x+1 …
-1
-0.5
0 0.5 1
1
… …
… -1
x … -2 -1 0 1 2 y=-x+2 … 4 3 2 1 0
y

0

1
反思:画一次函数图象的
一般步骤是什么?一次函数 的图象是什么样的图形?

x
y=-x+2
画一 次函数图象的一般步骤:
⑴列表;
结论:
⑵描点;
⑶连线.
一次函数y=kx+b(k≠0) 的图象是一条直线;
一次函数y=kx+b(k≠0)的 图象也称为直线y=kx+b(k≠0).
x
x
-1 -1 0 A C
一条直线
;因此在作图时,只
要确定两点就可以了。一般找 直线与坐标
轴(x、y轴)的2个交点。
小结:画一次函数
y=kx+b(k≠0)的图象时, 只要确定2个点的位置,即 点(0,b),(
b k
,0);
随堂练习 一 次函数 y=x-1 的图 象是( )
C yy
0 1
yy
1
x
x
-1
01 -1 0 B D 1
0
2
3
(1)表中x的值如何选取?表中y的值 如何确定?
这样我们就得到了函数图象上 的五个点的坐标(-1,-1) (-0.5,0) (0,1) (0.5,2) (1,3)

八上5.3一次函数的图像(2)

八上5.3一次函数的图像(2)

5.3 一次函数的图像(2)-- ( 教案)班级 姓名 学号学习目标1.理解一次函数及其图象的有关性质;2.能熟练地作出一次函数的图象;3.进一步培养学生数形结合的意识和能力。

学习难点一次函数的图象的性质教学过程一、自主预习:1.自学课本第153—155页内容。

会利用一次函数的图象理解一次函数的有关性质.2.函数y =432 x 的图像与x 轴交点坐标为________,与y 轴的交点坐标为________。

3.有下列函数:①y =6x -5;②y =5x ;③y =x +4;④y =-4x +5。

其中过原点的直线是___________;函数y 随x 的增大而增大的是___________;函数y 随x 的增大而减小的是______;图象在第一、二、三象限的是___________。

4.如果一次函数y=kx -3k+6的图象经过原点,那么k 的值为________。

二、合作研讨:1.问题情境:以山的图片为情景,将上山、下山的道路与一次函数的图象特征相联系,从“形”上领会函数上升和下降的意义。

上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。

经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

本节课我们进一步来研究一次函数的图象的其他性质。

2.讲授新课:(1)首先我们来研究一次函数的特例——正比例函数有关性质。

请大家在同一坐标系内作出正比例函数y=x ,y=2x ,y=3x ,y=-2x 的图象。

议一议:(1)正比例函数y=kx 的图象有什么特点?(2)你作正比例函数y=kx 的图象时描了几个点?(3)直线y=x ,y=2x ,y=3x 中,哪一个与x 轴正方向所成的锐角最大?哪一与x 轴正方向所成的锐角最小?小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。

(2)作正比例函数y=kx 的图象时,除原点外,还需找一点,一般找(1,k )点。

5.3变化的鱼(二)

5.3变化的鱼(二)

5.3变化的鱼(二)学习目标:1、经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程 ,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系。

学习过程一、创设情境,引入新课请同学欣赏下列鱼变化图片。

你有什么样的思考?(二)探究任务:改变纵横坐标,让整条鱼上下左右伸缩 1.问题探究问题一若纵坐标保持不变,横坐标分别变成原来的2倍, 所得各点坐标分别是什么?请同学们在平面直角坐标系中依次连接所得各点, 并观察所得的鱼与原来的鱼相比有什么变化?问题二若横坐标保持不变,纵坐标分别变成原来的2倍, 所得各点坐标分别是什么?请同学们猜想鱼的变化与“问题一”的鱼的变化有什么异同? 然后在平面直角坐标系中依次连接所得各点,验证你的猜想。

并观察所得的鱼与原来的鱼相比有什么变化? 请同学们在平面直角坐标系中依次连接所得各点, 并观察所得的鱼与原来的鱼相比有什么变化?问题三若纵坐标保持不变,横坐标分别变成原来的二分之一倍, 所得各点坐标分别是什么?请同学们猜想鱼的变化与“问题一”“问题二”的鱼的变化有什么异同? 然后在平面直角坐标系中依次连接所得各点,验证你的猜想。

并观察所得的鱼与原来的鱼相比有什么变化?问题四若横坐标分别变成原来的2倍,纵坐标分别变成原来的2倍, 所得各点坐标分别是什么?请同学们猜想鱼的变化与“问题一”“问题二”的鱼的变化有什么异同?然后在平面直角坐标系中依次连接所得各点,验证你的猜想。

并观察所得的鱼与原来的鱼相比有什么变化?问题五 若横坐标分别变成原来的二分之一倍,纵坐标分别变成原来的二分之一倍,所得各点坐标分别是什么? 请同学们猜想鱼的变化与“问题一”“问题二”“问题三”“问题四”的鱼的变化有什么异同? 然后在平面直角坐标系中依次连接所得各点,验证你的猜想。

并观察所得的鱼与原来的鱼相比有什么变化?2、总结规律鱼(x ,y )上下左右伸缩的变化规律: (x ,y )→(mx , ny ).沿x 轴方向伸缩m 倍: 若m >1则横向被拉长; 若0<m <1则横向被压缩. 沿y 轴方向伸缩n 倍: 若n >1则纵向被拉长; 若0<n <1则纵向被压缩. (x ,y )→(kx , ky ), 形状不变,放大或缩小k 倍.若k >1,图形整个被放大; 若 0<k <1,图形整个被缩小. 三、检测深化,目标评价 1、下面的三角形ABC ,三顶点的坐标分别为A (-4,-1),B (1,1),C (-1,4)下面将三角形三顶点的坐标做如下变化(1)横坐标减去2,纵坐标加上2, 所得图形与原三角形有什么变化?(2)横坐标不变,纵坐标变为原来的2倍, 此时所得三角形与原三角形相比有什么变化? 四、总结归纳,拓展升华 谈一谈你的收获和体会:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化之间的关系.2、通过“变化的鱼”你能总结出哪些规律?3、数和形你是怎么统一的又是怎样结合在一起的.。

5.3一次函数的图象(1)

5.3一次函数的图象(1)

5.3 一次函数的图象(作图象)教学目标:1.经历作图过程,初步了解作函数图象的一般步骤2.理解一次函数的代数表达式与图象之间的对应关系教学重点难点:1.能熟练地作出一次函数的图象,归纳作函数图象的一般步骤2.理解一次函数的代数表达式与图象之间的对应关系教学过程:一. 复习导入一次函数的定义:正比例函数的定义:二.讲授新课1.函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.即函数图象是的集合.2. 作一次函数的图象(1)点燃一枝香,感受它的长度随着燃烧时间的变化而变化,帮助学生理解课本图片提供的信息,然后让学生观察课本上151页的图片,探索一次函数的图象.(2)作一次函数的图象例1.作出一次函数y=2x+1的图象描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:把这些点依次连接起来,得到y=2x+1的图象,它是一条,与x轴交于,与y轴交于,它经过象限.小结:作一次函数图象的步骤:思考:过(0,3),(1,0)两点能确定一次函数的图象吗?若能,请在坐标系中画出图象,它的解析式是.练习:1. 直线y =2x 与坐标轴交于点 ,直线y=2x-1与坐标轴交于点 ,直线y=2x+1与坐标轴交于点 ,在同一直角坐标系中画出下列函数的图象,这三条直线的位置关系是 , 从中你发现: .2.如图,直线的解析式是 它不经过 象限,△AOB 的面积是 .例2.已知矩形的周长为10cm ,一边长为xcm ,另一边长为ycm ,列出用x 表示y 的函数关系式,求出自变量x 取值范围并画出此函数的图象.课堂练习:⒈一次函数y=2x+3的图象不经过的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 ⒉一次函数y=kx+b 的图象如图.则 ( A .k=21,b=1 B .k=21,b=-1C .k=-21,b=1 D .k=-21,b=-1⒊ 一次函数y=2x -1图象是 ( )O 1 2 3 -1 -2 -3 -4 -4-3-2 -14 3 2 1yxxy2.1.0 xy 1 0.5 0 Axy -1 0.5 0 Bxy-1 -0.50 Cxy-10.5D课后练习: 班级: 姓名: 3.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.4.过点(0,-2)且与直线y = 3x 平行的直线是 ( ) A .y = 3x+2 B .y = 3x- 2 C . y = -3x+2 D .y = -3x-25.下列点中,不在一次函数y=-2x+1的图象上的点是 ( )A .(1,-1 )B . (0,1)C . (2,0)D . (-1,3)6.一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )7.早晨,小强从家出发,以v 1的速度前往学校,途中在一饮食店吃早点,之后以v 2的速度向学校走去,且v 1>v 2,则表示小强从家到学校的时间t (分钟)与路程S (千米)之间的关系用图表示为( )8. 已知一次函数y=2x -4与y=-x+2.⑴在同一坐标系中画出它们的图象; ⑵求出它们的图象的交点坐标.1.一次函数y=5x+2的图象是一条经过第__________象限的直线,它与x 轴的交点坐标为__________________,与y 轴的交点坐标为_________________. 2.一次函数y=kx+3的图象经过点(-1,5),则k=___________.9.已知直线y=21x+1与直线a 关于y 轴对称,在同一坐标系中画出它们的图象,并求出直线a 的解析式.10.已知一次函数y=-2x -2 (1)画出函数的图象.(2)求图象与x 轴、y 轴的交点A 、B 的坐标. (3)求A 、B 两点间的距离.(4)求△AOB 的面积.(5)利用图象,求当x 为何值时,y ≥0.11.夏日的一个周末,小华跟着爸爸来到肉联厂.他看到叔叔们把一块又一块的猪肉搬进冷库,不一会儿冷库里装满了猪肉.这时爸爸告诉小华,冷库中现在的温度是1℃,开动制冷机,它能使冷库的温度每小时下降3℃.请小华帮忙算一算:(1)开动制冷机1小时,2小时,3小时,冷库的温度各是多少?冷库温度y(℃)与开机时间x(小时)有什么关系?并用数学表达式表示出来. (2)要使冷库温度为零下20℃,制冷机需开动几个小时?(3)冷库温度y 与开机时间x 的关系能用图形表示出来吗?怎样用图形表示?。

5.3+一次函数的图象(2)

5.3+一次函数的图象(2)

3.一次函数的图象在平面直角坐标系中的位置特征
与y轴交点 位置 交点在y轴上 交点在 轴上 b>0 半轴. 半轴 交点在原点. b=0 交点在原点 交点在y轴 交点在 轴 b<0 下半轴 下半轴. 大致图象 经过象限
y 0 y 0 x x
一、二、三
一、三
K>0
y 0 x
一、三、四
3.一次函数的图象在平面直角坐标系中的位置特征
y增大 增
y = 3x − 2
2 y = x +1 3
x增大 增大
的增大而增大, (1)当k>0时,y随x的增大而增大, ) > 时 随 的增大而增大 这时函数的图象从左到右上升; 这时函数的图象从左到右上升;
y = −x + 2
y减少 减少
观察函数
y = −x + 2
的图像
x增大 增大
(2) 当k<0时,y随x的 ) < 时 随 的 增大而_____, 增大而 减小,这时函数 的图象从左到右_____. 的图象从左到右 下降 .
数学实验室
y
y=-
1 函数y=- x+b呢? 函数 呢 2
y=- x - 2
1 1 2
x+2
4 3 2 1
-4
-3
-2
-1
o
-1 -2 -3 -4
1 21
2
3
4
x
函数y=kx+b呢? 呢 函数
y=-
1 2
x-1
2.一次函数图象与正比例函数图象的关系 一次函数图象与正比例函数图象的关系
一般地,正比例函数 一般地,正比例函数y=kx的图象是 的图象是 经过原点的一条直线. 经过原点的一条直线.一次函数 y=kx+b的图象是由正比例函数 的图象是由正比例函数y=kx 的图象是由正比例函数 的图象沿y轴向上 轴向上(b>0)或向下 或向下(b<0) 的图象沿 轴向上 或向下 平移|b|得到的一条直线 得到的一条直线. 平移 得到的一条直线.

人教版必修5第三章第三节5.3.3二元一次不等式(组)与简单的线性规划问题

人教版必修5第三章第三节5.3.3二元一次不等式(组)与简单的线性规划问题

所表示的平面区域如
图(阴影部分):
又直线 y=3x-z 的斜率为 3. 由图象知当直线 y=3x-z 经过点 A(2,0)时, z 取最大值 6, 当直线 y=3x-z 经过点 ∴z=3x-y
1 B 2,3时,z
3 取最小值-2, A.
3 的取值范围为- ,6,故选 2
(3)掌握一种方法——数形结合法, 这是解决线性规划问题 的最基本的方法,其实质就是利用数形结合思想解决最值问 题. (4) 注意一个综合 ——线性规划问题与其他知识模块的综 合,熟练利用相关知识进行运算,将问题转化为简单的线性规 划问题,这也是 2012 年高考命题的趋势.
x-y+5≥0, (1)画出不等式组x+y≥0, x≤3 答下列问题: ①指出 x,y 的取值范围. ②平面区域内有多少个整点?
-x≤y≤x+5, ②由图形及不等式组知 -2≤x≤3,且x∈Z.
当 x=3 时,-3≤y≤8,有 12 个整点; 当 x=2 时,-2≤y≤7,有 10 个整点; 当 x=1 时,-1≤y≤6,有 8 个整点; 当 x=0 时,0≤y≤5,有 6 个整点; 当 x=-1 时,1≤y≤4,有 4 个整点; 当 x=-2 时,2≤y≤3,有 2 个整点; ∴平面区域内的整点共有 2+4+6+8+10+12=4约束条件
意义 由变量x,y组成的
.
不等式(或方程)组成的不等 线性约束 由x,y的 式(组) 条件 ,如z=2x+3y等 目标函数 关于x,y的函数
线性目标 函数 可行解
关于x,y的
解析式 .
满足线性约束条件的解
意义 所有可行解组成的 . 使目标函数取得 或 的 最优解 可行解 线性规划 在线性约束条件下求线性目标函数的 或 问题 问题

空间直角坐标系三条数轴

空间直角坐标系三条数轴

空间直角坐标系三条数轴1. 引言空间直角坐标系是一种用于描述三维空间中点位置的坐标系统。

它由三条相互垂直的数轴组成,分别称为x轴、y轴和z轴。

这三条数轴相互交叉于一个点,称为原点,用于确定其他点的位置。

在本文中,我们将详细介绍空间直角坐标系的概念、构成和使用方法,以及它在数学、物理和工程等领域的应用。

2. 空间直角坐标系的构成空间直角坐标系由三条相互垂直的数轴组成,分别称为x轴、y轴和z轴。

这三条数轴相交于原点,原点的坐标为(0, 0, 0)。

x轴水平向右延伸,正方向为正数方向,负方向为负数方向。

y轴垂直向上延伸,正方向为正数方向,负方向为负数方向。

z轴垂直于x轴和y轴的平面内,正方向为正数方向,负方向为负数方向。

三条数轴的单位长度可以是任意值,但通常选择相等的单位长度,以便于计算和表示。

3. 空间直角坐标系的表示方法在空间直角坐标系中,每个点的位置可以用一个有序数对表示,形式为(x, y, z),其中x、y、z分别表示该点在x轴、y轴和z轴上的坐标值。

例如,点A在空间直角坐标系中的坐标为(2, 3, 4),表示该点在x轴上的坐标值为2,在y轴上的坐标值为3,在z轴上的坐标值为4。

4. 空间直角坐标系中的距离和角度在空间直角坐标系中,可以计算两点之间的距离和两条线段之间的夹角。

4.1 距离的计算设点A的坐标为(x1, y1, z1),点B的坐标为(x2, y2, z2),则点A和点B之间的距离可以通过以下公式计算:4.2 角度的计算设线段AB的方向向量为,线段AC的方向向量为,则线段AB和线段AC之间的夹角可以通过以下公式计算:其中表示两个向量的点积。

5. 空间直角坐标系的应用空间直角坐标系在数学、物理和工程等领域有广泛的应用。

5.1 几何图形的表示空间直角坐标系可以用于表示和计算几何图形的属性,如点、直线、平面等。

通过坐标值的计算和变换,可以求解几何图形的位置、距离、角度等问题。

5.2 物理运动的描述空间直角坐标系可以用于描述物体在空间中的位置和运动。

专题5.3一次函数的图象与性质(举一反三)(浙教版)(原卷版)

专题5.3一次函数的图象与性质(举一反三)(浙教版)(原卷版)

专题5.3 一次函数的图象与性质【十大题型】【浙教版】【题型1 判定一次函数的图像】 (2)【题型2 根据一次函数解析式判断其经过的象限】 (4)【题型3 根据函数经过的象限判断参数取值范围】 (4)【题型4 一次函数的图像与坐标轴的交点问题】 (5)【题型5 一次函数的平移问题】 (5)【题型6 判断一次函数的增减性】 (6)【题型7 根据一次函数的增减性求参数或最值】 (7)【题型8 根据一次函数的增减性判断自变量的变化情况】 (7)【题型9 比较一次函数值的大小】 (7)【题型10 一次函数的规律探究问题】 (8)【题型1 判定一次函数的图像】【例1】(2022春•牡丹江期末)直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.【变式11】(2022春•喀什地区期末)直线y=kx+b的图象如图所示,则直线y=bx﹣k的图象是()A.B.C.D.【变式12】(2022春•安阳县期末)一次函数y=mx+n的图象如图所示,则y=﹣2mx+n的图象可能是()A.B.C.D.【变式13】(2022•萧山区模拟)若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =﹣cx ﹣a 的图象可能是( )A .B .C .D .【题型2 根据一次函数解析式判断其经过的象限】【例2】 (2022•海门市校级模拟)已知关于x 的一次函数为y =mx +4m +3,那么这个函数的图象一定经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式21】(2022春•集贤县期末)一次函数y =2(x +1)﹣1不经过第( )象限. A .一B .二C .三D .四【变式22】(2022秋•九龙坡区校级期末)如图,点A ,B 在数轴上分别表示数﹣2a +3,1,则一次函数y =(1﹣a )x +a ﹣2的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【变式23】(2022•萧山区一模)已知y ﹣3与x +5成正比例,且当x =﹣2时,y <0,则y 关于x 的函数图象经过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【题型3 根据函数经过的象限判断参数取值范围】【例3】(2022•黄州区校级自主招生)已知过点(2,3)的直线y =ax +b (a ≠0)不经过第四象限,设s =a ﹣2b ,则s 的取值范围是( ) A .32≤s <6B .﹣3<s ≤3C .﹣6<s ≤32D .32≤s ≤5【变式31】(2022春•丰都县期末)若关于x 的不等式组{5x −k >0x −3≤0有且只有四个整数解,且一次函数y =(k +2)x +k +3的图象不经过第一象限,则符合题意的整数k 的和为( ) A .﹣12B .﹣14C .﹣9D .﹣15【变式32】(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是()A.﹣10≤p≤﹣2B.p≥﹣10C.﹣6≤p≤﹣2D.﹣6≤p<﹣2【变式33】(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【题型4 一次函数的图像与坐标轴的交点问题】【例4】(2022春•镇巴县期末)已知直线l1:y=﹣x+b与x轴交于点(1,0),直线l2与直线l1关于y轴对称,则关于直线l2,下列说法正确的是()A.y的值随着x的增大而减小B.函数图象经过第二、三、四象限C.函数图象与x轴的交点坐标为(1,0)D.函数图象与y轴的交点坐标为(0,b)【变式41】(2022春•双阳区月考)若直线y=kx﹣k(k>0)与两个坐标轴所围成的三角形的面积为4,则k=.【变式42】(2022春•卧龙区期中)若一次函数y=(k+2)x﹣k﹣3与y轴的交点在x轴的下方,则k的取值范围是.x+12【变式43】(2022•遵义模拟)平面直角坐标系xOy中,点P的坐标为(3m,﹣4m+4),一次函数y=43的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围为()A.m>一1或m<0B.﹣3<m<1C.﹣1<m<0D.﹣1≤m≤1【题型5 一次函数的平移问题】【例5】(2022秋•宣州区校级期中)将直线y=2x+3平移后经过点(2,﹣1),求:(1)平移后的直线解析式;(2)沿x轴是如何平移的.x+1,它的图象与x轴交于点A,与y轴交于【变式51】(2022秋•雁塔区校级月考)已知一次函数y=−12点B.(1)点A的坐标为,点B的坐标为;(2)画出此函数图象;(3)画出该函数图象向下平移3个单位长度后得到的图象;x+1图象向下平移3个单位长度后所得图象对应的表达式.(4)写出一次函数y=−12【变式52】.(2022春•安岳县期中)已知直线y=(m+1)x|m|﹣1+(2m﹣1),当x1>x2时,y1>y2,求该直线的解析式.并求该直线经过怎么的上下平移就能过点(2,5)?【变式53】(2022春•武昌区期末)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.【题型6 判断一次函数的增减性】【例6】(2022秋•射阳县期末)下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【变式61】(2022春•巴州区校级期中)一次函数y=4x﹣2的函数值y随自变量x值的增大而(填“增大”或“减小”).【变式62】(2022春•柳南区校级期末)正比例函数y=﹣k2x(k≠0),下列结论正确的是()A.y>0B.y随x的增大而增大C.y<0D.y随x的增大而减小【变式63】(2022春•马山县期末)已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)【题型7 根据一次函数的增减性求参数或最值】【例7】(2022•潮南区模拟)已知一次函数y=﹣0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.﹣6【变式71】(2022•萧山区模拟)已知正比例函数y=(m+1)x+m2﹣4,若y随x的增大而减小,则m的值是.【变式72】(2022春•饶平县校级期末)若正比例函数y=(2﹣m)x|m﹣2|,y随x的增大而减小,则m的值是.【变式73】(2022秋•沭阳县校级期末)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是.【题型8 根据一次函数的增减性判断自变量的变化情况】【例8】(2022•兴平市模拟)在平面直角坐标系中,若一次函数y=kx+3的y值随x的增大而减小,则该一次函数的图象可能经过的点的坐标是()A.(1,1)B.(1,3)C.(1,4)D.(1,5)【变式81】(2022•连山区一模)一次函数y=kx+3(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【变式82】(2022•东坡区模拟)若一次函数y=(2m+1)x﹣1的值随x的增大而增大,则常数m的取值范围.【变式83】(2022春•巨野县期末)已知一次函数y=(m+2)x﹣(m+3),y随x的增大而减小,且图象与y轴的交点在x轴下方,则实数m的取值范围是.【题型9 比较一次函数值的大小】【例9】(2022春•芜湖期末)已知直线y=﹣2022x+2021经过点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【变式91】(2022秋•南山区校级期中)在函数y=kx(k>0)的图象上有点A1(x1,y1),A2(x2,y2),已知x1<x2,则下列各式中正确的是()A.y1<y2B.y2<y1C.y2=y1D.y1=y2=0【变式92】(2022春•同江市期末)若点A(x1,﹣1),B(x2,﹣2),C(x3,3)在一次函数y=﹣2x+m (m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x1【变式93】(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0【题型10 一次函数的规律探究问题】【例10】(2022秋•市南区期末)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2022=.【变式101】(2022春•巴中期末)如图,直线l1:y=x+1与直线l2:y=x2+12相交于点P,直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,B2020,A2020……则A2022B2022的长度为()A.22021B.22022C.2022D.4044【变式102】(2022春•石家庄期中)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示方式放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B4的坐标是,B2020的纵坐标是.【变式103】(2022春•庆云县期末)如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=﹣x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x的图象于点A2,交y=﹣x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2…依此类推.按照图中反映的规律,则点A n的坐标是;第2020个正方形的边长是.。

苏科版初中八年级数学上册5.3 一次函数的图象(2) 课件

苏科版初中八年级数学上册5.3 一次函数的图象(2) 课件
(1)填表: x 1
2 y1 2 x y2 2 x 3 5 y3 2 x 3 -1
2
4
7 1
3
6 9
3
5 … 8 10 … 11 13 … 5 7 … 4
(1)填表: 1 x
2 y1 2 x y2 2 x 3 5 y3 2 x 3 -1
2
3
4
5 …
4
7 1
6
1
3
5
7 …
从数量关系上看,对于同一个自变量的值, 一次函数
y3 2 x 3 的值与正比例函数
y1 2 x 的值有什么差异?
(2)在同一直角坐标系中,画出这3 个 函数的图象.
y
4 3 2 1 -4 -3 -2 -1 -1 -2 -3 -4
y2 2 x 3 y1 2 x
y3 2 x 3
9 3
8
11 5
10 …
13 … 7 …
从数量关系上看,对于同一个自变量的值,
一次函数 y2 2 x 3 的值与正比例函数
y1 2 x 的值有什么差异?
(1)填表:
x
1 2
4 7
3
6 9
4
8 11
5 …
10 … 13 …
2 y1 2 x y2 2 x 3 5 y3 2 x 3 -1
x
o
o
图1
图2
例题: 2.一次函数 y 2 x 3 的图象经过第
一、三、四 ______象限. 分析:
y
o
x
数形结合!
课堂练习:
1. 一次函数 y kx b中, y 随 x 的增大而
y o x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3 直角坐标系中的图形第一课时教学目标: 【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。

【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。

2、通过图形的平移,轴对称等,培养学生的探索能力。

【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

教学难点:由坐标的变化探索新旧图形之间的变化。

教学方法:导学法教学准备: 图5-15挂图一幅 教学过程设计:一、 创设问题情境,引入新课『师』 :在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。

如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。

坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

『师』 :你们画出的图形和我这里的图形(挂图)是否相同?『生』 :相同。

『师』 :观察所得的图形,你们决定它像什么?『生』 :像“鱼”。

『师』 :鱼是营养价值极高的食物,大家肯定愿意吃鱼,但上面的这条鱼太小了,下面我们把坐标适当地作些变化,这条鱼就能变大或变胖,即变化的鱼。

(板书课题)二、 新课学习 1、【例1】将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的-2-1O 14321x y23456图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?『师』:先根据题意把变化前后的坐标作一对比。

如下:(1)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0)(2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0)根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来。

你们画出的图形与下面的图形相同吗?『生』:相同。

『师』:这个图形与原来的图形相比有什么变化呢?『生』:比原来的鱼长了。

『师』:将各点用线段依次连接起来,所得图案与原图案相比,整条鱼横向拉长为原来的的2倍。

即鱼变长了。

(师选一生的第(2)题的图对比)『师』:大家的图形和他画的是否相同?『生』:相同。

『师』:这个图形和原来的图形相比是变长了还是变胖了?『生』:没变。

『师』:新的图案与原图案相比,整条鱼向右平移了3个长度单位。

小结:从上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。

这两种情况都是横坐标变化,纵坐标不变,图形是被拉长或向右移动,当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢?2、【例2】将第一个图形中的点(0,0),(5,4),(3 0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化?(2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?(指导学生先做第(1)题:描述坐标的变化,再画图)『师』:图形应变成什么图形?『生』:图形和原来图形相比,好像鱼沿x轴翻了个身。

『师』:是的,所得的图案与原图案关于横轴成轴对称。

(指导学生做第(2)题,方法同上)『师』:图形应变成什么样了?『生』:所得的图案与原图案相比,形状不变、大小放大了一倍。

-4-3-2-1O14321x y2345657891011-4-3-2-1O14321x y2345657891011 -4-3-2-1O14321x y2345657891011-4-3-2-1O14321xy2345678910115678『师』 :即鱼长大长胖了。

3、 分小组讨论:当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖。

『生』 :(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。

(2)当横坐标变为原来的2倍,纵坐标不变时,鱼长长了,没胖。

(3)当横坐标不变,纵坐标分别乘以-1时,鱼翻身了,即后来的鱼和原来的鱼关于x 轴对称。

(4)当横、纵坐标分别变成原来的2倍时,鱼既长长又长胖了。

『师』 :当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y 轴成轴对称?-4-3-2-1O14321xy 234567567-1-2-3-4-5-4-3-2-1O14321xy 234567567-1-2-3-4-5-4-3-2-1O14321xy 234567567-1-2-3-4-5『师』 :以上我们对不同的情况进行了探索整理,也找到了规律,在以后的学习中大家要多思考,找规律。

这样理解得深,学的知识比较牢固。

三、 随堂练习(1)将右图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化? (2)将右图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有什么变化? (3)将上图中各个点的横坐标都乘-2,纵坐标都乘-2,与原图形相比,所得的图案有什么变化?四、 本课小结本节课主要研究横坐标或纵坐标发生变化时,新图案与旧图案相比有什么变化。

五、 课后作业书P92 习题5.6-4-3-2-1O 14321xy 234567567-1-2-3-4-55.3 直角坐标系中的图形第二课时教学目标: 【知识目标】:1、进一步巩固图形坐标变化与图形定的平移,轴对称,伸长,压缩之间的探索过程,发展学生的形象思维能力和数形结合意识。

2、根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

【能力目标】:1、通过对称轴左边的图形,观察得出右边的图形,训练学生的识图能力。

2、具有初步的创新精神和实践能力。

【情感目标】:通过研究有趣的图形,学生能进行探索和创造,把学到的知识灵活地运用现实生活中。

教学重点:作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

教学难点:作某一图形关于对称轴的对称图形。

教学方法:探究式学习 教学过程设计:一、 创设问题情境,导入新课 『师』:在日常生活中,你们见到过哪些轴对称图形?中心对称图形?『生』:…… 『师』:轴对称图形和中心对称图形随处可见。

古时我国很多的建筑就有对称的结构,既美观又大方。

上节课,我们已经知道,把一个图形的横坐标都乘以-1,纵坐标不变时,所得的图形与原图形关于y 轴对称;把一个图形的纵坐标都乘以-1,横坐标不变时,所得的图形与原图形关于x 轴对称。

把一个图形的横坐标、纵坐标都乘以-1时,所得的图形与原图形关于原点对称。

那么如果已知一个图形,你能否求出这个图形中的某些点关于x 轴或y 轴或原点对称的对称点的坐标呢?或者已知轴对称图形(或者中心对称图形)的一半,你能否画出另一半呢? 二、 新课学习1、 例题讲解如图中,左右两幅图案关于y 轴对称,右图中的左右眼睛的坐标分别是(2,3), (4,3)。

嘴角左右端点的坐标分别是 (2,1),(4,1)。

(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标。

(2)你是怎样得到的?与同伴交流。

(此题较为简单。

抽学生解答) 『师』:现从对称的角度来考虑,可以发现什么?『生』:左右两幅图案关于y 轴对称。

从而发现两幅图案上各个对应点的纵坐标相同,横坐标互为相反数。

『师』:上图中,我们可根据这个规律确定左图案的左右眼睛与左右嘴角端点的坐标。

2、 议一议(1)如果将上图中的右图案沿x 轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?(2)如果作图中的右图案关于x 轴的轴对称图形,那么左右眼睛的坐标将发生什么变化? (3)如果图中的右图案沿y 轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?(先独立思考,再小组交流,发表)『生』:(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变。

因此左右眼睛的坐标分别为(3,3),(5,3)。

(2)如果作图中的右图案关于x轴的轴对称图形,根据关于x轴对称的两图形对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数。

所以左右眼睛的坐标现变为(2,-3),(4,-3)。

(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变。

所以左右眼睛的坐标为(2,5),(4,5)。

『师』:如果再上面的问题中右图案不是沿x轴正方向或y轴正方向移动,而是沿x轴负方向或y轴负方向移动,那么左、右眼睛的坐标又该如何变化?『生』:和上面相反,沿x轴负方向移动几个单位长度,横坐标减去几,纵坐标不变;沿y轴负方向移动几个单位长度,纵坐标减去几,横坐标不变。

3、做一做如右图,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),D(1,3)。

(1)再同一直角坐标系中,将正方形向左平移2个单位,画出你相应的图形,并写出各点的坐标。

(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标。

(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?解:(1)(2)略。

相关文档
最新文档