专题训练:勾股定理
勾股定理典型模型归纳训练
1 / 3勾股定理【知识梳理】 1.勾股定理:股勾b a2.勾股定理的证明:方法一:以a 、b 为直角边,以c 为斜边做四个全等的直角三角形方法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像下图那样拼成两个正方形.方法三:以a 、b 为直角边,以c 为斜边作两个全等的直角三角形3.基本训练:(1)如图,在△ABC 中,∠C=90°,AC=3,BC=4,求AB 的长.(2)如图,在△ABC 中,∠C=90°,AC=1,BC=2,求AB 的长.(3)如图,在△ABC 中,∠C=90°,AC=1,BC=3,求AB 的长.(4)如图,在△ABC 中,∠C=90°,AC=6,AB=10,求BC 的长.(5)如图,在△ABC 中,∠C=90°,BC=12,AB=13,求BC 的长.3.常见的勾股数:【探究】与勾股定理相关的问题探究1.已知直角三角形的两边求第三边,或已知直角三角形的两边比和一边长求两边. (1)如图,在△ABC 中,∠C=90°,AC=3,AB=5,求BC 的长.(2)如图,在△ABC 中,∠C=90°,AC :BC=3:4,AB=10,求AC 、BC 的长.2.求直角三角形斜边上的高. 如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,AC=3,BC=4,求CD 的长.3.求直角三角形三边的中线的长.(1)如图,在△ABC 中,∠C=90°,AC=3,AB=5,E 是BC 的中点,求AE 的长.(2)如图,在△ABC 中,∠C=90°,BC=4,AB=5,E 是AC 的中点,求BE 的长.(3)如图,在△ABC 中,∠C=90°,AC=3,BC=4,F 是AB 的中点,求CF的长.4.求直角三角形角平分线的长.(1)如图,在△ABC中,∠C=90°,AC=3,AB=5,AD平分∠CAB,求CD和AD的长.(2)如图,在△ABC中,∠C=90°,AC=3,AB=5,BD平分∠ABC,求CD和BD的长.5.含特殊角的直角三角形(1)如图,在△ABC中,∠C=90°,∠B=30°,AC=1,求AB和BC的长.(2)如图,在△ABC中,∠C=90°,∠B=30°,AB=2,求AC和BC的长.(3)如图,在△ABC中,∠C=90°,∠B=30°,BC=3,求AC和AB的长.(4)如图,在△ABC中,∠C=90°,∠B=45°,BC=2,求AC和AB的长.(5)如图,在△ABC中,∠C=90°,∠B=45°,AB=2,求AC和BC的长.6.等边三角形与直角三角形如图,△ABC是等边三角形,AB=6,AD⊥BC,求AD的长和△ABC的面积.7.含120°角的等腰三角形与直角三角形(1)如图,AB=AC,∠BAC=120°,AB=3,AD⊥BC,求AD、BC的长和△ABC的面积.(2)如图,AB=AC,∠BAC=120°,BC=6,AD⊥BC,求AD、AB的长和△ABC的面积.8.等腰三角形与直角三角形(1)如图,AB=AC=5,BC=6,AD⊥BC,求AD的长和△ABC的面积.(2)如图,AB=AC=5,BC=8,AD⊥BC,求AD的长和△ABC的面积.9.含特殊角的三角形与直角三角形(1)如图,AB=2,BC=3,求AC的长和△ABC的面积.DB CDBB2 / 33 / 360°ABC(2)如图,AB=1,BC=2,求AC 的长和△ABC 的面积.120°ABC10.折叠与直角三角形(1如图,在Rt △ABC 中,∠C=90°,沿AD 折叠,使点C 落在斜边AB 上,若AC=3,BC=4,则CD= .DCAB第(1)题 第(2)题 第(3)题 第(4)题 第(5)题(2))如图,在Rt △ABC 中,∠C=90°,BC=6cm ,AC=8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .(3)如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A重合,折痕为DE ,则DE 的长为 .(4)如图.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 式垂足,连接CD ,若BD=1,则AC 的长是 .(5)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 . (6)如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F处.若AE=5,BF=3,则CD 的长是 .第(6)题 第(7)题 第(8)题 第(9)题 (7)如图,矩形ABCD 边AD 沿拆痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于 .(8)如图所示,矩形纸片ABCD 中,6AB cm =,8BC cm =,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为 .(9)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为_____cm. (10)把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.(11)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 .第(10)题 第(11)题 第(12)题 第(13)题(12)如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为 .(13)如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .(14)矩形纸片ABCD 的边长AB=4,AD=2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为_____________.。
初中数学 勾股定理 专题训练(含答案)
第一部分知识梳理一、直角三角形的有关性质1、直角三角形的定义:有一个角是直角,的三角形叫做解直角三角形.2、直角三角形的性质1、三角形中,如果两角之和等于第三个角,那么这个三角形是,2、三角形中,如果两角之差等于第三个角,那么这个三角形是,3、三角形中,如果三边满足a2+b2=c2,那么这个三角形是,4、三角形中,如果一边上的中线等于这边的一半,那么这个三角形是,三、其他1、了解一些勾股数2、利用勾股定理求值3、利用勾股定理的逆定理,来判定一个三角形是直角三角形4、与三角函数联系在一起。
第二部分中考链接一、选择题1.(2018•青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕相交于点F.已知EF=32,则BC的长是()A.B.C.3 D.1题图2题图3题图4题图2.(2018•淄博)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.3、.(2018•威海)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .C .D .4.(2018滨州)如图,∠AOB=60°,点P 是∠AOB 内的定点且,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6 D .35.(2018临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32 B .2 C . 2 D5题图 6题图 7题图 8题图6.(2018•黄冈)如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=( )A .2 B .3 C .4 D .7.(2019山东聊城)如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE +AF =ACB .∠BEO +∠OFC =180° C .OE +OF =2BCD .S 四边形AEOF =12S △ABC 8.(2019山东滨州)如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM .下列结论:①AC =BD ;②∠AMB =40°;③OM 平分∠BOC ;④MO 平分∠BMC .其中正确的个数为( )A .4 B .3 C .2 D .19.(2019南通)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间10.(2019宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和9题图10题图11题图11.(2019河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( ) A.B.4 C.3 D二、填空题1.(2018•泰安)如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.2、(2018临沂)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=.3.(2018•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.4.(2018黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_________________cm(杯壁厚度不计).2题图3题图4题图5题图5.(2018•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.6、(2018•黑龙江)如图,已知等边△ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△AB 2C 2的B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2的面积为S 1,△B 2C 1B 3的面积为S 2,△B 3C 2B 4的面积为S 3,如此下去,则S n = .6题图 7题图 8题图 9题图 7.(2018青岛)如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为8.(2019山东临沂)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .9.(2019山东枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = .10、(2019山东聊城)如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,DE 为△ABC 的中位线,延长BC至F ,使CF =12BC ,连接FE 并延长交AB 于点M .若BC =a ,则△FMB 的周长为 .10题图 11题图 12题图11.(2019威海)如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.12.(2019山东淄博)如图,在以A 为直角顶点的等腰直角三角形纸片ABC 中,将B 角折起,使点B 落在AC 边上的点D (不与点A ,C 重合)处,折痕是EF .如图1,当CD =12AC 时,tan α1=34;如图2,当CD =13AC 时,tan α2=512; 如图3,当CD =14AC 时,tan α3=724;……依此类推,当CD =11n +AC (n 为正整数)时,tan αn = . 13.(2019南京)在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是__________.14.(2019伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE △是直角三角形时,则CD 的长为__________.三、解答题1.(2019山东临沂)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D (A 、C 、D 共线)处同时施工.测得∠CAB =30°,AB =4km ,∠ABD =105°,求BD 的长.2、(2019山东菏泽)如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.(1)如图1,连接BE ,CD ,BE 的廷长线交AC 于点F ,交CD 于点P ,求证:BP ⊥CD ;(2)如图2,把△ADE 绕点A 顺时针旋转,当点D 落在AB 上时,连接BE ,CD ,CD的延长线交BE 于点P ,若BC =,AD =3,求△PDE 的面积.3、(2019山东枣庄)在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN AM.4、.(2018济宁)如图,在正方形ABCD 中,点E,F 分别是边AD,BC 的中点,连接DF,过点E 作EH⊥DF,垂足为H,EH 的延长线交DC 于点G.(1)猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H 作MN∥CD,分别交AD,BC 于点M,N,若正方形ABCD 的边长为10,点P 是MN 上一点,求△PDC 周长的最小值.5.(2019河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:答案与提示一、选择题1、B2、A3、C4、D5、B6、C7、C .8、B .9、C 10、C 11、A1、解:∵沿过点E 的直线折叠,使点B 与点A 重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E 为AB 中点,∴EF=12AB ,EF=32,∴AB=AC=3,∵∠BAC=90°,∴,故选:B .2、解:∵△ABC 为等边三角形,∴BA=BC ,可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,且延长BP ,作AF ⊥BP 于点F .如图, ∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE 为等边三角形,∴PE=PB=4,∠BPE=60°, 在△AEP 中,AE=5,AP=3,PE=4,∴AE 2=PE 2+PA 2,∴△APE 为直角三角形,且∠APE=90°, ∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF 中,AF=12AP=32,PF=2∴在直角△ABF 中,AB 2=BF 2+AF 2=(2+(32)2.则△ABC 的面积是4•AB 2=4•(=9+4.故选:A .2题图 3题图 4题图3、解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD ∥GF ,∴∠GFH=∠PAH ,又∵H 是AF 的中点,∴AH=FH ,在△APH 和△FGH 中,∵,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG ,∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=122,故选:C . 4、解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图, 则MP=MC ,NP=ND ,,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+NC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=1232,∴CD=2CH=3.故选:D . 5、解:∵BE ⊥CE ,AD ⊥CE ,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA .在△CEB 和△ADC 中,,∴△CEB ≌△ADC (AAS ),∴BE=DC=1,CE=AD=3.∴DE=EC ﹣CD=3﹣1=2故选:B .6、解:∵在Rt △ABC 中,∠ACB=90°,CE 为AB 边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD 为AB 边上的高,∴在Rt △CDE 中,CD=, 故选:C .7、解:连接AO ,如图所示.∵△ABC 为等腰直角三角形,点O 为BC 的中点,∴OA =OC ,∠AOC =90°,∠BAO =∠ACO =45°. ∵∠EOA +∠AOF =∠EOF =90°,∠AOF +∠FOC =∠AOC =90°,∴∠EOA =∠FOC .∴△EOA ≌△FOC (ASA ),∴EA =FC ,∴AE +AF =AF +FC =AC ,选项A 正确;∵∠B +∠BEO +∠EOB =∠FOC +∠C +∠OFC =180°,∠B +∠C =90°,∠EOB +∠FOC =180°﹣∠EOF =90°,∴∠BEO +∠OFC =180°,选项B 正确;∵△EOA ≌△FOC ,∴S △EOA =S △FOC ,∴S 四边形AEOF =S △EOA +S △AOF =S △FOC +S △AOF =S △AOC =S △ABC , D 正确.7题图 8题图8、解:∵∠AOB =∠COD =40°,∴∠AOB +∠AOD =∠COD +∠AOD ,即∠AOC =∠BOD ,∴△AOC ≌△BOD (SAS ),∴∠OCA =∠ODB ,AC =BD ,①正确;∴∠OAC =∠OBD ,由三角形的外角性质得:∠AMB +∠OAC =∠AOB +∠OBD ,∴∠AMB =∠AOB =40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图所示:则∠OGC =∠OHD =90°,12∴△OCG ≌△ODH (AAS ),∴OG =OH ,∴MO 平分∠BMC ,④正确; 正确的个数有3个;二、填空题12、、130°或90°.4、20 5、6 6(34)n .78、9.10、92a .11、10512、22122nn n ++.13、4<BC ≤314、3或247 1、解:由折叠知,A'E=AE ,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt △A'CB 中,=8,设AE=x ,则A'E=x ,∴DE=10﹣x ,CE=A'C+A'E=8+x ,在Rt △CDE 中,根据勾股定理得,(10﹣x )2+36=(8+x )2, ∴x=2, ∴AE=2,在Rt △ABE 中,根据勾股定理得,∴sin ∠ABE=AE BE2、解:∵四边形ABCD 是平行四边形,[w ∴BC=AD=6,OB=D ,OA=OC ,∵AC ⊥BC ,∴,∴OC=4,∴3、解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,4题图8题图 9题图 5、解:在Rt △ADB 与Rt △ADC 中, ,∴Rt △ADB ≌Rt △ADC ,∴S △ABC =2S △ABD =2×21AB•DE=AB•DE=3AB, ∵S △ABC =21AC•BF,∴21AC•BF=3AB,∵AC=AB ,∴21BF=3,∴BF=6.故答案为6.6、解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=3,∴第一个等边三角形AB1C1的面积为3×(3)2=3()1;∵等边三角形AB1C1,AB2⊥B1C1,∴B1B2=2,AB1,根据勾股定理得:AB2=32,∴第二个等边三角形AB2C2的面积为4×(32)2(34)2;依此类推,第n个等边三角形ABnCn(34)n(34)n.7.解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=12BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴GH=12,8、解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=CD=∴△ABC的面积=2S△BCD=2××4×9、解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC AB=,BF=AF=2AB,∵两个同样大小的含45°角的三角尺,∴AD=BC=,在Rt△ADF中,根据勾股定理得,DF,∴CD=BF+DF﹣BC﹣﹣.10、解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC.∵DE是中位线,∴CE.在Rt△FEC中,利用勾股定理求出FE=a,12=∴∠FEC =30°.∴∠A =∠AEM =30°,∴EM =AM .△FMB 周长=BF +FE +EM +BM =BF +FE +AM +MB =BF +FE +AB =92a .故答案为92a . 11、解:作DE ⊥AB 于E ,CF ⊥AB 于F ,如图所示:则DE =CF ,∵CF ⊥AB ,∠ACB =90°,AC =BC ,∴CF =AF =BF =12AB , ∵AB =BD ,∴DE =CF =12AB =12BD ,∠BAD =∠BDA ,∴∠ABD =30°,∴∠BAD =∠BDA =75°, ∵AB ∥CD ,∴∠ADC +∠BAD =180°,∴∠ADC =105°;12、解:观察可知,正切值的分子是3,5,7,9,…,2n +1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n +1,2(21)12n +-,2(21)12n ++中的中间一个.∴tan αn =221(21)12n n ++-=22122n n n++. 三、解答题1、解:作BE ⊥AD 于点E ,∵∠CAB =30°,AB =4km ,∴∠ABE =60°,BE =2km ,∵∠ABD =105°,∴∠EBD =45°,∴∠EDB =45°,∴BE =DE =2km ,∴BD =km ,即BD 的长是km.1题图 3题图 4题图2、解:(1)∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.∴ AD =AE ,AB =AC ,∠BAC ﹣∠EAF =∠EAD ﹣∠EAF ,即∠BAE =∠DAC ,∴△ABE ≌△ADC (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =∠ABE +∠CFP =90°,∴∠CPF =90°,∴BP ⊥CD ;(2)在△ABE 与△ACD 中,,∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,BE =CD ,90AE AD EAB CAB AB AC =⎧⎪∠=∠=⎨⎪=⎩∵∠PDB=∠ADC,∴∠BPD=∠CAB=90°,∴∠EPD=90°,∵BC=,AD=3,∴DE=,AB=6,∴BD=6﹣3=3,CD∵△BDP∽△CDA,∴,∴PDPB∴PE==,∴△PDE的面积=.3、(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2)2,解得,DM=,∴AM=AD﹣DM﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,∴△BME≌△AMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE AM.4、解:(1)结论:CF=2DG.理由:∵四边形 ABCD 是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴12DG DECF DC==∴CF=2DG.(2)作点 C 关于 NM 的对称点 K,连接 DK 交 MN 于点 P,连接 PC,此时△PDC 的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.(3)由题意得:CD=AD=10, DE=AE=5, DG=52,DH=DE DGEG∙=∴∴HM=2DH EHDE∙=∴=1在Rt△DCK中=∴△PCD的周长的最小值为5、解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,=BD PD PBCD AD AC==36PD PB==551925510⨯⨯=33当2n=8时,n=4,∴n2+1=42+1=15;当n2-1=35时,n2+1=37.。
《勾股定理》专项训练练习
60 120140 60BACC A BDE 1015《勾股定理》专项训练练习基础篇1、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 2、在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3 B .13,12,5 C .10,8,6 D .26,24,10 3、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A. 3cm2B. 32cm2C. 33cm 2D. 4cm 24. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 5. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.6.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定7、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定8、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案9、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 210、已知如图,水厂A 和工厂B 、C 正好构成等边△ABC ,现由水厂A 和B 、C 两厂供水,要在A 、B 、C 间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是( )11、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.12、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.13、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .14、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____15、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .16、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和103㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?17、小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?18、如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.(1)求E 应建在距A 多远处? (2)DE 和EC 垂直吗?试说明理由19、如图,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A,CD=2cm,求AB 的长.第12题图 第13题图 第15题图A B D专题篇一、勾股定理与梯子问题1、如图1,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,如图2,测得BD长为0.5米,求梯子顶端A下落了多少米.2、比较梯子沿墙壁滑行时其在墙壁和地面上滑行距离的大小关系例2如图3,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降至B′,那么BB①等于1米;②大于1米;③小于1米.其中正确结论的序号是________.(要求写出过程)二、勾股定理中的数学思想1、面积法.已知△ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.2、构造法.如图,已知△ABC中,∠B=30°,∠C=45°,AB=4,AC=22.求△ABC的面积.3、转化思想.如图3,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.4、分类讨论思想.已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.5、方程思想.如图4,AB为一棵大树,在树上距地面10米的D处有两只猴子,它们同时发现C处有一筐苹果,一只猴子从D往上爬到树顶A又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C.已知两只猴子所经路程都是15米.试求大树AB的高度.如图,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD.6、逆向思维的方法如图1,在△ABC中,D为BC边上一点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_____.图3DABC图4DCBAABC三、勾股定理在影响范围问题中的运用1、如图1,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,点A 处有一所中学,AP =160m 。
中考数学专项训练勾股定理
中考总复习数学教材过关训练:勾股定理一、填空题1.一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是________________. 答案:24提示:根据勾股定理,两直角边的平方和等于斜边的平方,设其中一条直角边为x,另两条分别为(x-2),(x+2),则有(x-2)2+x2=(x+2)2,解得x=0或x=8,x=0不合题意舍去,所以三边长为6、8、10,周长为24.2.在△ABC中,若AB=17,AC=8,BC=15,则根据______________可知∠ACB=_______________. 答案:勾股定理逆定理90°提示:勾股定理逆定理是判定一个角是直角的重要方法,AC2+BC2=82+152=289=172=AB2,根据勾股定理的逆定理说明AB的对角是90度. 3.一座垂直于两岸的桥长15米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头9米,则小船实际行驶了______________米.答案:334提示:桥长、偏离桥南头的距离、实际行驶的路程构成一个直角三角形,利用勾股定理,可得实际行驶的路程的平方=152+92=306,所以实际行驶了334米.4.若三角形中相等的两边长为10 cm,第三边长为16 cm,则第三边上的高为_____________cm.答案:6提示:等腰三角形三线合一,底边上的高也是底边的中线,所以底边的一半为8,则高为28210 =36=6.5.如图8-41,矩形ABCD,AB=5 cm,AC=13 cm,则这个矩形的面积为______________cm 2.图8-41答案:60提示:根据勾股定理求出BC 的长,BC 2=132-52=144,则BC=12,面积为5×12=60.6.等边三角形的边长为4,则其面积为_______________.答案:43 提示:根据勾股定理求出高为2224-=23,面积为底×高×21=4×232=43. 7.如图8-42,在高3米,坡面线段距离AB 为5米的楼梯表面铺地毯,则地毯长度至少需____________米.图8-42答案:7提示:由勾股定理求出另一直角边为4,将楼梯表面向下和右平移,则地毯的总长=两直角边的和=3+4=7.8.若13-c +|a-12|+(b-5)2=0,则以a 、b 、c 为三边的三角形是______________三角形. 答案:直角提示:满足a 2+b 2=c 2.二、选择题9.下列是勾股数的一组是A.4,5,6B.5,7,12C.12,13,15D.21,28,35答案:D提示:满足a2+b2=c2的正整数是勾股数,只有212+282=352,所以选D.10.下列说法不正确的是A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为5∶12∶13的三角形是直角三角形答案:B提示:三个角的度数之比中有两个之和等于另一个,可以判定是直角三角形,另外两边的平方和=第三边的平方,也可以判定是直角三角形,三个角的度数之比为3∶4∶5的三角形,三个角分别是45度、60度和75度,不是直角三角形.11.一个圆桶底面直径为24 cm,高32 cm,则桶内所能容下的最长木棒为A.20 cmB.50 cmC.40 cmD.45 cm答案:C提示:根据勾股定理,最长木棒长的平方=242+322,解得40 cm.12.一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了5.6分,又沿南北马路向南走了19.2分到家,则他的家离公司距离为______________米.A.100B.500C.1 240D.1 000答案:D提示:由于东西方向与南北方向互相垂直,两段路程与家离公司距离形成直角三角形,根据勾股定理求得家离公司距离=22)502.19()506.5(⨯+⨯=1 000米.三、解答题13.如图8-43,在四边形ABCD 中,AB=12 cm,BC=3 cm,CD=4 cm,∠C=90°.图8-43(1)求BD 的长;(2)当AD 为多少时,∠ABD=90°?(1)答案:5.提示:在△BDC 中,∠C=90°,BC=3 cm ,CD=4 cm ,根据勾股定理,BD 2=BC 2+CD 2,求得BD=5 cm.(2)答案:13.提示:根据勾股定理的逆定理,三角形两边的平方和等于斜边的平方,则三角形是直角三角形,所以AD=13时,可满足AD 2=BD 2+AB 2,可说明∠ABD=90°,AD=22512+=13.14.有一块土地形状如图8-44所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.图8-44答案:234米2.提示:连结AC ,将四边形分割成两个三角形,其面积为两个三角形的面积之和,根据勾股定理求出AC ,进而求出AD.AC=221520+=25,AD=22725-=24,面积为21AB ×BC+21AD ×CD=234米2.15.甲、乙两船上午11时同时从港口A 出发,甲船以每小时20海里的速度向东北方向航行,乙船以每小时15海里的速度向东南方向航行,求下午1时两船之间的距离.图8-45答案:50海里.提示:东北方向航行,东南方向航行,则夹角为90度,根据勾股定理,相距= 22)215()220(⨯+⨯=50.16.已知:a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状. 解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).②∴c 2=a 2+b 2.③∴△ABC 是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ______________;(2)错误的原因为_________________________________________________________________;(3)本题正确的解题过程:答案:(1)③ (2)除式可能为零(3)∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).∴a 2-b 2=0或c 2=a 2+b 2.当a 2-b 2=0时,a=b ;当c 2=a 2+b 2时,∠C=90度,∴△ABC 是等腰三角形或直角三角形.提示:(1)(2)两边都除以a 2-b 2,而a 2-b 2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.17.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图8-46所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.图8-46提示:如图,作厂门的对称轴,求出PR 的长,只要PR >车高2.5,就说明卡车能通过厂门. 在Rt △OPQ 中,由勾股定理得PQ=228.01 =0.6米,∴PR=0.6+2.3=2.9>2.5. ∴这辆卡车能通过厂门.。
勾股定理同步训练23题
勾股定理-培优组卷-23题一.选择题(共20小题)1.如图,点D是AC的垂直平分线与BC边的交点,作DE⊥AB于点E,若∠BAC=68°,∠C=36°,则∠ADE的度数为()A.56°B.58°C.60°D.62°2.如图,在△ABC中,∠C=90°,AC=3,BC=2,以AB为一条边向三角形外部作正方形,则正方形的面积是()A.13B.12C.6D.33.如图,在Rt△ABC中,∠C=90°,∠ABC=64°,AF∥BE.若BE平分∠ABC,则∠BAF=()A.152°B.148°C.122°D.116°4.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC的长度为()A.1B.C.D.25.Rt△ABC中,∠C=90°,AC=3,BC=2,则AB的长最接近的整数是()A.2B.3C.4D.136.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.6B.7C.8D.97.如图(1)是我国古代数学家赵爽用来证明勾股定理的弦图示意图,图(2)中,在线段AE和CG上分别取点P和点Q,使AP=CQ,连接PD、PB、QD和QB,则构成了一个“压扁”的弦图.“压扁”的弦图(四边形PBQD)中,4个直角三角形的面积(如图(2)中的阴影部分)依次记作S1,S2,S3,S4,连接PQ并延长交BC于点M.若AE=3EF =3,S1=S3=S2+S4,则CM的长为()A.B.C.D.8.如图是中国古代数学家赵爽用来证明勾股定理的弦图示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交CD 于点P.若AE=3EF=3,则DP的长为()A.B.C.3D.9.在下列条件:①∠A:∠B:∠C=5:3:2;②∠A=90°﹣∠B;③∠A=∠B=∠C 中.能确定△ABC是直角三角形的条件有()A.0个B.1个C.2个D.3个10.在直角三角形ABC中,∠CAB=90°,∠ABC=72°.AF是∠CAB的角平分线,交边BC于点D.过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°11.如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个12.我们知道,三个正整数a、b、c满足a2+b2=c2,那么,a、b、c成为一组勾股数;如果一个正整数m能表示成两个非负整数x、y的平方和,即m=x2+y2,那么称m为广义勾股数,则下面的结论:①7是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若x=m2﹣n2,y=2mn,z=m2+n2,其中x,y,z,m,n是正整数,则x,y,z是一组勾股数.其中正确的结论是()A.①③④⑤B.②④C.②③⑤D.②④⑤13.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°14.△ABC在下列条件下不是直角三角形的是()A.b2=a2﹣c2B.a2:b2:c2=1:2:3C.∠A:∠B:∠C=3:4:5D.∠A=∠B﹣∠C15.在下列四组数中,不是勾股数的一组是()A.2,3,4B.3,4,5C.5,12,13D.7,24,25 16.下列几组数中是勾股数的一组是()A.3,4,6B.1.5,2,2.5C.6,8,13D.9,12,15 17.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°18.学校旗杆上的绳子垂到地面还多2米,将绳子的下端拉开6米后,下端刚好接触地面,则旗杆的高度为()A.8米B.10米C.12米D.14米19.《九章算术》是中国古代的数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),从点O处推开双门,双门间隙CD的长度为2寸,点C和点D到门槛AB的距离都为1尺(1尺=10寸),则AB的长是()A.104寸B.101寸C.52寸D.50.5寸20.我国古代数学专著《九章算术》中有一名题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何.”其大意是:已知甲、乙二人同时从一地出发,甲的速度为7,乙的速度为3.乙向东行走,甲先向南行走10步时偏离原方向,朝北偏东的方向直行走一段后与乙相遇.问:甲、乙各行走了多少步?设S甲、S分别为甲、乙走的路程(单位:步),则()乙A.S甲=10.5,S乙=24.5B.S甲=24.5,S乙=10.5C.S甲=17.5,S乙=7.5D.S甲=7.5,S乙=17.5二.填空题(共20小题)21.如图,在△ABC中∠C=90°,AC=6,BC=8.点D是BC上的中点.点P是边AB 上的动点,若要使△BPD为直角三角形,则BP=.22.在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.23.在△ABC中,若∠C=90°,∠B=54°,则∠A的度数为.24.如图,将直角三角形ABC沿AB方向平移2个单位长度得到三角形DEF,∠ACB=90°,AC=6,EF=6,AB=12,∠A=60°.以下结论:①BC=6;②BC⊥DF;③∠EFC=120°;④四边形BCFE的面积为6.其中正确的结论有.25.在△ABC中,BC边上的高为4,AB=5,AC=2,则BC=.26.在Rt△ABC中,∠B=90°,a:b=3:4,c=10,则b=.27.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3,如果S1+S2+S3=96,那么S2的值是.28.勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为.29.如图,Rt△ABC中,∠C=90°,点F是△ABC外的一点,∠CBE是△ABC的外角,∠CAF=2∠F AB,∠CBF=2∠FBE,则∠F=.30.如图,在△ABC中,∠ACB=90°,∠A=28°,点D在边AB上,将△ABC沿CD折叠,使得点B落在AC边上的点B′处,则∠ADB′的度数为.31.如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则四边形ABCD的面积为.32.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为a=(m2﹣n2),b=mn,c=(m2+n2),其中m,n(m>n)是互质的奇数,则a,b,c为勾股数.我们令n=1,得到下列顺序排列的等式:①32+42=52,②52+122=132,③72+242=252,④92+402=412,…根据规律写出第⑥个等式为.33.如图,正方形网格中每一个小正方形的边长为1,小正方形的顶点为格点,点A,B,C 为格点,点D为AC与网格线的交点,则∠ADB﹣∠ABD=.34.如图,已知在△ABC中,AB=6,AC=8,BC=10,P为BC边上一个动点,连接AP,DE⊥AP,分别交AB、AC于点D、E,垂足为M,点N为DE的中点,若四边形ADPE 的面积为18,则AN的最大值为.35.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和.36.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是.37.如图,校园内有一块长方形草地,为了满足人们的多样化需求,在草地内拐角位置开出了一条“路”,走此“路”可以省m的路.38.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是尺.39.如图,一座桥横跨一河,桥长40m,一艘小船自桥北头出发,向正南方驶去,因水流原因到达南岸后,发现已偏离桥南头9m,则小船实际行驶的距离为m.40.小亮用11块高度都是2cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD木板,截面如图所示.两木墙高分别为AE与CF,点B 在EF上,求正方形ABCD木板的面积为cm2.三.解答题(共20小题)41.如图,在直角三角形ABC中,CD是斜边AB上的高,∠BCD=35°.(1)求∠CBD的度数;(2)斜边AB在直线EF上,求∠CAE的度数.42.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.43.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D.若∠B=30°,则∠ACD 的度数是.拓展:如图②,∠MCN=90°,射线CP在人MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP于点D、E.若∠CBE=70°,求∠CAD的度数.应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE.若∠MCN=∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=.44.如图,在△ABC中,D是AC边的中点,DE⊥AC交BC于点E,AF∥BC交ED的延长线于点F,连接AE,CF.(1)判断四边形AECF的形状并证明你的结论;(2)若∠ACB=30°,∠B=45°,CE=2,求AB的长.45.如图,在△ABC中,∠ACB=90°,BC=12,AC=16,CD是高.求CD的长.46.如图,在△ABC中,AD是BC边上的高,CE是AB边上的中线,DF⊥CE于F,CD=AE.(1)求证:CF=EF;(2)已知BC=13,CD=5,求△BEC的周长.47.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.48.阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.从而得数学等式:(a+b)2=c2+4×ab,化简证得勾股定理:a2+b2=c2.【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.知识补充:如图6,含60°的直角三角形,对边y:斜边x=定值k.49.已知直线a∥b,直角三角形ABC的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且∠ACB=90°.(1)将直角三角形ABC如图1位置摆放,如果∠AOG=56°,则∠CEF=;(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NEF+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由;(3)将直角三角形ABC如图3位置摆放,若∠GOC=135°,延长AC交直线b于点Q,点P是射线GF上一动点,请用平行的相关知识,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论.50.定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.51.如图,每个小正方形的边长都是1,(1)求四边形ABCD的周长和面积;(2)∠BCD是直角吗?52.勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2)有一个直角三角形两直角边长分别为和,斜边长4,且a 和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.53.如图,在三角形ABC中,AB=5,BC=6,AD为BC边上的中线,且AD=4,过点D 作DE⊥AC于点E.(1)求证:AD⊥BC;(2)求DE的长.54.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?55.满足勾股定理的正整数称为勾股数,观察以下两组勾股数的规律:(1)按此规律,填空:(6,▲,〇)⇌62=(〇+▲)×(〇﹣▲)上面一组勾股数中,▲表示,〇表示;(2)猜想:①当n是大于1的奇数时,勾股数为:(n,,),请你给出证明:②当2n是大于2的偶数时,直接用n表示勾股数:(2n,n2﹣1,)56.法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数,如(3,4,5)就是一组勾股数.(1)在研究勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2﹣1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即x,y,z 为勾股数),请你加以证明;(2)探索规律:观察下列各组数(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,直接写出第6个数组.57.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈,尺是长度单位,1丈=10尺,1尺=米)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是多少米?请你用所学知识解答这个问题.58.明朝数学家程大位在《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地……”翻译成现代文为:如图,秋千细索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B 位置,此踏板高地五尺(BD=5尺,BD=EC),则秋千绳索长多少尺?59.我国古代数学著作《九章算术》中有这样一个问题:如图,有一个水池,其横截面是矩形,边长EF为10尺,在水池正中央有一根垂直于水面(BD)的芦苇(OA),它的顶端A高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端A恰好到达池边的水面B处,求水池里水的深度(OC)是多少尺?60.有一块边长为12米的正方形绿地,如图所示,在绿地旁边B处有健身器材(BC=5米),由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍?”请问:小明在标牌▇填上的数字是多少?勾股定理-培优组卷-23题参考答案与试题解析一.选择题(共20小题)1.如图,点D是AC的垂直平分线与BC边的交点,作DE⊥AB于点E,若∠BAC=68°,∠C=36°,则∠ADE的度数为()A.56°B.58°C.60°D.62°【分析】根据线段垂直平分线的性质可得AD=CD,由等边对等角可得∠DAC=36°,根据角的差可得∠BAD=32°,进而利用互余解答即可.【解答】解:∵点D是AC的垂直平分线与BC边的交点,∴AD=DC,∠C=36°,∴∠DAC=∠C=36°,∵∠BAC=68°,∴∠BAD=∠BAC﹣∠DAC=68°﹣36°=32°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°﹣32°=58°,故选:B.【点评】此题主要考查了线段垂直平分线的性质,等腰三角形的性质,解本题的关键是根据角的差可得∠BAD=32°.2.如图,在△ABC中,∠C=90°,AC=3,BC=2,以AB为一条边向三角形外部作正方形,则正方形的面积是()A.13B.12C.6D.3【分析】由勾股定理求出AB2,再由正方形的面积公式计算即可得到答案.【解答】解:在△ABC中,∠C=90°,AC=3,BC=2,∴AB2=AC2+BC2=32+22=13,∴正方形的面积=AB2=13,故选:A.【点评】本题考查了勾股定理、正方形的面积计算等知识,熟练掌握勾股定理是解题的关键.3.如图,在Rt△ABC中,∠C=90°,∠ABC=64°,AF∥BE.若BE平分∠ABC,则∠BAF=()A.152°B.148°C.122°D.116°【分析】根据角平分线的定义可求解∠ABE的度数,再利用平行线的性质可求解∠BAF 的度数.【解答】解:∵BE平分∠ABC,∠ABC=64°,∴∠ABE=∠ABC=32°,∵AF∥BE,∴∠ABE+∠BAF=180°,∴∠BAF=180°﹣32°=148°.故选:B.【点评】本题主要考查角平分线的定义,平行线的性质,掌握平行线的性质是解题的关键.4.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC的长度为()A.1B.C.D.2【分析】设AE=ED=x,CD=y,根据勾股定理即可求出答案.【解答】解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1,∵EC>0,∴EC=1.故选:A.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.5.Rt△ABC中,∠C=90°,AC=3,BC=2,则AB的长最接近的整数是()A.2B.3C.4D.13【分析】由勾股定理得AB=,进而得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=2,∴AB===,∵9<()2<16,∴AB的长最接近的整数是4,故选:C.【点评】本题考查了勾股定理,注意:在直角三角形中,两直角边长的平方和等于斜边长的平方.6.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.6B.7C.8D.9【分析】如图,连接AC,取AC的中点为M,连接DM、EM,由勾股定理可求AC的长,利用直角三角形斜边上的中线可求解DM的长,根据三角形的中位线可求解EM的长,再利用三角形的三边关系可求解.【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:A.【点评】本题主要考查勾股定理,直角三角形的性质,三角形的中位线,三角形的三边关系等知识的综合运用,构造直角三角形是解题的关键.7.如图(1)是我国古代数学家赵爽用来证明勾股定理的弦图示意图,图(2)中,在线段AE和CG上分别取点P和点Q,使AP=CQ,连接PD、PB、QD和QB,则构成了一个“压扁”的弦图.“压扁”的弦图(四边形PBQD)中,4个直角三角形的面积(如图(2)中的阴影部分)依次记作S1,S2,S3,S4,连接PQ并延长交BC于点M.若AE=3EF =3,S1=S3=S2+S4,则CM的长为()A.B.C.D.【分析】如图,过点M作MS⊥CG于点S,设PQ交BF、DG于点T、K,根据题意得:AE=CG=BF=DH,BF=DG,四边形EFGH是正方形,∠AEB=∠DGC=90°,先证明△BPE≌△DQG,可得S4=S2,从而得到S1=S3=2S4,继而得到,,再根据△KGQ∽△TFQ,可得,从而得到,再由,可设SM=3x,则CS=4x,从而得到,CM=5x,再由锐角三角函数,即可求解.【解答】解:如图,过点M作MS⊥CG于点S,设PQ交BF、DG于点T、K,根据题意得:AE=CG=BF=DH,BE=DG,四边形EFGH是正方形,∠AEB=∠DGC =90°,∵AE=3EF=3,∴CG=AE=DH=3,EF=FG=EH=1,EH∥FG,∵AP=CQ,∴PE=GQ,∴△BPE≌△DQG(SAS),∴S△BPE=S△DQG,即S4=S2,∵S1=S3=S2+S4,∴S1=S3=2S4,∴,即∴,∴,∵EH∥FG,∴∠PET=∠GQK,∵∠PET=∠KGQ=90°,PE=GQ,∴△PET≌△QGK,∴ET=KG,设KG=ET=a,则FT=1﹣a,∵HG∥EF,∴△KGQ∽△TFQ,∴,即,解得:,即,∴∵∠SQM=∠KQG,∴,在Rt△BCF中,BF=3,CF=CG+FG=4,∴,∴可设SM=3x,则CS=4x,∴,CM=5x,∴,解得:,∴.故选:D.【点评】本题主要考查了以弦图为背景的综合题,熟练掌握正方形的性质,相似三角形的判定和性质,全等三角形的判定和性质,直角三角形的性质是解题的关键.8.如图是中国古代数学家赵爽用来证明勾股定理的弦图示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交CD 于点P.若AE=3EF=3,则DP的长为()A.B.C.3D.【分析】根据勾股定理得到AB===5,过点P作PN⊥CH于点N,如图所示,推出△EFG为等腰直角三角形,得到∠EGF=∠NGM=45°,故△GNP为等腰直角三角形.设GN=NP=a,则NC=GC﹣GN=3﹣a,根据三角函数的定义得到a =,根据勾股定理即可得到结论.【解答】解:由图可知∠AFB=90°,∵AE=3EF=3,∴EF=1,∴AF=4,BF=3,∴AB===5,过点P作PN⊥CH于点N,如图所示,∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNP为等腰直角三角形.设GN=NP=a,则NC=GC﹣GN=3﹣a,∵tan∠HCD====,解得:a=,∴PN=GN=,CN=,∴PC===,∴PD=5﹣=.故选:A.【点评】本题考查了正方形的性质、勾股定理、锐角三角函数、等腰三角形的性质、正确作出辅助线是解决本题的关键.9.在下列条件:①∠A:∠B:∠C=5:3:2;②∠A=90°﹣∠B;③∠A=∠B=∠C 中.能确定△ABC是直角三角形的条件有()A.0个B.1个C.2个D.3个【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①因为∠A:∠B:∠C=5:3:2,设∠A=5x,∠B=3x,∠C=2x,则5x+3x+2x =180,x=18°,∠A=18°×5=90°,所以△ABC是直角三角形;②因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;③因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形.所以能确定△ABC是直角三角形的有①②③共3个,故选:D.【点评】本题主要考查直角三角形的判定,解答此题要用到三角形的内角和为180°,若有一个内角为90°,则△ABC是直角三角形.10.在直角三角形ABC中,∠CAB=90°,∠ABC=72°.AF是∠CAB的角平分线,交边BC于点D.过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°【分析】先根据角平分线的定义求出∠BAD=45°,再根据三角形外角的性质进行计算即可得解.【解答】解:∵∠CAB=90°,AD是∠CAB的角平分线,∴∠BAD=×90°=45°,∵CE⊥AD,∴∠CED=90°,∵∠BDE=∠B+∠BAD=∠DEC+∠ECD,且∠ABC=72°,∴∠ECD=72°+45°﹣90°=27°.故选:C.【点评】本题主要考查了三角形外角的性质,熟记性质并准确识图是解题的关键.11.如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个【分析】根据题意,结合图形,分两种情况讨论:①AB为直角△ABC斜边;②AB为等腰直角△ABC其中的一条直角边.【解答】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.【点评】本题考查了直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.12.我们知道,三个正整数a、b、c满足a2+b2=c2,那么,a、b、c成为一组勾股数;如果一个正整数m能表示成两个非负整数x、y的平方和,即m=x2+y2,那么称m为广义勾股数,则下面的结论:①7是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若x=m2﹣n2,y=2mn,z=m2+n2,其中x,y,z,m,n是正整数,则x,y,z是一组勾股数.其中正确的结论是()A.①③④⑤B.②④C.②③⑤D.②④⑤【分析】根据广义勾股数的定义进行判断即可.【解答】解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论错误;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④∵5=12+22,13=22+32,65=5×13,65是广义勾股数,两个广义勾股数的积是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论正确;⑤∵x2+y2=(m2﹣n2)2+(2mn)2=m4+2m2n2+n4,z2=(m2+n2)2=m4+2m2n2+n4,∴x2+y2=z2,又知x,y,z,m,n是正整数,则x,y,z是一组勾股数.故⑤结论正确;∴依次正确的是②④⑤.故选:D.【点评】本题考查了勾股数的综合应用,掌握勾股定理以及常见的勾股数是解题的关键.13.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°【分析】连接AB,设小正方形的边长为1,根据勾股定理求出AB、AM、BM的长度,根据勾股定理的逆定理得出△ABM是直角三角形,再求出答案即可.【解答】解:连接AB,设小正方形的边长为1,由勾股定理得:AM2=12+22=5,AB2=12+22=5,BM2=12+32=10,∴AM=AB,AM2+AB2=BM2,∴△MAB是等腰直角三角形,∴∠AMB=45°,故选:C.【点评】本题考查了勾股定理和勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键.14.△ABC在下列条件下不是直角三角形的是()A.b2=a2﹣c2B.a2:b2:c2=1:2:3C.∠A:∠B:∠C=3:4:5D.∠A=∠B﹣∠C【分析】根据勾股定理的逆定理即可判断选项A,选项B;根据三角形的内角和定理求出最大角的度数,即可判断选项C和选项D.【解答】解:A.∵b2=a2﹣c2,∴b2+c2=a2,即△ABC是直角三角形,故本选项不符合题意;B.∵a2:b2:c2=1:2:3,∴a2+b2=c2,即△ABC是直角三角形,故本选项不符合题意;C.∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=×180°=75°<90°,∴△ABC不是直角三角形,故本选项符合题意;D.∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,又∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查了三角形内角和定理和勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.15.在下列四组数中,不是勾股数的一组是()A.2,3,4B.3,4,5C.5,12,13D.7,24,25【分析】根据勾股数的概念判断即可.【解答】解:A、∵22+32≠42,∴2,3,4不是一组勾股数,本选项符合题意;B、∵32+42=52,∴3,4,5,6是一组勾股数,本选项不符合题意;C、∵52+122=132,∴5,12,13是一组勾股数,本选项不符合题意;D、∵72+242=252,∴24,25,7是一组勾股数,本选项不符合题意;故选:A.【点评】本题考查的是勾股数,满足a2+b2=c2的三个正整数,称为勾股数.16.下列几组数中是勾股数的一组是()A.3,4,6B.1.5,2,2.5C.6,8,13D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、42+32≠62,不能构成直角三角形,故不是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、62+82≠132,不能构成直角三角形,故不是勾股数;D、92+122=152,能构成直角三角形,是正整数,故是勾股数.故选:D.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.17.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【解答】解:由题意得,OA=12×1.5=18(海里),OB=16×1.5=24(海里),又∵AB=30海里,∵182+242=302,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则另一艘舰艇的航行方向是北偏西40°,故选:C.【点评】本题考查的是勾股定理的逆定理的应用和方位角的知识,根据题意判断出△AOB 是直角三角形是解决问题的关键.18.学校旗杆上的绳子垂到地面还多2米,将绳子的下端拉开6米后,下端刚好接触地面,则旗杆的高度为()A.8米B.10米C.12米D.14米【分析】根据题意设旗杆的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB的长,即旗杆的高.【解答】解:画出示意图如下所示:设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,∴x2+62=(x+2)2,解得:x=8,∴AB=8m,即旗杆的高是8m.故选:A.。
勾股定理(易错必刷30题6种题型专项训练)(原卷版)
第1章勾股定理(易错必刷30题6种题型专项训练)一.勾股定理(共12小题)1.(2022春•潮安区校级月考)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为.2.(2021秋•莱西市期中)如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为.3.(2023春•荔城区期末)若一直角三角形两直角边长分别为6和8,则斜边长为.4.(2023春•中宁县期末)如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.5.(2022春•大荔县期末)如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?6.(2021•中原区开学)在△ABC中,AB=13cm,AC=20cm,高AD=12cm,则BC的长为cm.7.(2022•鄂尔多斯)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE =,则AB的长是.8.(2023春•宣城月考)如图,等腰△ABC的底边长为16cm,腰长为10cm,D是BC上一动点,当DA与腰垂直时,则AD=cm.9.(2023春•南宁月考)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.过点D作DE⊥AP于点E.在点P的运动过程中,当t为时,能使DE=CD?10.(2023春•抚顺月考)如图,在△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12.(1)求证:CD⊥AB;(2)求AC的长.11.(2022秋•秦淮区期末)如图,在△ABC中,∠BAC=90°,AD平分∠BAC,AB=4,AC=3,则BD的长是.12.(2022秋•平湖市期末)已知直角三角形的一直角边长为17,另两边的长为自然数,则满足条件的所有三角形的面积之和为.二.勾股定理的证明(共2小题)13.(2022春•连城县校级月考)观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,a>b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()A.a(a﹣b)=a2﹣ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b214.(2020秋•永嘉县校级期末)如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S正方形ABCD=21,则图中阴影部分的面积之和为()A.B.C.D.三.勾股定理的逆定理(共10小题)15.(2023春•滑县月考)下列四组线段中,能组成直角三角形的是()A.3,4,5B.2,3,4C.6,8,11D.7,23,2516.(2020秋•平山区校级月考)满足下列条件的△ABC,不是直角三角形的是()A.b2=c2﹣a2B.a:b:c=5:12:13C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:517.(2022秋•高陵区月考)如图,在4×4的正方形网格中(每个小正方形边长均为1),点A,B,C在格点上,连接AB,AC,BC,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定18.(2022秋•南城县校级月考)以下列三条线段为边能够组成直角三角形的有()个.(1)3,4,5(2)6.5,2.5,3(3)2.6,2.4,2(4)5,6,7A.1B.2C.3D.419.(2022秋•萍乡月考)下列满足条件的三角形中,不是直角三角形的是()A.在△ABC中,a=m2+n2,b=m2﹣n2,c=2mn,且m>n>0B.三边长的平方之比为1:2:3C.三内角的度数之比为3:4:5D.三边长分别为a,b,c,c=1+n2,b=n2﹣1,a=2n(n>1)20.(2022秋•南海区校级月考)已知a、b、c是△ABC的三边长,且满足关系(a2﹣c2+b2)2+|a﹣b|=0,则△ABC的形状为.21.(2022秋•高陵区月考)已知△ABC的三边a,b,c满足(a﹣9)2+(b﹣12)2+|c﹣15|=0,试判断△ABC的形状.22.(2022秋•浑南区月考)如图所示,已知△ABC中,CD⊥AB于D,AC=2,BC=1.5,DB=0.9.(1)求CD的长;(2)判断△ABC的形状,并说明理由.23.(2022秋•西湖区校级期中)如图,在△ABC中,CD⊥AB,AB=5,BC=,CD=2.(1)求DB的长;(2)求证:AC⊥BC.24.(2022秋•和平区校级期末)如图,有一张四边形纸片ABCD,AB⊥BC,经测得AB=3dm,BC=4dm,CD=2dm,AD=dm,求这张纸片的面积S.四.勾股数(共2小题)25.(2022秋•浑南区月考)下列各组数中,是勾股数的一组是()A.6,7,8B.5,12,13C.0.6,0.8,1D.2,4,526.(2022春•郾城区期末)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.98五.勾股定理的应用(共1小题)27.(2021秋•牡丹区期末)在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A 处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.六.平面展开-最短路径问题(共3小题)28.(2022秋•中原区校级月考)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.1029.(2022秋•铁岭月考)如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是.30.(2022秋•钦南区校级月考)如图,长方体的高为9dm,底面是边长为6dm的正方形.一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为()A.10dm B.12dm C.15dm D.20dm。
勾股定理培优训练
勾股定理培优训练一.选择题(共19小题)1.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=3,BC=4,则CD的长为()(1题)(3题)A.2.4B.2.5C.4.8D.52.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.C.5或D.以上都不对3.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC 为直角边的直角三角形,则CD的长为()A.,2或3B.3或C.2或D.2或34.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a2﹣b2=c2;②a2:b2:c2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.能判断△ABC是直角三角形的有()A.1个B.2个C.3个D.4个5.已知△ABC三边分别为a、b、c,根据下列条件能判断△ABC为直角三角形的有()①∠A=∠B+∠C;②∠A:∠B:∠C=3:4:5;③a:b:c=3:4:5;④a=n2﹣1,b=2n,c=n2+1.A.1个B.2个C.3个D.4个6.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()(6题)(7题)A.90°B.60°C.45°D.30°7.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.75°8.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4的值是()A.3.65B.2.42C.2.44D.2.659.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1C.n2﹣1D.n2+110.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列示意图中正确的是()A.B.C.D.11.如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是()(11题)(14题)(15题)A.10B.9C.8D.712.下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,613.满足下列条件时,△ABC不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A=20°,∠B=70°C.AB:BC:CA=3:4:5D.14.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,分别以四边形的四条边为边向外作四个正方形,面积依次为S1,S2,S3,S4,下列结论正确的是()A.S3+S4=4(S1+S2)B.S4﹣S1=S3﹣S2C.S1+S4=S2+S3D.S4﹣3S1=S3﹣3S216.如图,小明和小华同时从P处分别向北偏东60°和南偏东30°方向出发,他们的速度分别是3m/s和4m/s,则10s后他们之间的距离为()(16)(17)(18)(19)A.30m B.40m C.50m D.60m17.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=6,BC=3时,则阴影部分的面积为()A.B.C.9πD.918.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A,B,C,D的边长分别是2,3,1,2,则正方形G的边长是()A.8B.C.D.519.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB =3,AD=4,则ED的长为()A.B.3C.1D.二.填空题(共11小题)20.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要米.(20)(21)21.如图,△ABC中,∠ACB=90°,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC最小值是.22.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在直线BC上找一点P,使得△ABP为以AB为腰的等腰三角形,则PC=.(22)(23)(24)23.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.24.如图,∠B=90°,AB=4cm,BC=3cm,CD=12cm,AD=13cm,则图中此图形的面积是cm2.25.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.(25)(26)(27)26.如图,是一个三级台阶,它的每一级的长、宽,高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.27.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+2S2+2S3+S4=.28.如图,在梯形ABCD中,AB∥CD,∠ADC+∠BCD=90°,分别以DA、AB、BC为边向梯形外作正方形,其面积分别是S1、S2、S3,且S2=S1+S3,则线段DC与AB存在的等量关系是.(28)(29)29.如图所示的正方形图案是用4个全等的直角三角形拼成的.已知正方形ABCD的面积为25,正方形EFGH的面积为1,若用x、y分别表示直角三角形的两直角边(x>y),下列三个结论:①x2+y2=25;②x﹣y=1;③xy =12;④x+y=40.其中正确的是(填序号).30.如图,正方形网格中,每一小格的边长为2.P、A、B均为格点.(1)AP=;(2)点B到直线AP的距离是;(3)∠APB=;(4)S△APB =.三.解答题(共30小题)31.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.32.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c﹣a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.33.一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.(1)如果梯子的顶端下滑1m,那么梯子的底端也将下滑1m吗?说明你的方法;(2)如果梯子的顶端下滑2m呢?说说你的理由.34.如图所示,在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求水深是多少?35.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,作DE⊥AC于点E.(1)若AD=CD,求∠C的度数.(2)若AB=6,BC=8.①求AE的长度;②求△ACD的面积.36.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.37.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=5千米,BD=15千米,且CD=15千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万.(1)请你在河流CD上设计选择水厂的位置M,使铺设水管的费用最节省(作图).(2)请你求出铺设水管的长及总费用是多少?38.一架梯子AB长25m,如图斜靠在一面墙上,梯子底端B离墙7m.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底端在水平方向也滑动了4m吗?如果不是,梯子的底端在水平方向上滑动了多长的距离呢?39.如图,△ABC中,CE、CF分别是∠ACB及外角∠ACD的平分线,且CE交AB于点E,EF交AC于点M,已知EF∥BC.(1)求证:M为EF中点;(2)若EM=3,求CE²+CF²的值.40.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点.求CD 的长.41.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以PQ为腰的等腰三角形?42.若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.(1)a2+b2+c2+200=12a+16b+20c(2)a3﹣a2b+ab2﹣ac2+bc2﹣b3=0.43.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式当a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6、8、9时,△ABC三角形:当△ABC三边长分别为6、8、11时,△ABC三角形.(2)小明同学根据上述探究.猜想:“当a2+b2>c2时.△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=7、b=24时,最长边c在什么范围内取值时,△ABC是锐角三角形、钝角三角形?44.已知△ABC的三边长分别为a、b、c,且a、b、c满足a2+b+|﹣2|=10a+2﹣24,是判断△ABC的形状.45.在△ABC中,AB=15,AC=13,AD是BC上的高,AD=12,求△ABC的周长和面积.46.如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.47.有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是多少?(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?解:由题意,得AC=cm,AD=cm,所以DB=cm,在Rt△ADB中,由勾股定理,得AB=(cm).48.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是多少?49.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC.(1)求证:OD=OE.(2)若AB=3,BC=4,求AD的长.50.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC 的周长.51.如图,△ABC中,AB=10,BC=9,AC=17,求△ABC的面积.52.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B ﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在AB的垂直平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP是以AC为腰的等腰三角形(直接写出结果)?53.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.54.如图,在△ABC中,CD⊥AB于点D,BC=15,CD=12,AD=16.(1)求BD的长;(2)求△ABC的面积;(3)判断△ABC的形状.55.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB =10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A 站多少km处?56.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BC=4,BD=2.5.(1)则点D到直线AB的距离为.(2)求线段AC的长.57.(1)如图,作直角边为1的等腰Rt△OA1A2,则其面积S1=;以OA2为一条直角边,1为另一条直角边作Rt △OA2A3,则其面积S2=;以OA2为一条直角边,1为另一条直角边作Rt△OA3A4,则其面积S3=,……则S4=;(2)请用含有n(n是正整数)的等式表示S n,并求+++...+的值.58.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,求证:DE2=AD2+BE2;(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2;(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.59.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B =90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?60.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为2cm/秒,设点P运动的时间为t秒.(1)当△PBC是以BC为斜边的直角三角形时,求t的值;(2)当△PBC为等腰三角形时,求t的值.。
【精编版】数学中考专题训练——勾股定理的应用
中考专题训练——勾股定理的应用1.如图,在把易拉罐中水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,求此时水杯中的水深为多少?(结果用根式表示)2.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时,如图,一辆小汽车在某城市街道直道上行驶,某一时刻刚好行驶到路对面车速检测仪A(观测点)正前方30米处的C处,过了2秒钟后,测得小汽车与车速检测仪间的距离为50米,问:这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)3.数学活动课上,老师组织学生测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到了地面还多1米,当同学们把绳子的下端拉开5米后,发现绳子下端刚好接触地面,请你根据题意画出图形,并求旗杆的高度.4.如图,一幢居民楼与马路平行且相距9米,在距离载重汽车41米处(图中B点位置)就会受到噪音影响,试求在马路上以4米/秒速度行驶的载重汽车,给这幢居民楼带来多长时间的噪音影响?若影响时间超过25秒,则此路禁止该车通行,那么载重汽车可以在这条路上通行吗?5.甲、乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时15海里的速度向北偏东40°方向航行,乙船以每小时20海里的速度向另一方向航行,4小时后甲船到达C岛,乙船到达B岛,已知B、C两岛相距100海里,判断乙船航行的方向,并说明理由.6.如图,有一个三角形花圃,∠C=90°,AC=20m,BC=10m,两个人同时从点B处出发,以相同速度沿着花圃四周散步,一个沿着BD,DA方向走,另一个沿着BC,CA方向走,结果他们在点A处首次相遇,你能据此求出AD的长吗?试试看.7.如图是校园内的一块菜地,数学活动小组的同学量得:∠ADC=90°,AD=40m,CD =30m,BC=120m,AB=130m,求这块菜地的面积.8.如图,AE是位于公路边的电线杆,高为10米,为了使电线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起电线.已知两杆之间的距离是8米,电线DE的长度为10米,求水泥撑杆BD的高度(电线杆、水泥杆的粗细忽略不计).9.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80m,BC=60m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为1000元/m,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?10.如图,一棵树CD,在其6m高的点B处有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树12m处的池塘A处,另一只猴子爬到树顶D后直线跃向池塘的A处.如果两只猴子所经过的路程相等,试问这棵树有多高?11.如图,是斜坡AC上的一根电线杆AB用钢丝绳BC进行固定的平面图.已知斜坡AC 的长度为4m,钢丝绳BC的长度为5m,AB⊥AD于点A,CD⊥AD于点D,若CD=2m,则电线杆AB的高度是多少.(结果保留根号)12.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚长d=12m,现要在育苗棚的整个表面(除底面外所有的面)覆盖一层塑料薄膜,试求至少需要多少平方米塑料薄膜?(接缝处不计)13.一种盛饮料的圆柱形杯(如图),测得内部底面直径为5cm,高为12cm,吸管放进杯里,杯口外面露出5cm.问吸管要做多长?14.如图,一架10米长的梯子AB,斜靠在一竖直的墙AC上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端沿墙下滑1米.(1)求它的底端滑动多少米?(2)为了防止梯子下滑,保证安全,小强用一根绳子连接在墙角C与梯子的中点D处,你认为这样效果如何?请简要说明理由.15.如图,已知AC、BD为数值的墙面,一架梯子从点O竖起,当靠在墙面AC上时,梯子的另一端落在点A处,此时∠AOC=60°,当靠在墙面BD上时,梯子的另一端落在点B处,此时∠BOD=45°,且OD=3米.(1)求梯子的长;(2)求OC、AC的长.16.如图一架云梯AB斜靠在一面墙上,梯子的底端B离墙根O的距离OB长为7米,梯子的顶端A到地面的距离OA为24米.(1)求这个梯子AB的长;(2)如果梯子的顶端A下滑4米到A′点,梯子的底端B向右滑动到B′点,试求BB′的长.17.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.18.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.(1)求PQ、PR的长.(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?19.如图所示,A、B两块试验田相距200米,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.20.中国对南沙群岛及其附近海域拥有无可争辩的主权.2015年10月27日,美国拉森号军舰未经中国政府允许,非法进入中国南沙群岛有关岛礁邻近海域.中国海军盐城舰加大南沙海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,渚碧礁位于O点,盐城舰在点B处发现美国拉森号军舰,自A点出发沿着AO方向匀速驶向渚碧礁所在地O点,盐城舰立即从B处出发以相同的速度沿某直线去拦截拉森号军舰,结果在点C处截住了拉森号军舰.(1)请用直尺和圆规作出C处的位置;(2)求盐城舰行驶的航程BC的长.参考答案:1.如图,在把易拉罐中水倒入一个圆水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,求此时水杯中的水深为多少?(结果用根式表示)【分析】直接利用勾股定理得出PB的长,再利用三角形面积求出答案.【解答】解:过P作PM⊥AB于M.在Rt△ABP中,∠ABP=30°则AP=8×=4由勾股定理得:PB==4,由AB•PM=AP•PB得:×8•PM=×4×4,解得:PM=2,故水深为(10﹣2)cm,答:此时水杯中的水深为(10﹣2)cm.2.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时,如图,一辆小汽车在某城市街道直道上行驶,某一时刻刚好行驶到路对面车速检测仪A(观测点)正前方30米处的C处,过了2秒钟后,测得小汽车与车速检测仪间的距离为50米,问:这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【分析】直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m,由勾股定理可得:BC==40(m),∴小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h),∵72(km/h)>70(km/h),∴这辆小汽车超速行驶.答:这辆小汽车超速了.3.数学活动课上,老师组织学生测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到了地面还多1米,当同学们把绳子的下端拉开5米后,发现绳子下端刚好接触地面,请你根据题意画出图形,并求旗杆的高度.【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.4.如图,一幢居民楼与马路平行且相距9米,在距离载重汽车41米处(图中B点位置)就会受到噪音影响,试求在马路上以4米/秒速度行驶的载重汽车,给这幢居民楼带来多长时间的噪音影响?若影响时间超过25秒,则此路禁止该车通行,那么载重汽车可以在这条路上通行吗?【分析】先根据勾股定理求出BC及DC的长,进而可得出BD的长,根据载重汽车的速度是4m/s即可得出受噪音影响的时间,与25秒相比较即可得出结论.【解答】解:如图,过点A作AC⊥BD于点C,∵由题意得AC=9,AB=AD=41,AC⊥BD,∴Rt△ACB中,BC=,Rt△ACD中,DC=,∴BD=80,∴80÷4=20(s),∴受影响时间为20s;∵20<25,∴可以通行.5.甲、乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时15海里的速度向北偏东40°方向航行,乙船以每小时20海里的速度向另一方向航行,4小时后甲船到达C岛,乙船到达B岛,已知B、C两岛相距100海里,判断乙船航行的方向,并说明理由.【分析】根据题意得出AC,AB的长,再利用勾股定理的逆定理得出△BAC是直角三角形,进而得出答案.【解答】解:由题意可得:AC=15×4=60(海里),AB=20×4=80(海里),AC2+AB2=602+802=10000,BC2=10000,故AC2+AB2=BC2,∴△BAC是直角三角形,∴∠BAC=90°,180°﹣40°﹣90°=50°,∴乙船航行的方向是南偏东50°.6.如图,有一个三角形花圃,∠C=90°,AC=20m,BC=10m,两个人同时从点B处出发,以相同速度沿着花圃四周散步,一个沿着BD,DA方向走,另一个沿着BC,CA方向走,结果他们在点A处首次相遇,你能据此求出AD的长吗?试试看.【分析】设BD=x,AD=y,再由BD+AD=BC+AC及勾股定理列出关于x、y的方程组,求出y的值即可.【解答】解:设BD=x,AD=y,∵BD+AD=BC+AC,AC2+CD2=AD2,AC=20m,BC=10m,∴,解得y=25m,即AD=25m.7.如图是校园内的一块菜地,数学活动小组的同学量得:∠ADC=90°,AD=40m,CD =30m,BC=120m,AB=130m,求这块菜地的面积.【分析】连接AC,先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB的形状,根据S四边形ABC=S△ACB﹣S△ACD即可得出结论【解答】解:连接AC,∵AD=40,CD=30,∠ADC=90°,∴AC==50,∵AB=130,BC=120,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴S四边形ABC=S△ACB﹣S△ACD=×50×120﹣×30×40=3000﹣600=2400(m2),答:这块菜地的面积为2400m2.8.如图,AE是位于公路边的电线杆,高为10米,为了使电线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起电线.已知两杆之间的距离是8米,电线DE的长度为10米,求水泥撑杆BD的高度(电线杆、水泥杆的粗细忽略不计).【分析】作DF⊥AE于F,在Rt△EFD中,DF=AB=8,DE=10,由勾股定理求出EF,即可得出结果.【解答】解:作DF⊥AE于F,如图所示:则在Rt△EFD中,DF=AB=8,DE=10,∴EF===6,∴BD=AF=AE﹣EF=10﹣6=4(米);答:水泥撑杆BD的高度为4米.9.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80m,BC=60m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为1000元/m,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?【分析】当CD为斜边上的高时,CD最短,从而水渠造价最低,根据已知条件可将CD 的长求出,在Rt△ACD中运用勾股定理可将AD边求出.【解答】解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB==100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中,AC=80,CD=48,所以,CD长为48米,水渠的造价最低,其最低造价为48000元.10.如图,一棵树CD,在其6m高的点B处有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树12m处的池塘A处,另一只猴子爬到树顶D后直线跃向池塘的A处.如果两只猴子所经过的路程相等,试问这棵树有多高?【分析】由题意知AD+DB=BC+CA,设BD=x米,则AD=(18﹣x)米,且在直角△ACD中CD2+CA2=AD2,代入勾股定理公式中即可求x的值,树高CD=6+x.【解答】解:由题意知AD+DB=BC+CA,且CA=12米,BC=6米,设BD=x米,则AD=(18﹣x)米,在Rt△ACD中:CD2+CA2=AD2,即(18﹣x)2=(6+x)2+122,解得x=3,故树高为CD=6+3=9米.答:树高为9米.11.如图,是斜坡AC上的一根电线杆AB用钢丝绳BC进行固定的平面图.已知斜坡AC 的长度为4m,钢丝绳BC的长度为5m,AB⊥AD于点A,CD⊥AD于点D,若CD=2m,则电线杆AB的高度是多少.(结果保留根号)【分析】过点C作CE∥AD交AB于点E,得到矩形ADCE,那么AE=CD=2,CE=AD.先在直角△ACD中利用勾股定理求出AD,然后在直角△BCE中利用勾股定理求出BE,那么AB=AE+BE,问题得解.【解答】解:过点C作CE∥AD交AB于点E,∵AB⊥AD于点A,CD⊥AD于点D,∴四边形ADCE是矩形,∴AE=CD=2,CE=AD.在直角△ACD中,∵∠ADC=90°,∴AD==2,∴CE=AD=2.在直角△BCE中,∵∠BEC=90°,∴BE==,∴AB=AE+BE=2+2.即电线杆AB的高度是(2+)m.12.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚长d=12m,现要在育苗棚的整个表面(除底面外所有的面)覆盖一层塑料薄膜,试求至少需要多少平方米塑料薄膜?(接缝处不计)【分析】在侧面的直角三角形中,由勾股定理可得,直角三角形的斜边长.棚顶是以侧面的斜边为宽,棚的长为长的矩形,依据矩形的面积公式即可求解,进而可求出需要多少平方米塑料薄膜.【解答】解:∵h=3m,a=4 m,∴AB==5(m),∴需要多少平方米塑料薄膜=5×12+2××3×4+3×12=108(m2).13.一种盛饮料的圆柱形杯(如图),测得内部底面直径为5cm,高为12cm,吸管放进杯里,杯口外面露出5cm.问吸管要做多长?【分析】在吸管(杯内部分)、杯底直径、杯高构成的直角三角形中,由勾股定理可求出杯内吸管部分的长度,再加上外露部分的长度即可求出吸管的总长.【解答】解:如图所示:∵杯子底面直径为5cm,高为12cm,∴BC=5cm,AB=12cm,∵吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,∴AC==13cm,∵杯口外面至少要露出5cm,∴吸管的长为:13+5=18cm.14.如图,一架10米长的梯子AB,斜靠在一竖直的墙AC上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端沿墙下滑1米.(1)求它的底端滑动多少米?(2)为了防止梯子下滑,保证安全,小强用一根绳子连接在墙角C与梯子的中点D处,你认为这样效果如何?请简要说明理由.【分析】(1)在直角△ABC中,根据勾股定理求得BC的长度;然后在直角△A1B1C中,根据勾股定理求得B1C的长度,则BB1=B1C﹣BC;(2)因为在直角三角形中:斜边上的中线等于斜边的一半,斜边为梯子的长度不变,所以绳子的长度不变,并不拉伸,对梯子无拉力作用.【解答】解:(1)在直角△ABC中,∠ACB=90°,AB=10米,AC=8米,由勾股定理得BC==6米.在直角△A1B1C中,∠ACB1=90°,A1B1=10,A1C=7,由勾股定理得B1C=.所以BB1=B1C﹣BC=﹣6答:它的底端滑动(﹣6)米.(2)并不稳当,根据直角三角形斜边上的中线等于斜边的一半,梯子若下滑,绳子的长度不变,并不拉伸,对梯子无拉力作用.15.如图,已知AC、BD为数值的墙面,一架梯子从点O竖起,当靠在墙面AC上时,梯子的另一端落在点A处,此时∠AOC=60°,当靠在墙面BD上时,梯子的另一端落在点B处,此时∠BOD=45°,且OD=3米.(1)求梯子的长;(2)求OC、AC的长.【分析】(1)先根据题意得出△BOD是等腰直角三角形,再由勾股定理即可得出OB的长;(2)先根据直角三角形的性质求出OC的长,再由勾股定理即可得出AC的长.【解答】解:(1)∵由题意得,∠BDO=90°,∠BOD=45°,∴∠B=45°.∴OD=BD=3(米).在Rt△OBD中,OB==6(米),∴梯子的长是6米;(2)∵∠ACO=90°,∠AOC=60°,OA=OB=6米,∴∠CAO=30°,∴OC=AO=3米.在Rt△ACO中,AC===3米.16.如图一架云梯AB斜靠在一面墙上,梯子的底端B离墙根O的距离OB长为7米,梯子的顶端A到地面的距离OA为24米.(1)求这个梯子AB的长;(2)如果梯子的顶端A下滑4米到A′点,梯子的底端B向右滑动到B′点,试求BB′的长.【分析】(1)在△RtAOB中依据勾股定理可知AB2=OA2﹣OB2=242+72=625,两边同时开方即可求得AB的长;(2)在Rt△A′OB′中依据勾股定理可求得OB′的长,从而可求得BB′的长.【解答】解:(1)在Rt△AOB中,∵OA=24,OB=7,由勾股定理得:AB2=OA2﹣OB2=242+72=625=252,∴AB=25;(2)∵OA′=OA﹣AA′=24﹣4=20,在Rt△A′OB′中,∵A′B′=25,OA′=20,由勾股定理得:OB′2﹣OA′2=252﹣202=225=152,∴OB′=15,∴BB′=OB′﹣OB=15﹣7=8.17.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【分析】(1)作AD⊥ON于D,求出AD的长即可解决问题.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,求出BC的长,利用时间=计算即可.【解答】解:(1)作AD⊥ON于D,∵∠MON=30°,AO=80m,∴AD=OA=40m,即对学校A的噪声影响最大时卡车P与学校A的距离40m.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.18.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.(1)求PQ、PR的长.(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?【分析】(1)根据路程=速度×时间计算即可.(2)利用勾股定理的逆定理证明∠QPR=90°即可.【解答】解:根据题意,得(1)PQ=16×1.5=24(海里),PR=12×1.5=18(海里),(2)∵PQ2+PR2=242+182=900,QR2=900∴PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.19.如图所示,A、B两块试验田相距200米,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.【分析】(1)由勾股定理的逆定理即可得出△ABC是直角三角形;(2)由△ABC的面积求出CH,得出AC+BC<CH+AH+BH,即可得出结果.【解答】解:(1)△ABC是直角三角形;理由如下:∴AC2+BC2=1602+1202=40000,AB2=2002=40000,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)甲方案所修的水渠较短;理由如下:∵△ABC是直角三角形,∴△ABC的面积=AB•CH=AC•BC,∴CH===96(m),∵CH⊥AB,∴∠AHC=90°,∴AH===128(m),∴BH=AB﹣AH=72m,∵AC+BC=160m+120m=280m,CH+AH+BH=96m+200m=296m,∴AC+BC<CH+AH+BH,∴甲方案所修的水渠较短.20.中国对南沙群岛及其附近海域拥有无可争辩的主权.2015年10月27日,美国拉森号军舰未经中国政府允许,非法进入中国南沙群岛有关岛礁邻近海域.中国海军盐城舰加大南沙海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,渚碧礁位于O点,盐城舰在点B处发现美国拉森号军舰,自A点出发沿着AO方向匀速驶向渚碧礁所在地O点,盐城舰立即从B处出发以相同的速度沿某直线去拦截拉森号军舰,结果在点C处截住了拉森号军舰.(1)请用直尺和圆规作出C处的位置;(2)求盐城舰行驶的航程BC的长.【分析】(1)连接AB,作AB的垂直平分线交AO于点C,进而得出答案;(2)利用勾股定理,在Rt△OBC中,152+(45﹣x)2=x2,进而得出答案.【解答】解:(1)作AB的垂直平分线与OA相交于点C;(2)设BC=AC=x,OC为(45﹣x),在Rt△OBC中,152+(45﹣x)2=x2,解得:x=25,答:盐城舰行驶的航程BC的长25海里.。
勾股定理专题训练
第17章勾股定理一、勾股定理的证明1、如图1,是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,图2是以c为直角边的等腰直角三角形,用图1和图2可拼成图3的图形。
(1)请指出图3是什么图形,并用它证明勾股定理.(2)请用若干个图1中的直角三角形拼成一个能证明勾股定理图形.(画出图形,不用证明)。
A.6B.C.D.4与BC相交于点D,若BD=4,CD=2,则AB的长是4.4、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm.求正方形A、B、C、D的面积和.5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm,那么正方形A、B、C、D的面积之和为6、(2015•牡丹江)在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.AB7、如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB上一点。
(1)求证:△ACE 全等△BCD ; (2)若AD=5,BD=12,求BE 的长三、作辅助线构造直角三角形。
1、 如图,在△ABC 中,∠C=30°,AC=4cm,AB=3cm ,求BC 的长.2、如图,.在△ABC 中,∠B=120°,BC=4cm ,AB=6cm ,求AC 的长.C3、已知:如图,△ABC 中,AC=4,∠A=45°,∠B=60°,求AB.A4、如图,在△ABC 中,已知∠B=45°,∠A=105°,AB=2.求BC 的长.5、如图,在等腰△ABC 中,AB =AC =13cm ,BC=10cm,求△ABC 的面积和AC 边上的高.AB C6、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD 的面积.7、如图,在平面直角坐标系中,点C 的坐标为(0,4),∠B=90°, ∠BCO=60°,AB=2,求点B 的坐标.8、(2015常州)如图,在四边形ABCD 中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.四、分类讨论直角三角形中,已知两边长,求第三边时,应分类讨论。
勾股定理专题训练试题精选(一)附答案
勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。
勾股定理专题训练
勾股定理专题训练1、一块试验田的形状如图所示,已知:∠ABC=90°,AB=4 m,BC=3 m,AD=12 m,CD =13 m.求这块试验田的面积.2、某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条水渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?3、如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?4如图:已知长方体的长、宽、高分别为12、9、5,蚂蚁从A爬到C'点的最短路程是多少?(长方体各面都是长方形)5、如图,在长方体上有一只蚂蚁从项点A出发,要爬行到顶点B去找食物,一只长方体的长、宽、高分别为4、1、2,如果蚂蚁走的是最短路径,你能画出蚂蚁走的路线吗?6、如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.7、如图,在海上观察所A,我边防海警发现正北6km的B处有一可疑船只正在向东方向8km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?8、定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.9、张老师在一次“探究性学习”课中,设计了如下表:n 2 3 4 5 …a 22-1 32-1 42-1 52-1 …b 4 6 8 10 …c 22+1 32+1 42+1 52+1 …(1)请你分别观察a、b、c与n之间的关系,并用含自然数n (n>1)的代数式表示:a =" ______,b" =" ______,c" = ______.(2)猜想:以a、b、c为边的三角形是否为直角三角形?并说明你的猜想.10、如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=900,试求∠A的度数。11、求图中的字母A、B所代表的正方形的面积.12、如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.13、如图,已知长方形ABCD中AB="8" cm,BC="10" cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.14、如图:要修建一个育苗棚,棚高h="1.8" m,棚宽a="2.4" m,棚的长为12 m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?15、如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?16、如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且,,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.17、勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:,,(其中为正整数,且).你能验证它吗?利用这组式子,完成下表,通过表格,你会发现勾股数有哪些规律?请查阅有关资料,相信你将有更多收获.12 3 4 5 6 …2 3 4 5 6 … … … … … … … …18、已知长方体的长为2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B ′点,那么沿哪条路最近,最短的路程是多少?19、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积验证勾股定理:a2+b2=c2.20、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,验证:试卷答案1,四边形ABCD的面积是36 m22,D点在距A点64米的地方,水渠的造价最低,其最低造价为480元3,这棵树有15米高.4,解:①如图展开得:根据题意得:AB=12,BC'=5+9=14,在△ABC′中,由勾股定理得:AC′===2.②如图AC=12+9=21,C C′=5,由勾股定理得:AC'=>2答:蚂蚁从A爬到C′点的最短路程是2.5,解:线段AB的长就是蚂蚁走的最短距离,分为两种情况:如图1:AC=4,BC=2+1=3,∠C=90°,由勾股定理得:AB=5;如图2:AC=4+1=5,BC=2,∠C=90°,在△ABC中,由勾股定理得:AB=>5,∴沿图1路线走时最短,即能画出蚂蚁走的最短路线:如图从A到C′再到B.6,解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则BC=SE=×24cm=12cm,EF=18cm﹣1cm﹣1cm=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.7,解:∵AB=6,BC=8∴AC==10km,∵可疑船只的行驶速度为40km/h,∴可疑船只的行驶时间为8÷40=0.2小时,∴我边防海警船的速度为10÷0.2=50km/小时,∴我边防海警船的速度为50km/h时,才能恰好在C处将可疑船只截住.8,解:(1)小颖摆出如图1所示的“整数三角形”:小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)①不能摆出等边“整数三角形”.理由如下:设等边三角形的边长为a,则等边三角形面积为.因为,若边长a为整数,那么面积一定非整数.所以不存在等边“整数三角形”;②能摆出如图3所示一个非特殊“整数三角形”:9,(1)n2-1,2n,n2+1;(2)是直角三角形10,135011,字母A所代表的正方形的面积是225;字母 B所代表的正方形的面积是22512,解:(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE。
勾股定理专题训练及含答案
勾股定理专题训练一、解答题(每空?分,共?分)1、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点称为格点,请以图中的格点为顶点画一个边长为3、、的三角形.所画的三角形是直角三角形吗?说明理由.2、如图,在ΔABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.3、已知a、b、c为△ABC的三边,且满足,试判断△ABC的形状.解:因为,(A)所以(B)所以(C)所以△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步骤的代号:_________;(2)错误的原因为:______________________________________;(3)请写出本题正确的解答过程及结论.4、大家都折过纸玩吗?如图所示,把矩形纸片ABCD沿BF折叠,使点C恰好落在处,已AB=9cm,BC=15cm,求FC的长。
5、如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处。
(1)求证:;(2)设,试猜想之间的一种关系,并给予证明.6、华罗庚爷爷说:数学是我国人民所擅长的学科.请同学们求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?” 白话译文:如图,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺.葛藤生于圆柱底部A点,等距离缠绕圆柱七周,恰好子长到圆柱上底面的B点.问葛藤的长度是多少尺?7、如图,将一个长、宽分别为8、4的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是多少?二、选择题(每空?分,共?分)8、在三边分别为下列长度的三角形中,不是直角三角形的是( )A.5,13,12 B.2,3,C.4,7,5 D.1,,9、如图,在Rt△ABC内有边长分别为的三个正方形,则满足的关系式是()A.B.C.D.(第9题)(第10题)10、如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.811、现有两根木棒的长度分别是40cm和41cm,若要钉成一个直角三角形架,则所需要的另一根木棒的长可以为()A.7cm B.9cm C.11cm D.13cm12、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,,C.3,4,5 D.4,,13、如图所示,AB=BC=CD=DE=1,AB⊥BC、AC⊥CD,AD⊥DE,则AE等于()A.1 B.C.D.2(第13题)(第14题)(第15题)14、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米。
勾股定理解答题专题训练
勾股定理解答题专题训练1、如图,从电线杆离地面6 m 处向地面拉一条长10 m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?解:在 ABC 中 由勾股定理得:2、如图,一根旗杆在折断之前有24m ,旗杆顶部落在离旗杆底部12 m 处,你能求出旗杆在离底部什么位置断裂的吗?3、如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识 (1)求△ABC 的周长与面积 (1)判断△ABC 是什么形状? 并说明理由.4、 在图3中,BC 长为3,AB 长为4,AF 长为12,求正方形的面积。
(其中∠FAC 和∠ABC 都为直角。
)5、一架梯子AB 的长度为25,如图斜靠在墙上,梯子底端离墙底端BC 为7米。
(1)这个梯子顶端离地面有多高?(2)如果梯子的顶端下滑9米,那么梯子的底部在水平方向滑动了几米?6、如图,长方体的长为15 cm ,宽为10 cm ,高为20 cm ,点B 离点C 5 cm ,一只蚂蚁如果要沿着长方体的表面从点A爬到点B ,需要爬行的最短距离是多少?7、一只蚂蚁从长宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是多少?ABCCBAF ED8、如图所示的有一个长方体容器,AB=4厘米,BC=3厘,BF=12厘,现有一条长度为14厘的木棒想放入容器,那么放入容器后该木棒露出外面最短的长度是多少?9、假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A 到宝藏埋藏点B 的距离是多少千米?10、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。
另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米。
11、一辆高3米,宽2.4米的卡车能否通过半径为3.6米的半圆形隧道?若如果这个隧道是双行道的话,这辆卡车能够通过吗?2AA第10题AHBCDEFG。
勾股定理在实际生活中的应用专题训练
勾股定理在实际生活中的应用专题训练1、已知:如图1,点A、D、B、E在同一条直线上,AD=BE,AC∥DF,BC∥EF.求证:AC=DF.思路分析:要证明AC=DF,则需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,由AC∥DF可得∠CAB=∠FDE, 由BC∥EF可得∠CBA=∠FED,现已证两三角形的两组对应角相等,所以考虑夹边,用ASA,证明⊿ABC≌⊿DEF.由已知AD=BE可得:AD+DB=BE+DB,即AB=DE,命题得证.2、已知:如图2,BE⊥AC,DF⊥AC,垂足分别是E、F,O是BD的中点.求证:BE=DF.思路分析:要证明BE=DF,则需要证明⊿BOE≌⊿DOF.在⊿BOE和⊿DOF中,由BE⊥AC,DF⊥AC可得∠BEO=∠DFO=90°,∠BOE=∠DOF,现已证两三角形的两组对应角相等,所以考虑其中一组对应角的对边,用AAS,证明⊿BOE≌⊿DOF.由已知O是BD的中点可得:OB=OD,条件已具备,命题得证.3、已知:如图3, AB=DE,BC=EF,AF=CD.求证:AB∥DE, BC∥EF.思路分析:要证明AB∥DE, BC∥EF,则需要证明∠A=∠D, ∠BCA=∠EFD,由此只需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,已知AB=DE,BC=EF,即两三角形的两组对应边相等,因此,只需证明边AC=DF,用SSS证明⊿ABC≌⊿DEF.由已知AF=CD,根据等式性质得:AF+CF=CD+CF,即AC=DF,命题得证.4、已知:如图4, AB=AD,AC=AE, ∠BAD=∠CAE.求证:. ∠B=∠D.思路分析:要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE.在⊿ABC 和⊿ADE中,已知AB=AD, AC=AE,即两三角形的两组对应边相等,因此,只需证明两条已知边的夹角相等,用SAS证明⊿ABC≌⊿ADE.由已知∠BAD=∠CAE,根据等式性质得:∠BAD+∠DAC =∠CAE+∠DAC,即∠BAC=∠DAE,命题得证.5、已知:如图5, AD=AE,点D、E在BC上,BD=CE,∠ADE=∠AED.求证: ⊿ABE≌⊿ACD思路分析:要证明⊿ABE≌⊿ACD,在⊿ABE和⊿ACD中,已知AD =AE, ∠ADE=∠AED即相邻的一角一边对应相等,因此,只需证明∠ADE 与∠AED的另一邻边相等即可,用SAS证明⊿ABE≌⊿ACD.由已知BD=CE可得:BD+DE=CE+DE,即BE=CD,命题得证.。
勾股定理最值问题(原卷版)-2024-2025学年八年级数学上册专题训练+备考提分专项训练(北师大版
勾股定理最值问题(共40道)一、单选题1.如图,在△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点D 、E 分别在AC 、BC 上.现将△DCE 沿DE 翻折,使点C 落在点C ′处.连接AC ′,则AC ′长度的最小值.( )A .等于3cmB .等于4cmC .等于5cmD .不存在2.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 平分∠BAC ,交BC 于点D ,P ,M 是AD ,AC 上的动点,则PC +PM 的最小值为( )A .32B .3C .4D .1253.如图,在△ABC 中,∠C =90∘,AC =4cm ,BC =3cm ,点E 在AC 上,现将△BCE 沿BE 翻折,使点C 落在点C ′处连接AC ′,则AC ′长度的最小值是( )A .0.5cmB .1cmC .2cmD .2.5cm4.如图,在ΔABC 中,∠C =90°,AC =8cm ,BC =6cm ,点D 、E 分别在BC 、AC 边上.现将ΔDCE 沿DE 翻折,使点C 落在点H 处.连接AH ,则AH 长度的最小值为( )A.0B.2C.4D.65.如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,BD平分∠ABC交边AC于点D,点E、F分别是边BD、AB上的动点,当AE+EF的值最小时,最小值为( )A.6B.125C.6013D.120136.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,AD=4,E、F分别是线段AB、AD上的动点,则EF+FB的最小值为()A.4B.4.8C.5.4D.67.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A .403B .154C .245D .68.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,且AC ⊥BD ,点P 为AB 边上一动点(不与点A ,B 重合),PE ⊥OA 于点E ,PF ⊥OB 于点F ,若AC =8,BD =6,则EF 的最小值为( )A .3B .2C .125D .529.如图,已知∠MON =60∘,点P,Q 为∠MON 内的两个动点,且∠POQ =30∘,OP =6,OQ =8,点A,B 分别是OM,ON 上的动点,则PA +AB +的最小值是( )A .5B .7C .8D .1010.如图,圆柱形杯子底面直径为7cm ,高为24cm .将一根长36cm 的木棒斜放在杯中,设木棒露在杯子外面的长度为ℎ cm ,则h 的最小值是( )A .9B .11C .12D .1411.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6.若点M 是直线AB 上的一个动点,则CM 的最小值为( )A .125B .245C .5D .612.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为( )A .154B .245C .5D .20313.如图,Rt △ABC 中,∠B =90°,AB =3,BC =4,点P 是AC 边上一动点,则线段BP 长度的最小值为( )A.3B.2.5C.2.4D.214.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.4B.125C.5D.24515.如图,在△ABC中,AC=3,BC=4,∠C=90°,若P是AB上的一个动点,则AP+BP+CP的最小值是()A.5.5B.6.4C.7.4D.816.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,BC=9,AC=12,Q为AB上一动点,则DQ 的最小值为()A.6B.4.5C.4D.517.如图,△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,P为直线AB上一动点,连接PC,则线段PC的最小值是( )A.4B.4.5C.4.8D.518.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD 的最小值为( )A.8B.10C.12D.1419.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,CD=2,点P′是AB上的动点,则PC+PD的最小值是( )A.7B.8C.9D.1020.如图,在长方形ABCD中,AB=6,AD=8,若P是AC上的一个动点,则AP+BP+CP的最小值是()A.14B.14.8C.16D.18二、填空题21.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,点F和点G 为边AB上的两个动点,且FG=1,则DG+FE的最小值为.22.如图,点M在线段AB上,且AB=7、AM=4,以M为顶点作正方形MNEF,当AF+BN最小时,MN 的最小值是.23.如图,在四边形ABED中,ABCD是正方形.已知,BE=7,DE=5,AB=3,∠DCE=90°,P为线段DE上一动点,则CP的最小值为.24.如图,AD⊥AB于点A,BC⊥AB于点B,点P为线段AB上任意一点,若AD=3,BC=2,AB=12,则PC+PD的最小值是.25.在长方形ABCD中,AB=16,AD=9,动点P满足S△PAB=1S长方形ABCD,则PA+PB的最小值为.326.如图,三角形ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,则线段PC的最小值是.27.如图,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为ℎcm,则h的最小值是cm.28.如图,在△ABC中,AB=AC=13,BC=10,AB的垂直平分线EF分别交AB,AC于点E,F,点P在线段EF上.若D为BC的中点,则△BDP的周长的最小值为.29.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AD是∠CAB的角平分线,点E,F分别是AC,AD上的动点,则EF+CE的最小值是.30.如图,P是长方形ABCD内部的动点,BC=8,AB=4,△PBC的面积等于12,则点P到B、C两点距离之和PB+PC的最小值为.31.如图,在Rt△ABC中,点D,E分别是边AC、AB上的两点,连接BD,CE,CD=AE,已知BC=6,AB=8,则BD+CE的最小值的平方是.32.在Rt△ABC中,∠CAB=90°,AC=5,AB=12,点D和E都是边BC上的动点,且满足CD=BE,连接AD、AE.则AD+AE的最小值为.33.如图,△ABC中,∠ACB=90°,AC=8,BC=6,射线CD与边AB交于点D,E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则线段CD的最小值为,m+n的最大值为.34.如图,正方形ABCD的边长是6,点F是AB上一点,BF=3.5,点E是BC上一动点,连接EF,将△BEF 沿EF折叠,使点B落在B′,连接DB′,则FB+DB′的最小值是.35.已知△ABC中,AC=8,AB=BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.36.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为.37.如图,已知∠MON=45°,点A,B在边ON上,OA=3,点C是边OM上一个动点,若△ABC周长的最小值是6,则AB的长是.38.在△ABC中,∠C=90°,CB=CA=5,点D是BC的中点,点P是△ABC内一点,且DP=DC,连接DP、AP,Q是DP的中点,则AP+BQ的最小值是.39.如图,已知长方形ABCD,AB=8,BC=10,点E,F分别是边AB,BC上的动点,沿直线EF折叠△BEF,使点B的对应点G始终落在边AD上,则线段AG的最小值是.40.如图,在Rt△ABC中,∠ABC=90°,AB=5,BC=12,AD是∠BAC的平分线,若M、N分别是AD和AB上的动点,则BM+MN的最小值是.。
勾股定理(专题训练)
5、勾股定理专题训练【知识点精讲】1 勾股定理:__________________________________________2勾股定理的逆定理:________________________________________________ 3勾股数:______、______、______、______、______、______、4两种特殊的直角三角形:①30°的直角三角形______________________________②45°的直角三角形________________________5两点之间______最短,但蚂蚁在圆柱体表面爬行时,所走的路线必定是______线。
6立体图形转化为______图形,再转化为______问题7勾股定理是求______的长度的主要方法,若缺少直角条件则可以通过作垂线段的方法构造RT △,为勾股定理的应用创造必要的条件。
8勾股定理和勾股定理逆定理的综合运用,还经常利用方程求线段的和差等关系。
【典型例题与思维拓展】板块一、利用勾股定理求线段长例1已知如图,在R t △ABC 中,∠ACB=90°,AC=7,BC=24,CD 是斜边AB 上的高,求CD 的长.BDA拓展与变式练习11. 已知如图,在R t △ABC 中,∠ACB=90°,BC=40,AB=41,CD 是斜边上的高,求CD 的长。
BDA2. 如图将R t △ABC 沿AD 对折,使点C 落在AB 上的E 处,若AC=6,AB=10,求DB 的长。
DCB板块二、翻折类型例2如图,折叠长方形的一边AD,使点D 落在BC 边的点F 处,若AB=3,BC=4,求EC 的长。
拓展变式练习21.如图折叠长方形ABCD,先折出对角线BD,再折叠AD 边与BD 重合,得到折痕DG.若AB=12,AD=9,求AG 的长.GCBAD2.如图将长方形ABCD 沿对角线BD 折叠,使C 点落在F 处,BF 交AD 于点E,AD=10,AB=6,求△BDE 的面积是多少?DCBA板块三、构造RT Δ例3如图,在△ABC 中,∠BAC=90°,AB=AC,D,E 在BC 上,∠DAE=45°. 求证:CD 2+BE 2=DE2.BEC拓展变式练习3CEFBDDBAEBC1. 已知如图,在△ABC 中,∠A=90°,DE 为BC 的垂直平分线,求证:BE 2=AC 2+AE 22. 如图在R t △ABC 中,∠C=90°,DA=DB,E 、F 分别在AC 和BC 上,且ED ⊥DF, 求证:EF 2=AE 2+BF 2BA板块四、勾股定理逆定理 例4、如图在四边形ABCD 中,已知∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD 的面积.拓展变式练习41. 如图,在四边形ABCD 中,已知AB,BC,DA 的长分别为2、2、2,且CD 2=12,AB ⊥BC,求∠DAB 的度数.DC2. 如图在△ABC 中,BC=6,AC=8,在△ABE 中,DE 是AB 边上的高,DE=7, △ABE 的面积为35, 求∠C的度数.例5、若△ABC的三边长a、b、c满足条件:a2+b2+c2=10a+24b+26c-338,试判断△ABC的形状.板块五、最短路径问题例6:有一个长宽高分别为2cm,1cm,3cm的长方体,有一只小蚂蚁想从点A爬到点C1处,则它爬行的最短路程为________cm.拓展与变式练习51、△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,△ABC是____三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
3.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形4.勾股数②记住常见的勾股数可以提高解题速度,如3,4,5; 5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________. 2.已知直角三角形的两边长为3、2,则另一条边长是________________. 3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在 4.在数轴上作出表示10的点考点二、利用列方程求线段的长1.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好. 2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4 CD .53.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.4、如图,水池中离岸边D 点 1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.5. 如图, 中, AD 、AE 分别为BC 的高和中线,求DE的长。
FED CBA5、如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.考点三、综合其它考点的应用2.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外 壁爬行,要从A 点爬到B 点,则最少要爬行 cm.13. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm 求四边形ABCD 的面积.14.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时 梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置 上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?2. 如图 中,,求AC 的长及 的面积。
AB5. 如图 中,,D 为AB 的中点,E 、F 分别在AC 、BC上,且,求证:。
考点四、判别一个三角形是否是直角三角形 1.下列命题中是假命题的是( ). A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形. B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形. C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形. D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形. 2.在△ABC 中,2:1:1::=c b a ,那么△ABC 是( ).A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形 3.如图,四边形ABCD 中,F 为DC 的中点,E 为BC 上一点, 且BC CE 41=.你能说明∠AFE 是直角吗?考点五、开放型试题 1.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.l 321S 4S 3S 2S 12.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.3.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.CB AD E练习1、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).此时EC 有多长?•2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠, 使C 点与A 点重合,则EB 的长是( ). A .3B .4CD .53.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的 垂直平分线交BC 于D ,垂足为E ,D=4cm . 求AC 的长. 4、如图,有一个直角三角形纸片,两直角边AC=6,BC=8, 现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且 与AE 重合,则CD 的长为。
5、如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.6、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,若BC =2,则BC´=_________.FEDCBAE题5图FBACD7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A 、6cm 2 B 、8cm 2 C 、10cm 2 D 、12cm 28、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.9.如图8,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能, 请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P 在AD 上移动, 直角边PH 始终通过点B ,另一直角边PF 与DC 的延长 线交于点Q ,与BC 交于点E ,能否使CE =2cm ?若能, 请你求出这时AP 的长;若不能,请你说明理由.10、如图所示,在Rt ABC ∆中,90,,45BAC AC AB DAE ∠=︒=∠=︒,且3BD =,4CE =,求DE 的长.图8F第11题图11、如图在Rt △ABC 中,3,4,90==︒=∠BC AC C ,在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。
如图所示:12、已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm13、已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.14.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过四个侧面缠绕一圈到达点B ,那么所用细线最短需要多长?如果从点A 开始经过四个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长?C OA B DEF15. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形. 16.(12分)如图,某沿海开放城市A 接到台风警报,在该市正南方 向100km 的B 处有一台风中心,沿BC 方向以20km/h 的速度向D 移 动,已知城市A 到BC 的距离AD=60km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?17、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。