计量经济学3.1 矩阵基础及多元线性回归模型

合集下载

多元线性回归模型

多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假设
本节重点内容
1.多元线性回归模型一般形式 2.偏回归系数的含义 3.多元线性回归模型的基本假设(与一元
相比,多元的基本假设的不同点)
多元线性回归模型的一般形式
• P72例3.2.2:考虑2006年中国内地城镇居民家 庭全年人均消费支出与人均可支配收入及其上 一年人均消费支出的关系
总体回归模型——一般采用的形式
• 总体回归模型:总体回归函数的随机表达形式
Y 0 1X1 2 X2 k X k
该模型表示Y可表现为对总体均值的波动。源自样本回归函数与样本回归模型
• 从一次抽样中获得的总体回归函数的近似,称为样 本回归函数(sample regression function)。
3. 理解以一元为基础,注意多元中出现的新概 念及其与一元的不同点。
本章内容
• 多元线性回归模型概述 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 可化为线性的非线性模型 • 受约束回归 • 注:本章矩阵表述部分不涉及
§3.1 多元线性回归模型概述 (Regression Analysis)
• 样本回归函数:
Yˆ ˆ0 ˆ1X1 ˆ2 X2
• 样本回归模型: Y ˆ0 ˆ1X1 ˆ2X2 e
总体回归函数
• 总体回归函数:描述在给定解释变量X条件下 被解释变量Y的条件均值。
E(Y | X1, X 2, X k ) 0 1X1 2 X 2 k X k
k为解释变量的数目(采用此说法)。 习惯上,把常数项看成为虚变量的系数,该虚 变量的样本观测值始终取1。 于是,模型中解释变量的数目为(k+1)。
• 多元模型(二元) • PRF-某类家庭人均消费支出与两个相关因素之

第三章多元线性回归模型(计量经济学,南京审计学院)

第三章多元线性回归模型(计量经济学,南京审计学院)

Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I

可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt

《计量经济学》第3章数据

《计量经济学》第3章数据

《计量经济学》各章数据第3章 多元线性回归模型例3.1.1 经过研究,发现家庭书刊消费水平受家庭收入及户主受教育年数的影响。

现对某地区的家庭进行抽样调查,得到样本数据如表3.1.1所示,其中y 表示家庭书刊消费水平(元/年),x 表示家庭收入(元/月),T 表示户主受教育年数。

下面我们估计家庭书刊消费水平同家庭收入、户主受教育年数之间的线性关系。

回归模型设定如下: t t t t u T b x b b y +++=210(t =1,2, …)表3.1.1 某地区家庭书刊消费水平及影响因素的调查数据表例3.4.1根据表3.4.1给出的中国1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),劳动投入L(用从业人员度量,单位为万人),以及资本投入K(用全社会固定投资度量,单位:亿元),试建立我国的柯布——道格拉斯生产函数。

表3.4.1 1980-2003年中国GDP、劳动投入与资本投入数据例3.4.2 某硫酸厂生产的硫酸透明度一直达不到优质要求,经分析透明度低与硫酸中金属杂质的含量太高有关。

影响透明度的主要金属杂质是铁、钙、铅、镁等。

通过正交试验的方法发现铁是影响硫酸透明度的最主要原因。

测量了47组样本值,数据见表3.4.3。

试建立硫酸透明度(y)与铁杂质含量(x)的回归模型。

表3.4.3 硫酸透明度(y)与铁杂质含量(x)数据例3.4.3假设某企业在15年中每年的产量Y(件)和总成本X(元)的统计资料表3.4.7所示,试估计该企业的总成本函数模型。

表3.4.7 某企业15年中每年总产量与总成本统计资料3.6.1 案例1——中国经济增长影响因素分析根据表3.6.1给出的1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),最终消费CS(单位:亿元),投资总额I(用固定资产投资总额度量,单位:亿元),出口总额(单位:亿元)统计数据,试对中国经济增长影响因素进行回归分析。

第3章 多元线性回归模型 《计量经济学》PPT课件

第3章 多元线性回归模型  《计量经济学》PPT课件

于是:
βˆ
ˆ1 ˆ 2
0.7226 0.0003
0.0003 1.35E 07
15674 39648400
01.0737.71072
⃟ 正规方程组 的另一种写法
对于正规方程组 XY XXβˆ
XXβˆ Xe XXβˆ
于是 Xe 0 (*)

ei 0
(**)
X jiei 0
i
(*) 或( ** )是多元线性回归模型正规方程 组的另一种写法。
第三章 经典单方程计量经济学模型: 多元线性回归模型
• 多元线性回归模型 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 回归模型的其他形式
§ 3. 1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
多元线性回归模型 : 表现在线性回归模型 中的解释变量有多个。
的秩 =k+1 ,即 X 满秩。
假设 2. 随机误差项零均值,同方差。
0
0
0
E

μ
)
E
1
n
1
n
E
12
n 1
1 n
2 n
var(1 ) cov(1, n ) 2 0
2I
cov(
n
,
1
)
var(n )
0
2
i E(i )
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟ 随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏 估计量为:
ˆ 2
ei2 n k 1
ee n k 1

计量经济学(庞浩)第三章-多元线性回归模型(1)

计量经济学(庞浩)第三章-多元线性回归模型(1)

矩阵X的秩为K(注意X为n行K列)。
Ran(X)= k
Rak(X'X)=k
即 (X'X) 可逆 假定6:正态性假定
ui ~ N (0, 2 )
u ~ N (0, 2I)
12
第二节 多元线性回归模型的估计
一、普通最小二乘法(OLS)
原则:寻求剩余平方和最小的参数估计式 min : ei2 (Yi Yˆi )2
1
X 22
Xk
2
2
u2
Yn
1 X 2n
X
kn
k
un
Y
X
βu
n 1
nk
k 1 n1
9
9
矩阵表示方式
总体回归函数 E(Y) = Xβ 或 Y = Xβ + u
样本回归函数 Yˆ = Xβˆ 或 Y = Xβˆ + e
其中: Y,Yˆ,u,e 都是有n个元素的列向量
β, βˆ 是有k 个 元素的列向量
多重可决系数:在多元回归模型中,由各个解释
变量联合起来解释了的Y的变差,在Y的总变差中占
的比重,用 R2表示 与简单线性回归中可决系数 r的2 区别只是 不Yˆi 同
多元回归中
Yˆi ˆ1 ˆ2 X2i ˆ3 X3i ˆk Xki
多重可决系数可表示为
R2 ESS TSS
(Yˆi Y )2 (Yi Y )2
0
2
X 2i
Yi
(ˆ1
ˆ2
X 2i
ˆ3
X 3i
ˆki
X ki )
0
(i 1, 2, n)
( j 1, 2, n)
ei 0
X2iei 0
2

计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。

Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

3.1 多元线性回归模型及古典假定

3.1 多元线性回归模型及古典假定
第三章 多元线性回归模型
第一节 多元线性回归模型及古典假设
一、多元线性回归模型及其矩阵表示 二、多元线性回归模型的古典假设
一、多元线性回归模型及其矩阵表示
1、在计量经济学中,将含有两个以上解释变量的回归模 型称为多元回归模型。相应地,在此基础上进行的回归分析 就叫多元回归分析。如果总体回归函数描述了一个应变量与 多个解释变量之间的线性关系,由此而设定的回归模型就称 为多元线性回归模型。例如:在生产理论中,C—D生产函 数描述了产量与投入要素之间的关系,其形式为: Y=AKαLβ (Y为产量,K、L分别为资本和劳动投入,α,β 为参数). 利用对数变换,可将其转化为:㏑Y=㏑A+α㏑K+β㏑L 在进行回归分析时,可设定如下形式的回归模型: (㏑Y)i= α0+α(㏑K)i+β(㏑L)i+μi (3.1.1) 回归模型3.1.1就是一个二元线性回归模型。
这就是多元线性回归模型的一般形式。(Yi,X2i,X3i,…,XKi )为 第 i 次观测样本,βj(j=1,2, …,k) 为模型参数,μi为随机误差项。
在多元线性回归模型中,所有解释变量会同时对应变量Y的 变动发挥作用,所以,我们考察其中某个解释变量对应变量Y的 影响,必须是其它解释变量保持不变来进行。模型中的回归系 数βj(j=2, …,k) 就表示在其它解释变量不变的条件下,第 j 个解 释变量的单位变动对应变量Y的影响。由式3.1.3,可得Y的条件 期望函数:E(Y|X2i,X3i,…,XKi )= β1i+β2X2i+β3X3i+…+βKXKi
1 X 2n
X 31 X 32 X 3n
X K1
XK2

计量经济学-3多元线性回归模型

计量经济学-3多元线性回归模型
计量经济学-3多元线性 回归模型
2020/12/8
计量经济学-3多元线性回归模型
•第一节 概念和基本假定
•一、基本概念: • 设某经济变量Y 与P个解释变量:X1,X2,…,XP存在线性依
存关系。 • 1.总体回归模型:
•其中0为常数项, 1 ~ P 为解释变量X1 ~ XP 的系数,u为随机扰动项。 • 总体回归函数PRF给出的是给定解释变量X1 ~ XP 的值时,Y的期 望值:E ( Y | X1,X2,…,XP )。 • 假定有n组观测值,则可写成矩阵形式:
计量经济学-3多元线性回归模型
•2.样本回归模型的SRF
计量经济学-3多元线性回归模型
•二、基本假定: • 1、u零均值。所有的ui均值为0,E(ui)=0。 • 2、u同方差。Var(ui)=δ2,i=1,2,…,n
计量经济学-3多元线性回归模型

计量经济学-3多元线性回归模型

•第二节 参数的最小二乘估 计
•五、预测
•(一)点预测 •点预测的两种解释:
计量经济学-3多元线性回归模型
•(二)区间预测
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•例5,在例1中,若X01=10,X02=10,求总体均值E(Y0|X0) 和总体个别值Y0的区间预测。

Yi=β0+β1Xi1+β2Xi2+ui
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•三、最小二乘估计的性质
计量经济学-3多元线性回归模型

多元线性回归模型分析

多元线性回归模型分析

L(ˆ,2) P(y1, y2,, yn)
1 212 (yi (ˆ0ˆ1x1i ˆ2x2i ˆkxki))2
e n
2
n
(2)
1
n
(2 )2
e212 (YXˆ )(YXˆ )
n
多元线性回归模型分析
▪ 对数似然函数为
L*Ln(L)
nLn( 2)212(YX )'(YX )
▪ 参数的极大似然估计
xn2
x1K
T
y1
x2K y2
xnK
yn
ห้องสมุดไป่ตู้
上述矩阵方程的第一个方程可以表示为:
n
n
yˆi yi
i1
i1
则有: yˆ y
多元线性回归模型分析
附录:极大似然估计
多元线性回归模型分析
回忆一元线性回归模型
对于一元线性回归模型:
Yi 0 1Xi i
i=1,2,…n
随机抽取n组样本观测值Yi,Xi (i=1,2,…n),假如模型的参数
β ( X X )1 X Y 多元线性回归模型分析
▪ 注:这只是得到了求极值的必要条件。到目 前为止,仍不能确定这一极值是极大还是极 小。接下来考察求极值充分条件。
多元线性回归模型分析
注意到上述条件只是极小化问题的必要条件,为了 判断充分性,我们需要求出目标函数的Hessian矩阵 :
2Q(ˆ ) ˆ ˆ
投影和投影矩阵 分块回归和偏回归 偏相关系数
多元线性回归模型分析
一、参数的OLS估计
▪ 普通最小二乘估计原理:使样本残差平方和最小
我们的模型是:
Y= x11 + x22 +…+ xk k +

庞皓计量经济学第三章多元线性回归模型学习辅导

庞皓计量经济学第三章多元线性回归模型学习辅导

第三章 多元线性回归模型学习辅导一、本章的基本内容(一)基本内容图3.1 第三章基本内容(二)本章的教学目标在现实的计量经济分析中,事实上影响被解释变量的因素不止一个,通常会有多个影响因素;另外,即使我们的分析目的是仅考察某一个因素对被解释变量的影响,但为了得到该因素对被解释变量的“净”影响,也需要将其他影响因素作为“控制变量”,使其以显性形式出现在模型中,以提高模型估计精度。

因此,在对现实经济问题进行计量经济分析时,通常需要建立包含两个及两个以上解释变量的计量模型,此类模型称为多元回归模型。

多元回归模型是在简单回归模型理论基础上的扩展,其建模的理论基础、基本思路、模型估计等与一元回归模型基本一致,只是因解释变量增多,从而带来一些新的内容,比如模型整体显著性检验(F 检验)、修正的可决系数(2R )以及解释变量之间多重共线性等问题。

本章的教学目标是:深刻理解建立多元回归模型的目的;掌握多元线性回归模型估计、检验的理论与方法;熟练掌握多元线性回归EViews 输出结果的解释。

二、重点与难点分析1.对多元线性回归模型参数意义的理解多元线性回归模型的参数与简单线性回归模型的参数有重要区别。

在多元线性回归模型中,解释变量对应的参数是偏回归系数,表达的是控制其他解释变量不变的条件下,该解释变量的单位变动对被解释变量平均值的“净”影响。

为了更深刻理解偏回归系数,可以两个解释变量的多元线性回归模型为例加以说明1。

例如,被解释变量Y 与解释变量2X 和3X 都有关,如果分别建立模型:多元线性回归: 12233i i i i Y X X u b b b =+++简单线性回归 : 1221i i i Y a a X u =++由于Y 与3X 有关,可以作回归:1332i i i Y b b X u =++,若用OLS 估计其参数,并计算残差213333ˆˆˆi i i i i e Y b b X y b x =--=-,这里的2i e 表示除去3i X 影响后的i Y 。

多元线性回归模型

多元线性回归模型

多元线性回归模型多元线性回归模型是一种广泛应用于统计学和机器学习领域的预测模型。

它通过使用多个自变量来建立与因变量之间的线性关系,从而进行预测和分析。

在本文中,我们将介绍多元线性回归模型的基本概念、应用场景以及建模过程。

【第一部分:多元线性回归模型的基本概念】多元线性回归模型是基于自变量与因变量之间的线性关系进行建模和预测的模型。

它假设自变量之间相互独立,并且与因变量之间存在线性关系。

多元线性回归模型的数学表达式如下:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。

回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。

【第二部分:多元线性回归模型的应用场景】多元线性回归模型可以应用于各种预测和分析场景。

以下是一些常见的应用场景:1. 经济学:多元线性回归模型可以用于预测GDP增长率、失业率等经济指标,揭示不同自变量对经济变量的影响。

2. 医学研究:多元线性回归模型可以用于预测患者的生存时间、治疗效果等医学相关指标,帮助医生做出决策。

3. 市场研究:多元线性回归模型可以用于预测产品销量、市场份额等市场相关指标,帮助企业制定营销策略。

4. 社会科学:多元线性回归模型可以用于研究教育水平对收入的影响、家庭背景对孩子成绩的影响等社会科学问题。

【第三部分:多元线性回归模型的建模过程】建立多元线性回归模型的过程包括以下几个步骤:1. 数据收集:收集自变量和因变量的数据,确保数据的准确性和完整性。

2. 数据清洗:处理缺失值、异常值和离群点,保证数据的可靠性和一致性。

3. 特征选择:根据自变量与因变量之间的相关性,选择最相关的自变量作为模型的输入特征。

4. 模型训练:使用收集到的数据,利用最小二乘法等统计方法估计回归系数。

5. 模型评估:使用误差指标(如均方误差、决定系数等)评估模型的拟合程度和预测性能。

多元线性回归模型计量经济学

多元线性回归模型计量经济学

多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。

《计量经济学》第五章最新完整知识

《计量经济学》第五章最新完整知识

第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。

需要我们建立多元线性回归模型。

一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。

最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。

假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。

(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。

在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。

多元线性回归模型

多元线性回归模型

多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。

它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。

本文旨在介绍多元线性回归模型的原理、假设条件和应用。

一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。

多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。

二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。

最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。

具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。

三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。

主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。

在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。

四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。

在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。

多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。

五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。

然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。

计量经济学第三章第3节多元线性回归模型的显著性检验

计量经济学第三章第3节多元线性回归模型的显著性检验
e e k AC ln ln n n n
这两准则均要求仅当所增加的解释变量能够减少 AIC值或AC值时才在原模型中增加该解释变量。
举例说明:拟合优度、修正拟合优度、与 增加解释变量之间的关系。
在第二章第四节讲义中,我们考察中国居民收入
与消费支出的关系,建立了以人均国内生产总值 为解释变量X,以人均消费支出为被解释变量Y的 一元线性回归模型。 数据采用1978~2000年23年的人均国内生产总值 X和人均消费支出Y的时间序列数据,且都转换成 1990年的不变价,且剔除了物价上涨因素的影响。
ˆ b ˆ X b ˆY ˆ b Y t 0 1 t 2 t 1 ˆ b ˆ X b ˆ Y b ˆY ˆ b Y
t 0 1 t 2 t 1
3 t 2
其中t为当前期变量,t-k称为k期滞后变量。
1) 使用软件估计模型
将之前已经建立的Workfile文件打开 点击菜单中的“Quick”→“Estimate Equations”
3 4 5 6 7 8 9 10
3 4 5 6 7 8 9
3 4 5 6 7 8
2) 模型的估计表达式
ˆ 201.1189 0.3862 X Y
ˆ 120.7253 0.2214 X 0.4514Y Y t t t 1
ˆ 138.943 0.243X 0.630Y 0.261Y Y t t t 1 t 2
2
2
2
*赤池信息准则和施瓦茨准则
• 为了比较所含解释变量个数不同的多元回归模型的 拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) e e 2( k 1) AIC ln n n 施瓦茨准则(Schwarz criterion,SC)

计量经济学复习笔记(四):多元线性回归

计量经济学复习笔记(四):多元线性回归

计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。

我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。

但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。

另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。

1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。

从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。

⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。

Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。

计量经济学多元线性回归模型及参数估计

计量经济学多元线性回归模型及参数估计

-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
2.多元线性回归模型的基本假定(矩阵形式)
V
ar
Cov( N
)
E
N
E(N
)N
E(
N
)
E(
NN
)
1
E
n2 1
2
12
n
E
2 1
n1
12 22
n2
1n
2n
n2
2
0
0
0
2
0
2
I
0
0
2
2.多元线性回归模型的基本假定(矩阵形式)
E(X
N )
E
1 X 11
ei 0 X i1ei 0 X i2ei 0
X ik ei 0
(*) (*)或(**)是多 元线性回归模型正
(**) 规方程组的另一种 写法。
离差形式的样本回归方程
由于
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik
[Yi (ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik )] 0
????eemm??所以有???eem??mnnee???ee?????????????????????????????????????????????nnnnnnnnmmmmmmmmme??????????????2121222211121121????????????????????????????????????????nnnnnnnnnnmmmmmmmmme?????????????????21221122221121221111因为xxxxim?????1为对称等幂矩阵即mm??mmmm???2????????nnnnnnnnnnmmmmmmmmme?????????????????????????????22112222211211221111??nnnnnmmmememem??????????22112222222111?????1212122??????????????kntrtrtrmtr????????xxxxixxxxi其中符号tr表示矩阵的迹其定义为矩阵主对角线元素的和

计量经济学思考题答案

计量经济学思考题答案

计量经济学思考题答案第一章绪论1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。

计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。

经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。

我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。

1.2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。

理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。

所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。

应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。

1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。

联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。

区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。

2、计量经济学与经济统计学的关系。

联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。

计量经济学3.1 矩阵基础及多元线性回归模

计量经济学3.1 矩阵基础及多元线性回归模
29
总体回归模型的n个随机方程( 总体回归模型的 个随机方程(1) 个随机方程
若有n组观测值,则可得n个联立方程:
Y1 = β 0 + β1 X 11 + β 2 X 21 + β1 X k1 + u1
Y2 = β 0 + β1 X 12 + β 2 X 22 + β 1 X k 2 + u 2
20
正定和半正定矩阵
令A为n×n对称矩阵。 (1) 如果对除x=0外的所有n×1向量x,都有x’Ax>0,则称A为正 正 定的。 (2)如果对除x=0外的所有n×1向量x,都有x’Ax≥0,则称A为半 半 正定的。 正定 正定和半正定矩阵的性质: 正定和半正定矩阵的性质: (1) 正定矩阵的主对角元素都严格为正,半正定矩阵的主对 角元素都非负; (2) A是正定的,则A-1存在并正定; (3) 如果X是一个n×k矩阵,则X’X和XX’都是半正定的; (4) 如果X是满秩矩阵,则X’X是正定矩阵(因此也是满秩) 的;
α和β是实数,矩阵A、B、C具有运算所需的维数
7
矩阵的转置、 矩阵的转置、对称矩阵
矩阵A的行与列互换 行与列互换称为A的转置矩阵 转置矩阵,用A’表示 行与列互换 转置矩阵 转置矩阵的性质:
x是n×1维向量
一个方阵A是对称矩阵 对称矩阵的充要条件A=A’ 对称矩阵
8

对任意一个n×n的矩阵 ,A的迹 对任意一个 的矩阵A, 的迹tr(A)定义为 定义为 的矩阵 的迹 其主对角线元素之和。 其主对角线元素之和。 迹的性质: 迹的性质:
余子式: 将n×n的方阵 的第i行和第 列去掉,所剩下 余子式: × 的方阵A的第 行和第j列去掉, 的方阵 的第 行和第 列去掉 的子矩阵的行列式叫做元素a 的余子式,记为|M 的子矩阵的行列式叫做元素 ij的余子式,记为 ij| 例如: 例如:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27
一、多元线性回归模型
多元线性回归模型: 多元线性回归模型: 有多个解释变量的线性回归模型。 也称为多变量线性回归模型 多变量线性回归模型。 多变量线性回归模型 总体回归函数: 总体回归函数: E (Y | X 1i , X 2i , X ki ) = β 0 + β1 X 1i + β 2 X 2i + + β k X ki 意为:给定X1,X2,…,Xk的值时Y的期望值。 意为:给定 的值时 的期望值。 的期望值 增加随机干扰项的随机表达式: 增加随机干扰项的随机表达式:
20
正定和半正定矩阵
令A为n×n对称矩阵。 (1) 如果对除x=0外的所有n×1向量x,都有x’Ax>0,则 称A为正定 正定的。 正定 (2)如果对除x=0外的所有n×1向量x,都有x’Ax≥0,则 半正定的。 称A为半正定 半正定 正定和半正定矩阵的性质: 正定和半正定矩阵的性质: (1) 正定矩阵的主对角元素都严格为正,半正定矩阵 的主对角元素都非负; (2) A是正定的,则A-1存在并正定; (3) 如果X是一个n×k矩阵,则X’X和XX’都是半正定 的;
则 why?
23
方差-协方差矩阵 方差 协方差矩阵
如果y是一个n×1随机向量,用var(y)(或cov-var(y))表示的y 的方差 协方差矩阵 方差-协方差矩阵 方差 协方差矩阵定义为:
其中σj2=var(yj), σij=var(yi, yj) 显然, σij=var(yi,yj) =var(yj,yi)=σji,故var(y)对称。
1 2 μ= n n×1
则有,总体回归方程的矩阵表示为: 则有,总体回归方程的矩阵表示为:
Y = X β+ μ
31
样本回归函数
样本回归函数: 样本回归函数:根据样本估计的总体回归函数
Yi = β 0 + β 1 X 1i + β 2 X 2i + + β ki X ki
Step4:
18
向量组的线性相关
(1) 令 x1, x2,…, xr是一组维数相同的向量,若存在不 是一组维数相同的向量, 全为零的实数α 全为零的实数α1, α2, …, αr使得
则称向量组{x 则称向量组 1, x2,…, xr}是线性相关的; 是线性相关的 否则, 否则,称{x1, x2,…, xr}是线性无关的。 是线性无关的
其随机表示式: 随机表示式:
Yi = β 0 + β 1 X 1i + β 2 X 2i + + β ki X ki + ei
ei称为残差或剩余项 称为残差 剩余项(residuals),可看成是总 残差或 , 的近似替代。 体回归函数中随机扰动项i的近似替代。
32
样本回归模型的n个随机方程( 样本回归模型的 个随机方程(1) 个随机方程
,A的行列式,记
12
例:求下列矩阵A的行列式 求下列矩阵 的行列式
解: 根据行列式定义,可得: 根据行列式定义,可得:
因此, 因此, |A|=21-4+16-10+15-42= - 4
13
求方阵的逆矩阵( ) 求方阵的逆矩阵(1)
余子式: 将n×n的方阵 的第i行和第 列去掉,所剩下 余子式: × 的方阵A的第 行和第j列去掉, 的方阵 的第 行和第 列去掉 的子矩阵的行列式叫做元素a 的余子式,记为|M 的子矩阵的行列式叫做元素 ij的余子式,记为 ij| 例如: 例如:
14
求方阵的逆矩阵( ) 求方阵的逆矩阵(2)
余因子(代数余子式 : 将n×n的方阵 的元素aij 余因子 代数余子式): 的方阵A的元素 代数余子式 的方阵 的元素 的余因子,记为c 的余因子,记为 ij ,定义为 cij =(-1)i+j|Mij| 余因子矩阵: 方阵A的元素 的元素a 余因子矩阵: 将方阵 的元素 ij代之以其余因 则得到A的余因子矩阵 记为cof 。 的余因子矩阵, 子,则得到 的余因子矩阵,记为 A。 伴随矩阵:余因子矩阵的转置矩阵称为 的伴 伴随矩阵:余因子矩阵的转置矩阵称为A的伴 随矩阵,记为adj A 随矩阵,记为 15 adj A=(cof A)’
10
矩阵逆的性质
(1) 如果一个矩阵的逆存在,则它是唯一的 如果一个矩阵的逆存在, (2) 若α≠ 且A可逆,则 α≠0且 可逆 可逆, (3) 如果 和B都是 ×n可逆矩阵,则 如果A和 都是 都是n× 可逆矩阵 可逆矩阵,
(4)
11
矩阵的行列式
给定一个n×n的方阵 为|A|,定义为:
|A|=Σ(-1)ta1p1a2p2…anpn 其中,t为p1p2….pn的逆序数。
α和β是实数,矩阵A、B、C具有运算所需的维数
7
矩阵的转置、 矩阵的转置、对称矩阵
矩阵A的行与列互换 行与列互换称为A的转置矩阵 转置矩阵,用A’表示 行与列互换 转置矩阵 转置矩阵的性质:
x是n×1维向量
一个方阵A是对称矩阵 对称矩阵的充要条件A=A’ 对称矩阵
8

对任意一个n×n的矩阵 ,A的迹 对任意一个 的矩阵A, 的迹tr(A)定义为 定义为 的矩阵 的迹 其主对角线元素之和。 其主对角线元素之和。 迹的性质: 迹的性质:
29
总体回归模型的n个随机方程( 总体回归模型的 个随机方程(1) 个随机方程
若有n组观测值,则可得n个联立方程:
Y1 = β 0 + β1 X 11 + β 2 X 21 + β1 X k1 + u1
Y2 = β 0 + β1 X 12 + β 2 X 22 + β 1 X k 2 + u 2
21
幂等矩阵 令A为n×n对称矩阵。如果AA=A,则称 幂等矩阵。 A是幂等矩阵 幂等矩阵
幂等矩阵的性质: 幂等矩阵的性质: 令A为n×n幂等矩阵 为 × 幂等矩阵 (1) rank(A)=tr(A) (2) A是半正定的。 是半正定的。 是半正定的
22
矩阵微分
(1) 对于一个给定的n×1向量a,对所有n×1向量x,定义线性函 数 f(x)= a’x,则f 对x的导数是1×n阶偏导数向量a’,即: why? (2) 对一个n×n的对称矩阵A,定义 n n A
…… Yn = β 0 + β1 X 1n + β 2 X 2 n + β1 X kn + un

1 1 X = 1 X 11 X 12 X 1n X 21 X 22 X 2n X k1 X k2 X kn n × ( k +1 )
β 0 β 1 β= β 2 β k ( k +1)×1
24
第三章 经典单方程计量经济学模 型:多元回归
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
25
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
26
多元线性回归模型的引入 多元线性回归模型的引入
3
对角矩阵、 对角矩阵、单位矩阵和零矩阵
零矩阵 对角矩阵 单位矩阵
4
矩阵的运算
加法: 加法:
数乘: 数乘:
两矩阵相乘: 两矩阵相乘:
A为m×n阶矩阵 为 × 阶矩阵 B为n×p阶矩阵 为 × 阶矩阵
5
矩阵运算的性质( ) 矩阵运算的性质(1)
α和β是实数,矩阵A、B、C具有运算所需的维数
6
矩阵运算的性质( ) 矩阵运算的性质(2)
19
矩阵的秩
是一个n× 的矩阵 的矩阵, 令A是一个 ×m的矩阵,则A中线性无关的最 是一个 中线性无关的最 向量称为A的 即为rank(A)。 大列向量称为 的秩,即为 。 若rank(A)=m,则称为列满秩 , 秩的性质: 秩的性质: (1) 行秩=列秩 行秩=列秩=rank(A) (即: rank(A’)=rank(A)) 即 (2) 如果 是一个 ×k矩阵,则 如果A是一个 是一个n× 矩阵 矩阵, rank(A)≤min(n,k) ≤
Yi = β 0 + β 1 X 1i + β 2 X 2 i + + β k X ki + i
i=1,2…,n
Y是被解释变量 是被解释变量 Xji为解释变量,i指第 次观测 为解释变量, 指第 指第i次观测
为随机干扰项 βi为偏回归系数
习惯上: 常数项看成为一虚变量的系数, 习惯上:把常数项看成为一虚变量的系数,该虚变量的样本 看成为一虚变量的系数 28 观测值始终取1。这样:型中解释变量的数目为k+1 观测值始终取 。这样:型中解释变量的数目为
截距项和偏回归系数
总体回归函数的随机表达式: 总体回归函数的随机表达式:
Yi = β 0 + β 1 X 1i + β 2 X 2 i + + β k X ki + i
(1) βj (j≥1) 称为 偏回归系数 表示在其他解释变量保持不变的情况下, 每变化1个单 表示在其他解释变量保持不变的情况下,Xj每变化 个单 位时,Y的条件均值 E (Y | X 1 , X 2 , X k ) 的变化; 位时, 的条件均值 的变化 给出了X 的单位变化对Y均值的 直接” 均值的“ 或者说βj给出了 j的单位变化对 均值的“直接” 或“净 ” (不含其他变量)影响。 不含其他变量)影响。 (2) β0 (j≥1) 称为 截距项,它给出了所有未包含到模型中的 截距项, 变量对Y的平均影响。 变量对 的平均影响。 的平均影响
若有n组观测值,则可得n个联立方程:
Y1 = β 0 + β1 X 11 + β 2 X 21 + β1 X k1
相关文档
最新文档