Z变换
06第六讲 Z变换的性质
Y(z)的收敛域为X(z)、H(z)收敛域的公共部分。 若有极点被
抵消,收敛域可扩大。
证 Y ( z ) Z [ x( n) h(n)]
n
[ x(n) h(h)]z n
n
n m
x ( m) h ( n m) z
第2章 Z变换 2. 序列的移位
Z[ x(n m)] z m X ( z)
Rx | z | Rx
(1-80)
位移m可以为正(右移)也可以为负(左移)。 证
Z [ x(n m)]
n
x(n m) z n z m
k
x( k ) z k z m X ( z )
证
Z [ x (n)]
*
n
x ( n) z
*
n
n *
[ x(n)(z )
* n *
]
* n * * x(n)(z ) X ( z ) n
Rx | z | Rx
第2章 Z变换 6. 翻褶序列
1 Z[ x(n)] X z
9. 序列卷积(卷积定理)
若
y ( n ) x ( n ) h ( n)
则
m
x(m)h(n m)
Y ( z ) Z [ y(n)] X ( z ) H ( z ) max[Rx , Rh ] | z | min[Rx , Rh ]
(1-88)
第2章 Z变换
V平面收敛域为
(1-90)
|z| |z| max Rx , | v | min Rx , Ry Ry
信号与系统 z变换
信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。
本文将介绍信号与系统中的z变换原理及应用。
一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。
在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。
它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。
z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。
通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。
此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。
二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。
通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。
2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。
我们可以通过分析代数方程的根的位置,判断系统的稳定性。
如果差分方程的根都在单位圆内,说明系统是稳定的。
3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。
通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。
4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。
通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。
然后再通过z逆变换将离散时间信号重构为连续时间信号。
5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。
通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。
z变换是信号与系统分析中非常重要的工具。
第9章Z变换
为: z 2 2 z cos w 0 1
6)正弦序列的 Z 变换 同样的方法:
1 sin( w 0 n ) 的 Z 变换为 2 j z e z sin w 0 ( z
jw 0
z ze
jw 0
)
,
为: z 2 2 z cos w 0 1
9.3 Z变换的基本性质
1、线性
做长除有:
X ( z ) z 1 2 z 2 nz n
所以有: x ( n ) nu ( n ) 可见,长除法是将 Z 变换分解成一个累加序列 然后总结规律。
2、部分分式展开法
这一方法同拉氏反变换中的方法基本相同 例:求
X ( z)
X ( z)
z2
z2 z 2 1.5 z 0.5 的逆变换
9.2 Z变换
1、Z变换的引出
从采样信号的拉氏变换出发:
X (s)
0
x ( t ) ( nT s )e st dt
,其中,T s 为采样间隔。
于是有:
X (s)
x ( n ) e snt s
n0
如果令 z
X (z)
e st s
,则: ,当采样间隔取 1 时,z
介绍了Z变换的收敛域的确定方法 在逆Z变换的方法中,我们有选择地介绍 了长除法和部分分式法,其中部分分式 法的过程同拉氏变换中的部分分式法是 相同的。 最后我们介绍了拉氏变换的S空间同Z变 换的Z空间之间的映射关系,它们之间是 一种典型的复变函数关系。
N N
,
等比无穷序列要收敛,要求后项与前项的比值的 模必须小于 1,即要求 | z | 1 ,有:
第六章 Z变换
6.3 z变换的反变换
2π j , 柯西公式: ∫ z dz = C 0,
n
m = −1 m ≠ −1
6.3 z变换的Βιβλιοθήκη 变换6.3 z变换的反变换
6.3 (1)幂级数展开法
6.3 (1)幂级数展开法
6.3 (1)幂级数展开法
例2 、 x[ n] = u[ n]
X ( z) = ∑ z
n =0
+∞
−n
1 = , z >1 −1 1− z
+∞ 1 X (ω ) = + π ∑ δ (ω − 2kπ ) − jω 1− e k = −∞
例3、
x[n] = − a u[− n − 1]
n
−1 n −n
a z X ( z) = − ∑ a z = − ∑ a z = − −1 1− a z n = −∞ n =1 1 = ,z <a −1 1 − az
第6章 Z变换 章 变换
引言
x(n) = z
n
LTI
y(n) = H(z)z
n
h(n)
H (z) =
jω
n = −∞
∑
+∞
h(n ) z −n ,
H ( z ) 为 h ( n )的 z 变换 .
z = re , 当r=1时,即为h( n)的傅立叶变换。
z变换是离散时间傅里叶变换的推广,在连续时 变换是离散时间傅里叶变换的推广, 变换是离散时间傅里叶变换的推广 间域内与拉氏变换相对应。 间域内与拉氏变换相对应。
(3) ZT[δ (n +1)] = ∑δ (n +1)z + ∑δ (n +1)z
n=0
7.4 z变换
2
对上式两边取z变换
而
Z[ x(t T )] z[ X ( z ) x(0)] zX ( z )
2
z 1 ( z 1) X ( z ) T z ( z 1)2
k 0
两式相减,
x[(k 1)T ] x(kT ) z k ( z 1) X ( z ) zx(0)
k 0
两边取z->1的极限, lim ( z 1) X ( z ) zx (0) lim( z 1) X ( z ) x (0) z 1 z 1
1 2
z 1 1
3
x1 (t ) 1(t )
采样
x ( t ) 1( t ) ( t kT )
* 1 k 0 * x2 ( t ) ( t kT ) k 0
x2 ( t ) ( t kT )
k 0
由该例可知,在z变换中只考虑时域函数在采样时刻的信号值, 单位阶跃函数和单位脉冲序列函数在采样时刻具有相同特性, 其z变换结果相同。 相同的z变换X(z)对应于相同的采样函数x*(t),但是不一定 对应于相同的连续函数x(t)。
z z
17
6、终值定理
x( ) lim( z 1) X ( z ) lim(1 z 1 ) X ( z )
z 1 z 1
证明:
X ( z ) x( kT ) z k
k 0
Z x(t T ) x(k 1)T z k z[ X ( z ) x(0)]
z变换公式
z变换公式在信号处理领域中,z变换是一种将离散时间序列转换为复频域的工具。
它在数字信号处理、控制系统分析和通信工程等领域中广泛应用。
本文将详细介绍z变换的概念、特性以及常见的z变换公式。
一、z变换的概念z变换是对离散时间信号进行频域分析的一种方法。
它类似于傅里叶变换,但傅里叶变换只适用于连续时间信号,而z变换适用于离散时间信号。
通过将离散时间序列表示为z的幂级数形式,可以将离散时间信号在复频域中进行表示和分析。
z变换的定义如下:X(z) = Z{x(n)} = ∑[ x(n) * z^(-n)] (1)其中,x(n)是离散时间序列,X(z)是x(n)的z变换。
二、z变换的特性与傅里叶变换类似,z变换也具有线性性、时移性、共轭性和卷积性质。
下面对每个特性进行详细讨论。
1. 线性性z变换具有线性性质,即对于任意常数a和b以及离散时间序列x1(n)和x2(n),有以下公式成立:Z{a * x1(n) + b * x2(n)} = a * X1(z) + b * X2(z) (2)其中,X1(z)和X2(z)分别是x1(n)和x2(n)的z变换。
2. 时移性z变换具有时移性质,即对于离散时间序列x(n - k),其z变换为Z{x(n - k)} = z^(-k) * X(z)。
3. 共轭性z变换具有共轭性质,即如果x(n)的z变换为X(z),则x*(-n)的z 变换为X*(1/z*),其中,*表示共轭。
4. 卷积性质z变换具有卷积性质,即对于离散时间序列x1(n)和x2(n)的卷积序列y(n) = x1(n) * x2(n),其z变换为Y(z) = X1(z) * X2(z),其中,*表示乘法运算。
三、常见的z变换公式根据z变换的定义和特性,可以得到一些常见的z变换公式,下面将逐个进行介绍。
1. 常数序列对于常数序列x(n) = C,其z变换为X(z) = C * (1 - z^(-1)) / (1 - z^(-1))。
第三章 Z变换
n
x[n] re
j n
可见,x[n]的z变换:指数序列r-n乘以x[n]后的傅立叶变换。 当︱z︱=1,即 r = 1时,z变换就是傅立叶变换。 z变换是傅立叶变换的推广,傅立叶变换是z变换的特例;
z平面: z 1 称为单位圆 傅立叶变换是z平面单位圆上的z变换 傅立叶变换的周期性解释
1 x [ n ] u[n] 通过比较可直接得到其反变换: 2
n
特点:简单求解
3.3.2 部分分式展开法 对于任意有理函数形式的X(z) -------- 主要方法 通常的X(z)表示形式: (z-1多项式之比)
或: M个零点(分子z的M次多项式) N个极点(分母z的N次多项式) z =0 的多重极点或零点 相同的有限值零点和极点数(包括z = 0,不包括z = ∞)
n
jn x [ n ] e
ejωz,傅立叶变换X (ejω)z变换X(z) 将复变量z表示成极坐标形式:z = rejω z变换可以写成:
X ( z ) X ( re ) 或 X ( re )
j n n -jn x [ n ] r e j
为方便部分分式展开,可将X(z)表示为:
ck -------- M个非零零点; dk -------- N个非零极点; 若M < N,且极点都是一阶的,则可以进行部分分式展开:
式中系数Ak求法:
例子:
1 1 极点:z , z 2 4
(一阶)
零点:z =0 (二阶) 右边序列 部分分式展开:
z变换的收敛域: (region of convergence, ROC) 对给定的序列x[n], 所有满足下列不等式的z值
n
z变换
第四章 Z 变换1 Z 变换的定义 (1) 序列)(n x 的ZT :[]∑∞=-==0)()()(n nzn x n x Z z X(2) 复变函数)(z X 的IZT :[])()(1z X Z n x -=,s e z =是复变量。
(3) 称)(n x 与)(z X 为一对Z 变换对。
简记为)()(z X n x ZT⇔或 )()(z X n x ⇔(4) 序列的ZT 是1-z 的幂级数。
n z -代表了时延,1-z 是单位时延。
(5) 单边ZT :[]∑∞=-∆==0)()()(n nzn x z X n x Z(6) 双边ZT :[]∑∞-∞=-∆==n nB B zn x z X n x Z )()()(2 ZT 收敛域ROC定义:使给定序列)(n x 的Z 变换)(z X 中的求和级数收敛的z 的集合。
∑∞-∞=-n nzn x )(收敛的充要条件是它∞<∑∞-∞=-n nzn x )((3) 有限长序列的ROC序列)(n x 在1n n <或2n n >(其中21n n <)时0)(=n x 。
收敛域至少是∞<<z 0。
序列的左右端点只会影响其在0和∞处的收敛情况: 当0,021><n n 时,收敛域为∞<<z 0(∞=,0z 除外)当0,021≤<n n 时,收敛域为∞<≤z 0(∞=z 除外) 当0,021>≥n n 时,收敛域为∞≤<z 0(=z 除外)右边序列的ROC序列)(n x 在1n n <时0)(=n x 。
如果01=n ,则序列为因果序列。
ROC 的情况:当01≥n 时,ROC 为∞≤<z R x 1; 当01<n 时,ROC 为∞<<z R x 1。
左边序列的ROC序列)(n x 在2n n >时0)(=n x 。
如果12-=n ,则序列为反因果序列。
数字信号处理第2章Z变换
s=jΩ X(S)
z=esT
X(z) z=ejω
模拟:x(t)
X(j) =T
X(ejω)
t=nT
s
数字:x(n)
§2.6 离散系统的系统函数和 系统的频率响应
一、离散系统的系统函数
1、差分方程和系统函数的关系
系统的差分方程为:
对方程两边做z变换,得:
整理得系统函数为:
2、 H(z)和单位抽样响应h(n) 的关系
(2)与的关系(=T)
的取值范围是从-→(负频端无意义,只是
用于数学分析),而在圆周上变化,具有明显 的周期性,以2为周期,这样的对应关系非单值
关系,所以要把限制在一个周期内。
= T,从–→, 所以在一个周期内:为–/T→/T
=0,S平面的实轴,
=0,z平面正实轴;
=0(常数), S:平行实轴的直线,
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
系统函数:
§2.4 z反变换
部分分式法:
X(z)一般是z的有理分式,可写成X(z)=N(z)/D(z),而N(z)、
D(z)一般是实系数多项式,则X(z)可以写成部分分式之和的形 式
再利用已知的z变换:
结合收敛域写出反变换:
需要注意的问题:
①极点zk,为D(z)=0的根 ②计算系数Ak时,要写成:
③利用已知z变换时,注意收敛域
配分法: 例2-4-1:
(在滤波器的设计中,分子、分母通常写成负幂的形式)
求系数Ak
例2-4-2:
利用z变换的时移性质: 令: 则:
长除法-原理
即D(z)除以N(z)的商为z的多项式,多项式的系数即为序列x(n) 左边序列对应z的正次幂的系数,右边序列对应z的负次幂的系数
常见序列的z变换
常见序列的z变换什么是z变换?z变换是一种数学工具,用于分析和处理离散时间信号和系统。
它可以将离散时间信号从时域(时间)转换到z域(复平面),从而方便地进行频域分析和系统设计。
z变换在数字信号处理、控制系统和通信系统等领域中广泛应用。
z变换的定义对于一个离散时间序列x[n],其z变换X(z)定义为:X(z)=∑x∞n=−∞[n]z−n其中,z是一个复数,x[n]是离散时间序列的值。
常见序列的z变换1. 单位序列单位序列u[n]是一个从n=0开始的离散时间序列,其值为1。
其z变换为:U(z)=∑u∞n=0[n]z−n=∑z−n∞n=0根据几何级数的公式,可以得到:U(z)=11−z−12. 单位阶跃序列单位阶跃序列u s[n]是一个从n=0开始的离散时间序列,其值在n≥0时为1,n< 0时为0。
其z变换为:U s(z)=∑u s∞n=0[n]z−n=∑z−n∞n=0根据几何级数的公式,可以得到:U s(z)=11−z−13. 指数序列指数序列x[n]=a n是一个常数a的离散时间序列。
其z变换为:X(z)=∑a n∞n=−∞z−n=∑(az−1)n∞n=−∞根据几何级数的公式,可以得到:X(z)=11−az−1,|az−1|<14. 正弦序列正弦序列x[n]=Asin(ωn+ϕ)是一个频率为ω、振幅为A、相位为ϕ的离散时间序列。
其z变换为:X(z)=∑A∞n=−∞sin(ωn+ϕ)z−n根据正弦函数的性质,可以将其拆分为实部和虚部的和:X(z)=∑A∞n=−∞sin(ωn+ϕ)z−n=∑A∞n=−∞sin(ωn)cos(ϕ)z−n+∑A∞n=−∞cos(ωn)sin(ϕ)z−n利用欧拉公式,可以将正弦函数转换为指数函数:X(z)=∑A∞n=−∞sin(ωn)cos(ϕ)z−n+∑A∞n=−∞cos(ωn)sin(ϕ)z−n=12j∑A∞n=−∞(e jωn−e−jωn)cos(ϕ)z−n+12j∑A∞n=−∞(e jωn+e−jωn)sin(ϕ)z−n=12j∑A∞n=−∞(e jωn cos(ϕ)−e−jωn cos(ϕ))z−n+12j∑A∞n=−∞(e jωn sin(ϕ)+e−jωn sin(ϕ))z−n根据欧拉公式的性质,可以得到:X(z)=12j∑A∞n=−∞(e jωn cos(ϕ)−e−jωn cos(ϕ))z−n+12j∑A∞n=−∞(e jωn sin(ϕ)+e−jωn sin(ϕ))z−n=12j∑A∞n=−∞(cos(ϕ)(z−1)n−cos(ϕ)(z−1)−n)+12j∑A∞n=−∞(sin(ϕ)(z−1)n+sin(ϕ)(z−1)−n)整理得到:X(z)=Acos(ϕ)2j∑((z−1)n−(z−1)−n)∞n=−∞+Asin(ϕ)2j∑((z−1)n+(z−1)−n)∞n=−∞利用几何级数的公式,可以得到:X(z)=Acos(ϕ)2j11−z−1+Asin(ϕ)2jz−11−z−15. 脉冲序列脉冲序列x[n]=δ[n]是一个在n=0时取值为1,其他时刻取值为0的离散时间序列。
第三章--Z变换(数字信号处理)
综合以上二步可得 x(n) anu(n)
例 3.7已知 换x(n)。
第三章 序列的Z变换
X (z)
1 a2 (1 az)(1 az1) ,
a
1,
求其反变
解: 该例题没有给定收敛域, 为求出唯一旳原序 列x(n), 必须先拟定收敛域。 分析X(z), 得到其极点 分布如图3.5所示。 图中有二个极点z=a和z=a-1, 这么 收敛域有三种选法, 它们是
n n1
设x(n)为有界序列, 因为是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 假如n1<0, 则收敛域不涉及∞点; 如n2>0, 则 收敛域不涉及z=0点; 假如是因果序列, 收敛域涉及
z=∞点。 详细有限长序列旳收敛域表达如下:
第三章 序列的Z变换
第三章 序列的Z变换
n 0, x(n) Re s[F (z), a] Re s[F (z), a1]
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a
)
za
(1 a2 )zn a(z a)(z a1) (z
a1)
z a 1
an (an ) an an
最终将x(n)表达成
nn1
nn1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小旳收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 假如x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)旳Z变换旳收敛域包括∞点,则x(n) 是因果序列
信号与系统第六章Z变换
差分方程的稳定性分析
01
稳定性定义
02
稳定性判据
如果一个离散时间系统在输入信号的 作用下,其输出信号不会无限增长, 则称该系统是稳定的。
对于差分方程,可以通过判断其极点 位置和类型来分析系统的稳定性。如 果所有极点都位于复平面的左半部分 ,则系统是稳定的;否则,系统是不 稳定的。
03
稳定性分析的意义
反转性质在通信和控制系统设计中非常有用,因为它允 许我们通过改变信号的方向来改变系统的性能。
卷积性质
卷积性质描述了z变换的卷积特性。如 果两个信号在时间上相乘,那么它们 的z变换就是它们的卷积。
卷积性质在信号处理中非常重要,因 为它允许我们通过将两个信号相乘来 得到一个新的信号。
复共轭性质
复共轭性质描述了z变换的复共轭特性。如果一个信号是实数,那么其z变换就是其复共轭的离散化表 示。
信号与系统第六章z 变换
目录
CONTENTS
• 引言 • z变换的收敛域 • z变换的性质和应用 • z变换与离散时间系统 • z变换与差分方程 • z变换与信号处理
01
引言
背景介绍
ห้องสมุดไป่ตู้
信号与系统是通信、电子、控制等领 域的重要基础课程,其中第六章z变换 是信号与系统中的重要章节之一。
z变换是离散时间信号处理中的一种数 学工具,用于分析离散时间信号和系 统的性质和行为。
离散信号的z变换
离散信号的z变换是将离散时间序列通过z变 换转换为复数序列,用于分析离散时间系统 的特性。
系统的频率响应和极点零点分析
01
系统的频率响应
02
系统的极点和零点
03
系统稳定性分析
通过z变换分析系统的频率响应, 了解系统在不同频率下的性能表 现。
z变换公式
z变换公式什么是z变换z变换是一种离散信号处理中常用的数学工具,用于描述数字信号在复平面上的变换。
它通过将离散时间序列转换为连续时间函数,可以对离散信号进行频域分析和滤波等操作。
z变换的定义如下:假设x[n]是一个离散时间序列,其中n为整数,z为复平面上的变量。
那么x[n]的z变换X(z)定义为:X(z) = ∑(n=-∞ to ∞) x[n] * z^(-n)其中,∑表示求和,x[n]表示离散时间序列的值,z^(-n)表示z的幂次方。
z变换的性质z变换具有多种性质,这些性质对于分析和操作离散信号非常有用。
以下是一些常见的z变换性质:如果x1[n]和x2[n]是两个离散时间序列,a和b是常数,那么有:a * x1[n] +b * x2[n] 的z变换为 a * X1(z) + b * X2(z)其中,X1(z)和X2(z)分别为x1[n]和x2[n]的z变换。
位移性质如果x[n]的z变换为X(z),那么x[n - n0]的z变换为 z^(-n0) * X(z)。
这个性质表示,对离散时间序列进行向右或向左位移,相当于在z变换域中乘以一个因子 z^(-n0)。
延迟性质如果x[n]的z变换为X(z),那么x[n - 1]的z变换为 z^(-1) * X(z)。
这个性质表示,对离散时间序列进行一阶延迟,相当于在z 变换域中乘以一个因子 z^(-1)。
如果x[n]的z变换为X(z),那么a^n * x[n]的z变换为X(z/a)。
这个性质表示,对离散时间序列进行放缩操作,相当于在z 变换域中对变换函数进行放缩。
z变换的逆变换类似于傅里叶变换,z变换也有逆变换,可以将频域函数逆变换回时域函数。
如果X(z)是一个z变换,那么其逆变换x[n]可以通过下面的公式计算:x[n] = (1/2πj) * ∮(C) X(z) * z^(n-1) * dz其中,∮(C)表示沿着包围复平面单位圆的逆时针方向进行积分,j表示虚数单位。
z变换通俗理解
z变换通俗理解(最新版)目录1.引言2.什么是 z 变换3.z 变换的作用和意义4.z 变换的通俗理解5.结论正文1.引言在信号与系统领域,z 变换是一种重要的数学工具,它能帮助我们分析和处理数字信号。
对于初学者来说,z 变换可能显得有些抽象和难以理解。
本文将从通俗的角度出发,介绍 z 变换的概念、作用和意义,希望能帮助大家更好地掌握这一知识点。
2.什么是 z 变换z 变换是一种数学变换方法,它将时间域(或空间域)的信号转换到频率域。
具体来说,z 变换是将一个离散信号(或线性时不变系统)的离散时间域表示转换为复频域表示。
这种变换可以让我们更直观地分析信号的频率特性,从而更好地理解和处理信号。
3.z 变换的作用和意义z 变换在信号与系统领域具有广泛的应用。
首先,通过 z 变换,我们可以将复杂的时间域问题简化为简单的频域问题,从而降低问题的复杂度。
其次,z 变换可以让我们更直观地分析信号的稳定性和系统的稳定性。
此外,z 变换还可以用于数字信号处理、控制系统设计等领域。
4.z 变换的通俗理解要通俗地理解 z 变换,我们可以从以下几个方面来考虑:(1)将时间域信号转换为频域信号:z 变换实际上是将一个时间域信号(离散信号)转换为频域信号的过程。
这样做的好处是,我们可以更直观地看到信号在不同频率上的成分,从而更好地分析信号的特性。
(2)简化问题:通过 z 变换,我们可以将复杂的时间域问题转化为简单的频域问题。
例如,在信号与系统中,我们常用 z 变换来分析系统的稳定性。
通过 z 变换,我们可以将系统的稳定性问题简化为判断系统的极点是否在单位圆内。
(3)可视化:z 变换还可以帮助我们可视化信号的频率特性。
通过绘制 z 平面上的频率响应,我们可以直观地看到信号的频率成分以及它们的相对大小。
5.结论总的来说,z 变换是一种重要的数学工具,它能帮助我们更好地分析和处理信号。
通过将时间域信号转换为频域信号,z 变换可以让我们更直观地了解信号的特性,从而更好地理解和处理信号。
z变换通俗理解
z变换通俗理解摘要:1.Z 变换的定义与背景2.Z 变换的性质3.Z 变换的应用领域4.Z 变换与其他变换的关系5.Z 变换的局限性及发展前景正文:Z 变换是一种在控制工程、信号处理等领域广泛应用的数学变换方法。
它可以将时域信号转换为频域信号,从而更好地分析和处理信号。
1.Z 变换的定义与背景Z 变换是一种拉普拉斯变换的广义形式,用于解决离散时间信号的处理问题。
Z 变换的基本思想是将离散时间信号转换为一个复变量函数,使得该函数在复平面上具有解析性。
2.Z 变换的性质Z 变换具有以下几个重要性质:(1)线性性:Z 变换满足线性组合的性质;(2)可逆性:存在逆Z 变换,可以将频域信号转换回时域信号;(3)移位性:Z 变换结果与原始信号的移位关系;(4)尺度变换性:Z 变换结果与原始信号的尺度变换关系。
3.Z 变换的应用领域Z 变换在控制工程、信号处理、通信系统等领域具有广泛应用。
例如,在控制系统稳定性分析、数字滤波器设计、信号调制与解调等方面,Z 变换都是重要的分析工具。
4.Z 变换与其他变换的关系Z 变换与傅里叶变换、拉普拉斯变换等数学变换方法有密切关系。
Z 变换可以看作是离散时间信号的拉普拉斯变换,而傅里叶变换则是连续时间信号的拉普拉斯变换。
在一定条件下,Z 变换可以转换为傅里叶变换或拉普拉斯变换。
5.Z 变换的局限性及发展前景尽管Z 变换在许多领域具有广泛应用,但它仍然存在一些局限性,如对于非线性系统、非平稳信号的处理能力较弱。
为了解决这些问题,研究者们不断提出新的变换方法,如W 变换、H 变换等。
第三章 Z变换
1.连续时间信号与系统: 信号的时域运算,时域分解,经典时域
分析法,近代时域分析法,卷积积分。 2.离散时间信号与系统:
序列的变换与运算,卷积和,差分方程 的求解。
二.变换域分析法
1.连续时间信号与系统: 信号与系统的频域分析、复频域 分析。
3.幂级数展开法(长除法)
因为 x(n) 的Z变换为Z-1 的幂级数,即
X (z) x(n)zn x(2)z2 x(1)z n
x(0)z0 x(1)z 1 x(2)z 2
所以在给定的收敛域内,把X(z)展为幂级数,其系数 就是序列x(n)。
n1 0收敛域0 z , n2 0收敛域0 z <
(3). 右边序列
x(n)
x(n), x(n) 0,
n n1 n n1
.. n1 0 1
...
n
1
X (z) x(n)zn x(n)zn x(n)zn
nn1
nn1
n0
序列x(n)的 Z变换
若信号x(n)为因果序列,x(n)=0,n<0 则有
X (z) x(n)z n n0
序列x(n)的 单边Z变换
二.收敛域
1.定义:
使序列x(n)的z变换X(z)收敛的所有z值的
集合称作X(z)的收敛域.
2.收敛条件: X(z)收敛的充要条件是绝对可和。
即: x(n)z n M n
c
k
Re s[ X (z)z n1]zzk
1
2j
X (z)z n1dz
第八章z变换
Z变换的收敛域
级 数 收 敛 的 充 分 条 件 :
x(n)z-n
n=-
(1)比值判定法:设一个正项级数an , n=- 令其lni m aann+1 则当1时,级数收敛; 当1时,级数发散。
则 X ( z ) Z 1 x (n )=1 X ( z ) zn 1 d z 2j C
其 中 C是 包 围X(z)zn-1所 有 极 点 的 逆 时 针 闭 合 路 线
二、求逆Z变换方法
逆Z变换
1 ) 围 线 积 分 法 : 借 助 复 变 函 数 的 留 数 定 理
X ( z ) Z 1 x ( n ) =R e s X ( z ) z n 1
二、 典型序列的Z变换
(n)
1 单 位 样 值 序 列 ( n )Z 1
1
2 单 位 阶 跃 序 列 u (n )Z z , z1
z1
0
n
u (n)
1
3 斜 变 序 列 n u (n )Z zz12 , z1 0
n
典型序列的Z变换
4 单 边 指 数 序 列 a n u ( n ) Z z
则 该 级 数 收 敛 .其 中 R x10,R x2< . 可 见 ,
双 边 序 列 的 收 敛 域 是 以 半 径 为 R x 1 和 R x 2 之 间 的 圆 环 部 分 .
作业
P103 8-1,8-2,8-3,8-12
第四节 逆z变换
一、逆Z变换
逆Z变换定义:
z 变换 通俗解释
z 变换通俗解释
Z 变换是一种数学变换,用于将离散时间信号从时域(时间域)转换到Z 域(复频域)。
它在信号处理、控制系统和通信系统等领域中具有广泛的应用。
下面是一个通俗的解释:
想象你有一个离散的信号,就像一系列按时间顺序排列的数字。
这些数字可以代表电压、电流、压力或任何其他可以被测量或采样的物理量。
Z 变换的目标是找到一种方法,将这个离散时间信号表示为另一种形式,以便更容易分析和处理。
Z 域是一个复平面,其中Z 是一个复数。
复数由实数部分和虚数部分组成,可以表示为Z = x + jy,其中x 是实数部分,y 是虚数部分。
通过Z 变换,每个时间点上的信号值都被转换为Z 域中的一个复数。
这个复数的实部和虚部分别代表了信号在该时间点的某些特性。
Z 变换的一个重要好处是,它允许我们对信号进行数学操作和分析,而不仅仅局限于时间域。
在Z 域中,我们可以使用各种数学工具和技巧来处理信号,例如滤波、卷积、频率分析等。
通过将信号从时域转换到Z 域,我们可以更轻松地研究信号的频率内容、系统的稳定性以及其他与信号处理相关的特性。
第二章 Z变换1,2,3,4
§2.1引言 信号与系统的分析方法中,除时域分析方法外,还有变换域 分析方法。在离散时间信号与系统中,变换域分析方法为 z 变换 及傅里叶变换。z 变换在离散时间系统中的作用就如同拉普拉斯 变换在连续时间系统中的作用一样,它把描述离散系统的差分方 程转化为简单的代数方程,使其求解大大简化。因此对求解离散 时间系统而言,z 变换是一个极其重要的方法(数学工具)。
12
§2.3 z 反变换(IZT) z 反变换:从给定的 z 变换闭合式 X (z ) 中还原出原序列 x(n) 。 x(n) Z 1 X ( z ) 表示式为: 通常有三种方法求出IZT:围线积分法(留数法)、部分分 式展开法和长除法。这里仅介绍前两种。 一、围线积分法(留数法) 根据复变函数的理论,若函数 X (z ) 在环状区域 Rx z Rx
n 0
所以 z 处 z 变换收敛是因果序列的特征。 3.左边序列 x n 只在 n n2 时, (n) 有非零值, n2 时,x(n) 0 。其 z 变换 为: n2 n2 0 X ( z ) x ( n) z n x ( n) z n x ( n) z n
令 z Re j , Rx R Rx 我们已经知道柯西积分定理: 1 1 z k 1dz R k 1e j ( k 1) d ( Re j ) 2 j c 2 j c
14
Rk 2
1 ,k 0 e d 0 ,k 0 , k为整数
Rx z
如图所示。
5
x 因果序列:即n1 0的右边序列,或者说,在 n 0时, (n) 有 n 非零值, 0 时,x(n) 0 。这时其变换中只有 z 的零幂和负幂项, 因此级数收敛域可以包括 z ,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z[ f (t)] Z[ f * (t)] F (z) f (kT)z k k 0
8.4.2 Z变换方法
求离散函数的方法有很多,本书介绍其中三 种。
z z esT
]
例8-5 已知系统传递函数为 F(s) 1 ,应 s(s 1)
用留数计算法求F(z)。
解:F(s)的极点为单极点
s1 0, s2 1
X (z)
2 i 1
Re s[F (s) s si
z z esT
]
Re s[ 1
z ] Re s [ 1
因此可直接写出f *(t)的脉冲序列表达式 f *(t) fk (t kT) k 0
上式就是我们要求的通过z反变换得到的离散
信号f *(t) 。
例8-7:已知 F(z) 2z 2 0.5z ,试用幂级数法求 F(z)的z反变换。 z 2 0.5z 0.5
解:用综合除法得到
z]
ssi 0 s(s 1) z eTs ss2 1 s(s 1) z eTs
lim [ 1 s0 s(s 1)
s
z
z eTs
]
lim [ 1 s1 s(s 1)
(s
1)
z
z eTs
]
z
z
z(1 eT )
z 1 z eT (z 1)( z eT )
等于在x(t)的Z变换表达式X(z)中,以 eaT z 取代原
算子z。
证明:由Z变换定义 Z[eat x(t)] eakT x(kT)z k k 0
x(kT)(eaT z)k k 0
X (eaT z)
举例:试用复数位移定理计算函数te-at的Z变换
解:令x(t)=t,查附表B知
Re s[F(s)
z z eTs
]ssi
lim
ssi
[(
s
si
)
F
(
s)
z z eTs
]
若F (s)
z
z eTs
有ri重极点Si,则
Re s[F(s)
z z esT
]ssi
(ri
1 lim
1)! ssi
d ri 1[(s si )ri F (s) dsri 1
ax1 (kT)z k bx2 (kT)z k
k 0
k 0
a x1 (kT)z k b x2 (kT)z k
k 0
k 0
aX1 (z) bX 2 (z)
2)实数位移定理又称平移定理
实数位移含义,是指整个采样序列在时 间轴上左右平移若干个采样周期,其中向左 平移为超前,向右平移为延迟。
例8-4:求f (t)=sinωt的Z变换。
解:
1 1
F(s) 2 j 2 j s2 2 s j s j
s
Ai
j
的原函数为
Ai e
pit,其Z变换为
1
Ai z 1e
jT
1
1
F
(
z)
1
2j z 1e
jT
1
2j z 1e
jT
(sin T )z1 1 (2 cosT )z1 z2
7)卷积定理
若 Z[x1(t)] X1(z) 则有: Z[x2 (t)] X 2 (z)
X1(z) X 2 (z) Z[ x1(nT )x2 (kT nT )] n0
证明:根据Z变换的定义:
X1 (z) x1 (kT)z k k 0
X 2 (z) x2 (kT)z k k 0
例8-3:求F(s) 1 的Z变换 。 s(s 1)
解:将F (s)按它的极点展开为部分分式
F(s) 1 1 1 s(s 1) s s 1
查z变换表得:1的z变换为 z ;
s
z 1
s
1
的z变换为 1
z
z e
T
于是z变换为F (z)
z
z 1
z
z eT
z(1 eT ) (z 1)(z eT )
5)初值定理
若Z[x(t)]=X(z) ,且当t<0时, x(t)=0 则
x(0) lim X (z) z
6)终值定理 若Z[x(t)]=X(z) ,且(z-1)X(z)的全部极点位
于Z平面的单位圆内,则
x() lim (z 1)X (z) z1
举例:设Z变换函数为 E(z)
f (kT)z k
是相互补充的两种变换形式,前者表示s平面 上的函数关系,后者表示z平面上的函数关系。
应该指出,式 F (z) f (kT)zk 所表示的z变换
只适用于离散函数。 k0
人们习惯上称 F(z)是f(t)的z变换,指的是经过采样后 f*(t)的z变换。采样函数f*(t)所对应的z变换是唯一的, 反之亦然。
x1 (nT )[ x2 ((k n)T )z (kn) ]z n
n0
k 0
x1 (nT )x2 (kT nT )z k
n0 k0
[ x1 (nT )x2 (kT nT )]z k k0 n0
Z[ x1(nT )x2 (kT nT )] n0
f *(t) f (t) (t kT) f (kT) (t kT)
k 0
k 0
离散信号的拉氏变换为
F * (s) f (kT)ekTs k 0
上式中各项均含有eksT 因子,为便于计算定 义一个新变量z= esT , 其中T为采样周期,z是复
数平面上定义的一个复变量。通常称为z变换算子。
X
(z)
Z
(t)
Tz (z 1)2
根据复数位移定理,有
X (ze aT ) Z[teat ] T (ze aT) (ze aT 1)2
Tze aT (z eaT )2
4)复数微分定理 若 Z[x(t)]=X(z),则 Z[tx(t)] Tz dX (z) dz
z
1
e
2aT z
ze2aT
ekaT z k
综上分析可见,通过级数求和法求取已知函 数Z变换的缺点在于:需要将无穷级数写成闭式。
2) 部分分式法
设连续函数f(t)的拉氏变换式为有理函数,可以 展开成部分分式的形式,即
n
F(s)
Ai
i1 s pi
1) 级数求和法
由离散函数
f *(t) f (t) (t kT) f (kT) (t kT)
k 0
k 0
及其拉氏变换, F * (s) f (kT)ekTs k 0
根据z变换的定义有:
F(z) f (kT)zk f (0) f (T)z1 f (2T)z2 f (kT)zk
F (z) f (kT)zk 11 z1 1 z2 k 0
1 zk
1 1 z1
z
z 1
z 1
例8-2:试求函数 f(t)=e-at 的z变换。
F
(
z)
1k
0
f1(kT) z e1 aT
z k
1z eaT z eaT
F(z) 2 0.5z 1 1.25z 2 0.875z 3
§8.4 Z变换
通过前面对线性连续系统的讨论我们知道, 线性连续系统用线性微分方程来描述,可以应用 拉氏变换的方法来分析其动态及稳态过程。线性 采样系统中包合离散信号,用差分方程来描述, 同样可以应用一种z变换的方法来进行分析。
z变换是由拉氏变换引伸出来的一种变形。
8.4.1 Z变换定义
设连续时间函数f(t)可进行拉氏变换,其拉氏 变换为F(s)。连续时间函数f(t)经采样周期为T的采 样开关后,变成离散信号f*(t)
z esT s 1 ln z T
得到以z为自变量的函数F(z)
F (z) f (kT)zk k 0
若所示级数收敛,则称F(z)是f*(t)的z变换。记为
Z[f*(t) ]= F(z)
F * (s)
1 T
F[s
n
jns ]与F (z)
k 0
式中pi为F(s)的极点, Ai为常系数。
Ai s pi
对应的时间函数为Ai e pit 其Z变换为
Z Ai Z e piT
可见,f(t)的Z变换为:
n
Z
F(z)
i 1
Ai Z e piT
利用部分分式法求z变换时,先求出已知连续 时间函数f(t)的拉氏变换F(s),然后将有理分式 函数F(s)展成部分分式之和的形式,最后求出(或 查表)给出每一项相应的z变换。
(m n)
1 a1z 1 a2 z 2 an z n
其中ai ,bj均为常系数。通过对上式直接作综
合除法,得到按 z-1升幂排列的幂级数展开式如果
得到的无穷级数是收敛的,则按Z变换定义可知上
式中的系数 fk (k=0,1,…) 就是采样脉冲序列 f *(t)的脉冲强度f(kT)。