回转体表面相交(相贯线)
两回转体表面相交

两回转体表面相交平面体与回转体相贯回转体与回转体相贯多体相贯 1.相贯的形式两立体相交叫作相贯,其表面产生的交线叫做相贯线。
相交后可看成一个整体,称为相贯体。
本节主要讨论常用不同立体相交时其表面相贯线的投影特性及画法。
概述立体表面相交有三种形式,一种是立体的外表面相交;一种是外表面与内表面相交;一种是内表面与内表面相交.实实相贯实虚相贯虚虚相贯相贯线1 相贯线的性质★表面性相贯线位于两立体的表面上。
★封闭性相贯线一般是封闭的空间折线(通常由直线和曲线组成)或空间曲线。
★共有性相贯线是两立体表面的共有线。
其作图实质是找出相贯的两立体表面的若干共有点的投影。
2 求相贯线的方法一、平面体与回转体相贯1.相贯线的性质相贯线是由若干段平面曲线(或直线)所组成的空间折线,每一段是平面体的棱面与回转体表面的交线。
2.作图方法求交线的实质是求各棱面与回转面的截交线。
∙分析各棱面与回转体表面的相对位置,从而确定交线的形状。
∙求出各棱面与回转体表面的截交线。
∙连接各段交线,并判断可见性。
例1:补全主视图空间分析:四棱柱的四个棱面分别与圆柱面相交,前后两棱面与圆柱轴线平行,截交线为两段直线;左右两棱面与圆柱轴线垂直,截交线为两段圆弧。
投影分析:由于相贯线是两立体表面的共有线,所以相贯线的侧面投影积聚在一段圆弧上,水平投影积聚在矩形上。
例2:求作主视图二、回转体与回转体相贯1. 相贯线的性质相贯线一般为光滑封闭的空间曲线,它是两回转体表面的共有线。
2.作图方法∙表面取点法利用投影的积聚性直接找点。
∙用辅助平面法。
一般是根据立体或给出的投影,分析两回转面的形状、大小极其轴线的相对位置,判断相贯线的形状特点和各投影的特点,从而选择适当的方法作图。
∙先找特殊点。
⒊作图过程∙补充中间点。
确定交线的弯曲趋势确定交线的范围如果两回转体相交,其中有一个是轴线垂直于投影面的圆柱,则相贯线在该投影面上的投影积聚在圆柱面上。
利用回转体表面取点的方法可以作出相贯线的其余投影。
5-3两回转体表面相交ccx

轴 线 正 交
柱 锥 相 贯
§5-3 两回转体表面相交
本节结束
§5-3 两回转体表面相交
4
8
5
3
6
§5-3 两回转体表面相交
二、辅助平面法
两形体相贯线的形式有三种:
外外相贯、内内相贯、外内相贯
内相贯线 外相贯线
外相贯线
内相贯线
外相贯线
§5-3 两回转体表面相交
二、辅助平面法
两形体相贯时,如果两形体的形状、大小和相对位置均相 同,则无论相贯形式如何,相贯线的形状和作图方法都相同。
外外相贯
(1) 3
2
§5-3 两回转体表面相交
二、辅助平面法
例2 求四分之一的圆环面与圆柱面的交线。
R2W R1W 2' 5'(7') 3' (4') 1' 6'(8') 2” 4” 7” 8” 1” 5” 3” 6”
作图: (1)选辅助面(正平面); (2)判别并求出特殊点; (3)求中间点;
4 (1) 3
§5-3 两回转体表面相交
外内相贯
内内相贯
二、辅助平面法
例2 求四分之一的圆环面与圆柱面的交线。
共有点
共有点
§5-3 两回转体表面相交
二、辅助平面法
例2 求四分之一的圆环面与圆柱面的交线。
R1W 2' 3' 1' 4” 1” 2” 3”
作图: (1)选辅助面(正平面); (2)判别并求出特殊点;
3
§5-3 两回转体表面相交
二、辅助平面法
例1 求轴线正交的圆柱与圆台的相贯线。 作图:
RW
3”
1'
两回转体表面的交线—相贯线

辅助平面法
作图分析: 在适当位置作一辅助平面截切 两相交立体,便会在两立体的表 面上产生截交线。因两截交线共 面,其交点便为两立体表面的共 有点,即为相贯线上的点。 按此方法作出若干辅助平面便 可得到相贯线上的一系列点,依 次连接各点就可作出相贯线的投 影。
三、相贯线的特殊情况 一般情况下相贯线为封闭的空间曲线,而特殊情况的相 贯线则为平面曲线或直线。 图中两圆柱轴线相交并与V面平行,故相贯线为垂直于V 面的两椭圆。即主视图中两相交直线。
相贯线的特殊情况
两曲面立体相交,一般情况下相贯线为空间曲线, 但特殊情况下可能是平面曲线或直线。
2.两同轴回转体的相贯线是垂直于轴线的圆。 图中圆球与圆柱同轴且轴线平行于V面,
2’,(4’)
3’
4 (4;
d" b"
QW
4"
2"
PW
c"
a"
RW
3"
注:圆柱与球相贯
当圆球与圆柱同轴且轴线平行于V面, 则相贯线圆在V面上的投影积聚为直线。
如是圆球开孔,相贯线同前面分析相同。 圆球与圆锥相交,其相贯线同前 面分析的情况相同。
例、求圆柱与半球相贯线主俯视图
图例:
全贯 柱柱正交
柱穿锥
互贯 柱柱正交(等径)
孔孔正交
1.相贯线的主要性质
★ 表面性
相贯线位于两立体的表面上。
★ 封闭性
相贯线一般是封闭的空间折线(通常 由直线和曲线组成)或空间曲线。
两共轴回转体表面相贯线的形状为

两共轴回转体表面相贯线的形状为相贯线是指两共轴回转体表面相互相交时形成的线段或曲线。
两共轴回转体表面相贯线的形状不仅与共轴回转体的几何形状有关,还与它们的位置、朝向以及相对运动方式等因素密切相关。
下面将从几何形状、位置与朝向、相对运动方式三个方面来探讨两共轴回转体表面相贯线的形状。
首先,两共轴回转体的几何形状对相贯线的形状有很大影响。
最简单的情况是两个圆柱体或圆锥体相贯。
当两个圆柱体或圆锥体的轴线相交于一点时,相贯线为一条射线。
当两个圆柱体或圆锥体的轴线平行时,相贯线为一条直线。
如果两个圆柱体或圆锥体的轴线相交于非垂直的点,相贯线为一条螺旋线。
此外,当一个圆柱体与一个球体相贯时,相贯线的形状为一条环线。
当两个球体相贯时,相贯线为一个球面。
其次,两共轴回转体的位置与朝向也对相贯线的形状产生影响。
当两个共轴回转体平行且轴线有一定的偏移时,相贯线为两个直线段,且与共轴回转体的轴线平行。
当两个共轴回转体有一定的夹角时,相贯线为一条曲线,其形状取决于夹角的大小和角的种类(如锥角、锐角或直角等)。
最后,两共轴回转体的相对运动方式也会影响相贯线的形状。
当两个共轴回转体以相同的转速和方向旋转时,相贯线为一条直线。
当两个共轴回转体以相同的转速但以相反的方向旋转时,相贯线为一条曲线,其形状取决于旋转速度的大小和方向。
如果两个共轴回转体以不同的转速旋转,相贯线的形状将会更加复杂,可能会出现多条线段或曲线。
综上所述,两共轴回转体表面相贯线的形状与共轴回转体的几何形状、位置与朝向以及相对运动方式密切相关。
通过对这些因素的分析,我们可以推测出相贯线的大致形状。
但是由于相贯线的形状高度复杂,没有明确的统一公式或规律可以描述,因此对于具体形状的相贯线的确定需要借助数学和计算机模拟等工具的支持。
常用回转体相交的表面交线

2 aY
1
b 6 RH
7
因为两圆柱旳水平投影 左右对称,侧面投影上下 对称。故相贯线旳正面投
旳同面投影依次光滑地连 接起来,即得相贯线。 4.补全外形线,完毕作图
影上下、左右对称。
返回
例6:求两轴线交叉圆柱旳相贯线 Y RW
3` 4` 2`
a`
5` 6` b`
1`
7`
4`` 3``
2``
(5``)
13
3
4
2
3 3
1 4 2
返回
1、相贯线旳性质
(1) 、一般情况下,相贯线为封闭旳空间曲线。 (2)、相贯线是两立体表面旳共有线,相贯线上旳点是 两立体表面旳共有点。
返回
2、相贯线旳三种基本形式
(1)、两外表面相交 (2)、外表面与内表面相交 (3)、两内表面相交
外表面和外表面相交 外表面和内表面相交
2``
2``
最终最低点投影
最 左
最 左
2
最最 右高
最 高
1
最点 高
点
点
投
2
投
影
影
最前最低点投影
最
前
1
最
2
低
点
圆柱圆锥相贯线
1`
1`
2`
(2)求一般点。
1``
2``
2``
2 1
2
Ⅲ
Ⅱ Ⅳ
Ⅰ
例4:求两轴线相交旳圆柱圆锥相贯线
(2)求一般点。
1`
1`
RV
1``
5`
6` 2`
2`` 4`` 5`` 2``
1 2
1 2
1
2
回转体轴线相交且表面内切于公共球的相贯线

两回转体轴线相交且其表面公内切于一个球面的相贯线
圆柱与圆柱斜交,当两圆
柱直径相等斜交处的曲面内切
于球时,相贯线正面投影为两
条相交不等长直线,且前后重
叠;水平面投影为圆形曲线,
圆柱与圆锥正交,当圆柱
直径相对圆锥正交处的曲面内
切于球时,相贯线正面投影为
两条相交等长直线且前后重
叠;水平面投影为对称交的两
圆柱与圆锥斜交,当圆柱
直径相对圆锥斜交处的曲面内
切于球时,相贯线正面投影为
两条相交不等长直线,且前后
重叠;水平面投影为不对称相
交的两椭圆曲线,且有部分不。
第三章 基本立体表面交线-相贯线

2.作图方法
求交线的实质是求各侧平面与回转面的交线。 • 分析各棱面与回转体表面的相对位置,从而确
定交线的形状。 • 求出各棱面与回转体表面的交线。 • 连接各段交线,并判断可见性。
例1:补全主视图
投空影间分分析析::
辅助平面
例:求圆柱与圆锥的相贯线.
y
PV QV RV
!不可见部分 画虚线!
正交的圆柱与圆锥相贯线变化趋势
双曲线
直线
双曲线
封闭空间曲线
椭圆
封闭空间曲线
两曲面立体相贯线的特殊情况
两曲面立体相交,一般情况下相贯线为封闭空间 曲线,但特殊情况下可能是平面曲线或直线——圆 (椭圆)或直线。
!特殊相贯线的投影一般为圆、直线或
64
1 5
2
3
求正交两圆柱的相贯线
(2)求一般点:在已知 相贯线的侧面投影图上任 取一重影点5″、6″,找 出水平投影5、6,然后作 出正面投影5′、6′。
(3) 光滑连相贯线:相贯 线的正面投影左右、前后 对称,后面的相贯线与前 面的相贯线重影,只需按 顺序光滑连接前面可见部 分的各点的投影,即完成 作图。
相贯线的共有性+正投影的从属性+圆柱面投影的积聚性
例1.如图所示已知两圆柱的三面投影,求作它们的相贯线。
分析: 由投影图可知,
直径不同的两圆柱轴 线垂直相交,由于大 圆柱轴线垂直于W面, 小圆柱轴线垂直于H 面,所以,相贯线的 侧面投影和水平投影 为圆,只有正面投影 需要求作。
相贯线为前后左 右对称的空间曲线。
相贯线
相贯线
相贯线
第二章第六讲相贯线

相贯线
二、相贯线的特殊情况
1.当两回转体具有公共轴线时,相贯线为一圆, 该圆的正面投影积聚为直线,水平投影反映圆的实 形。
相贯线
2.轴线平行的两圆柱的相贯线是两条平行的素 线。
图4-18 c 相贯线的特殊情况
相贯线
3.
图4-18 a 相贯线的特殊情况
相贯线
三、拱形柱与圆柱相贯
图4-19a 拱形柱与圆柱相交
相贯线
相贯体:两回转体相交。 相贯线:两回转立体表面相交产生的交线。 性质: 是两回转体表面的共有线,分界 线,一系列共有点的集合。 一般是封闭的空间曲线;特殊情 况下可能是平面曲线或直线。 形状取决于回转体的形状,大小 及两回转体之间的相对位置。
相贯线
求相贯线的实质:求基本体表面的 共有点,并将这些点光滑地连接起来。 求相贯线步骤:
1.求特殊点,能初步看出相贯线的投影 范围,拐弯情况。 2.求一般点。 3.判别可见性,并光滑连线。
相贯线
一、两圆柱垂直相交 例1:求作两圆柱相贯线的投影。
图4-15 两圆柱的相贯线
相贯线
近似画法:当两圆柱正交且直径相差较大时, 可用圆弧代替非圆曲线的相贯线,半径为大圆柱的 半径为大圆柱的 半径。 半径。
相贯线
图4-19b 拱形柱与圆柱相交
练习
练习Biblioteka 相贯线当直径不等的圆柱正交,在非积聚性投影的相 贯线的弯曲方向向着大圆柱的轴线 弯曲方向向着大圆柱的轴线。 弯曲方向向着大圆柱的轴线
图4-16c 两圆柱正交相贯线的变化
相贯线
例2:分析圆柱穿孔的相贯线的投影。
(b) 外圆柱面与内圆柱面相交 图4-17 两圆柱相交的三种形式
相贯线
(c)两圆柱内表面相交 (c)两圆柱内表面相交 图4-17 两圆柱相交的三种形式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线的圆。当轴线平行
于某投影面时,这些 圆在该投影面上的投 影为直线段。
相贯线
三、两圆柱轴线平行
例: 补全正面投影
补全侧面投影。
例题:
已知被切割圆柱的主视图和俯视图,求左视图。
y1
y
y1
y
两轴线正交圆柱相贯线的趋势
动画
四、两圆柱相贯线的
常见情况:
b)
圆柱孔与实心圆柱相交
a) 两实心圆柱相交 c) 两圆柱孔相交
五、相贯线的特殊情况
1、两直径相等的圆柱
轴线相交成直角, 其相贯线是两个相 同的椭圆。 这两个椭圆的正面 投影是两条相交且 等长的直线段。
相贯线
2、两个同轴回转体 的相贯线是垂直于轴
动画
三、作图方法
例: 求作轴线垂直相交两圆柱的相贯线
1’ 4’ 3’ 2’ 4” 1” (2”) y y
3”
分析: 已知相贯线的 水平投影和侧面投影 求作:正面投影
作图步骤:
4
y 1 2 4 2 3
1、作特殊点 2、作一般位置点 3、柱)的轴线方向。
y
画出两轴线正交的圆柱孔的相贯线
§3-3
两回转体表面相交
相贯线:两立体相交时在表面上产生的交线。 一、 两回转体相交时的基本性质: 1、相贯线是两曲面立体表面的 共有线,相贯线上的点是两 曲面立体表面上的共有点。 2、两曲面立体的相贯线一般是 封闭的空间曲线,特殊情况 下可以是平面曲线或直线。
二、决定相贯线形状的相关因素
⒈ 取决于相交两曲面立 体的几何性质。 ⒉ 当它们的大小或相对 位置不同时,相贯线 的形状也随之而异。