材料力学 梁的弯曲问题
弯曲-理论力学,经典
②精确适用于纯弯曲梁;
③对于横力弯曲的细长梁(跨度与截面高度比l/h>5),
上述公式的误差不大,但公式中的M应为所研究截面
上的弯矩,即为截面位置的函数。
M ( x) y 1 M ( x) , Iz ( x) EI z
26 材料力学多媒体_孙艳 例题
b III、三种典型截面对中性轴的惯性矩 1.矩形截面 h
2qa 2qa FS图
2qa2
M图
6qa2
15 材料力学多媒体_孙艳 例题
Ⅱ、平面曲杆 面内受力时的内力——轴力、剪力、弯矩 弯矩的符号约定——使杆的曲率增加(即外侧受拉) 为正 作平面曲杆内力图的约定与刚架相同。 F m B m
A
材料力学多媒体_孙艳
R
O
16 例题
例 一端固定的四分之一圆环,半径为R,在自由端 B受轴线平面内的集中荷载F作用如图,试作出其内 力图。 F h F m FS( B m FN( z M R ( A O O 解:取分离体如图写出其任意横截面m-m上的内力 方程: FN F sin 0 π/2
E
E
A
ydA E I yz 0
E
Sz 0
中性轴z通过截面形心
(2) M y
A
zydA
(3) M z y dA
A
E
A
y dA
2
E
Iz M
M EI z
24
1
材料力学多媒体_孙艳
例题
4.纯弯曲梁横截面上的应力(弯曲正应力):
My ①距中性层y处的应力: Iz ②梁的上下边缘处,弯曲正应力取得最大值,分别 为:
弯曲变形知识点总结
弯曲变形知识点总结一、弯曲变形的原理1.1 弯曲应力和弯曲应变在外力作用下,梁或梁状结构会发生弯曲变形。
在梁上的任意一点,都会受到弯曲应力的作用。
弯曲应力是指由于梁在受力下产生的内部应力,它的大小和方向取决于梁的截面形状、受力方向和大小等因素。
弯曲应力与梁的截面形状呈二次关系,通常情况下,弯曲应力最大值出现在梁的截面中性轴附近。
随着梁的弯曲,材料内部会产生弯曲应变。
弯曲应变也是和梁的截面形状有关的,并且与弯曲应力呈线性关系。
弯曲应变可以用来描述梁在受力下的变形情况,对于计算梁的弯曲变形非常重要。
1.2 理想弹性梁的弯曲变形对于理想弹性梁而言,其弯曲变形可以通过弯曲方程来描述。
弯曲方程可以根据梁的几何形状和外力作用来得到,通过求解弯曲方程可以得到梁的变形情况。
理想弹性梁的弯曲变形遵循胡克定律,即弯曲应力和弯曲应变成正比。
1.3 破坏弯曲当外力作用到一定程度时,梁会发生破坏弯曲。
在破坏弯曲阶段,梁的抵抗力不足以克服外力作用,导致梁发生不可逆的变形。
在此阶段,梁的弯曲应力和弯曲应变将迅速增大,直至梁失去稳定性。
二、弯曲变形的计算方法2.1 弯曲方程弯曲方程是描述梁弯曲变形的重要工具,可以根据弯曲方程来求解梁的弯曲应力和弯曲应变。
通常情况下,弯曲方程是一种二阶微分方程,需要求解出合适的边界条件,才能得到梁的变形情况。
弯曲方程的求解与梁的截面形状直接相关,对于不同形状的梁,需要采用不同的弯曲方程。
2.2 梁的截面性质对于计算梁的弯曲变形而言,了解梁的截面性质非常重要。
梁的截面性质包括截面面积、截面惯性矩等参数,这些参数会直接影响弯曲方程的求解。
在实际工程中,可以通过截面性质来选择合适的梁截面形状,以满足结构设计的需求。
2.3 数值计算方法为了解决复杂梁的弯曲变形问题,通常需要采用数值计算方法。
数值计算方法可以通过数学模型来描述梁的变形行为,然后通过计算机仿真来得到梁的变形情况。
在工程实践中,有限元方法是一种常用的数值计算方法,可以对复杂结构的弯曲变形问题进行有效求解。
材料力学第五章梁弯曲时的位移
实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。
弯曲应力—纯弯曲时的正应力(材料力学)
§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z
范钦珊版材料力学习题全解 第5章 梁的弯曲问题(1)-剪力图与弯矩图
M A = ql 2
| FQ | max = 5 ql 4
| M | max = ql 2
题(c)
∑ F y = 0 , FRA = ql (↑)
9
∑ M A = 0 , M A = ql 2
∑ M D = 0 , ql 2 + ql ⋅ l − ql ⋅ − M D = 0
3 2 ql 2 | FQ | max = ql MD =
C
4000 4000
B
FB
习题 5-8 载荷图之二
5-9 试作图示刚架的剪力图和弯矩图,并确定 FQ
max
、 M
max
12
习题 5-9 图
解:题(a) :
∑M A = 0
FRB ⋅ 2l − FP ⋅ l − FP ⋅ l = 0
FRB = FP (↑)
∑ F y = 0 , F Ay = FP (↓)
∑ Fx = 0 , FAx = FP (←)
C
2
1
B
C
-
B
1
D
M(FPl)
1 +
D
FQ(FP)
A
A
习题 5-9a 的弯矩图
剪力图和弯矩图如图所示,其中 | M | max = 2 FP l , 位于刚节点 C 截面;
| FQ |max = FP
题(b) : ∑ F y = 0 , F Ay = ql (↑)
8
习题 5-6c、e 解图
习题 5-6d、f 解图
题(b)
∑ M A = 0 − ql 2 − ql ⋅ l + ql ⋅ l + FRB ⋅ 2l = 0
2
FRB
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
梁的弯曲正应力实验
梁的弯曲正应力实验引言在力学学科中,我们研究物体的形变和变形时,经常需要考虑应力的问题。
应力是物体内部的力分布情况,可以用来描述物体对外界施加力的能力。
弯曲正应力实验是一种常见的实验方法,用来研究材料在弯曲过程中产生的正应力分布情况。
本文将详细介绍梁的弯曲正应力实验的原理、实验装置、实验步骤以及实验结果的分析。
实验原理在材料力学中,当梁受到作用力而产生弯曲时,梁内部会产生正应力和剪应力。
弯曲的平面称为中性面,中性面附近的纤维受到压应力,而远离中性面的纤维则受到拉应力。
梁上不同位置的正应力大小不同,正应力随着距离中性面的距离增大而减小。
实验装置梁的弯曲正应力实验需要以下装置: 1. 实验梁:选择一块具有一定长度和宽度的梁作为实验梁。
梁的截面形状可以选择矩形、圆形等。
2. 支座:用于支撑实验梁的底部,使其能够固定在位置上。
3. 加载装置:通过施加作用力,使实验梁产生弯曲。
可以使用重物、液压等方式施加作用力。
4. 测力计:用于测量实验梁上的正应力大小。
5. 测量仪器:使用光学显微镜或拉伸计等设备来测量梁的形变情况。
实验步骤1.准备实验梁:选择一块长度和宽度适当的梁,使其能够适应实验要求。
可以根据需要对梁进行截割和加工。
2.搭建实验装置:将支座固定在实验台上,将实验梁放置在支座上,并调整支座的位置和角度,使实验梁能够产生弯曲。
3.施加作用力:根据实验要求,选择适当的加载装置施加作用力。
可以逐渐增加作用力的大小,以逐渐产生弯曲。
4.测量正应力:使用测力计测量实验梁上的正应力大小,并记录测得的数据。
5.测量形变:使用测量仪器测量梁的形变情况,可以测量梁的弯曲角度、梁的变形量等。
6.结束实验:根据实验要求,结束实验并记录实验数据。
实验结果分析在实验结束后,根据测得的数据进行结果分析。
可以绘制出梁上不同位置的正应力大小与距离中性面的距离的关系图,分析正应力随距离的变化规律。
还可以计算梁的弯曲刚度、弯曲变形等参数,以便进一步研究材料的力学性质。
材料力学实验四 直梁弯曲实验
实验四 直梁弯曲实验预习要求:1、复习电测法的组桥方法;2、复习梁的弯曲理论;3、设计本实验的组桥方案;4、拟定本实验的加载方案;5、设计本实验所需数据记录表格。
一、 实验目的:1. 电测法测定纯弯梁横截面上的正应变分布,并与理论值进行比较,验证理论公式;2. 电测法测量三点弯梁横截面上的正应变分布及最大切应变,并 与理论值进行比较,验证理论公式; 3.学习电测法的多点测量方法及组桥练习。
二、实验设备:1. 微机控制电子万能试验机;2. 电阻应变仪;三、实验试件:本实验所用试件为中碳钢矩形截面梁,其横截面设计尺寸为h ×b =(50×30)mm 2,a=50mm , 材料的屈服极限MPa s 360=σ, 弹性模量 E=210GPa ,泊松比μ=0.28。
四.实验原理及方法:处于纯弯曲状态的梁,在比例极限内,根据平面假设和单向受力假设,其横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为:()()ZZM y y E I M yy E I εεμ⋅=⋅⋅'=-⋅ (1)距中性层为 y 处的纵向正应力为:()()zM yy E y I σε⋅=⋅=(2) 本实验采用重复加载法,多次测量在一级载荷增量∆M 作用下,产生的应变增量∆ε和∆ε’。
于是式(1)和式(2)分别变为:()()()ZZZM y y E I M yy E I M y y I εεμσ∆⋅∆=⋅∆⋅'∆=-⋅∆⋅∆=(3) (4)在本实验中,/2M P a ∆=∆⋅ (5) 最后,取多次测量的平均值作为实验结果:111()()()()()()Nnn Nnn Nnn y y Ny y Ny y Nεεεεσσ===∆∆='∆'∆=∆∆=∑∑∑ (6)三点弯曲时,最大切应力理论值为:As2F 3max =理论τ (7) 其实验值测量方法为在最大切应力所在中性层处沿与轴线成±45°布置单向应变片,测量出其应变值,则最大切应力的实验值为:()()︒+︒===4545-max 2-G 2G G εεγτ实验 (8)本实验采用电测法,测量采用1/4桥,如下图五所示。
材料力学教程-7.弯曲变形
根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
材料力学实验-直梁弯曲实验
BUAA
➢ 实验试件
中碳钢矩形截面梁
材料力学实验
试件设计尺寸: 50 30 550mm 材料弹性常数: E 210GPa
0.28 材料屈服极限: s 360MPa
应变片的高度坐标:y 25mm , 20mm , 10mm , 0 mm
Page3
BUAA
材料力学实验
实验装置布置R12DUPage13
BUAA
全桥接线法
A B B1 C D
材料力学实验
R9 R2 R12 R11
Page14
BUAA
材料力学实验
3、纯弯梁横截面上正应力的实验结果与理论计算
实验结果 1) 通过测量得到横截面上的纵向正应变
2) 通过测量得到上下表面纵向正应变与横向正应变的比
3) 按照单向应力状态的胡克定律计算梁横截面上的正应 力分布
S1
S2
S9 S10
S12
Page6
BUAA
2、上下表面纵向正应变与横向正应变的测定
材料力学实验
测量应变的桥路图(1/4桥) *验证单向受力假设
S9 S10
S1 S2
Page7
BUAA
材料力学实验
四分之一桥接线法 +Eg Vi+ -Eg Vi-
A B B1 C D
当接1/4桥时,先将温度补偿片 接入应变仪上面板公共温度补 偿接线端后,等效于所有通道 的C和 B1接线柱之间就接入温 度补偿片了,同时将工作片应 变片的两条连接导线分别接入 所选通道接线排中的A和B接线 柱,同时将接入B点的导线端子 的叉子两个脚分别接入B和B1, 即跨接后将B1与B短接
和 实验 之间的相对误差;
2. 计算上下表面的横向应变增量与纵向应变增量之比的
材料力学剪力弯曲为什么可以忽略的例题
在材料力学中,当研究某些结构的弯曲行为时,有时可以合理地忽略剪力的影响。
这通常发生在以下情况:
1.细长梁:对于细长梁(即长度远大于其横截面尺寸的梁),剪切变形通常比弯曲变
形小得多。
因此,在分析细长梁的弯曲时,可以忽略剪切变形的影响。
2.均匀截面梁:对于具有均匀横截面的梁,剪切应力和剪切变形在横截面上是均匀分
布的。
这意味着剪切变形对梁的整体弯曲行为的影响较小,因此可以忽略。
3.弹性范围内的小变形:在弹性范围内,如果梁的变形相对较小,剪切变形的影响也
会相应减小。
在这种情况下,可以合理地忽略剪切变形,而只考虑弯曲变形。
下面是一个简单的例题,说明了在什么情况下可以忽略剪力弯曲的影响:
例题:考虑一个均匀细长的悬臂梁,其长度为L,横截面面积为A,弹性模量为E,受到一个集中力F的作用在自由端。
求梁的挠度。
解:由于梁是细长的,并且受到的是集中力,剪切变形的影响相对较小。
因此,我们可以忽略剪切变形,只考虑弯曲变形。
根据材料力学的基本原理,梁的挠度可以通过以下公式计算:
挠度= (F * L^3) / (3 * E * I)
其中,I是梁的截面惯性矩。
这个公式只考虑了弯曲变形,没有考虑剪切变形的影响。
因此,对于这个问题,我们可以忽略剪力弯曲的影响,使用上述公式来计算梁的挠度。
需要注意的是,这个例题仅适用于特定的情况(如细长梁、均匀截面、弹性范围内的小变形等)。
在其他情况下,剪切变形可能不能忽略,需要更全面的分析。
梁的弯曲正应力实验原理
梁的弯曲正应力实验原理梁的弯曲正应力实验原理一、实验介绍在工程结构中,梁是一种常见的构件。
在使用中,由于外界载荷的作用,梁会发生变形。
为了保证结构的安全性和稳定性,需要对梁的弯曲变形进行分析和计算。
而弯曲变形会引起梁内部产生正应力和剪应力。
因此,对于工程结构中的梁来说,了解其内部正应力和剪应力分布情况是非常重要的。
本实验旨在通过对悬臂梁进行弯曲试验,测量不同位置处的弯曲挠度,并计算出相应位置处的正应力值。
通过实验结果可以了解到不同位置处正应力值分布情况,并掌握利用光栅法测量弯曲挠度及其精度控制方法。
二、实验原理1. 悬臂梁模型本实验采用经典材料力学理论中最基本的问题——矩形截面直线材料受单向纯弯曲载荷时产生的内部正应力分布问题作为研究对象。
该问题可以通过建立一个简单模型来描述:假设截面为矩形,梁的长度为L,宽度为b,高度为h,悬臂梁在距离端部x处受到一个弯曲力M,产生弯曲挠度y(x),则在该位置处的正应力σ(x)可以通过以下公式计算:σ(x) = My(x) / I其中I为梁截面的惯性矩。
2. 光栅法测量弯曲挠度光栅法是一种非接触式、高精度、高灵敏度的位移测量方法。
其基本原理是利用光学干涉原理,通过将光栅投射到被测物体表面上,在物体发生位移时,会改变反射光栅的光程差,从而引起干涉条纹的变化。
通过对干涉条纹进行分析处理,可以得到被测物体表面上的位移信息。
在本实验中,采用了一种常见的光栅法——三角形法。
该方法利用三个平行排列的光栅,在被测物体表面上形成三组互相平行且等间距分布的干涉条纹。
当被测物体发生微小位移时,三组干涉条纹会发生相对位移,并形成新的交叉条纹。
通过对新的交叉条纹进行测量,可以得到被测物体表面的位移信息。
3. 弯曲挠度精度控制方法在实验中,为了保证弯曲挠度的精度,需要采取一些措施来控制误差。
其中最常见的方法是采用“四点法”。
该方法利用四个位置处的光栅测量数据,通过对数据进行处理计算出悬臂梁在不同位置处的弯曲挠度。
材料力学 第四章 弯曲内力
3-3截面
Fy 0; FA Fs 3 P 0
Fs3 7kN
M3 0; M 3 FA 2 0
M 3 10kN.m
F=12kN
1 A1
23 2D 3
2m
2m
q=2kN/m 4
B C4 2m
2
A FA
2 Fs2 M2
P=12kN
A
3 3
M3
FA
Fs3
F=12kN
建立剪力与弯矩方程,画剪力与弯矩图
解:1. 支反力计算
FCy qa,
MC
qa2 2
2. 建立剪力与弯矩方程
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
§4–4 剪力、弯矩与分布荷载集度间的关系
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
3. 画剪力与弯矩图
剪力图:
FS1 qx1
FS2 qa
弯矩图:
M1
qx12 2
M2
qax2
qa2 2
剪力弯矩最大值:
FS max qa
简单静定梁:
悬臂梁
简支梁
外伸梁
§4-2 剪力和弯矩
FS-剪力
M-弯矩
剪力-作用线位于所切横截面的内力。 弯矩-矢量位于所切横截面的内力偶矩。
3.3梁的弯曲变形分析
单位为M Pa
MM-和y截面上的弯矩 均以绝对值代入,至于弯曲 (N.mm) 正应力是拉应力还是压应力,则 y--计算点到中性轴距离(mm) 由欲求应力的点处于受拉侧还是 4 受压侧来判断。受拉侧的弯曲正 Iz--横截面对中性轴惯性矩 mm 应力为正,受压侧的为负。
推导过程
1)沿y轴线性分布,同 一坐标y处,正应力相 等。中性轴上正应力为 零。
梁发生平面弯曲时,横截面上一般产生两种 内力,即剪力和弯矩。
d A dA
dA
dA FS dA M M FS
dA M dA FS
在横截面上,只有法向内力元素dN=σdA才能合成
弯矩M,只有切向内力元素d FS =τdA才能合成剪力 FS
• 在横截面上,只有弯矩M,没有剪 力Fs,这种弯曲称为纯弯曲; • 横截面上同时有弯矩M和剪力Fs, 这种弯曲称为横力弯曲。
0.2L
M
qL2 8
x
M
qL2 40 qL2 50
+
x
+
qL2 50
合理布置载荷
F=qL q
L
L
M
qL2 4
x +
M
qL2 8
x +
合理布置载荷
F=qL F=qL
对称
L/5 4L/5
M
qL2 4
M x +
qL2/10
x
合理布置载荷
2. 合理选择梁的截面,用最小的截面面积得 到大的抗弯截面模量。
推论:
梁在弯曲变形时,上面部分纵向纤维缩短, 下面部分纵向纤维伸长,必有一层纵向纤维 既不伸长也不缩短,保持原来的长度,这一纵 向纤维层称为中性层。 中性层与横截面的交线称为中性轴
梁的弯曲正应力测定实验总结
梁的弯曲正应力测定实验总结梁的弯曲正应力测定实验是材料力学实验中的重要一环,旨在通过实验手段来研究材料在受力情况下的正应力变化。
通过本次实验,我深刻的认识到了弯曲变形对材料正应力的影响,同时也对实验操作技巧有了更深一步的理解。
在实验过程中,我们首先测量了试验梁的直径以及长度,并计算出了截面积、即初始的自由端切应力值。
接着我们进行了荷载实验,通过不断增加荷载,在满足线性弹性范围的条件下,记录不同荷载时梁的挠度数据。
然后我们对荷载和挠度数据进行了处理,并绘制出了梁在不同荷载下的挠曲线图。
最后,基于挠度与荷载之间的关系,计算得到了梁的弯曲切应力。
在实验过程中,我们充分体验到了实验数据的重要性,因此要求我们对每次荷载、挠度的记录都要精确、准确。
同时,对于试验所采用的仪器,例如测力计、卡尺等,我们也要严格保证其精度的可靠性。
只有如此,我们才能获得一个完整、具有参考价值的实验数据结果。
同时,在实验过程中,我们也需要注意数据的间接测量和误差产生的修正。
比如,在梁的挠曲线图上,数据之间可能存在微小的偏差,这可能是由于梁自身的曲度、弯度误差、荷载偏心等因素所引起。
因此,在最终的数据分析过程中,我们需要结合这些因素,进行科学的数据校正,以得到更加真实、准确的实验结果。
总之,梁的弯曲正应力测定实验对材料工程的发展有着重要的意义。
通过本次实验,我不仅掌握了实验数据的获取、处理技能,更重要的是充分认识到了实验数据对于材料工程开发的重要意义。
我相信,通过不断的学习、实践,我们将能够更好地应用实验手段来研究材料工程领域的问题,为材料科学技术的发展贡献自己的力量。
平面纯弯曲的基本假设
平面纯弯曲的基本假设
平面纯弯曲的基本假设是材料力学中关于梁纯弯曲变形的基本假设,主要涉及以下方面:
1.平面假设:在纯弯曲时,梁的横截面保持为平面,并与纵向纤维间无相对滑动。
这意味着横截面上各点的纵向位移是相同的,即没有剪切变形。
2.单向受力假设:单向受力假设也称为单向拉伸或压缩假设,即构件受外力作用后,构件内各点的应力状态都是单向拉伸或压缩。
在纯弯曲的情况下,这意味着梁横截面上各点的正应力方向都与横截面垂直,且大小沿横截面高度呈线性分布。
这些基本假设允许工程师简化问题并使用简化的公式进行设计和分析。
然而,需要注意的是,这些假设在某些情况下可能不成立,例如在横截面尺寸变化较大、材料不均匀或受到复杂外力作用的情况下。
在这些情况下,需要使用更复杂的方法进行分析和设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
3
●对称(平面)弯曲 (Planar bending)
对称平面 F2
F1
(b)
F2
F1
(a)
A
B
(c)
平面弯曲:梁的轴线在变形后仍保持在同一平面(荷 载作用面)内,即梁的轴线成为一条平面曲线。
A
4
梁的荷载和支座反力
一、梁的荷载 1 集中力:作用在微小局部上的横向力; 2 集中力偶:作用在通过梁轴线的平面(或与该面平 行的平面)内的力偶。
可见计算结果完全相同。 F=8kN 1
q=12kN/m 2
A
1
2 1.5m B
FRA 2m
1.5m
3m
FRB
A
22
(3) 求2-2截面的剪力FQ2、弯矩M2 根据2-2截面右侧的外力计算可得:
FQ2 q1.5F R B11kN
M2 q 1 .5 0 .7 5 F R B 1 .5 3 0 k N m
第十五章 梁的弯曲问题
A
1
15.1 工程实际中的弯曲问题
一、平面弯曲的基本概念
梁在垂直于其轴线的荷载作用下要变弯,其轴 线由原来的直线变成曲线,这种变形叫做弯曲变 形。产生弯曲变形的构件称为受弯构件。
F2 M
F1
A
B
A
2
●工程实例
建筑工程中的各类梁、火车轴、水压作用下的水 槽壁等。
火车轴
厂房吊车梁
A
10
⑵超静定梁:仅用平衡方程不能求出全部未知反 力的梁。
F
F
A
11
●按梁的横截面 ⑴等截面梁:横截面沿梁的长度没有变化; ⑵变截面梁:横截面沿梁的长度有变化。
汽车钢板弹簧
鱼腹梁
A
12
15.2 梁的内力及其求法
一、求梁的内力的方法——截面法 ●内力的形式及名称
1 F1
F2
A
1
FRA a
l
FRB
A
17
(3)求2-2截面上的内力
0.5mF1 1 F2 2 1m
A
1 FRA
2
B FRB
1m 3m 1.5m
F1
A
FRA
F2 M2
FQ2
Fy 0 F Q 2 F R A F 1 F 2 0 F Q 2 7 k N
FQ2FRAF1F2
FQ2 FRB
M O
0
M 2 F R A 2 F 1 1 . 5 F 2 0 . 5 0 M 2 7 k N m
M 2 F R A 2 F 1 1 .5 F 2 0 .5
A
18
FQ2FRAF1F2
FQ
F1
M 2 F R A 2 F 1 1 .5 F 2 0 .5
结论:
M FRA
F2 M2 FQ2
1 梁的任一横截面上的剪力在数值上等于该截面左侧 (或右侧)所有竖向力(包括斜向外力的竖向分力、 约束反力)的代数和;且截面左边向上(右边向下) 的外力使截面产生正号的剪力。
FRB
F2
F Q F1 ql F2sin FRB
M
F1
e
qle
c
l 2
Me
F 2sin f b FRB f
A
20
例3 求图示简支梁1-1与2-2截面的剪力和弯矩。
F =8kN 1
A 1
q=12kN/m 2
2 1.5m B
FRA 2m
1.5m
解:(1)求支座反力
FRB
3m
MB 0 F R A 6 8 4 .5 1 2 3 1 .5 FRA 15kN MA0 F R B 6 8 1 .5 1 2 3 4 .5 FRB 29kN
Fy 0 F R AF R BF 1F 20
A
FRB 7kN
16
(2)求1-1截面上的内力
0.5mF1 1 F2 2 1m
A
1 FRA
2
B FRB
1m
1.5m
3m
0.5m F1 M1 A
FQ1 FRA 1m
Fy 0 F R A F 1F Q 10 F Q 13 kN
MO 0 M 1 F R A 1 F 1 0 .5 0 M 1 9 k N m
2 梁的任一横截面上的弯矩在数值上等于该截面左侧 (或右侧)所有竖向力对该截面形心力矩的代数和 (包括外力偶、约束反力偶);且截面左边顺时针 (右边逆时针)的力矩使截面产生正号的弯矩。
A
19
例2 试利用上述结论写出图示梁1-1截面上的剪力和弯 矩的表达式。
e
c
1 F1 FQ
M1
l q
Me
f
d b
α
F =8kN 1
q=12kN/m 2
A
1
2 1.5m B
FRA 2m
1.5m
FRB
3m
A
23
15.3 内力图──剪力图和弯矩图
为了形象地看到内力的变化规律,通常将剪力、弯 矩沿梁长的变化情况用图形表示出来,这种表示剪力 和弯矩变化规律的图形分别称为剪力图和弯矩图。
A
21
(2)求1-1截面的剪力FQ1、弯矩M1 根据1-1截面左侧的外力计算可得:
FQ1 F R AF1587kN
M1 F R A 2 F 2 1 .5 2 6 k N m
根据1-1截面右侧的外力计算可得
FQ1 q3FRB7kN
M1 q 3 2 .5 F R B 4 2 6 k N m
实际支承→理想支承 ⑶ 以简化后的荷载代替实际的荷载。
A
8
三、梁的分类 ●按支座情况 ⑴简支梁:一端固定铰,一端可动铰
⑵外伸梁:一端或两端向外伸出的简支梁
⑶悬臂梁:一端固定支座,另一端自由
A
9
●按支座反力的求解方法 ⑴静定梁:用平衡方程可求出未知反力的梁;
FAy
FAx A
B
FB
MA
A
FAx
FAz
A
FRA
a
M
FQ
Fy 0 FQ 剪力 N或kN
MO 0
M 弯矩
A
N·m或kN·m
13
●内力的求法
A
FRA
a
M
FQ
Fy 0
F RA F Q0 F QF RA
MO 0
M F R A a 0 M F R A a
F1 FQ M
F2
B?
FRA
A
14
●内力的正负号
⑴剪力
FQ
FQ
FQ
FQ
左上右下为正 左下右上为负
M
⑵弯矩
M
向上凹变形为正
M
M
向上凸变形为负
A
15
例1 图示简支梁受两个集中力作用,已知F1=12kN, F2=10kN,试计算指定截面1-1、2-2的内力。
0.5mF1 1
F2
2 1m
A
1 FRA
2
B FRB
1m
1.5m
3m
解:(1) 求支座反力
MB 0 F 1 2 .5 F 2 1 .5 F R A 3 0FRA 15kN
F Me
A
5
3 分布荷载:沿梁长连续分布的横向力。
q(x) q(x)=C
荷载集度: 分布荷载的大小 均布荷载 非均布荷载
A
用q(x)表示
6
二、梁的支座及支座反力 ●支座形式 1 固定铰约束
2 可动铰约束
3 固定支座
FRx
FRy
FR
MR
FRx
FRy
A
7
●计算简图 确定梁的“计算简图” 包含:
⑴ 以梁的轴线经代替实际的梁; ⑵ 以简化后的支座代替实际的支座;