材料力学 梁的弯曲问题
材料力学第六章 弯曲变形
4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学第5章弯曲变形ppt课件
qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D
材料力学 典型案例
材料力学典型案例材料力学典型案例:1. 悬臂梁的弯曲问题悬臂梁是一种常见的结构,经常用于桥梁、楼梯和支撑物等。
在悬臂梁的弯曲问题中,常常需要计算梁的挠度和应力分布。
通过应用材料力学的理论和公式,可以准确计算出悬臂梁在外力作用下的弯曲情况,并确定梁的安全性。
2. 拉伸试验中的应力应变关系拉伸试验是材料力学中常用的实验方法之一,用于确定材料的力学性质。
在拉伸试验中,通过施加不断增加的拉伸力,测量材料的应变和应力,得到应力应变关系曲线。
该曲线可以描述材料在拉伸过程中的变形和破坏行为。
3. 管道的弯曲问题管道的弯曲问题是材料力学中的一个重要问题。
在工程实践中,经常需要对管道进行弯曲设计和分析。
通过应用材料力学的理论和方法,可以计算出管道在外力作用下的应力和变形情况,从而确定管道的强度和稳定性。
4. 钢筋混凝土梁的受弯问题钢筋混凝土梁是建筑结构中常用的承载构件之一。
在设计和施工过程中,需要对钢筋混凝土梁的受弯性能进行分析和计算。
通过应用材料力学的理论和公式,可以确定钢筋混凝土梁在受弯作用下的应力和变形情况,并评估梁的承载能力和安全性。
5. 地基沉降引起的结构变形问题地基沉降是建筑结构中常见的问题之一,它会导致结构的变形和破坏。
通过应用材料力学的理论和方法,可以计算出地基沉降引起的结构变形和应力分布,从而评估结构的稳定性和安全性,并提出相应的加固措施。
6. 薄壁容器的承载问题薄壁容器是化工和食品等行业常用的储存和运输设备。
在设计和使用过程中,需要对薄壁容器的承载能力进行评估。
通过应用材料力学的理论和公式,可以计算出薄壁容器在内外压力作用下的应力和变形情况,从而确定容器的安全性和可靠性。
7. 斜拉桥的稳定性问题斜拉桥是一种特殊的桥梁结构,具有较大的跨度和较轻的自重。
在斜拉桥的设计和施工过程中,需要对桥梁的稳定性进行分析和计算。
通过应用材料力学的理论和方法,可以确定斜拉桥在外力作用下的应力和变形情况,从而评估桥梁的稳定性和安全性。
材料力学第6章弯曲变形
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
弯曲-理论力学,经典
②精确适用于纯弯曲梁;
③对于横力弯曲的细长梁(跨度与截面高度比l/h>5),
上述公式的误差不大,但公式中的M应为所研究截面
上的弯矩,即为截面位置的函数。
M ( x) y 1 M ( x) , Iz ( x) EI z
26 材料力学多媒体_孙艳 例题
b III、三种典型截面对中性轴的惯性矩 1.矩形截面 h
2qa 2qa FS图
2qa2
M图
6qa2
15 材料力学多媒体_孙艳 例题
Ⅱ、平面曲杆 面内受力时的内力——轴力、剪力、弯矩 弯矩的符号约定——使杆的曲率增加(即外侧受拉) 为正 作平面曲杆内力图的约定与刚架相同。 F m B m
A
材料力学多媒体_孙艳
R
O
16 例题
例 一端固定的四分之一圆环,半径为R,在自由端 B受轴线平面内的集中荷载F作用如图,试作出其内 力图。 F h F m FS( B m FN( z M R ( A O O 解:取分离体如图写出其任意横截面m-m上的内力 方程: FN F sin 0 π/2
E
E
A
ydA E I yz 0
E
Sz 0
中性轴z通过截面形心
(2) M y
A
zydA
(3) M z y dA
A
E
A
y dA
2
E
Iz M
M EI z
24
1
材料力学多媒体_孙艳
例题
4.纯弯曲梁横截面上的应力(弯曲正应力):
My ①距中性层y处的应力: Iz ②梁的上下边缘处,弯曲正应力取得最大值,分别 为:
弯曲变形知识点总结
弯曲变形知识点总结一、弯曲变形的原理1.1 弯曲应力和弯曲应变在外力作用下,梁或梁状结构会发生弯曲变形。
在梁上的任意一点,都会受到弯曲应力的作用。
弯曲应力是指由于梁在受力下产生的内部应力,它的大小和方向取决于梁的截面形状、受力方向和大小等因素。
弯曲应力与梁的截面形状呈二次关系,通常情况下,弯曲应力最大值出现在梁的截面中性轴附近。
随着梁的弯曲,材料内部会产生弯曲应变。
弯曲应变也是和梁的截面形状有关的,并且与弯曲应力呈线性关系。
弯曲应变可以用来描述梁在受力下的变形情况,对于计算梁的弯曲变形非常重要。
1.2 理想弹性梁的弯曲变形对于理想弹性梁而言,其弯曲变形可以通过弯曲方程来描述。
弯曲方程可以根据梁的几何形状和外力作用来得到,通过求解弯曲方程可以得到梁的变形情况。
理想弹性梁的弯曲变形遵循胡克定律,即弯曲应力和弯曲应变成正比。
1.3 破坏弯曲当外力作用到一定程度时,梁会发生破坏弯曲。
在破坏弯曲阶段,梁的抵抗力不足以克服外力作用,导致梁发生不可逆的变形。
在此阶段,梁的弯曲应力和弯曲应变将迅速增大,直至梁失去稳定性。
二、弯曲变形的计算方法2.1 弯曲方程弯曲方程是描述梁弯曲变形的重要工具,可以根据弯曲方程来求解梁的弯曲应力和弯曲应变。
通常情况下,弯曲方程是一种二阶微分方程,需要求解出合适的边界条件,才能得到梁的变形情况。
弯曲方程的求解与梁的截面形状直接相关,对于不同形状的梁,需要采用不同的弯曲方程。
2.2 梁的截面性质对于计算梁的弯曲变形而言,了解梁的截面性质非常重要。
梁的截面性质包括截面面积、截面惯性矩等参数,这些参数会直接影响弯曲方程的求解。
在实际工程中,可以通过截面性质来选择合适的梁截面形状,以满足结构设计的需求。
2.3 数值计算方法为了解决复杂梁的弯曲变形问题,通常需要采用数值计算方法。
数值计算方法可以通过数学模型来描述梁的变形行为,然后通过计算机仿真来得到梁的变形情况。
在工程实践中,有限元方法是一种常用的数值计算方法,可以对复杂结构的弯曲变形问题进行有效求解。
材料力学第五章梁弯曲时的位移
实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
梁的弯曲正应力实验
梁的弯曲正应力实验引言在力学学科中,我们研究物体的形变和变形时,经常需要考虑应力的问题。
应力是物体内部的力分布情况,可以用来描述物体对外界施加力的能力。
弯曲正应力实验是一种常见的实验方法,用来研究材料在弯曲过程中产生的正应力分布情况。
本文将详细介绍梁的弯曲正应力实验的原理、实验装置、实验步骤以及实验结果的分析。
实验原理在材料力学中,当梁受到作用力而产生弯曲时,梁内部会产生正应力和剪应力。
弯曲的平面称为中性面,中性面附近的纤维受到压应力,而远离中性面的纤维则受到拉应力。
梁上不同位置的正应力大小不同,正应力随着距离中性面的距离增大而减小。
实验装置梁的弯曲正应力实验需要以下装置: 1. 实验梁:选择一块具有一定长度和宽度的梁作为实验梁。
梁的截面形状可以选择矩形、圆形等。
2. 支座:用于支撑实验梁的底部,使其能够固定在位置上。
3. 加载装置:通过施加作用力,使实验梁产生弯曲。
可以使用重物、液压等方式施加作用力。
4. 测力计:用于测量实验梁上的正应力大小。
5. 测量仪器:使用光学显微镜或拉伸计等设备来测量梁的形变情况。
实验步骤1.准备实验梁:选择一块长度和宽度适当的梁,使其能够适应实验要求。
可以根据需要对梁进行截割和加工。
2.搭建实验装置:将支座固定在实验台上,将实验梁放置在支座上,并调整支座的位置和角度,使实验梁能够产生弯曲。
3.施加作用力:根据实验要求,选择适当的加载装置施加作用力。
可以逐渐增加作用力的大小,以逐渐产生弯曲。
4.测量正应力:使用测力计测量实验梁上的正应力大小,并记录测得的数据。
5.测量形变:使用测量仪器测量梁的形变情况,可以测量梁的弯曲角度、梁的变形量等。
6.结束实验:根据实验要求,结束实验并记录实验数据。
实验结果分析在实验结束后,根据测得的数据进行结果分析。
可以绘制出梁上不同位置的正应力大小与距离中性面的距离的关系图,分析正应力随距离的变化规律。
还可以计算梁的弯曲刚度、弯曲变形等参数,以便进一步研究材料的力学性质。
材料力学实验四 直梁弯曲实验
实验四 直梁弯曲实验预习要求:1、复习电测法的组桥方法;2、复习梁的弯曲理论;3、设计本实验的组桥方案;4、拟定本实验的加载方案;5、设计本实验所需数据记录表格。
一、 实验目的:1. 电测法测定纯弯梁横截面上的正应变分布,并与理论值进行比较,验证理论公式;2. 电测法测量三点弯梁横截面上的正应变分布及最大切应变,并 与理论值进行比较,验证理论公式; 3.学习电测法的多点测量方法及组桥练习。
二、实验设备:1. 微机控制电子万能试验机;2. 电阻应变仪;三、实验试件:本实验所用试件为中碳钢矩形截面梁,其横截面设计尺寸为h ×b =(50×30)mm 2,a=50mm , 材料的屈服极限MPa s 360=σ, 弹性模量 E=210GPa ,泊松比μ=0.28。
四.实验原理及方法:处于纯弯曲状态的梁,在比例极限内,根据平面假设和单向受力假设,其横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为:()()ZZM y y E I M yy E I εεμ⋅=⋅⋅'=-⋅ (1)距中性层为 y 处的纵向正应力为:()()zM yy E y I σε⋅=⋅=(2) 本实验采用重复加载法,多次测量在一级载荷增量∆M 作用下,产生的应变增量∆ε和∆ε’。
于是式(1)和式(2)分别变为:()()()ZZZM y y E I M yy E I M y y I εεμσ∆⋅∆=⋅∆⋅'∆=-⋅∆⋅∆=(3) (4)在本实验中,/2M P a ∆=∆⋅ (5) 最后,取多次测量的平均值作为实验结果:111()()()()()()Nnn Nnn Nnn y y Ny y Ny y Nεεεεσσ===∆∆='∆'∆=∆∆=∑∑∑ (6)三点弯曲时,最大切应力理论值为:As2F 3max =理论τ (7) 其实验值测量方法为在最大切应力所在中性层处沿与轴线成±45°布置单向应变片,测量出其应变值,则最大切应力的实验值为:()()︒+︒===4545-max 2-G 2G G εεγτ实验 (8)本实验采用电测法,测量采用1/4桥,如下图五所示。
材料力学 第七章 弯曲变形
,
FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C
左
wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC
材料力学实验-直梁弯曲实验
BUAA
➢ 实验试件
中碳钢矩形截面梁
材料力学实验
试件设计尺寸: 50 30 550mm 材料弹性常数: E 210GPa
0.28 材料屈服极限: s 360MPa
应变片的高度坐标:y 25mm , 20mm , 10mm , 0 mm
Page3
BUAA
材料力学实验
实验装置布置R12DUPage13
BUAA
全桥接线法
A B B1 C D
材料力学实验
R9 R2 R12 R11
Page14
BUAA
材料力学实验
3、纯弯梁横截面上正应力的实验结果与理论计算
实验结果 1) 通过测量得到横截面上的纵向正应变
2) 通过测量得到上下表面纵向正应变与横向正应变的比
3) 按照单向应力状态的胡克定律计算梁横截面上的正应 力分布
S1
S2
S9 S10
S12
Page6
BUAA
2、上下表面纵向正应变与横向正应变的测定
材料力学实验
测量应变的桥路图(1/4桥) *验证单向受力假设
S9 S10
S1 S2
Page7
BUAA
材料力学实验
四分之一桥接线法 +Eg Vi+ -Eg Vi-
A B B1 C D
当接1/4桥时,先将温度补偿片 接入应变仪上面板公共温度补 偿接线端后,等效于所有通道 的C和 B1接线柱之间就接入温 度补偿片了,同时将工作片应 变片的两条连接导线分别接入 所选通道接线排中的A和B接线 柱,同时将接入B点的导线端子 的叉子两个脚分别接入B和B1, 即跨接后将B1与B短接
和 实验 之间的相对误差;
2. 计算上下表面的横向应变增量与纵向应变增量之比的
材料力学剪力弯曲为什么可以忽略的例题
在材料力学中,当研究某些结构的弯曲行为时,有时可以合理地忽略剪力的影响。
这通常发生在以下情况:
1.细长梁:对于细长梁(即长度远大于其横截面尺寸的梁),剪切变形通常比弯曲变
形小得多。
因此,在分析细长梁的弯曲时,可以忽略剪切变形的影响。
2.均匀截面梁:对于具有均匀横截面的梁,剪切应力和剪切变形在横截面上是均匀分
布的。
这意味着剪切变形对梁的整体弯曲行为的影响较小,因此可以忽略。
3.弹性范围内的小变形:在弹性范围内,如果梁的变形相对较小,剪切变形的影响也
会相应减小。
在这种情况下,可以合理地忽略剪切变形,而只考虑弯曲变形。
下面是一个简单的例题,说明了在什么情况下可以忽略剪力弯曲的影响:
例题:考虑一个均匀细长的悬臂梁,其长度为L,横截面面积为A,弹性模量为E,受到一个集中力F的作用在自由端。
求梁的挠度。
解:由于梁是细长的,并且受到的是集中力,剪切变形的影响相对较小。
因此,我们可以忽略剪切变形,只考虑弯曲变形。
根据材料力学的基本原理,梁的挠度可以通过以下公式计算:
挠度= (F * L^3) / (3 * E * I)
其中,I是梁的截面惯性矩。
这个公式只考虑了弯曲变形,没有考虑剪切变形的影响。
因此,对于这个问题,我们可以忽略剪力弯曲的影响,使用上述公式来计算梁的挠度。
需要注意的是,这个例题仅适用于特定的情况(如细长梁、均匀截面、弹性范围内的小变形等)。
在其他情况下,剪切变形可能不能忽略,需要更全面的分析。
材料力学 第四章 弯曲内力
3-3截面
Fy 0; FA Fs 3 P 0
Fs3 7kN
M3 0; M 3 FA 2 0
M 3 10kN.m
F=12kN
1 A1
23 2D 3
2m
2m
q=2kN/m 4
B C4 2m
2
A FA
2 Fs2 M2
P=12kN
A
3 3
M3
FA
Fs3
F=12kN
建立剪力与弯矩方程,画剪力与弯矩图
解:1. 支反力计算
FCy qa,
MC
qa2 2
2. 建立剪力与弯矩方程
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
§4–4 剪力、弯矩与分布荷载集度间的关系
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
3. 画剪力与弯矩图
剪力图:
FS1 qx1
FS2 qa
弯矩图:
M1
qx12 2
M2
qax2
qa2 2
剪力弯矩最大值:
FS max qa
简单静定梁:
悬臂梁
简支梁
外伸梁
§4-2 剪力和弯矩
FS-剪力
M-弯矩
剪力-作用线位于所切横截面的内力。 弯矩-矢量位于所切横截面的内力偶矩。
3.3梁的弯曲变形分析
单位为M Pa
MM-和y截面上的弯矩 均以绝对值代入,至于弯曲 (N.mm) 正应力是拉应力还是压应力,则 y--计算点到中性轴距离(mm) 由欲求应力的点处于受拉侧还是 4 受压侧来判断。受拉侧的弯曲正 Iz--横截面对中性轴惯性矩 mm 应力为正,受压侧的为负。
推导过程
1)沿y轴线性分布,同 一坐标y处,正应力相 等。中性轴上正应力为 零。
梁发生平面弯曲时,横截面上一般产生两种 内力,即剪力和弯矩。
d A dA
dA
dA FS dA M M FS
dA M dA FS
在横截面上,只有法向内力元素dN=σdA才能合成
弯矩M,只有切向内力元素d FS =τdA才能合成剪力 FS
• 在横截面上,只有弯矩M,没有剪 力Fs,这种弯曲称为纯弯曲; • 横截面上同时有弯矩M和剪力Fs, 这种弯曲称为横力弯曲。
0.2L
M
qL2 8
x
M
qL2 40 qL2 50
+
x
+
qL2 50
合理布置载荷
F=qL q
L
L
M
qL2 4
x +
M
qL2 8
x +
合理布置载荷
F=qL F=qL
对称
L/5 4L/5
M
qL2 4
M x +
qL2/10
x
合理布置载荷
2. 合理选择梁的截面,用最小的截面面积得 到大的抗弯截面模量。
推论:
梁在弯曲变形时,上面部分纵向纤维缩短, 下面部分纵向纤维伸长,必有一层纵向纤维 既不伸长也不缩短,保持原来的长度,这一纵 向纤维层称为中性层。 中性层与横截面的交线称为中性轴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FRA FRB F1 F2 0
FRA 15kN
FRB 7kN
(2)求1-1截面上的内力
0.5m F1 1
F2
2
1m
0.5m
F1
M1
A FRA 1m
1 2
A
B FRB
FRA
FQ1
1m
1.5m 3m
F
y
0
FRA F1 FQ1 0 FQ1 3kN
F
Me
3 分布荷载:沿梁长连续分布的横向力。
q(x) q(x)=C
荷载集度: 分布荷载的大小
用q(x)表示
均布荷载 非均布荷载
二、梁的支座及支座反力
●支座形式
1 固定铰约束
FRx
FRy
2 可动铰约束
FR
MR
3 固定支座
FRx
FRy
●计算简图
确定梁的“计算简图”
包含:
⑴ 以梁的轴线经代替实际的梁;
q/2 A C
l EI
B
A
q/2
EI
B
C l
q/2
F Q图 M图
三、画剪力图、弯矩图的简便方法 例7 图示左端外伸梁,外伸端A作用一集中力偶 Me=qa2,BA段所受荷载的分布集度为q,试利用微分 关系作梁的剪力图、弯矩图。
Me C A B a FRA
3a
q
FRB
解:(1)求支座反力
M
A
0 FRB
2
x q M x FRA x qx x l x 2 2
(3)画剪力图、弯矩图,标出特征值
q A B
l FQ x q x 2 q M x xl x 2
FRA
x
l
FRB
ql/2
F Q图
ql/2
M图
ql2/8
例5 简支梁受一集中力F=9ql和一集中力偶Me=ql2作 用,试作出其剪力图和弯矩图。
A (O) C
1 1
F
2 2
D 3
3
Me
4 4
B
l/3
l/3
l
分析: 1-1、2-2截 面上的剪力
结论:当梁中间受力较复杂时,剪力方程和弯 矩方程不可能用一个统一的函数式来表达,必须分 段 列出其表达式。 (分段点如何确定?) 分段是以集中力、集中力偶的作用位置及分布荷 载的起点和终点为界 ( ? )
线弹性,位移可以叠加
F F F
F1+F2
F2 F1 O Δ 1 Δ O Δ Δ2 O Δ2 Δ Δ1 Δ
1+2
非线性弹性,位移不可以叠加
可见计算结果完全相同。
A
F=8kN
M 1 q 3 2.5 FRB 4 26kN m
1 1
2m 1.5m
2
q=12kN/m
1.5m
2
B
FRA
3m
FRB
(3) 求2-2截面的剪力FQ2、弯矩M2 根据2-2截面右侧的外力计算可得:
FQ2 q 1.5 FRB 11kN
左上右下为正
M M
左下右上为负
⑵弯矩
M
M
向上凹变形为正
向上凸变形为负
例1 图示简支梁受两个集中力作用,已知F1=12kN, F2=10kN,试计算指定截面1-1、2-2的内力。
0.5m F1 1
F2
2
1m
A FRA 1m
1 2
B FRB
1.5m 3m
解:(1) 求支座反力
M B 0 F1 2.5 F2 1.5 FRA 3 0
⑵ 以简化后的支座代替实际的支座;
实际支承→理想支承
⑶ 以简化后的荷载代替实际的荷载。
三、梁的分类 ●按支座情况 ⑴简支梁:一端固定铰,一端可动铰
⑵外伸梁:一端或两端向外伸出的简支梁
⑶悬臂梁:一端固定支座,另一端自由
●按支座反力的求解方法
⑴静定梁:用平衡方程可求出未知反力的梁;
FAy FAx
A
B
15.4 弯矩、剪力、荷载集度之间的关系
一、弯矩、剪力、荷载集度之间的关系
C l/3 l
dM x FQ x dx
F
Me
A (O )
D l/3
B
5ql x 2 M x 3ql 4qlx 4ql 2 4qlx
5ql FQ x 4ql 4ql
M 2 q 1.5 0.75 FRB 1.5 30kN m
F =8kN A 1 2 1.5m B q=12kN/m 1 2
FRA
2m
1.5m
3m
FRB
15.3 内力图──剪力图和弯矩图
为了形象地看到内力的变化规律,通常将剪力、弯 矩沿梁长的变化情况用图形表示出来,这种表示剪力 和弯矩变化规律的图形分别称为剪力图和弯矩图。
第十五章 梁的弯曲问题
15.1
工程实际中的弯曲问题
一、平面弯曲的基本概念
梁在垂直于其轴线的荷载作用下要变弯,其 轴线由原来的直线变成曲线,这种变形叫做弯曲 变形。产生弯曲变形的构件称为受弯构件。
F2 A M F1 B
●工程实例
建筑工程中的各类梁、火车轴、水压作用下的水 槽壁等。
火车轴
厂房吊车梁
●对称(平面)弯曲
解:(1)求支座反力
FRA 5ql FRB 4ql
A (O) FRA
C l/3
F
D
Me
B l/3
FRB
l
(2)分三段AC、CD、DB列出剪力方程和弯矩方程 AC段
FQ x FRA 5ql M x FRA x 5ql x
CD段
FQ x FRA F 4ql
例2 试利用上述结论写出图示梁1-1截面上的剪力和 弯矩的表达式。
e 1 F1 c l q
d
b
FQ M
1
f
Me
α
F2
FRB
FQ F1 ql F2 sin FRB
l M F1 e ql e c M e F2 sin f b FRB f 2
F1
F2 FQ2
M2
结论:
M 2 FRA 2 F1 1.5 F2 0.5
1 梁的任一横截面上的剪力在数值上等于该截面左 侧(或右侧)所有竖向力(包括斜向外力的竖向分力、 约束反力)的代数和;且截面左边向上(右边向下) 的外力使截面产生正号的剪力。
2 梁的任一横截面上的弯矩在数值上等于该截面左 侧(或右侧)所有竖向力对该截面形心力矩的代数和 (包括外力偶、约束反力偶);且截面左边顺时针 (右边逆时针)的力矩使截面产生正号的弯矩。
例8 作梁的内力图
P=3kN M2=6kNm M1=2kNm q=1kN/m
A
FRA=5kN
B
FRB=4kN
2m
2
2m
2m
2
2m
FQ (kN) 3
6
+
6 4
+
2 8
6
M(kNm)
q
qa
q
qa qa
a
FQ
a
a 2qa qa
qa
M
qa / 2
2
qa / 2
2
2qa 2
q
2qa
C
A
B 2a
qa
5qa
a
Hale Waihona Puke FQa2qaD
qa
M 2qa 2
3qa
2qa 2
15.5 叠加法作剪力图和弯矩图
F q
A a
C b
l
D
Me
B
结论:q、F、Me共同作用时产生的内力等于q、F、 Me分别单独作用时产生的内力之和。
因此,当梁上有几种(或几个)荷载作用时,可以 先分别计算每种(或每个)荷载单独作用时的梁的反 力和内力,然后将这些分别计算所得的结果代数相加 得梁的反力和内力。这种方法称为叠加法。
FB MA FAx
A
FAz
⑵超静定梁:仅用平衡方程不能求出全部未知反 力的梁。
F
F
●按梁的横截面
⑴等截面梁:横截面沿梁的长度没有变化;
⑵变截面梁:横截面沿梁的长度有变化。
汽车钢板弹簧
鱼腹梁
15.2 梁的内力及其求法
一、求梁的内力的方法——截面法
●内力的形式及名称
1
A 1 FRA
FRA
F1
F2
A M
FQ2 FRB
FQ2 FRA F1 F2
M
O
0 M 2 FRA 2 F1 1.5 F2 0.5 0 M 2 7kN m
M 2 FRA 2 F1 1.5 F2 0.5
FQ2 FRA F1 F2
FQ M FRA
q x 0
dFQ x dx
q x
二、剪力图、弯矩图的规律 q
FQ M FQ
>0 =0 >0 <0
直线段
=0 <0 >0 <0 >0 <0
M
★结论(规律):
(1)当梁的支承情况对称,荷载也对称时,则弯矩 图永为对称图形,剪力图永为反对称图形;
(2)当梁的支承情况对称,荷载反对称时,则弯矩 图永为反对称图形,剪力图永为对称图形。
11 qa 6
F
y
0
FRA
7 qa 6
(2)作剪力图