第四章复习(第1课时) 三角函数的相关概念
第4章 三角函数、解三角形 第1节 任意角和弧度制及任意角的三角函数
因此 cos 2θ=2cos 2θ-1=25-1=-35.
索引
(3)函数 y= 2cos x-1的定义域为__2__k_π_-__π3_,__2_k_π_+__π3__(k_∈__Z__) _.
解析 ∵2cos x-1≥0, ∴cos x≥21. 由三角函数线画出x满足条件的终边范围(如图阴 影部分所示), ∴x∈2kπ-π3,2kπ+π3 (k∈Z).
索引
2.弧度制的定义和公式 (1)定义:把长度等于__半__径__长__的弧所对的圆心角叫做1弧度的角,弧度记作
rad. (2)公式
角 α 的弧度数公式 角度与弧度的换算
|α|=rl(弧长用 l 表示)
1°=1π80
180° rad;1 rad=___π___
弧长公式 扇形面积公式
弧长 l=_|_α_|_r_ S=__12_lr__=__12_|_α_|r2
索引
感悟提升
应用弧度制解决问题时应注意: (1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
索引
训练1 (1)(2021·长沙质检)已知弧长4π的弧所对的圆心角为2弧度,则这条弧所
在的圆的半径为( D )
A.1
B.2
C.π
D.2π
解析 ∵弧长4π的弧所对的圆心角为2弧度,
∴4rπ=2,解得 r=2π, ∴这条弧所在的圆的半径为2π.
索引
10π (2)在单位圆中,200°的圆心角所对的弧长为______9__,由该弧及半径围成的
5π 扇形的面积为______9__. 解析 单位圆半径 r=1,200°的弧度数是 200×1π80=109π. ∴l=109π,S 扇形=12lr=21×109π×1=59π.
4-1 三角函数的基本概念
1.弧度制与角度制不能混用,如 α=2kπ+30°(k∈Z),β= k·360°+π2(k∈Z)都是不正确的.
2.相等的角终边一定相同,但终边相同的角不一定相等. 3.终边在坐标轴上的角,不能称为任何象限的角.
4.象限角与区间角不同,如:第一象限角与区间角(0,π2) 不等价,后者是前者的子集.有的区间角可以包含 2 个象限内角 及坐标轴上角,如(π3,23π).
②∵kπ+π2<α2<kπ+34π,k∈Z. ∴α2是第二或第四象限角. ③∵4kπ+2π<2α<4kπ+3π,k∈Z, ∴2α是第一或第二象限角或 y 轴非负半轴上的角. 【答案】 ①四 ②二或四 ③2α 是第一或第二象限角或 y 轴非负半轴上的角
(2)设集合 M={x|x=k2×180°+45°,k∈Z},N={x|x=k4× 180°+45°,k∈Z},那么两集合的关系是什么?
第四章 三 角 函 数
第1课时 三角函数的基本概念
…2019 考纲下载… 1.了解任意角的概念. 2.了解弧度制的概念,能进行角度与弧度的互化. 3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定 义. 4.理解三角函数线(正弦线、余弦线、正切线)的概念及意义. 请注意 本节内容高考一般不直接考查,但它是后续各节的基础,是 学习三角函数必须掌握的基本功.
弧度制 (1)什么叫 1 度的角:把圆周分成 360 份,每一份所对的 圆__心__角__叫 1°的角. (2)什么叫 1 弧度的角:弧_长__等__于__半__径_的圆弧所对的圆心角叫 1 弧度的角.
(3)1°=_____弧度;1 弧度=______度. (4)若扇形的半径为 r,圆心角的弧度数为 α,则此扇形的弧
【解析】
由三角函数线可知选 D. 【答案】 D
高考数学一轮复习 第四章 三角函数 4.1 三角函数的概念、同角三角函数的关系及诱导公式课件 文
∴sin
α= 13 ,则sin α
9
2
=-cos
α= 1
sin2α
= 2 2 3
.
(2)由 sin
α
cos
α
1 5
,
sin2α cos2α 1,
消去cos α整理,得
25sin2α-5sin α-12=0,
解得sin α= 4 或sin α=- 3 .
高考文数
第四章 三角函数
§4.1 三角函数的概念、同角三角函数的关系及诱导公式
知识清单
考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.象限角
2.终边相同的角
3.弧度制 (1)角度制与弧度制的互化
1°=① 180
180
rad;1 rad=② ° .
(2)弧长及扇形面积公式 弧长公式:③ l=|α|r .
例1 已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边
在直线y=2x上,则cos 2θ= ( B )
A.- 4 B.- 3 C. 2 D. 3
5
5
3
4
解题导引
方法一:在角θ的终边上任取一点P,根据直线方程
设出点P的坐标 根据三角函数定义分别
求出sin θ与cos θ 利用二倍角公式求出cos 2θ
5
5
-
2
5 5
=- 3 .
5
综上可得,cos 2θ=- 3 ,故选B.
5
解法二:因为该直线的斜率k=2=tan θ,
所以cos
2θ= ccooss22θθ
三角函数知识点总结
高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαkSIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:(6个)8、同角三角函数的基本关系式:αααt a n c o s s i n =αααc o t s i n c o s =1c o t t a n =⋅αα 1sin csc =α⋅α 1c o s s e c =α⋅α1c o s s i n 22=+αα1tan sec 22=-αα1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x c o t)c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=-公式组四 公式组五 公式组六公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππx x x x x x x x c o t)2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (-=--=-=--=-ππππx x xx x x xx c o t)c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n 22s i n= βαβαβαsin sin cos cos )cos(+=- ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(-=- 2c o s12s i n αα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-=2tan 12tan2tan 2αα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== . 10. 正弦、余弦、正切、余切函数的图象的性质:(定义域,值域,图像,周期性,单调性,)注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)c o s (ϕω+=x y 的()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)t a n (ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T );x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f Tωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )y=|cos2x +1/2|图象由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
第四章§4.1 三角函数的概念、同角三角函数的关系及诱导公式
3 6 5 年高考 3 年模拟 B 版( 教师用书)
两边同时除以 cos2 α, 整理得 16tan2 α-24tan α+9 = 0,
解得
tan
α=
3 4
.
解法三:设 4sin α-3cos α = x,则 x2 +25 = (4sin α-3cos α) 2 +(3sin α+4cos α) 2 = 25,
( 3) 弧长与扇形面积公式
①弧长公式:l = | α | ·r;
②扇形面积公式:S =
1 2
l·r =
1 2
| α | r2.( 其中
l
为扇形弧长,
α 为圆心角,r 为扇形半径)
( 4) 任意角的三角函数的定义
①定义:设角 α 的终边与单位圆交于点 P( x,y) ,则 sin α =
y,cos
α = x,tan
2kπ+
π 2
-φ
= sin
φ=
4 5
,
故 tan
α=
3 4
.
解法五:设 x = cos α,y = sin α,则有 4x+3y = 5,且 x2 +y2 = 1,从
而角 α 终边上的点 P( x,y) 在单位圆上,且在直线 l:4x + 3y = 5
上.又直线 l 与单位圆相切,故直线 l 与角 α 的终边所在直线垂
直,所以角 α 的终边所在直线的斜率为
3 4
,故
tan
α=
y x
=
3 4
.
������������������������������������������������������������������������������������������������������������������������������������
数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理
第四章三角函数、解三角形第一讲三角函数的基本概念、同角三角函数的基本关系与诱导公式练好题·考点自测1.已知下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若sin α=sin β,则α与β的终边相同;④若cos θ<0,则θ是第二或第三象限的角.其中正确的个数是()A.1B.2 C。
3 D。
42。
sin 2·cos 3·tan 4的值()A。
小于0 B。
大于0C。
等于0 D.不存在3.已知点P(cos 300°,sin 300°)是角α终边上一点,则sin α—cos α= ()A.√32+12B。
-√32+12C。
√32−12D。
-√32−124.[2019全国卷Ⅰ,7,5分]tan 255°= ()A.-2—√3B。
—2+√3C。
2—√3 D.2+√35.[2020全国卷Ⅱ,2,5分][理]若α为第四象限角,则 ( ) A 。
cos 2α>0 B 。
cos 2α〈0 C 。
sin 2α>0 D.sin 2α<06。
已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα= ( )A.—√7B.√7C.√3 D 。
-√3图4-1—17。
[2019北京,8,5分]如图4—1-1,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为 ( ) A 。
4β+4cos β B.4β+4sin β C.2β+2cos β D.2β+2sin β8.[2018全国卷Ⅰ,11,5分]已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B .√55C 。
2√55D.1拓展变式1.在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图4-1—3所示两种方案,既要充分利用废料,又要切割时间更短,则方案更优.2.(1)[2021洛阳市联考]已知角α的顶点为坐标原点,始边与x轴非负半轴重合,终边与直线y=3x重合,且sin α<0,P(m,n)是角α终边上一点,且|OP|=√10(O为坐标原点),则m-n 等于()A.2B.-2C.4 D。
22第四章 三角函数、解三角形 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式
(2)设 α 为锐角,若 cosα+π6=54,则 sin2α+π3的值为
12 A.25
√24
B.25
C.-2245
解析 因为 α 为锐角,且 cosα+π6=54,
D.-1225
所以 sinα+π6= 1-cos2α+π6=35,
所以 sin2α+π3=sin 2α+π6 =2sinα+6πcosα+π6=2×53×54=2245,故选 B.
tan α+tan β
tan(α+β)= 1-tan
αtan
(T(α+β)) β
2.二倍角公式
sin 2α= 2sin αcos α ; cos 2α= cos2α-sin2α = 2cos2α-=1
2tan α tan 2α= 1-tan2α .
1-2sin2α ;
【概念方法微思考】 1.诱导公式与两角和差的三角函数公式有何关系? 提示 诱导公式可以看成和差公式中 β=k·π2(k∈Z)时的特殊情形. 2.怎样研究形如f(x)=asin x+bcos x函数的性质? 提示 先根据辅助角公式 asin x+bcos x= a2+b2·sin(x+φ),将 f(x)化成 f(x)
解析
cos2α2
= 121+cos α = 1+cos α =4sin α.
1234567
2
PART TWO
题型分类 深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
自主演练
题型一 和差公式的直接应用
1.(2018·石家庄质检)若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为
A.-
2 10
B.
2 10
√C.-7102
D.7102
高考数学理科 复习 第四章三角函数 §4.1三角函数的概念、同角三角函数的关系式和诱导公式
A.a>b>c B.b>c>a C.c>b>a D.c>a>b
(2)(2014成都一模)已知sin(π-α)=log8
1 4
,且α∈
2
,
0
,则tan(2π-α)的值为
.
25
答案 (1)C (2) 5
解析 (1)∵b=cos 55°=sin 35°>sin 33°=a,∴b>a.
∵c=tan
35°=
、 R、
α α≠ 2 +kπ,k∈Z .
5.三角函数线 设角α的终边与单位圆交于点P,过点P作PM⊥x轴于点M,则有向线段MP 叫做角α的正弦线,有向线段 OM 叫做 角α的余弦线;过点A(1,0)作单位圆的切线交 角α的终边或其反向延长线于点T,则有向线 段AT叫做角α的 正切 线.
6.三角函数的符号规律 第一象限全“+”,第二象限正弦“+”,第三象限正切“+”,第四象限余 弦“+”.简称:一全、二正、三切、四余. 7.同角三角函数的基本关系 (1)平方关系: sin2α+cos2α=1 ;
(2)商数关系: 8.诱导公式
sin α =tan α .
cos α
组数 角
正弦
一 2kπ+α (k∈Z)
sin α
余弦
cos α
二 π+α
-sin α -cosα
三 -α
-sin α cos α
正切
tan α
tan α -tan α
四 π-α
sin α -cos α -tan α
五
六
-α
+α
α的值为
(
【数学】第4章 三角函数及三角恒等变换 第1节 三角函数的概念、同角三角函数的关系和诱导公式
掌门1对1教育 高中数学 【数学】2013版《6年高考4年模拟》 第四章 三角函数及三角恒等变换第一节 三角函数的概念、同角三角函数的关系和诱导公式第一部分 六年高考荟萃2013年高考题1 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-答案:C 因为,又sin 2α+cos 2α=1,联立解得,或故tan α==,或tan α=3,代入可得tan2α===﹣,或tan2α===故选C2.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))004cos50tan 40-=( )A.2B.232+ C.3 D.221- 答案:C【命题立意】本题考查两角和差的正弦公式以及倍角公式。
sin 404cos50tan 404cos50cos 40-=-000000004cos50cos 40sin 404sin 40cos 40sin 40cos 40cos 40--== 00000002sin80sin 402sin(6020)sin(6020)cos 40cos 40-+--==000033cos 20sin 202sin(6020)sin(6020)22cos 40cos 40++--== 03cos 403cos 40==,选C. 3.(2013年高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______答案:255-. f (x )=sinx ﹣2cosx=(sinx ﹣cosx )=sin (x ﹣α)(其中cos α=,sin α=),因为x=θ时,函数f (x )取得最大值,所以sin (θ﹣α)=1,即sin θ﹣2cos θ=, 又sin 2θ+cos 2θ=1,联立解得cos θ=﹣.4.(2013年高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.答案:3因为sin2α=2sin αcos α=﹣sin α,α∈(,π), 所以cos α=﹣,sin α==,所以tan α=﹣,则tan2α===.5.(2013年高考上海卷(理))若12cos cos sin sin,sin 2sin 223x y x y x y +=+=,则sin()________x y +=答案:2sin()3x y +=. 【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2s i n ()3x y +=.6.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________. 答案:22由α是第三象限的角,得到cos α<0, 又sin α=﹣,所以cos α=﹣=﹣则cot α==27.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________. 答案:105-因为tan (θ+)==,所以tan θ=﹣,因为θ为第二象限角,所以cos θ=﹣=﹣,sin θ==,则sin θ+cos θ=﹣=﹣.2012年高考题1.[2012·湖北卷] 函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5C .6 D .7答案:C [解析] 令f (x )=0,得x =0或cos x 2=0,由x ∈[]0,4,得x 2∈[]0,16.因为cos ⎝⎛⎭⎫π2+k π=0()k ∈Z ,故方程cos x 2=0中x 2的解只能取x 2=π2,3π2,5π2,7π2,9π2∈[]0,16.所以零点个数为6.故选C.2.[2012·辽宁卷] 已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C.22D .1 答案:A [解析] 本小题主要考查同角三角函数基本关系的应用.解题的突破口为灵活应用同角三角函数基本关系.∵sin α-cos α=2⇒()sin α-cos α2=2⇒1-2sin αcos α=2⇒sin αcos α=-12⇒sin αcos αsin 2α+cos 2α=-12⇒tan αtan 2α+1=-12⇒tan α=-1.故答案选A. C5 两角和与差的正弦、余弦、正切 3.[2012·重庆卷] 设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .3 答案:A [解析] 因为tan α,tan β是方程x 2-3x +2=0的两根,所以tan α+tan β=3,tan α·tan β=2,所以tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.4.[2012·安徽卷] 在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是( )A .(-72,-2)B .(-72,2)C .(-46,-2)D .(-46,2) 答案:A [解析] 本题考查三角函数的和角公式,点的坐标.设∠POx =α,因为P ()6,8,所以OP →=(10cos α,10sin α)⇒cos α=35,sin α=45,则OQ →=⎝⎛⎭⎫10cos ⎝⎛⎭⎫θ+3π4,10cos ⎝⎛⎭⎫θ+3π4=(-72,-2).故答案为A. 5.[2012·全国卷] 已知α为第二象限角,sin α+cos α=33,则cos2α=( ) A .-53 B .-59 C.59 D.53答案:A [解析] 本小题主要考查三角函数中和角公式与二倍角公式的运用,解题的突破口为原式两边平方后转化为二倍角结构及任何情况下均要考虑“符号看象限”. 由sin α+cos α=33及α为第二象限角有2k π+π2<α<2k π+3π4(k ∈Z ),∴4k π+π<2α<4k π+3π2(k ∈Z ).原式两边平方得2sin αcos α=sin2α=-23,∴cos2α=-53,故选A.6.[2012·山东卷] 若θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,则sin θ=( )A.35 B.45 C.74 D.34 答案:D [解析] 本题考查三角函数的二倍角公式,考查运算求解能力,中档题. 法一:∵θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,∴cos2θ=-1-⎝⎛⎭⎫3782=1-2sin 2θ,解之得sin θ=34.法二:联立⎩⎪⎨⎪⎧2sin θcos θ=378,sin 2θ+cos 2θ=1,解之得sin θ=34.7.[2012·湖南卷] 函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1] D.⎣⎡⎦⎤-32,32 答案:B [解析] 考查三角函数化简求值,关键是三角函数的化简,三角公式的识记. 函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6=32sin x -32cos x =3sin ⎝⎛⎭⎫x -π6,所以函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为[-3,3],故选B.8.[2012·江西卷] 若tan θ+1tan θ=4,则sin2θ=( )A.15 B.14 C.13 D.12答案:D [解析] 考查同角三角函数的关系、二倍角公式,以及“1”的代换及弦切互化等方法.解题的突破口是通过“1”的代换,将整式转化为齐次分式,再通过同除以cos θ达到化切目的.∵tan θ+1tan θ=tan 2θ+1tan θ=4,∴sin2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=24=12,故选D.9.[2012·重庆卷] 设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .3 答案:A [解析] 因为tan α,tan β是方程x 2-3x +2=0的两根,所以tan α+tan β=3,tan α·tan β=2,所以tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.10.[2012·重庆卷] 设△ABC 的内角A ,B ,C 的对边分别为a 、b 、c ,且cos A =35,cos B =513,b =3,则c =________.答案:145 [解析] 因为cos A =35,cos B =513,所以sin A =45,sin B =1213,因为sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665,由正弦定理知c sin C =bsin B ,即c 5665=31213,解得c =145. 11.[2012·四川卷] 如图所示,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC 、ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515答案:B [解析] 法一:由已知,∠CED =∠BED -∠BEC =45°-∠BEC , 而结合图形可知tan ∠BEC =12,∴tan ∠CED =tan(45°-∠BEC )=1-121+12=13,∴sin ∠CED =1010. 法二:由已知,利用勾股定理可得DE =2,CE =5,又CD =1,利用余弦定理得:cos ∠CED =2+5-12×2×5=31010,∴sin ∠CED =1010.法三:同法二,得DE =2,CE =5,又CD =1,有S △CED =12CD ·AD =12,又S △CED =12CE ·ED sin ∠CED =102sin ∠CED ,对比得sin ∠CED =1010.12.[2012·上海卷] 在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定答案:C [解析] 考查正弦定理和判断三角形的形状,考查考生的转化思想,关键是利用正弦定理,把角转化边,再利用边之间的关系,判断三角形的形状.由正弦定理可把不等式转化为a 2+b 2<c 2,cos C =a 2+b 2-c 22ab<0,所以三角形为钝角三角形.故选C.13.[2012·湖南卷] 在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( )A. 3B.7 C .2 2 D.23答案:A [解析] 考查向量的数量积运算和解三角形,主要是余弦定理的运用,是此题的关键.由AB →·BC →=1可得2||BC cos(180°-B )=1,即2|BC |cos B =-1,又由三角形的余弦定理可得32=||BC 2+22-2×2||BC cos B ,把2||BC cos B =-1代入,解得9=||BC 2+4+2,即||BC =3,故选A. 14.[2012·陕西卷] 在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32 B.22 C.12 D .-12答案:C [解析] 本小题主要考查余弦定理和不等式的知识,解题的突破口为利用余弦定理写出cos C 的表达式,然后用基本不等式去计算即可.cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12.故选C.15.[2012·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725 D.2425答案:A [解析] 本题考查三角函数的倍角公式及正弦、余弦定理,考查运算求解能力,中档题.由正弦定理得8sin B =5sin C ,∵C =2B ,∴cos B =45,∴cos C =cos2B =2cos 2B -1=2⎝⎛⎭⎫452-1=725.16.[2012·江苏卷] 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案:17250 [解析] 本题考查三角函数求值问题.解题突破口为寻找已知角和所求角之间的整体关系.由条件得sin ⎝⎛⎭⎫α+π6=35,从而sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2425,cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2×1625-1=725, 从而sin ⎝⎛⎭⎫2α+π12=sin ⎝⎛⎭⎫2α+π3-π4=2425×22-725×22=17250. 17.[2012·北京卷] 在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.答案:4 [解析] 本题考查余弦定理和解三角形等基础知识,考查对数据的运算能力. cos B =a 2+c 2-b 22ac =-14,可得cos B =4+c -bc +b4c=-14,4+c -bc=-1,8c -7b +4=0,结合b +c =7,可得⎩⎪⎨⎪⎧a =2,b =4,c =3,答案为4.18.[2012·湖北卷] 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案:2π3 [解析] 由已知条件(a +b -c )(a +b +c )=ab ,化简得a 2+b 2-c 2=-ab ,所以cos C=a 2+b 2-c 22ab =-ab 2ab =-12.又C 是三角形的内角,则C ∈()0,π,所以C =2π3.19.[2012·浙江卷] 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案:-16 [解析] 本题主要考查平面几何的性质、平面向量的线性运算与数量积. 法一:AB →·AC →=(MB →-MA →)·(MC →-MA →)=MB →·MC →-MB →·MA →-MA →·MC →+MA →2=5×5×cos180°-5×3×cos ∠BMA -3×5×cos ∠AMC +32=-16,故应填-16.法二:特例法:假设△ABC 是以AB 、AC 为腰的等腰三角形,如图,AM =3,BC =10,AB =AC =34,cos ∠BAC =34+34-1002×34=-817,AB →·AC →=|AB →|·|AC→|·cos ∠BAC =-16.[点评] 对平面向量进行正确的线性分解是解决本题的关键,同时注意向量的夹角之间的关20.[2012·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是________(写出所有正确命题的编号).①若ab >c 2,则C <π3;②若a +b >2c ,则C <π3;③若a 3+b 3=c 3,则C <π2;④若(a +b )c <2ab ,则C >π2;⑤若(a 2+b 2)c 2<2a 2b 2,则C >π3.答案:①②③ [解析] 本题考查命题真假的判断,正、余弦定理,不等式的性质,基本不等式等.对于①,由c 2=a 2+b 2-2ab cos C <ab 得2cos C +1>a 2+b 2ab =b a +a b ≥2,则cos C >12,因为0<C <π,所以C <π3,故①正确;对于②,由4c 2=4a 2+4b 2-8ab cos C <a 2+b 2+2ab 得ab ()8cos C +2>3()a 2+b 2即8cos C +2>3⎝⎛⎭⎫a b +b a ≥6,则cos C >12,因为0<C <π,所以C <π3,故②正确;对于③,a 3+b 3=c 3可变为⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3=1,可得0<a c <1,0<b c<1,所以1=⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,所以c 2<a 2+b 2,故C <π2,故③正确;对于④,()a +b c <2ab 可变为2×1c >1a +1b ≥2ab,可得ab >c ,所以ab >c 2,因为a 2+b 2≥2ab >ab >c 2,所以C <π2,④错误;对于⑤,()a 2+b 2c 2<2a 2b 2可变为1a 2+1b 2<2c 2,即1c 2>1ab ,所以c 2<ab ≤a 2+b 22,所以cos C >a 2+b 222ab ≥12,所以C <π3,故⑤错误.故答案为①②③.21.[2012·福建卷] 已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 答案:-24 [解析] 根据题意设三角形的三边分别是:22a 、a 、2a ,最大角所对的边是2a ,根据大边对大角定理结合余弦定理得:cos α=a 2+⎝⎛⎭⎫22a 2-2a 22×22a ×a =-24,所以最大角的余弦值是-24. 22.[2012·福建卷] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin13°cos17°;(2)sin 215°+cos 215°-sin15°cos15°; (3)sin 218°+cos 212°-sin18°cos12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)请从上述五个式子中选择一个,求出这个常数; (2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:解法一:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34. 23.[2012·重庆卷] 设f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域;(2)若f (x )在区间⎣⎡⎦⎤-3π2,π2上为增函数,求ω的最大值. 解:(1)f (x )=4⎝⎛⎭⎫32cos ωx +12sin ωx sin ωx +cos2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin2ωx +1.因-1≤sin2ωx ≤1,所以函数y =f (x )的值域为[1-3,1+3].(2)因y =sin x 在每个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z )上为增函数,故f (x )=3sin2ωx +1(ω>0)在每个闭区间⎣⎡⎦⎤k πω-π4ω,k πω+π4ω(k ∈Z )上为增函数.依题意知⎣⎡⎦⎤-3π2,π2⊆⎣⎡⎦⎤k πω-π4ω,k πω+π4ω对某个k ∈Z 成立,此时必有k =0,于是 ⎩⎨⎧-3π2≥-π4ω,π2≤π4ω,解得ω≤16,故ω的最大值为16.24.[2012·课标全国卷] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C-b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.25.[2012·重庆卷] 设f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0.(1)求函数y =f (x )的值域;(2)若f (x )在区间⎣⎡⎦⎤-3π2,π2上为增函数,求ω的最大值. 解:(1)f (x )=4⎝⎛⎭⎫32cos ωx +12sin ωx sin ωx +cos2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin2ωx +1.因-1≤sin2ωx ≤1,所以函数y =f (x )的值域为[1-3,1+3].(2)因y =sin x 在每个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z )上为增函数,故f (x )=3sin2ωx +1(ω>0)在每个闭区间⎣⎡⎦⎤k πω-π4ω,k πω+π4ω(k ∈Z )上为增函数.依题意知⎣⎡⎦⎤-3π2,π2⊆⎣⎡⎦⎤k πω-π4ω,k πω+π4ω对某个k ∈Z 成立,此时必有k =0,于是 ⎩⎨⎧-3π2≥-π4ω,π2≤π4ω,解得ω≤16,故ω的最大值为16.26.[2012·广东卷] 已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 解:(1)由2πω=10π得ω=15.(2)∵-65=f ⎝⎛⎭⎫5α+53π=2cos ⎝⎛⎭⎫15⎝⎛⎭⎫5α+53π+π6=2cos ⎝⎛⎭⎫α+π2=-2sin α,1617=f ⎝⎛⎭⎫5β-56π=2cos ⎝⎛⎭⎫15⎝⎛⎭⎫5β-56π+π6=2cos β,∴sin α=35,cos β=817.∵α,β∈⎣⎡⎦⎤0,π2,∴cos α=1-sin 2α=1-⎝⎛⎭⎫352=45,sin β=1-cos 2β=1-⎝⎛⎭⎫8172=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385. 27.[2012·安徽卷] 设函数f (x )=22cos2x +π4+sin 2x .(1)求f (x )的最小正周期; (2)设函数g (x )对任意x ∈R ,有g ⎝⎛⎭⎫x +π2=g (x ),且当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式. 解:(1)f (x )=22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos2x cos π4-sin2x sin π4+1-cos2x 2=12-12sin2x . 故f (x )的最小正周期为π.(2)当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x )=12sin2x ,故①当x ∈⎣⎡⎦⎤-π2,0时,x +π2∈⎣⎡⎦⎤0,π2.由于对任意x ∈R ,g ⎝⎛⎭⎫x +π2=g (x ),从而g (x )=g ⎝⎛⎭⎫x +π2=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2=12sin(π+2x )=-12sin2x . ②当x ∈⎣⎡⎭⎫-π,-π2时,x +π∈⎣⎡⎭⎫0,π2,从而g (x )=g (x +π)=12sin[2(x +π)]=12sin2x . 综合①②得g (x )在[-π,0]上的解析式为g (x )=⎩⎨⎧12sin2x ,x ∈⎣⎡⎭⎫-π,-π2,-12sin2x ,x ∈⎣⎡⎦⎤-π2,0.28.[2012·北京卷] 已知函数f (x )=x -cos xxsin x.(1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解:(1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=x -cos x x sin x=2cos x (sin x -cos x )=sin2x -cos2x -1=2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π.(2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 29.[2012·福建卷] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin13°cos17°;(2)sin 215°+cos 215°-sin15°cos15°; (3)sin 218°+cos 212°-sin18°cos12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)请从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:解法一:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34. 30.[2012·安徽卷] 设函数f (x )=22cos2x +π4+sin 2x .(1)求f (x )的最小正周期;(2)设函数g (x )对任意x ∈R ,有g ⎝⎛⎭⎫x +π2=g (x ),且当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式. 解:(1)f (x )=22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos2x cos π4-sin2x sin π4+1-cos2x 2=12-12sin2x . 故f (x )的最小正周期为π.(2)当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x )=12sin2x ,故 ①当x ∈⎣⎡⎦⎤-π2,0时,x +π2∈⎣⎡⎦⎤0,π2.由于对任意x ∈R ,g ⎝⎛⎭⎫x +π2=g (x ),从而 g (x )=g ⎝⎛⎭⎫x +π2=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2=12sin(π+2x )=-12sin2x . ②当x ∈⎣⎡⎭⎫-π,-π2时,x +π∈⎣⎡⎭⎫0,π2,从而g (x )=g (x +π)=12sin[2(x +π)]=12sin2x . 综合①②得g (x )在[-π,0]上的解析式为g (x )=⎩⎨⎧12sin2x ,x ∈⎣⎡⎭⎫-π,-π2,-12sin2x ,x ∈⎣⎡⎦⎤-π2,0.31.[2012·湖北卷] 已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ).设函数f (x )=a·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值范围.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ =2sin ⎝⎛⎭⎫2ωx -π6+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0,即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫53x -π6≤1,得-1-2≤2sin 53x -π6-2≤2- 2. 故函数f (x )在⎣⎡⎦⎤0,3π5上的取值范围为[-1-2,2-2]. 32.[2012·安徽卷] 设函数f (x )=22cos2x +π4+sin 2x .(1)求f (x )的最小正周期; (2)设函数g (x )对任意x ∈R ,有g ⎝⎛⎭⎫x +π2=g (x ),且当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式. 解:(1)f (x )=22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos2x cos π4-sin2x sin π4+1-cos2x 2=12-12sin2x . 故f (x )的最小正周期为π.(2)当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x )=12sin2x ,故 ①当x ∈⎣⎡⎦⎤-π2,0时,x +π2∈⎣⎡⎦⎤0,π2.由于对任意x ∈R ,g ⎝⎛⎭⎫x +π2=g (x ),从而 g (x )=g ⎝⎛⎭⎫x +π2=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2=12sin(π+2x )=-12sin2x . ②当x ∈⎣⎡⎭⎫-π,-π2时,x +π∈⎣⎡⎭⎫0,π2,从而 g (x )=g (x +π)=12sin[2(x +π)]=12sin2x .综合①②得g (x )在[-π,0]上的解析式为g (x )=⎩⎨⎧12sin2x ,x ∈⎣⎡⎭⎫-π,-π2,-12sin2x ,x ∈⎣⎡⎦⎤-π2,0.33.[2012·湖北卷] 已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ).设函数f (x )=a·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值范围.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ =2sin ⎝⎛⎭⎫2ωx -π6+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0,即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫53x -π6≤1,得-1-2≤2sin 53x -π6-2≤2- 2. 故函数f (x )在⎣⎡⎦⎤0,3π5上的取值范围为[-1-2,2-2]. 34.[2012·江西卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积. 解:(1)证明:由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A ,sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22.整理得sin B cos C -cos B sin C =1,即sin(B -C )=1, 由于0<B ,C <34π,从而B -C =π2.(2)由(1)知B -C =π2,又B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.图1-4 35.[2012·辽宁卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值. 解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°,所以cos B =12.(2)(解法一)由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,所以sin A sin C =1-cos 2B =34.(解法二)由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-ac 2ac,解得a =c ,所以A =C =B =60°,故sin A sin C =34.36.[2012·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A -C )+cos B =1,a =2c ,求C .解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C , 由已知得sin A sin C =12.①由a =2c 及正弦定理得,sin A =2sin C ,②由①、②得sin 2C =14,于是sin C =-12(舍去)或sin C =12.又a =2c ,所以C =π6.37.[2012·浙江卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解:(1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53.又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.38.[2012·课标全国卷] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C-b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.2011年高考题1.(重庆理6)若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4c +-=(),且C=60°,则ab 的值为A .43B .843-C . 1D .23【答案】A2.(浙江理6)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=A .33B .33-C .539D .69-【答案】C3.(天津理6)如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===,则sin C 的值为A .33 B .36C .63D .66【答案】D4.(四川理6)在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π]B .[ 6π,π)C .(0,3π]D .[ 3π,π)【答案】C【解析】由题意正弦定理22222222211cos 023b c a a b c bc b c a bc A A bc π+-≤+-⇒+-≥⇒≥⇒≥⇒<≤5.(全国新课标理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45-(B )35-(C ) 35 (D )456.(辽宁理4)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos2A=a 2,则=a b(A )23 (B )22(C )3 (D )2【答案】D7.(辽宁理7)设sin 1+=43πθ(),则sin 2θ= (A )79-(B )19-(C )19 (D )79【答案】A8.(福建理3)若tan α=3,则2sin 2cos a α的值等于A .2B .3C .4D .6【答案】D 二、填空题9.(上海理6)在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
第四章第1讲任意角和弧度制、三角函数的概念课件-2025届高三数学一轮复习
D.5
C.±4
,所以m>0解得=4.
sinα=√4tm25?>0
B.4
A.-4 解析:由题可知,
解题技法利用三角函数定义解决问题的策略(1)已知角α终边上一点P的坐标,可求三函数值.先到原点的距离,再用三角函数定义求解;(2)已知角α的某个,可求终边上一点P坐标中参数值,可根据定义中的两个量列方程求参;(3)已知角α的所在直线方程或大小,根据三函数定义可求角α终边上某特定点的坐标.
( )
B.第二象限
A.第一象限
解析:选D.因为角α是第三象限,所以π+2k<3z π<4+k,∈Z故当=2n时为第二象限角;当k=2n+1,
为第四象限角.综上,
u-2
是第四象限角.故选D
u-2
k∈Z,
所以
2nπ+"<
34,∈Z
则角
n∈Z时,2π+3<
7
则角
是第二或四象限角.
ul2
又 sin"|=-
解析
3.若sinθ<0且ta,则角所在的象限是( )
D.第四象限
C.第三象限 B.第二象限
解析:选D.若sinθ<0,则角在第三或四象限ta
二所以当且时故
A.第一象限
,由弧长公式 解析
9m. 20×18=9
4.在单位圆中,20°的心角所对弧长为解析:单位圆半径r=1,20°的弧度数是 1=19m 得]
第四章 三角函数
第1讲 任意角和弧度制、三函数的概念
考情分析考点法:本讲内容高一般不直接查,但它是后续各学习的基础三角函数必须掌握的基本功.核心素养:直观想象、数学运算逻辑推 理
课标要求 1.了解任意角、弧度制的概念2.能进行弧度与角的互化3.理解任意角的三函数(正弦、余切)的定义.
第四章 §4.1 任意角和弧度制、三角函数的概念
题型二 弧度制及其应用
例 2 (1)已知一扇形的圆心角 α=π3,半径 R=10 cm,则此扇形的弧积为____3____ cm2.
由已知得 α=π3,R=10 cm, 所以 l=αR=π3×10=130π(cm), S 扇形=12αR2=12×π3×102=530π(cm2).
√C.第三、四象限
D.第一、四象限
因为cos α·tan α<0,所以cos α,tan α的值一正一负,所以角α的终边 在第三、四象限.
返回
课时精练
知识过关
一、单项选择题 1.给出下列四个命题,其中正确的是 A.-34π是第四象限角 B.43π是第二象限角 C.-400°是第一象限角
√D.-315°是第一象限角
思维升华
(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三 角函数值;已知角α的三角函数值,也可以求出点P的坐标. (2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽 略角的终边在坐标轴上的情况.
跟踪训练 3 (1)已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=
A.2kπ-45°(k∈Z)
B.k·360°+94π(k∈Z)
√C.k·360°-315°(k∈Z)
D.kπ+54π(k∈Z)
自主诊断
与94π的终边相同的角可以写成 2kπ+94π(k∈Z),但是角度制与弧度制 不能混用,所以只有 C 正确.
自主诊断
3.(必修第一册P180T3改编)已知角θ的终边过点P(-12,5),则sin θ+cos θ
题型三 三角函数的概念
例 3 (1)(2023·北京模拟)在平面直角坐标系中,角 α 以 x 轴的非负半轴为
2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数
2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。
高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理
,
= =c=csin C,
判断三角形形状的两种途径
[针对训练] (2020·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为
2
a,b,c,已知 cos (+A)+cos A=.
(1)求A;
2
(1)解:由已知得 sin A+cos A=,
2
即 cos A-cos A+=0,
sin B=2× = ,
2
由余弦定理 a =b +c -2bccos A,
2
2
得 2= +c -2× c· ,即 2c -2c-3=0,解得 c=
+
综上,b= ,c=
+
.
或 c=
-
(舍去).
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下
所以 sin B=
×
=
=
.
- = ,
(3)求sin(2A-B)的值.
解:(3)因为 cos A=- ,所以 <A<π,故 0<B< ,又 sin A=
2sin Acos A=2×
(-
,所以 c;
2.在△ABC中,已知a,b和A时,解的情况
项目
A为锐角
A为钝角或直角
图形
高中三角函数知识点复习总结
第四章 三角函数一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ(3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式:r l⋅=α 扇形面积公式:22121r lr S α==3.任意角的三角函数yxx y x rr x y rr y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式(一) 诱导公式:α±⋅2k )(Z k ∈与α的三角函数关系是“立变平不变,符号看象限”。
如:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+απαπαπ25sin ;5tan ,27cos 等。
(二)同角三角函数的基本关系式:①平方关系1cos sin22=+αα;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系αααtan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。
(三) 关于公式1cos sin22=+αα的深化sin αtan αα()2cos sin sin 1ααα±=±;αααcos sin sin 1±=±;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便);b)化简同角三角函数式; 证明同角的三角恒等式。
2025年高考数学总复习课件29第四章第一节任意角和弧度制及任意角的三角函数
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
3.若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=- 3x
上,则角α的取值集合是( )
A.
α
α=2kπ-
π 3
,k∈Z
B.
α
α=2kπ+
2π 3
,k∈Z
C.
α
α=kπ-
2π 3
,k∈Z
√D.
α
α=kπ-
π 3
,k∈Z
D 解析:因为直线y=- 3x的倾斜角是23π,tan α=- 3,所以终边落在直线y
第一节 任意角和弧度制及任意角的三角函数
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
核心回扣
1.定义:任意角α的终边与单位圆交于点P(x,y),则y=sin α,x=cos α,yx=
tan α(x≠0).
2.定义的推广:P(x,y)是角α的终边上异于顶点的任意一点,设点P到原点O的
y
第一节 任意角和弧度制及任意角的三角函数
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
核心回扣 1.角的定义:角可以看成一条射线绕着它的端点旋转所成的图形. 2.分类:
3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=__α_+__k_·_3_6_0_˚ ___,k∈Z}或{β|β=_α__+_2_k_π__,k∈Z}.
第一节 任意角和弧度制及任意角的三角函数
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 弧度制 1.判断下列说法的正误,正确的画“√”,错误的画“×”. (1)一个角的度数对应唯一一个弧度数.( √ ) (2)1弧度的角大于1度的角.( √ ) (3)角α弧度数的大小与所取圆的半径大小有关.( × )
新高考数学一轮复习教师用书:第4章 1 第1讲 任意角和弧度制及任意角的三角函数
知识点最新考纲任意角的概念与弧度制、任意角的三角函数了解角、角度制与弧度制的概念,掌握弧度与角度的换算.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.同角三角函数的基本关系式与诱导公式理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式.两角和与差的正弦、余弦及正切公式掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.简单的三角恒等变换掌握简单的三角函数式的化简、求值及恒等式证明.函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用了解函数y=Asin(ωx+φ)的实际意义,掌握y=Asin(ωx +φ)的图象,了解参数A,ω,φ对函数图象变化的影响.正弦定理和余弦定理掌握正弦定理、余弦定理及其应用.第1讲任意角和弧度制及任意角的三角函数1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类按旋转方向正角按逆时针方向旋转而成的角负角按顺时针方向旋转而成的角零角射线没有旋转按终边位置前提:角的顶点在原点,始边与x轴的非负半轴重合按终边位置象限角角的终边在第几象限,这个角就是第几象限角其他角的终边落在坐标轴上={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式角α的弧度数公式 |α|=l r角度与弧度的换算1°=π180rad,1 rad =⎝ ⎛⎭⎪⎫180π°≈57°18′ 弧长公式 l =|α|r 扇形面积公式 S =12lr =12|α|r 23.任意角的三角函数三角函数正弦余弦正切定 义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx 叫做α的正切,记作tan α各象限符号Ⅰ 正 正 正 Ⅱ正 负 负 Ⅲ 负 负 正 Ⅳ 负正负口诀一全正,二正弦,三正切,四余弦三角 函数线有向线段MP 为正弦线,有向线段OM 为余弦线,有向线段AT 为正切线[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( ) (3)不相等的角终边一定不相同.( ) (4)终边相同的角的同一三角函数值相等.( )(5)若α∈⎝⎛⎭⎪⎫0,π2,则ta n α>sin α.( )(6)若α为第一象限角,则sin α+cos α>1.( )答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√ [教材衍化]1.(必修4P10A 组T7改编)角-225°=________弧度,这个角在第________象限. 答案:-5π4二2.(必修4P15练习T2改编)设角θ的终边经过点P(4,-3),那么2cos θ-sin θ=________. 解析:由已知并结合三角函数的定义,得sin θ=-35,cos θ=45,所以2cos θ-sin θ=2×45-⎝ ⎛⎭⎪⎫-35=115.答案:1153.(必修4P10A 组T6改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度. 答案:π3[易错纠偏](1)终边相同的角理解出错; (2)三角函数符号记忆不准;(3)求三角函数值不考虑终边所在象限.1.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π-45°(k∈Z)B .k ·360°+94π(k∈Z)C .k ·360°-315°(k∈Z)D .k π+5π4(k∈Z)解析:选C.与9π4的终边相同的角可以写成2kπ+9π4(k∈Z),但是角度制与弧度制不能混用,所以只有C 正确.故选C.2.若sin α<0,且tan α>0,则α是第____象限角.解析:由sin α<0知α的终边在第三、第四象限或y 轴的负半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.答案:三3.已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________. 解析:如图,由题意知,角α的终边在第二象限,在其上任取一点P(x,y),则y =-x,由三角函数的定义得tan α=y x =-xx=-1.答案:-1象限角及终边相同的角(1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α|α=2kπ-π3,k ∈ZB.⎩⎨⎧⎭⎬⎫α|α=2kπ+2π3,k ∈ZC.⎩⎨⎧⎭⎬⎫α|α=kπ-2π3,k ∈ZD.⎩⎨⎧⎭⎬⎫α|α=kπ-π3,k ∈Z(3)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.【解析】 (1)因为α是第二象限角,所以π2+2kπ<α<π+2kπ,k ∈Z,所以π4+kπ<α2<π2+kπ,k ∈Z.当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.(2)根据题意,角α的终边在直线y =-3x 上,α为第二象限角时,α=2π3+2kπ=(2k +1)π-π3,k ∈Z ;α为第四象限角时,α=5π3+2kπ=(2k +2)π-π3,k ∈Z ;综上,角α的取值集合是⎩⎨⎧⎭⎬⎫α|α=kπ-π3,k ∈Z .故选D.(3)如图,在坐标系中画出直线y =3x,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.【答案】 (1)C (2)D (3)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π(1)表示区间角集合的三个步骤(2)求θn 或nθ(n∈N *)所在象限(位置)的方法①将θ的范围用不等式(含有k)表示. ②两边同除以n 或乘以n.③对k 进行讨论,得到θn或nθ(n∈N *)所在的象限(位置).1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k×360°(k∈Z), 则令-720°≤45°+k×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k<-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315° 2.若sin α·tan α<0,且cos αtan α<0,则α是第________象限角. 解析:由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限角;由cos αtan α<0,可知cos α,tan α异号,从而α为第三或第四象限角.综上,α为第三象限角.答案:三扇形的弧长、面积公式已知扇形的圆心角是α ,半径为R,弧长为l. (1)若α=60°,R =10 cm,求扇形的弧长l ;(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【解】 (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,则l =20-2R,所以S =12lR =12(20-2R)R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25, 此时l =10 cm,α=2 rad.弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式是l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. [提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度制.1.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:选A.设扇形的弧长为l,则12l ·2=8,即l =8,所以扇形的圆心角的弧度数为82=4.2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r,则扇形的半径为2r 3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎫2r 32πr 2=527, 所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·23r2πr =518.答案:518三角函数的定义(高频考点)三角函数的定义是高考的常考内容,多以选择题、填空题的形式考查,难度较小.主要命题角度有: (1)利用三角函数定义求值; (2)判断三角函数值的符号; (3)利用三角函数线解三角不等式;(4)三角函数定义中的创新. 角度一 利用三角函数定义求值已知α是第二象限的角,其终边的一点为P(x,5),且cos α=24x,则tan α=( ) A.155 B.153 C .-155D .-153【解析】 因为α是第二象限的角,其终边上的一点为P(x,5),且cos α=24x,所以x <0,cos α=xx 2+5=24x,解得x =-3,所以tan α=5-3=-153. 【答案】 D角度二 判断三角函数值的符号若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0D .cos 2α>0【解析】 因为tan α>0,所以α∈⎝ ⎛⎭⎪⎫k π,k π+π2(k∈Z)是第一、三象限角. 所以sin α,cos α都可正、可负,排除A,B. 而2α∈(2kπ,2k π+π)(k∈Z), 结合正弦函数图象可知,C 正确.取α=π4,则tan α=1>0,而cos 2α=0,故D 不正确.【答案】 C角度三 利用三角函数线解不等式函数y =sin x -32的定义域为________. 【解析】 由题意,得sin x ≥32,作直线y =32交单位圆于A,B 两点,连接OA,OB,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .【答案】 ⎣⎢⎡⎦⎥⎤2k π+π3,2k π+2π3,k ∈Z 角度四 三角函数定义中的创新(2020·台州质检)如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )【解析】 因为P 0(2,-2),所以∠P 0Ox =-π4.因为角速度为1,所以按逆时针旋转时间t 后,得∠POP 0=t,所以∠POx=t -π4.由三角函数定义,知点P 的纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,因此d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.令t =0,则d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫-π4= 2. 当t =π4时,d =0,故选C.【答案】 C(1)定义法求三角函数值的三种情况①已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.②已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.③已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.(2)三角函数值的符号及角的位置的判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.[提醒] 若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).1.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D.设点P 的坐标为(x,y), 则由三角函数的定义得⎩⎪⎨⎪⎧sin π4=y 2,cos π4=x 2,即⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).2.已知角α的终边经过点P(-3,m),且sin α=34m (m≠0),则角α为第________象限角. 解析:依题意,点P 到原点O 的距离为 r = (-3)2+m 2=3+m 2, 所以sin α=m 3+m2,又因为sin α=34m,m ≠0, 所以m 3+m2=34m, 所以m 2=73,所以m =±213.所以点P 在第二或第三象限. 答案:二或三[基础题组练]1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C.设扇形的半径为r,弧长为l,则由扇形面积公式可得2=12lr =12r 2α=12r 2×4,求得r =1,l=αr=4,所以所求扇形的周长为2r +l =6.2.若角α与β的终边相同,则角α-β的终边( ) A .在x 轴的正半轴上 B .在x 轴的负半轴上 C .在y 轴的负半轴上 D .在y 轴的正半轴上 解析:选A.由于角α与β的终边相同,所以α=k·360°+β(k∈Z),从而α-β=k·360°(k∈Z),此时角α-β的终边在x 轴正半轴上. 3.已知角α的终边过点P(-8m,-6sin 30°),且cos α=-45,则m 的值为( )A .-12B.12 C .-32D.32解析:选B.因为r =64m 2+9, 所以cos α=-8m64m 2+9=-45, 所以m >0,所以4m 264m 2+9=125,因此m =12.4.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n 时,2n π+π4≤α≤2n π+π2(n∈Z),此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2(n∈Z),此时α的终边和π+π4≤α≤π+π2的终边一样.故选C.5.已知角α=2k π-π5(k∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( ) A .1 B .-1 C .3 D .-3解析:选B.由α=2k π-π5(k∈Z)及终边相同的概念知,角α的终边在第四象限, 又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.故选B.6.已知圆O 与直线l 相切于点A,点P,Q 同时从点A 出发,P 沿直线l 匀速向右,Q沿圆周按逆时针方向以相同的速率运动,当点Q 运动到如图所示的位置时,点P 也停止运动,连接OQ,OP,则阴影部分的面积S 1,S 2的大小关系是( )A .S 1≥S 2B .S 1≤S 2C .S 1=S 2D .先S 1<S 2,再S 1=S 2,最后S 1>S 2解析:选C.因为圆O 与直线l 相切,所以OA⊥AP ,所以S 扇形AOQ =12·AQ ︵·r =12·AQ ︵·OA,S △AOP =12OA ·AP,因为AQ ︵=AP, 所以S 扇形AOQ =S △AOP ,即S 扇形AOQ -S 扇形AOB =S △AOP -S 扇形AOB ,则S 1=S 2.故选C.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A,点A 的纵坐标为45,则cos α=________. 解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35. 答案:-358.已知点P(sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.解析:因为点P(sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎪⎨⎪⎧sin θ>0,cos θ<0,所以θ为第二象限角. 答案:二9.函数y =2cos x -1的定义域为________.解析:因为2cos x -1≥0,所以cos x ≥12. 由三角函数线画出x 满足条件的终边的范围(如图阴影部分所示).所以x∈[2kπ-π3,2k π+π3](k∈Z). 答案:⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k∈Z) 10.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________. 解析:因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3. 答案:⎩⎨⎧⎭⎬⎫-π3,5π3 11.已知角θ的终边上有一点P(x,-1)(x≠0),且tan θ=-x,求sin θ+cos θ的值. 解:因为θ的终边过点(x,-1)(x≠0),所以tan θ=-1x. 又tan θ=-x,所以x 2=1,即x =±1. 当x =1时,sin θ=-22,cos θ=22. 因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.12.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.解:设扇形AOB 的半径为r,弧长为l,圆心角为α,(1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6, 所以α=l r =23或α=l r=6. (2)因为2r +l =8,所以S 扇=12lr =14l ·2r ≤14(l +2r 2)2=14×(82)2=4, 当且仅当2r =l,即α=l r=2时,扇形面积取得最大值4.所以圆心角α=2,弦长AB =2sin 1×2=4sin 1.[综合题组练]1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( ) A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C.如图所示,作出角α的正弦线MP,余弦线OM,正切线AT,观察可得,AT >OM >MP,故有sin α<cos α<tan α.2.已知θ∈[0,π),若对任意的x∈[-1,0],不等式x 2cos θ+(x +1)2sin θ+x 2+x>0恒成立,则实数θ的取值范围是( )A.⎝⎛⎭⎪⎫π12,5π12 B.⎝ ⎛⎭⎪⎫π6,π4 C.⎝ ⎛⎭⎪⎫π4,3π4 D.⎝ ⎛⎭⎪⎫π6,5π6 解析:选A.由题意知,令f(x)=(cos θ+sin θ+1)·x 2+(2sin θ+1)x +sin θ>0,因为cos θ+sin θ+1≠0,所以f(x)>0在[-1,0]上恒成立,只需满足⎩⎪⎨⎪⎧f (-1)>0f (0)>0f ⎝ ⎛⎭⎪⎫-2sin θ+12(1+cos θ+sin θ)>0⇒⎩⎪⎨⎪⎧cos θ>0sin θ>0sin 2θ>12⇒ θ∈⎝ ⎛⎭⎪⎫π12,5π12,故选A. 3.若两个圆心角相同的扇形的面积之比为1∶4,则这两个扇形的周长之比为________.解析:设两个扇形的圆心角的弧度数为α,半径分别为r,R(其中r <R),则12αr 212αR 2=14,所以r∶R=1∶2,两个扇形的周长之比为2r +αr 2R +αR=1∶2. 答案:1∶24.已知x∈R ,则使sin x>cos x 成立的x 的取值范围是________.解析:在[0,2π]区间内,由三角函数线可知,当x∈(π4,5π4)时,sin x>cos x,所以在(-∞,+∞)上使sin x>cos x 成立的x 的取值范围是(2k π+π4,2k π+5π4),k ∈Z. 答案:(2k π+π4,2k π+5π4),k ∈Z 5.若角θ的终边过点P(-4a,3a )(a≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P(-4a,3a )(a≠0),所以x =-4a,y =3a,r =5|a|,当a >0时,r =5a,sin θ+cos θ=-15. 当a <0时,r =-5a,sin θ+cos θ=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎪⎫0,π2, cos θ=-45∈⎝ ⎛⎭⎪⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝ ⎛⎭⎪⎫-45<0; 当a <0时,sin θ=-35∈⎝ ⎛⎭⎪⎫-π2,0, cos θ=45∈⎝⎛⎭⎪⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝ ⎛⎭⎪⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin (cos θ)的符号为正.6.设α为锐角,求证:1<sin α+cos α<π2. 证明:如图,在平面直角坐标系中作出单位圆,设角α的终边为OP,过P 作PQ 垂直x 轴于Q,PR 垂直y 轴于R,则sin α=QP,cos α=OQ. 因为α为锐角,在△OPQ 中,QP +OQ>OP,所以sin α+cos α>1.①而S △OPB =12OB ·RP =12cos α, S △OAP =12OA ·QP =12sin α, S 扇形OAB =12×1×π2=π4. 又因为四边形OAPB 被扇形OAB 覆盖,所以S △OPB +S △OAP <S 扇形OAB ,即sin α+cos α<π2.② 由①,②得1<sin α+cos α<π2.。
高考数学一轮总复习第四章三角函数与解三角形 1任意角蝗制及三角函数的概念课件
最值问题常用二次函数或基本不等式.关于扇形的弧长公式和面积公式有角度制与弧
度制两种形式,一般使用弧度制.
变式2 已知一扇形的圆心角为 ,半径为,弧长为,若 =
π
,
3
= 10 cm,求:
(1)扇形的面积;
(2)扇形的弧长及该弧所在弓形(由弦及其所对的弧组成的图形)的面积.
解:(1)由已知,得扇形 =
(2)三角函数的定义域和函数值在各象限的符号.
三角函数
定义域(弧度制下)
第一象限
第二象限
第三象限
第四象限
符号
符号
符号
符号
-
-
-
-
4.特殊角的三角函数值
0
0
1
1
0
0
1
不存在
0
0
0
0
1
不存在
0
常用结论
1.角的集合
(1)象限角的集合.
象限角
第一象限角
第二象限角
第三象限角
第四象限角
角的集合表示
(2)非象限角(轴线角)的集合.
3
3
3
3
解:如图,在坐标系中画出直线 =
在[0,2π)内,终边在直线 =
满足条件的角有两个,即−
{−
π
3,可以发现它与轴的夹角是 .
3
π 4π
3上的角有两个,即 , .在[−2π, 0)内
3
3
2π
5π
,− .故满足条件的角
3
3
5π
2π π 4π
5π
2π π 4π
,− , , }.故填{− ,− , , }.
周率日为背景,通过给出中外为求得圆周率而采用的经典“割圆术”思想,
高考数学教材知识点复习三角函数的基本概念导学案
2015届高考数学教材知识点复习三角函数的基本概念导学案【课题】第四章三角函数第1课时三角函数的基本概念【学习目标】1.了解任意角的概念.2.了解弧度制的概念,能进行角度与弧度的互化. 3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.4.理解三角函数线(正弦线、余弦线、正切线)的概念及意义.预习案【课本导读】1.角的概念(1)象限角:角α的终边落在就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.(2)终边相同的角:.(3)与α终边相同的角的集合为(4)各象限角的集合为,,,2.弧度制(1)什么叫1度的角:(2)什么叫1弧度的角:(3)1°=弧度;1弧度=度.(4)扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=,面积S==.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=,cosα=,tanα= .(2)三角函数在各象限的符号是:αcosαtanαⅠⅡⅢⅣ4.三角函数线如图所示,正弦线为;余弦线为;正切线为 . 【教材回归】1.下列命题为真命题的是( )A.角α=kπ+π3(k∈Z)是第一象限角 B.若sinα=sinπ7,则α=π7C.-300°角与60°角的终边相同 D.若A={α|α=2kπ,k∈Z},B={α|α=4kπ,k∈Z},则A =B2.若600°角的终边上有一点P(-4,a),则a的值为( )A.43 B.-43 C.±43 D.已知锐角α终边上一点A的坐标是(2sinπ3,2cosπ3),则α弧度数是( ) A.2 B.π3 C.π6 D.2π34.已知圆中一段弧长正好等于该圆的外切正三角形边长,则这段弧所对圆心角的弧度数为______.5.已知角θ的顶点为坐标原点,始边为x轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________探究案题型一:角的有关概念例1 设角α1=-350°,α2=860°,β1=35π,β2=-73π.(1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°之间找出与它们有相同终边的所有角.思考题1 (1)在区间内找出所有与45°角终边相同的角β;(2)设集合M={x|x=k2×180°+45°,k∈Z},N={x|x=k4×180°+45°,k∈Z},那么两集合的关系是什么?例2已知角α是第三象限角,试判断①π-α是第几象限角?②α2是第几象限角?③2α是第几象限角?思考题2 (1)如果α为第一象限角,那么①sin2α,②cos2α;③sinα2;④cosα2中必定为正值的是________.(2)若sinθ2=45,且sinθ0,则θ所在象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限题型二:三角函数的定义例3 已知角α的终边经过点P(x,-2)(x≠0),且cosα=36x,则sinα+1tanα的值为________.思考题3 (1)若角θ的终边与函数y=-2|x|的图像重合,求θ的各三角函数值.(2)如图所示,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(2,-2),角速度为1,那么点P 到x轴的距离d关于时间t的函数图像大致为( ) 题型三:利用三角函数线解三角不等式例4 (1)不等式sinx≥32的解集为__________ .(2)不等式cosx≥-12的解集为__________.(3)函数f(x)=2sinx+1+lg(2cosx-2)的定义域为_____.思考题4 (1)求函数y=lg(3-4sin2x)的定义域.(2)已知sinαsinβ,那么下列命题成立的是( ) A.若α、β是第一象限的角,则cosαcosβB.若α、β是第二象限的角,则tanαtanβC.若α、β是第三象限的角,则cosαcosβD.若α、β是第四象限的角,则tanαtanβ题型四:弧度制的应用例5 已知一扇形的圆心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c(c0),当α为多少弧度时,该扇形有最大面积?思考题5 若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值?训练案1.有下列命题:①终边相同的角的同名三角函数的值相等;②终边不同的角的同名三角函数的值不等;③若sinα0,则α是第一、二象限的角;④若α是第二象限的角,且P(x,y)是其终边上一点,则cosα=-xx2+y2.其中正确的命题的个数是( ) A.1 B.2 C.3 D.42.sin 2cos 3tan 4的值( )A.小于0 B.大于0 C.等于0 D.不存在3.已知点P(tanα,cosα)在第三象限,则角α的终边在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知锐角α终边上一点P的坐标是(2sin2,-2cos2),则α等于( )A.2 B.-2 C.2-π2 D.π2-25.若π4θπ2,则下列不等式成立的是( ) A.sinθcosθtanθ B.cosθtanθsinθC.sinθtanθcosθD.tanθsinθcosθ。
高三数学一轮复习 第四章 三角函数、解三角形第一节 三角函数的概念、同角三角函数的关系式和诱导公式课
4.能利用单位圆中的三角函数线推导出π2±α,π±α 的正弦、 余弦、正切的诱导公式.
h
3
•关 注 热 点
•1.三角函数的定义及应用是本节考查重点,注 意三角函数值符号的确定.
•2.同角三角函数关系式常用来化简、求值,是 高考热点.
•3.利用诱导公式求值或化简三角函数式是考查 重点.
•4.主要以选择题、填空题的形式考查.
-α)=
-.tanα
•(5)公式五
cosα,tan( -c,osαtan(π
sin(π2-α)= cosα ,cos(2π-α)= sinα .
h
11
(6)公式六 sin(π2+α)= cosα ,cos(2π+α)= -sinα .
即 α+k·2π(k∈Z),-α,π±α 的三角函数值,等于 α 的 同名 函 数值,前面加上一个把 α 看成 锐角 时原函数值的符号;π2±α 的 正弦(余弦)函数值,分别等于 α 的 余弦(正弦) 函数值,前面 加上一个把 α 看成锐角时原函数值的符号.
∴-sinα=-2cosα.
∴sinα=2cosα,即 tanα=2.
(1)原式=5ttaannαα-+42=5×2-2+4 2=-16.
h
32
(2)原式=sin2α+2sinαcosα=sins2iαn+2α+2sicnoαsc2αosα =tanta2αn+2α+2ta1nα=85.
h
33
化简ssiinn[kkπ+-1απc+osα[]kc-os1kππ- +αα](k∈Z).
终边在 y 轴上的角的集合为{α|α=kπ+π2,k∈Z};
终边在坐标轴上的角的集合为{α|α=k2π,k∈Z}.
h
14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力·思维·方法
1.若α是第三象限的角,问α/2是哪个象限的角?2α是哪个 象限的角? 【解法回顾】 各个象限的半角范围可以用下图记忆,图 中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第一、二、
三、四象限角的半角范围;再根据限
制条件,解的范围又进一步缩小.
2.已知sinα=m (|m|≤1) ,求tanα.
【解题回顾】此类例题的结果可分为以下三种情况. (1)已知一个角的某三角函数值,又知角所在象限,有一解. (2)已知一个角的某三角函数值,且不知角所在象限,有两 解. (3)已知角α的三角函数值是用字母表示时,要分象限讨论 .α分象限讨论的依据是已知三角函数值具有平方关系的那 个三角函数值符号,一般有四解.
4.已知2α终边在x轴上方,则α是( C) (A)第一象限角 (B)第一、二象限角 (C)第一、三象限角 (D)第一、四象限角 5. 在 (0 , 2 π) 内,使 sinα·cosα<0,sinα+cosα>0,同时成 立的α的取值范围是( )C (A)(π/2,3π/4) (B)(3π/4,π) (C)(π/2,3π/4)∪(7π/4,2π) (D)(3π/4,π)∪(3π/2,7π/4) 返回
要点·疑点·考点
4.同角三角函数的基本关系式 ①倒数关系:sinαcscα=1,cosαsecα=1 , tanαcotα =1 ②商数关系:tanα=sinαcosα,cotα=cosαsinα ③平方关系:sin2α+cos2α=1,1+tan2α=sec2α,1+cot2α =csc2α
5.三角函数值的符号 sinα 与 cscα,一、二正,三、四负, cosα 与 secα,一、四正, 二、三负,tanα与cotα,一、三正,二、四负 返回
3.化简
3secα 1 tan2 α
tanα sec 2 α 1
【解题回顾】在各象限中,各三角函数的符号特征是去绝 对值的依据 . 另外,本题之所以没有讨论角的终边落在坐 标轴上的情况,是因为此时所给式子无意义,否则同样要 讨论
4.设α为第四象限角,其终边上的一个点是P(x, 5),
课前热身
1.已知α∈[0,2π),命题P:点P(sinα-cosα,tanα)在第一 A 象限.命题q:α∈[π/2,π].则命题P是命题┒q的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 -5/13 , 2.已知角α的终边过点P(-5,-12),则cosα= _______ 12/5 tan α =_______. 3.已知集合 A={第一象限的角 },B={锐角},C={小于90° 的角},下列四个命题:①A=B=C; ②A C; ③C A; ④A C=B. 其中正确命题个数为( A ) (A)0 (B)1 (C)2 (D)4
2 x 且cosα= ,求sinα和tanα. 4
【解题回顾】容易出错的地方是得到 x2=3 后,不考虑 P 点所在的象限,分x取值的正负两种情况去讨论,一般地, 在解此类问题时,可以优先注意角α所在的象限,对最终 结果作一个合理性的预测
返回
延伸·拓展
5.已知一扇形的中心角是α,所在圆的半径是R. ①若α=60°,R=10cm,求扇形的弧长及该弧所在的弓 形面积. ②若扇形的周长是一定值 C(C>0),当 α 为多少弧度时, 该扇形的面积有最大值?并求出这一最大值? 【解题回顾】扇形的弧长和面积计算公式都有角度制和弧 度制两种给出的方式,但其中用弧度制给出的形式不仅易 记,而且好用 . 在使用时,先要将问题中涉及到的角度换 算为弧度.
第1课时 三角函数的相关概念
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展
误 解 分 析
要点·疑点·考点
1.角的概念的推广 所有与α角终边相同的角的集合S={β|β=α+k· 360°,k∈Z} 2.弧度制 任一个已知角α的弧度数的绝对值 |α|=l/r ( l是弧长,r是 半 径 ) , 1 ° = π/180 弧 度 , 1 rad=(180/π)°≈57.30°= 57°18′ 弧长公式l=|α|r,扇形面积公式S=1/2lr 3.任意角三角函数的定义 设α是一任意角,角α的终边上任意一点P(x,y),P与原点 距离是r,则sinα=y/r,cosα=x/r , tanα=y/x, cotα=x/y,secα=r/x,cscα=r/y.
返回
误解分析
1.答案不惟一是三角函数习题的显著特点之一,因此在 解题时,一定要适时讨论,讨论不全必然招致漏解.
2.角的范围容易忽视,从而三角函数值也易出错.
返回