第四章复习(第1课时) 三角函数的相关概念
第4章 三角函数、解三角形 第1节 任意角和弧度制及任意角的三角函数

因此 cos 2θ=2cos 2θ-1=25-1=-35.
索引
(3)函数 y= 2cos x-1的定义域为__2__k_π_-__π3_,__2_k_π_+__π3__(k_∈__Z__) _.
解析 ∵2cos x-1≥0, ∴cos x≥21. 由三角函数线画出x满足条件的终边范围(如图阴 影部分所示), ∴x∈2kπ-π3,2kπ+π3 (k∈Z).
索引
2.弧度制的定义和公式 (1)定义:把长度等于__半__径__长__的弧所对的圆心角叫做1弧度的角,弧度记作
rad. (2)公式
角 α 的弧度数公式 角度与弧度的换算
|α|=rl(弧长用 l 表示)
1°=1π80
180° rad;1 rad=___π___
弧长公式 扇形面积公式
弧长 l=_|_α_|_r_ S=__12_lr__=__12_|_α_|r2
索引
感悟提升
应用弧度制解决问题时应注意: (1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
索引
训练1 (1)(2021·长沙质检)已知弧长4π的弧所对的圆心角为2弧度,则这条弧所
在的圆的半径为( D )
A.1
B.2
C.π
D.2π
解析 ∵弧长4π的弧所对的圆心角为2弧度,
∴4rπ=2,解得 r=2π, ∴这条弧所在的圆的半径为2π.
索引
10π (2)在单位圆中,200°的圆心角所对的弧长为______9__,由该弧及半径围成的
5π 扇形的面积为______9__. 解析 单位圆半径 r=1,200°的弧度数是 200×1π80=109π. ∴l=109π,S 扇形=12lr=21×109π×1=59π.
4-1 三角函数的基本概念

1.弧度制与角度制不能混用,如 α=2kπ+30°(k∈Z),β= k·360°+π2(k∈Z)都是不正确的.
2.相等的角终边一定相同,但终边相同的角不一定相等. 3.终边在坐标轴上的角,不能称为任何象限的角.
4.象限角与区间角不同,如:第一象限角与区间角(0,π2) 不等价,后者是前者的子集.有的区间角可以包含 2 个象限内角 及坐标轴上角,如(π3,23π).
②∵kπ+π2<α2<kπ+34π,k∈Z. ∴α2是第二或第四象限角. ③∵4kπ+2π<2α<4kπ+3π,k∈Z, ∴2α是第一或第二象限角或 y 轴非负半轴上的角. 【答案】 ①四 ②二或四 ③2α 是第一或第二象限角或 y 轴非负半轴上的角
(2)设集合 M={x|x=k2×180°+45°,k∈Z},N={x|x=k4× 180°+45°,k∈Z},那么两集合的关系是什么?
第四章 三 角 函 数
第1课时 三角函数的基本概念
…2019 考纲下载… 1.了解任意角的概念. 2.了解弧度制的概念,能进行角度与弧度的互化. 3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定 义. 4.理解三角函数线(正弦线、余弦线、正切线)的概念及意义. 请注意 本节内容高考一般不直接考查,但它是后续各节的基础,是 学习三角函数必须掌握的基本功.
弧度制 (1)什么叫 1 度的角:把圆周分成 360 份,每一份所对的 圆__心__角__叫 1°的角. (2)什么叫 1 弧度的角:弧_长__等__于__半__径_的圆弧所对的圆心角叫 1 弧度的角.
(3)1°=_____弧度;1 弧度=______度. (4)若扇形的半径为 r,圆心角的弧度数为 α,则此扇形的弧
【解析】
由三角函数线可知选 D. 【答案】 D
高考数学一轮复习 第四章 三角函数 4.1 三角函数的概念、同角三角函数的关系及诱导公式课件 文

∴sin
α= 13 ,则sin α
9
2
=-cos
α= 1
sin2α
= 2 2 3
.
(2)由 sin
α
cos
α
1 5
,
sin2α cos2α 1,
消去cos α整理,得
25sin2α-5sin α-12=0,
解得sin α= 4 或sin α=- 3 .
高考文数
第四章 三角函数
§4.1 三角函数的概念、同角三角函数的关系及诱导公式
知识清单
考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.象限角
2.终边相同的角
3.弧度制 (1)角度制与弧度制的互化
1°=① 180
180
rad;1 rad=② ° .
(2)弧长及扇形面积公式 弧长公式:③ l=|α|r .
例1 已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边
在直线y=2x上,则cos 2θ= ( B )
A.- 4 B.- 3 C. 2 D. 3
5
5
3
4
解题导引
方法一:在角θ的终边上任取一点P,根据直线方程
设出点P的坐标 根据三角函数定义分别
求出sin θ与cos θ 利用二倍角公式求出cos 2θ
5
5
-
2
5 5
=- 3 .
5
综上可得,cos 2θ=- 3 ,故选B.
5
解法二:因为该直线的斜率k=2=tan θ,
所以cos
2θ= ccooss22θθ
三角函数知识点总结

高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαkSIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:(6个)8、同角三角函数的基本关系式:αααt a n c o s s i n =αααc o t s i n c o s =1c o t t a n =⋅αα 1sin csc =α⋅α 1c o s s e c =α⋅α1c o s s i n 22=+αα1tan sec 22=-αα1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x c o t)c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=-公式组四 公式组五 公式组六公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππx x x x x x x x c o t)2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (-=--=-=--=-ππππx x xx x x xx c o t)c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n 22s i n= βαβαβαsin sin cos cos )cos(+=- ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(-=- 2c o s12s i n αα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-=2tan 12tan2tan 2αα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== . 10. 正弦、余弦、正切、余切函数的图象的性质:(定义域,值域,图像,周期性,单调性,)注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)c o s (ϕω+=x y 的()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)t a n (ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T );x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f Tωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )y=|cos2x +1/2|图象由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
第四章§4.1 三角函数的概念、同角三角函数的关系及诱导公式

3 6 5 年高考 3 年模拟 B 版( 教师用书)
两边同时除以 cos2 α, 整理得 16tan2 α-24tan α+9 = 0,
解得
tan
α=
3 4
.
解法三:设 4sin α-3cos α = x,则 x2 +25 = (4sin α-3cos α) 2 +(3sin α+4cos α) 2 = 25,
( 3) 弧长与扇形面积公式
①弧长公式:l = | α | ·r;
②扇形面积公式:S =
1 2
l·r =
1 2
| α | r2.( 其中
l
为扇形弧长,
α 为圆心角,r 为扇形半径)
( 4) 任意角的三角函数的定义
①定义:设角 α 的终边与单位圆交于点 P( x,y) ,则 sin α =
y,cos
α = x,tan
2kπ+
π 2
-φ
= sin
φ=
4 5
,
故 tan
α=
3 4
.
解法五:设 x = cos α,y = sin α,则有 4x+3y = 5,且 x2 +y2 = 1,从
而角 α 终边上的点 P( x,y) 在单位圆上,且在直线 l:4x + 3y = 5
上.又直线 l 与单位圆相切,故直线 l 与角 α 的终边所在直线垂
直,所以角 α 的终边所在直线的斜率为
3 4
,故
tan
α=
y x
=
3 4
.
������������������������������������������������������������������������������������������������������������������������������������
数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理

第四章三角函数、解三角形第一讲三角函数的基本概念、同角三角函数的基本关系与诱导公式练好题·考点自测1.已知下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若sin α=sin β,则α与β的终边相同;④若cos θ<0,则θ是第二或第三象限的角.其中正确的个数是()A.1B.2 C。
3 D。
42。
sin 2·cos 3·tan 4的值()A。
小于0 B。
大于0C。
等于0 D.不存在3.已知点P(cos 300°,sin 300°)是角α终边上一点,则sin α—cos α= ()A.√32+12B。
-√32+12C。
√32−12D。
-√32−124.[2019全国卷Ⅰ,7,5分]tan 255°= ()A.-2—√3B。
—2+√3C。
2—√3 D.2+√35.[2020全国卷Ⅱ,2,5分][理]若α为第四象限角,则 ( ) A 。
cos 2α>0 B 。
cos 2α〈0 C 。
sin 2α>0 D.sin 2α<06。
已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα= ( )A.—√7B.√7C.√3 D 。
-√3图4-1—17。
[2019北京,8,5分]如图4—1-1,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为 ( ) A 。
4β+4cos β B.4β+4sin β C.2β+2cos β D.2β+2sin β8.[2018全国卷Ⅰ,11,5分]已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B .√55C 。
2√55D.1拓展变式1.在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图4-1—3所示两种方案,既要充分利用废料,又要切割时间更短,则方案更优.2.(1)[2021洛阳市联考]已知角α的顶点为坐标原点,始边与x轴非负半轴重合,终边与直线y=3x重合,且sin α<0,P(m,n)是角α终边上一点,且|OP|=√10(O为坐标原点),则m-n 等于()A.2B.-2C.4 D。
22第四章 三角函数、解三角形 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式

(2)设 α 为锐角,若 cosα+π6=54,则 sin2α+π3的值为
12 A.25
√24
B.25
C.-2245
解析 因为 α 为锐角,且 cosα+π6=54,
D.-1225
所以 sinα+π6= 1-cos2α+π6=35,
所以 sin2α+π3=sin 2α+π6 =2sinα+6πcosα+π6=2×53×54=2245,故选 B.
tan α+tan β
tan(α+β)= 1-tan
αtan
(T(α+β)) β
2.二倍角公式
sin 2α= 2sin αcos α ; cos 2α= cos2α-sin2α = 2cos2α-=1
2tan α tan 2α= 1-tan2α .
1-2sin2α ;
【概念方法微思考】 1.诱导公式与两角和差的三角函数公式有何关系? 提示 诱导公式可以看成和差公式中 β=k·π2(k∈Z)时的特殊情形. 2.怎样研究形如f(x)=asin x+bcos x函数的性质? 提示 先根据辅助角公式 asin x+bcos x= a2+b2·sin(x+φ),将 f(x)化成 f(x)
解析
cos2α2
= 121+cos α = 1+cos α =4sin α.
1234567
2
PART TWO
题型分类 深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
自主演练
题型一 和差公式的直接应用
1.(2018·石家庄质检)若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为
A.-
2 10
B.
2 10
√C.-7102
D.7102
高考数学理科 复习 第四章三角函数 §4.1三角函数的概念、同角三角函数的关系式和诱导公式

A.a>b>c B.b>c>a C.c>b>a D.c>a>b
(2)(2014成都一模)已知sin(π-α)=log8
1 4
,且α∈
2
,
0
,则tan(2π-α)的值为
.
25
答案 (1)C (2) 5
解析 (1)∵b=cos 55°=sin 35°>sin 33°=a,∴b>a.
∵c=tan
35°=
、 R、
α α≠ 2 +kπ,k∈Z .
5.三角函数线 设角α的终边与单位圆交于点P,过点P作PM⊥x轴于点M,则有向线段MP 叫做角α的正弦线,有向线段 OM 叫做 角α的余弦线;过点A(1,0)作单位圆的切线交 角α的终边或其反向延长线于点T,则有向线 段AT叫做角α的 正切 线.
6.三角函数的符号规律 第一象限全“+”,第二象限正弦“+”,第三象限正切“+”,第四象限余 弦“+”.简称:一全、二正、三切、四余. 7.同角三角函数的基本关系 (1)平方关系: sin2α+cos2α=1 ;
(2)商数关系: 8.诱导公式
sin α =tan α .
cos α
组数 角
正弦
一 2kπ+α (k∈Z)
sin α
余弦
cos α
二 π+α
-sin α -cosα
三 -α
-sin α cos α
正切
tan α
tan α -tan α
四 π-α
sin α -cos α -tan α
五
六
-α
+α
α的值为
(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力·思维·方法
1.若α是第三象限的角,问α/2是哪个象限的角?2α是哪个 象限的角? 【解法回顾】 各个象限的半角范围可以用下图记忆,图 中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第一、二、
三、四象限角的半角范围;再根据限
制条件,解的范围又进一步缩小.
2.已知sinα=m (|m|≤1) ,求tanα.
【解题回顾】此类例题的结果可分为以下三种情况. (1)已知一个角的某三角函数值,又知角所在象限,有一解. (2)已知一个角的某三角函数值,且不知角所在象限,有两 解. (3)已知角α的三角函数值是用字母表示时,要分象限讨论 .α分象限讨论的依据是已知三角函数值具有平方关系的那 个三角函数值符号,一般有四解.
4.已知2α终边在x轴上方,则α是( C) (A)第一象限角 (B)第一、二象限角 (C)第一、三象限角 (D)第一、四象限角 5. 在 (0 , 2 π) 内,使 sinα·cosα<0,sinα+cosα>0,同时成 立的α的取值范围是( )C (A)(π/2,3π/4) (B)(3π/4,π) (C)(π/2,3π/4)∪(7π/4,2π) (D)(3π/4,π)∪(3π/2,7π/4) 返回
要点·疑点·考点
4.同角三角函数的基本关系式 ①倒数关系:sinαcscα=1,cosαsecα=1 , tanαcotα =1 ②商数关系:tanα=sinαcosα,cotα=cosαsinα ③平方关系:sin2α+cos2α=1,1+tan2α=sec2α,1+cot2α =csc2α
5.三角函数值的符号 sinα 与 cscα,一、二正,三、四负, cosα 与 secα,一、四正, 二、三负,tanα与cotα,一、三正,二、四负 返回
3.化简
3secα 1 tan2 α
tanα sec 2 α 1
【解题回顾】在各象限中,各三角函数的符号特征是去绝 对值的依据 . 另外,本题之所以没有讨论角的终边落在坐 标轴上的情况,是因为此时所给式子无意义,否则同样要 讨论
4.设α为第四象限角,其终边上的一个点是P(x, 5),
课前热身
1.已知α∈[0,2π),命题P:点P(sinα-cosα,tanα)在第一 A 象限.命题q:α∈[π/2,π].则命题P是命题┒q的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 -5/13 , 2.已知角α的终边过点P(-5,-12),则cosα= _______ 12/5 tan α =_______. 3.已知集合 A={第一象限的角 },B={锐角},C={小于90° 的角},下列四个命题:①A=B=C; ②A C; ③C A; ④A C=B. 其中正确命题个数为( A ) (A)0 (B)1 (C)2 (D)4
2 x 且cosα= ,求sinα和tanα. 4
【解题回顾】容易出错的地方是得到 x2=3 后,不考虑 P 点所在的象限,分x取值的正负两种情况去讨论,一般地, 在解此类问题时,可以优先注意角α所在的象限,对最终 结果作一个合理性的预测
返回
延伸·拓展
5.已知一扇形的中心角是α,所在圆的半径是R. ①若α=60°,R=10cm,求扇形的弧长及该弧所在的弓 形面积. ②若扇形的周长是一定值 C(C>0),当 α 为多少弧度时, 该扇形的面积有最大值?并求出这一最大值? 【解题回顾】扇形的弧长和面积计算公式都有角度制和弧 度制两种给出的方式,但其中用弧度制给出的形式不仅易 记,而且好用 . 在使用时,先要将问题中涉及到的角度换 算为弧度.
第1课时 三角函数的相关概念
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展
误 解 分 析
要点·疑点·考点
1.角的概念的推广 所有与α角终边相同的角的集合S={β|β=α+k· 360°,k∈Z} 2.弧度制 任一个已知角α的弧度数的绝对值 |α|=l/r ( l是弧长,r是 半 径 ) , 1 ° = π/180 弧 度 , 1 rad=(180/π)°≈57.30°= 57°18′ 弧长公式l=|α|r,扇形面积公式S=1/2lr 3.任意角三角函数的定义 设α是一任意角,角α的终边上任意一点P(x,y),P与原点 距离是r,则sinα=y/r,cosα=x/r , tanα=y/x, cotα=x/y,secα=r/x,cscα=r/y.
返回
误解分析
1.答案不惟一是三角函数习题的显著特点之一,因此在 解题时,一定要适时讨论,讨论不全必然招致漏解.
2.角的范围容易忽视,从而三角函数值也易出错.
返回