正十七边形尺规作图与详解

合集下载

正十七变形的尺规作图-推荐下载

正十七变形的尺规作图-推荐下载

尺规作图:正十七边形2009-09-07 17:24:09尺规作图是指使用圆规和没有刻度的直尺在有限步骤内的作图问题。

看似几何问题,实则是一个代数问题。

比如要作一个角等于π/3,就是在给定的线段的垂直平分线上截取长度为√3/2的线段,而作一条直线的垂线则是给定复平面上的一个点z=1,作出z'=√(-1)这个点。

把这个说法更一般化一点,尺规作图问题可以描述成:在复平面上给定那个点z_0,z_1,……,z_n(这些点的共轭可以得到),求复平面上全体可有这些点出发经直尺和圆规在有限步骤内可作出的点(数)的集合M。

如果z∈M,即z可作,则z是F[x]中一个2^t次多项式的根,F=Q(z_0,z_1,……,z_n,\bar(z_0),\bar(z_1),……,\bar(z_n)),其中Q为有理数域,\bar(z_k)为z_k的共轭,1≤k≤n。

现在来看一下所谓的尺规作图三大难题。

1,三等分角。

给定一个角θ,要得到α=θ/3,即作出cos(α)。

而我们有cos(θ)=cos(3α)=4cos(α)^3-3cos(α),令cos(α)=a,cos(3α)=b为已知,则有(2a)^3-3(a)-2b=0,在一般情况下,这个方程不一定是可约的(如取θ=π/3),在这时2a不可做,因为他不可能是一个2^t次多项式的根。

除此之外尚有很多可以被三等分的角,如只要n不是3的倍数,则α=π/3必可三等分。

事实上n和3互素,因此存在证书u和v,是的3u+nv=1,1/3n=u/n+v/3,所以α/3=π/3n=uπ/n+vπ/3,π/n和π/3都可作,所以α/3也可作。

2,倍立方。

即做一个正方体的体积是原正方体体积的2倍,相当于要作出x^3-2等于0的根,同1,这是不可能的。

3,化圆为方。

即作一个正方形使其面积等于给定的原的面积。

这相当于要作出x^2-π=0的根。

但是π不是代数数,即不是任何多项式的根,所以√π也是不可作的。

解读数学王子高斯正十七边形的作法-上

解读数学王子高斯正十七边形的作法-上

解读“数学王子”高斯正十七边形的作法(上)江苏省泰州市朱庄中学曹开清 225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 +2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

正十七边形尺规作图及证明

正十七边形尺规作图及证明

正十七边形尺规作图及证明正十七边形样本图正十七边形作法:第一步:在给定直线l上作一个圆O交直线于点A,B,分别以A,B为圆心,AB,BA为半径作弧,两弧交于点C,D,连接CD;第二步:以C为半径,CO为半径作弧交圆于点E,F,连接EF交CD于点K,再分别以K,O为圆心,KO,OK为半径作弧,两弧交于点G,H,连接GH交直线CD于点P,连接PB;第三步:再以P为圆心,小于PB的长度为半径作弧U,分别交AB,CD于点M,N,再分别以M,N为圆心,MN,NM为半径作弧,两弧圆外的交点为Q,连接QP交圆于点T,再分别以T,M为圆心,TM,MT为半径作弧,两弧圆外的交点为R,连接PR交弧U于上面的点S,下面的点W;第四步:连接S,W,再分别以S,W为圆心,SW,WS为半径作弧交于圆外的点Y,连接PY交弧U于点X,再分别以X,S为圆心SX,XS为半径作弧,两弧圆外的交点为Z,连接PZ;第五步:PZ交AB于点A₁,再分别以A₁,B为圆心,A₁B,B A₁作弧交于点A ₂,B₁,连接A₂,B₁交AB于点B₂,交圆于点C₁,连接B₂,C₁;第六步:再最后的C₁B依次戴取分点,直到最后作出十七个分点后连接,便是正十七边形。

正十七边形证明我们知道,一个正多边形的中心角的余弦值如果不是超越数,就可以用尺规作出该正多边形,求出的中心角的三角函数值代数式也就是包含了过程。

计算360cos 17⎛⎫︒ ⎪⎝⎭设正十七边形的中心角为α,则17360α=︒即16360αα=︒-亦即()sin16sin 360sin ααα=︒-=-由诱导公式()cos 2cos παα-=,我们发现:()()()()()()()()()()()()cos cos 360cos 17cos16cos 2cos 3602cos 172cos15cos3cos 3603cos 173cos14cos 4cos 3604cos 174cos13cos5cos 3604cos 175cos12cos 6cos 3606cos 176cos11cos 7ααααααααααααααααααααααααααααααα=︒-=-==︒-=-==︒-=-==︒-=-==︒-=-==︒-=-=()()()()cos 3607cos 177cos10cos8cos 3608cos 178cos9ααααααααα=︒-=-==︒-=-=因此我们有结论1:cos cos16cos 2cos15cos3cos14cos 4cos13cos5cos12cos 6cos11cos 7cos10cos8cos9αααααααααααααααα======== 该结论我们以后使用。

正十七边形作法

正十七边形作法

正十七边形作法
正十七边形是几何图形的一个特殊类型,它是由十七条相等的线段组成的,具有十七个角和十七个边,所以它被称为正十七边形。

由于其外形美丽,受到了艺术家和几何学家的青睐,它出现在许多艺术品,如十九世纪英国著名画家弗兰克拉特勒的《正十七边形》中。

正十七边形的历史可以追溯到古代希腊几何学家,他们发现了一些基础几何知识,其中之一就是正十七边形,而创造出这种图形的人则首先是希腊几何学家厄塞尔罗斯(Eureleos),他展示了这种图形
最早的形式,也就是正十七边形。

正十七边形的制作可以分为三个步骤。

首先,画一个圆,圆心到圆周上任意点A的距离为R,其次,画一个外接圆,圆心到A的距离为2R,同时画一个8R的小圆,圆心到A的距离为21R,然后,以小
圆为半径画一个正多边形,十七边的话就会得到一个正十七边形。

正十七边形的图形具有着不可复制的特点,这是由于它具有特殊的构造,也就是说它的角度和边长是以一定的数量和比例来构成的,不可以随意更改。

正十七边形的比例规律不仅仅出现在角度和边长上,在数学上,它也有许多有趣的特性,例如它有一个主对称轴,即从图形的中心点出发,通过其所有的顶点,可以看出来它是一个非常对称的正十七边形。

正十七边形是一种美丽的几何图形,它常常被用来装饰艺术品或用作图案。

目前,正十七边形已经广泛应用于许多不同的领域,如构图、分配、交互设计等,它在空间结构和构图中也发挥着重要作用。

正十七边形作法是一种古老的设计,它不仅在几何学中具有重要意义,而且在许多其他的领域,例如装饰、建筑等也有重要的地位,它的存在也给人们带来了视觉上的美感,使人们在欣赏这种艺术性的几何结构的同时,也感受到了几何的精确性和完美的美学体验。

解读“数学王子”高斯正十七边形的作法(上)精品文档7页

解读“数学王子”高斯正十七边形的作法(上)精品文档7页

解读“数学王子”高斯正十七边形的作法江苏省泰州市朱庄中学曹开清225300一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

优质文档尺规作图三等分随便率性角和结构正十七边形

优质文档尺规作图三等分随便率性角和结构正十七边形

[优质文档]尺规作图三等分随便率性角和结构正十七边形尺规作图三等分任意和构造正十七边形饶剑明摘要:将角的等分问题转化为线段的等分问题,从而实现尺规作图的任意等分任意角。

对线段的任意等分是很容易做到的,就是根据平行线间线段对应成比例。

只要将角的等分转换成线段的段分问题就自然解决了,我们知道,角和线的关系在圆中可以实现,在一个圆中等角对应的弦长相等。

从而实现角的三等分和正十七边形的尺规作法。

关键词:三等分角平分线圆弧正十七边形一、任意角的三等分,,作角的平分线。

半径为的圆弧,所对的弦长为设角为,,a2,Ma,2sin 14,角所对的弦长 4,Ma,2sin 28,角所对的弦长为 3,Ma,2sin。

3642MMM,, 2313342,sin,,,MMM,,由于当很小时有,即有。

231332,,4,sin()sin()sin()当取不同值时,和的近似值如下: ,346381111可以看出利用会比更为精确,但在操作上会更为方便。

从数据上可以看出,锐角用4222,1就足够用了,在操作上也得到同样的结果。

但角度大于是就最好使用了。

由于尺规作42图本身在操作上就存在误差,所以这样的误差是允许的。

利用几何画板完全按尺规作图的步42MM,骤可以看到当角为锐角时有,即两个点完全重合。

2133操作步骤如下:1. 对角平分 ,1,2. 取上作图时角所对的弦长2AB3. 对线段AB三等分24.取线段AB的长线段AC 34. 以线段AB为半径,在圆弧等分 AB这样就对弧进行了三等分,标记三等分点,然后与顶点O连接就对角三等分了。

,除去多余的痕迹用这样的方法可以对任意角任意等分。

当角为锐角就一次性完成了操作。

,4,asin()当角是钝角是,就要用四分角去作图了,且从理论上要比稍微少一点,尤其,38是当接近平角时。

当角大于,时,就平分其补角然后反向延长。

,,24MM当一次实现不了的时候可以在和之间取值,每次折中而逼近,一般最多在两到1233三个循环操作能完成。

正十七边形的画法及证明

正十七边形的画法及证明

正十七边形的画法及证明1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。

前两道题在两个小时内就顺利完成了。

第三道题写在另一张小纸条上:要求只用圆规和一把没有刻度的直尺,画出一个正17边形。

他感到非常吃力。

时间一分一秒的过去了,第三道题竟毫无进展。

这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。

困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。

当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。

见到导师时,青年有些内疚和自责。

他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。

他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。

但是,我花了整整一个通宵。

”导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。

青年很快做出了一个正17边形。

导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。

你是一个真正的天才!” 原来,导师也一直想解开这道难题。

那天,他是因为失误,才将写有这道题目的纸条交给了学生。

每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。

”这位青年就是数学王子高斯。

高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

关于正十七边形的高斯画法有一个定理在这里要用到的:若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,其中c是方程x^2+ax+b=0的实根。

正十七边形尺规作图与详解

正十七边形尺规作图与详解

解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。

高斯的正十七边形

高斯的正十七边形

《高斯的正十七边形》如果问你正十七边形的问题是哪位数学家最先解出来的?你一定会毫不犹豫地说出答案,但是你知道他是怎么做到的吗?这你就得猜了吧,而且,你猜的答案肯定是:像普通数学家一样,都希望自己能解出千古难题,然后再经过仔细的、不懈的努力研究,最终得出了答案。

对不起,你答错了。

故事大概是这样的:1796年的一天,在德国哥延根大学,一位十九岁的学生刚吃完晚饭就开始做导师每天例行给他留的三道作业题,前两道题他不费吹灰之力就做了出来,第三道题是:要求只用圆规和一把没有刻度的直尺画出一个正十七边形。

这道题把他难住了——他所学过的数学知识竟然对解出这道题没有任何帮助,困难激起了他的斗志,他试着用各种各样的思路去解题,经过一晚上的思考和琢磨,他终于在第二天清晨解出了这道难题。

当他把作业交给导师时,他很惭愧,因为他觉得自己用的时间太长,辜负了老师的希望。

但是当导师看完作业后,激动地问:“这是你用圆规和有刻度的直尺做的吗?”“是的,我太笨了,居然用了一个晚上才做出来。

”高斯惭愧的说。

导师顿时惊得目瞪口呆原来,第三道题导师留错了,这道题其实是一道连阿基米德、牛顿这些人一辈子也都没能解出来的千古难题,这位学生竟然只用一个晚上就做出来了,这位学生就是数学王子——高斯。

在这件事情发生后,高斯回忆道,如果提前告诉他那是一道千古难题,那么他可能一辈子也解不出来那道题。

高斯解出那道题的关键,其实就在于他并不知道他正在解答一道千古难题,而只是以为在做普普通通的作业。

从这个故事中我们可以看出:在我们不清楚困难到底有多大的时候,我们反而更有力量去解决它!那么就是说,有时候真正阻碍我们成功的东西,并不是困难本身,而是我们对困难的恐惧,这种恐惧让我们不相信自己的能力,自然也就在困难面前投降了。

阿基米德和牛顿也许就是因此没能解出这道题的。

如果我们能够把这种恐惧感给克服掉、化解掉,那么我们会发现很多的难题会变得容易、很多的困难会迎刃而解。

高斯画正17边形是如何思考的高斯作出正17边形的依据是什么

高斯画正17边形是如何思考的高斯作出正17边形的依据是什么

高斯画正17边形是如何思考的高斯作出正17边形的依据是什么又来黑我们大高斯问:看过一个用尺规作出正17边形的视频,不过步骤太快,难懂。

能否具体解释一下各个步骤的意义?高斯当年并没有亲自去画正十七边形...大概是他觉得这个太Trivial了……毕竟难度90%都在于到底有哪些正多边形可尺规作图而不是怎么尺规作图。

尺规作图的过程全部蕴含在代数式里了。

我们一起来看看怎么把这个代数公式翻译成作图过程。

==========================================首先随便画一条直线,这条直线的作用是记录,记录你作出过的所有长度。

当然动态图里没有这个,事实上也没有人画这个,因为这是打擦边球...尺规作图的公理里明确指出禁止在尺上做标记,所以这么画条直线变相做标记也是君子所不齿的。

不过另一方面又规定了圆规能够量取已经存在(做出)的所有长度...在哪量不是量...这条直线不管怎么样都是隐式存在的.......==========================================引理:记录器你有了一条线,然后随便点一个点A,于是你有了个零元。

接下来再随便点一个其它点B,于是你有了个幺元,AB定为单位长度。

根据尺规作图公理,圆规可以量取任意已存在的长度,将量取的长度转移到这条直线上。

因此这条直线就能记录已存在长度的集合。

引理:加法器引理:除法器虽然N等分点相当于除以个整数,但是要获得更强大的除法计算能力就要构建除法器了。

引理:开根器虽然勾股定理能开根,但是勾股定理有个局限性就是要求两条线段直角。

对于单一的线段就只能使用开根器了。

===============================================反复使用记录器,加法器,除法器,开根器就能计算出一条长度正好为的线段。

然后找出圆心角和所对弦的关系:所以所对的圆心角就是,于是只要这么一个圆一个圆的接下去就能得到正17边形的所有点了。

高斯的作业:如何用尺规画十七边形?

高斯的作业:如何用尺规画十七边形?

⾼斯的作业:如何⽤尺规画⼗七边形?⼏⽇前天纵君(SKYLABS)和孩⼦曾经讲过伽利略著名的⽐萨斜塔⼩球落体试验,因此特别整理了《逻辑的胜利:⽐萨斜塔的⼩球落体试验》这篇⽂章给⼤家。

今天这篇关于“⾼斯”的⽂章,其实也来⾃与我给孩⼦讲的另外⼀个故事。

关于少年学霸⾼斯,有⼀个著名的段⼦是说他在读书时,有⼀次⽼师例⾏给他布置了三道课后作业题。

前两道题在两个⼩时内就边形。

19岁的⾼斯感到⾮常吃要求只⽤圆规和⼀把没有刻度的直尺,画出⼀个正17边形顺利完成了。

第三道题写在另⼀张⼩纸条上:要求只⽤圆规和⼀把没有刻度的直尺,画出⼀个正⼒。

时间⼀分⼀秒的过去了,第三道题竟毫⽆进展。

这位青年绞尽脑汁,但他发现,⾃⼰学过的所有数学知识似乎对解开这道题都没有任何帮助。

但困难激起了他的⽃志终于当窗⼝露出曙光时,青年长舒了⼀⼝⽓,他终于结完了这道难题。

当⾼斯见到⽼师时,他有些内疚和⾃责的对⽼师说:“您给我布置的第三道题,我竟然做了整整⼀个通宵,我辜负了您对我的栽培……”。

⽼师接过学⽣的作业⼀看,当即惊呆了。

导师激动地对他说:“你知不知道?你解开了⼀桩有两千多年历史的数学悬案!阿基⽶德没有解决,⽜顿也没有解决,你竟然⼀个晚上就解出来了。

你是⼀个真正的天才!”原来⽼师也⼀直想解开这道难题。

那天,他是因为失误,才将写有这道题⽬的纸条交给了学⽣。

据说⾼斯也视此为⽣平得意之作,还交待了要把正⼗七边形刻在他的墓碑上,但后来负责刻碑的⼈认为正⼗七边形实在和圆太像了,不容易分辨。

因此其⽤了多⾓形加以代替,以⽰纪念⾼斯的成就。

天纵君这⾥也特别找到了⾼斯墓地的照⽚,传说是否如此?⼤家可以仔细找找看看。

最后让我们⼀起⽤动图的⽅式,去欣赏⼀下这个经典⽽优美的尺规作图。

这样的尺规作图是如此经典⽽美丽,以⾄于它让我们深切的感受到了⼈的智慧所能达到的极限,体会到了⽤孩童都能看懂的⽅法和技巧去实现⼀个绚烂⽽复杂的架构。

由衷的向⾼斯、以及所有伟⼤的科学前辈们致敬!。

正十七边形尺规作图与详解.docx

正十七边形尺规作图与详解.docx

实用标准文档解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯 (Carl Friedrich Gauss1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工的父算工人的周薪。

父算了好一会儿,于将果算出来了。

可是万万没想到,他身来幼嫩的童音:“爸爸,你算了,数是⋯⋯”父感到很惊异,赶忙再算一遍,果高斯的答案是的。

的高斯只有 3 !高斯上小学了,教他数学的老布特勒(Buttner)是一个度劣的人,他从不考学生的接受能力,有用鞭子学生。

有一天,布德勒全班学生算1+2+3+4+5+⋯⋯+98+99+100=?的和,并且威:“ 算不出来,就不准回家吃!”布德勒完,就坐在一旁独自看起小来,因他,做一道目是需要些的。

小朋友开始算:“ 1 + 2=3,3+3=6,6+4=10,⋯⋯”数越来越大,算越来越困。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身。

高斯:“老,我做完了,你看不?“做完了?么快就做完了?肯定是胡乱做的!”布德勒都没抬,手:“ 了,了!回去再算!”高斯站着不走,把小石板往前伸了伸:“我个答案是的。

”布德勒抬一看,大吃一惊。

小石板上写着5050 ,一点也没有!高斯的算法是1+ 2 + 3+⋯⋯+ 98 +99 + 100100+99 +98+⋯⋯+3+ 2+1101+ 101 + 101 +⋯⋯+101 +101 + 101 =101 ×100 =1010010100 ÷2= 5050高斯并不知道,他用的种方法,其就是古代数学家期努力才找出来的求等差数列和的方法,那他才八!1796 年的一天,德国哥廷根大学。

高斯吃完晚,开始做他独布置的三道数学。

前两道他不吹灰之力就做了出来了。

第三道写在另一小条上:要求只用和没有刻度的直尺,作出一个正十七形。

道把他住了——所学的数学知竟然解出道没有任何帮助。

一分一秒的去了,第三道竟毫无展。

正十七边形尺规作图与详细讲解

正十七边形尺规作图与详细讲解

解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。

高斯十七等分圆周证明(高斯的十七边形)

高斯十七等分圆周证明(高斯的十七边形)

高斯十七等分圆周证明(高斯的十七边形)你可以理解为从圆心引出几条射线。

把圆分成几个面积相等的扇区,就是几个相等的部分。

平分线是一条射线和一个圆的交点。

这和平分一条线段是一样的。

等分圆周是指利用直尺和圆规将圆周n等分,这是一个古老的数学问题。

古代希腊数学家利用尺规作图可将圆周分成3,4,5,15等分,并进而将分点逐次倍增,将圆周无限等分。

高斯(Gauss,1777-1855)曾证明可用尺规作图将圆周17等分,因而找到了正十七边形的尺规作图法。

为此,后人把这一图形铭刻在高斯纪念碑上等分圆周(circumference in equal parts)是圆内接正多边形的作图问题。

若圆周上依次有n个点A1,A2,A3,…,An(n≥2),把整个圆周分成n段相等的弧:则称点A1,A2,…,An把圆周n等分,简称n等分圆周。

除二等分圆周外,用圆规直尺等分圆周与内接正多边形的作图实质是相同的问题。

高斯(C.F.Gauss)对等分圆周曾做出巨大贡献。

1796年,年仅19岁的高斯根据式子发现,圆内接正十七边形可用圆规直尺作图。

1801年,高斯又研究确定用圆规直尺等分圆周,等分数所应满足的充分必要条件(参见下文“用圆规直尺等分圆周问题”),高斯临终遗言“在墓碑上刻正十七边形”,德国格丁根大学为他建立了一座以正十七棱柱为底座的纪念像用圆规直尺等分圆周问题是几何学历史中的一个著名问题,能仅用圆规直尺把圆周n等分,当且仅当n是如下形式的整数:1.n=2m(m为大于1的正整数)。

2.n=2m·p1·p2·…·pk,其中m=0,1,2,…,k=1,2,…,pi为型的不同素数,这是1801年高斯(C.F.Gauss)证明的,因此,在100以内可以用圆规直尺等分圆周的等分数只有24个:1型的五个为4,8,16,32,64;2型的十九个为3,6,12,24,48,96,5,10,20,40,80,15,30,60,17,34,68,51,85。

正十七边形 文档

正十七边形 文档

最早的十七边形画法创造人是高斯。

高斯(1777─1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因运用等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.下附正十七边形作法先计算或作出cos(360°/17)设正17边形中心角为a,则17a=360°,即16a=360°-a故sin16a=-sina,而sin16a=2sin8acos8a=4sin4acos4acos8a=16sinacosacos2acos4acos8a 因sina不等于0,两边除之有:16cosacos2acos4acos8a=-1又由2cosacos2a=cosa+cos3a(三角函数积化和差公式)等注意到cos15a=cos2a,cos12a=cos5a(诱导公式)等,有2(cosa+cos2a+…+cos8a)=-1令x=cosa+cos2a+cos4a+cos8ay=cos3a+cos5a+cos6a+cos7a有:x+y=-1/2又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)=1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)经计算知xy=-1因而x=(-1+√17)/4,y=(-1-√17)/4其次再设:x1=cosa+cos4a,x2=cos2a+cos8ay1=cos3a+cos5a,y2=cos6a+cos7a故有x1+x2=(-1+√17)/4y1+y2=(-1-√17)/4最后,由cosa+cos4a=x1,cosacos4a=(y1)/2可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出编辑本段步骤一给一圆O,作两垂直的半径OA、OB,在OB上作C点使OC=1/4OB,在OA上作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度正十七边形尺规作图[1]编辑本段步骤二作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解读“数学王子”高斯正十七边形的作法一、高斯的传奇故事高斯(Carl Friedrich Gauss 1777.4.30~1855.2.23),德国数学家、物理学家、天文学家。

有一天,年幼的高斯在一旁看著作水泥工厂工头的父亲计算工人们的周薪。

父亲算了好一会儿,终于将结果算出来了。

可是万万没想到,他身边传来幼嫩的童音说:“爸爸,你算错了,总数应该是……”父亲感到很惊异,赶忙再算一遍,结果证实高斯的答案是对的。

这时的高斯只有3岁!高斯上小学了,教他们数学的老师布特勒(Buttner)是一个态度恶劣的人,他讲课时从不考虑学生的接受能力,有时还用鞭子惩罚学生。

有一天,布德勒让全班学生计算1+2+3+4+5+……+98+99+100=?的总和,并且威胁说:“谁算不出来,就不准回家吃饭!”布德勒说完,就坐在一旁独自看起小说来,因为他认为,做这样一道题目是需要些时间的。

小朋友们开始计算:“1 + 2 =3,3+3=6,6+4=10,……”数越来越大,计算越来越困难。

但是不久,高斯就拿着写着解答的小石板走到布德勒的身边。

高斯说:“老师,我做完了,你看对不对?“做完了?这么快就做完了?肯定是胡乱做的!”布德勒连头都没抬,挥挥手说:“错了,错了!回去再算!”高斯站着不走,把小石板往前伸了伸说:“我这个答案是对的。

”布德勒抬头一看,大吃一惊。

小石板上写着5050,一点也没有错!高斯的算法是1 +2 +3+……+98+99+100100+99+98+……+3+2+1101+101+101+……+101+101+101=101×100=1010010100÷2=5050高斯并不知道,他用的这种方法,其实就是古代数学家经过长期努力才找出来的求等差数列和的方法,那时他才八岁!1796年的一天,德国哥廷根大学。

高斯吃完晚饭,开始做导师给他单独布置的三道数学题。

前两道题他不费吹灰之力就做了出来了。

第三道题写在另一张小纸条上:要求只用圆规和没有刻度的直尺,作出一个正十七边形。

这道题把他难住了——所学过的数学知识竟然对解出这道题没有任何帮助。

时间一分一秒的过去了,第三道题竟毫无进展。

他绞尽脑汁,尝试着用一些超常规的思路去寻求答案。

当窗口露出曙光时,他终于解决了这道难题。

当他把作业交给导师时,感到很惭愧。

他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,……”导师看完作业后,激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米得没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。

你是一个真正的天才!”原来,导师也一直想解开这道难题。

那天,他是因为拿错了,才将写有这道题目的纸条交给了学生。

在这件事情发生后,高斯曾回忆说:“如果有人告诉我,那是一道千古难题,我可能永远也没有信心将它解出来。

”1796年3月30日,当高斯差一个月满十九岁时,在期刊上发表《关于正十七边形作图的问题》。

他显然以此为自豪,还要求以后将正十七边形刻在他的墓碑上。

然而高斯的纪念碑上并没有刻上十七边形,而刻着一颗十七角星,原来是负责刻纪念碑的雕刻家认为:“正十七边形和圆太像了,刻出来之后,每个人都会误以为是一个圆。

”1877年布雷默尔奉汉诺威王之命为高斯做一个纪念奖章。

上面刻着:“汉诺威王乔治V. 献给数学王子高斯(Georgius V. rex Hannoverage Mathematicorum principi)”,自那之后,高斯就以“数学王子”着称于世。

二、高斯正十七边形尺规作图的思路(这里是纯三角法)作正十七边形的关键是作出cos172π,为此要建立求解cos 172π的方程。

设正17边形中心角为α,则17α=2π,即16α=2π-α 故sin16α=-sin α ,而sin16α=2sin8αcos8α=4sin4αcos4αcos8α=8 sin2αcos2αcos4αcos8α=16 sinαcosαcos2αcos4αcos8α因sinα≠0,两边除以sinα,有16cosαcos2αcos4αcos8α=-1由积化和差公式,得4(cosα+cos3α)(cos4α+cos12α)=-1展开,得4(cosαcos4α+cosαcos12α+cos3αcos4α+cos3αcos12α)=-1再由积化和差公式,得2[(cos3α+cos5α)+(cos11+cos13α)+(cosα+cos7α)+(cos9α+cos15α)]=-1注意到cos11α=cos6α,cos13α=cos4α,cos9α=cos8α,cos15α=cos2α,有2(cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1设a=2(cosα+ cos2α+cos4α+ cos8α),b=2(cos3α+ cos5α+cos6α+ cos7α),则a+b=-1又ab=2(cosα+cos2α+cos4α+cos8α)·2(cos3α+cos5α+cos6α+cos7α)=4cos α(cos3α+cos5α+cos6α+cos7α)+4cos2α(cos3α+cos5α+cos6α+cos7α)+4cos4α(cos3α+cos5α+cos6α+cos7α)+4cos8α(cos3α+cos5α+cos6α+cos7α)再展开之后共16项,对这16项的每一项应用积化和差公式,可得:ab =2 [(cos2α+cos4α)+(cos4α+cos6α)+(cos5α+cos7α)+(cos6α+cos8α)+(cos α+cos5α)+(cos3α+cos7α)+(cos4α+cos8α)+(cos5α+cos9α)+(cos α+cos7α)+(cos α+cos9α)+(cos2α+cos10α)+(cos3α+cos11α)+(cos5α+cos11α)+(cos3α+cos13α)+(cos2α+cos14α)+(cos α+cos15α)]注意到cos9α=cos8α,cos10α=cos7α, cos11α=cos6α,cos13α=cos4α,cos14α=cos3α,cos15α=cos2α,有ab =2×4(cos α+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-4因为cos α+cos2α+cos8α=(cos172π+cos 174π)+cos 1716π =2cos 17πcos 173π-cos 17π=2cos 17π(cos 173π-21)又 0 < 173π < 3π < 2π所以cos 173π> 21即cos α+cos2α+cos8α > 0 又因为 cos4α=cos178π> 0 所以 a =cos α+cos2α+cos4α+cos8α > 0 又 ab =-4< 0 所以有a > 0, b< 0可解得a=2171+-,b=2171--再设c=2(cosα+cos4α),d=2(cos2α+cos8α),则c+d=acd=2(cosα+ cos4α)·2(cos2α+ cos8α)=4 (cosαcos2α+cosαcos8α+cos4αcos2α+cos4αcos8α)=2 [(cosα+cos3α)+(cos7α+cos9α)+(cos2α+cos6α)+(cos4α+cos12α)] 注意到cos9α=cos8α,cos12α=cos5α,有cd=2[(cosα+cos3α)+(cos7α+cos8α)+(cos2α+cos6α)+(cos4α+cos5α)] =2( cosα+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α)=-1因为0 < α< 2α< 4α< 8α< π所以cosα> cos2α,cos4α> cos8α两式相加得cosα+cos4α> cos2α+cos8α或2(cosα+cos4α)> 2(cos2α+cos8α)即c > d,又cd=-1 < 0所以有c > 0,d < 0可解得c=24 2++aa,【d=24 2+-aa】类似地,设e=2(cos3α+cos5α),f=2(cos6α+cos7α) 则e+f=bef =2(cos3α+cos5α)·2(cos6α+cos7α)=4(cos3αcos6α+cos3αcos7α+cos5αcos6α+cos5αcos7α)=2 [(cos3α+cos9α)+(cos4α+cos10α)+(cos α+cos11α)+(cos2α+cos12α)]注意到cos9α=cos8α,cos10α=cos7α, cos11α=cos6α,cos12α=cos5α,有ef =2[(cos3α+cos8α)+(cos4α+cos7α)+(cos α+cos6α)+(cos2α+cos5α)] =2( cos α+cos2α+cos3α+cos4α+cos5α+cos6α+cos7α+cos8α) =-1因为 0 < 3α < 5α < 6α < 7α < π 所以有 cos3α > cos6α,cos5α > cos7α 两式相加得cos3α+cos5α> cos6α+cos7α 2(cos3α+cos5α)> 2(cos6α+cos7α)即 e > f ,又 ef =-1 < 0 所以有 e > 0, f < 0 可解得e =242++b b , 【f =242+-b b 】由c =2(cos α+cos4α),得cos α+cos4α=2c,即cos172π+cos 178π=2ce =2(cos3α+cos5α),应用积化和差公式,得cos αcos4α=4e ,即 cos 172πcos178π=4e因为0<172π<178π<2π,所以cos 172π>cos 178π>0所以cos 172π=442e c c -+,【cos 178π=442e c c --】于是,我们得到一系列的等式:a =2171+-,b =2171--,c =242++a a ,e =242++b b ,cos 172π=442e c c -+有了这些等式,只要依次作出a 、b 、c 、e ,便可作出cos 172π。

步骤一:给一圆O,作两垂直的半径OA、OB,作C点使OC=1/4OB,作D点使∠OCD=1/4∠OCA,作AO延长线上E点使得∠DCE=45度。

相关文档
最新文档