非周期信号的频谱分析共62页

合集下载

实验四非周期信号频域分析

实验四非周期信号频域分析

实验四 非周期信号频域分析1 实验目的(1) 掌握傅里叶变换的分析方法及其物理意义。

(2) 掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质。

(3) 学习掌握利用MA TLAB 语言编写计算CTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 的若干重要性质。

2 实验原理及方法2.1连续时间信号傅里叶变换——CTFT傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:⎰∞∞--=dt e t x j X t j ωω)()( 4-1 ⎰∞∞-=ωωπωd e j X t x t j )(21)( 4-2连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

任意非周期信号,如果满足狄里克利条件,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量,其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。

X(j ω)通常为关于ω的复函数,可以按照复数的极坐标表示方法表示为:X(j ω)=| X(j ω)|e j ∠ X(j ω)其中,| X(j ω)|称为x(t)的幅度谱, ∠X(j ω)称为x(t)的相位谱。

给定一个连续时间非周期信号x(t),它的频谱是连续且非周期的。

对于连续时间周期信号,也可以用傅里叶变换来表示其频谱,其特点是,连续时间周期信号的傅里叶变换是由冲激序列构成的,是离散的——这是连续时间周期信号的傅里叶变换的基本特征。

2.2 用MA TLAB 实现CTFT 及其逆变换2.2.1 用MATLAB 实现CTFT 的计算MA TLAB 进行傅里叶变换有两种方法,一种利用符号运算的方法计算,另一种是数值计算,本实验采用数值计算的方法。

严格来说,用数值计算的方法计算连续时间信号的傅里叶变换需要有个限定条件,即信号是时限信号,也就是当时间|t|大于某个给定时间时其值衰减为零或接近于零,这个条件与前面提到的为什么不能用无限多个谐波分量来合成周期信号的道理是一样的。

非周期信号的频谱分析傅里叶变换.

非周期信号的频谱分析傅里叶变换.

X( )
1
a j
a2
a
2
j a2 2
Re( )
lim
a0
a2
a
2
0
( 0)
Re( )
lim
a0
a2
a
2
( = 0)
lim
a0
Re( )d lim
a0
d( / a) 1 ( / a)2
lim arctan
a0
a
14
Im( )
lim
a0
a2
2
1
Re() = δ()
X ( ) sgn(t )e j tdt
laim0
0 eat e j
tdt
eat e
0
j
t
dt
1
laim0 a j
a
1
j
2
j
X( ) 2
(
)
2
2
0 0
13
7、阶跃信号的频谱
u(t) 1
X()
0
t
0
不满足绝对可积的条件。看成单边指数脉冲a 0的极限。
()和X()是奇函数。
16
2、线性性质
若 F [ x1(t) ] = X1() F [ x2(t) ] = X2() 则 F [ ax1(t) + bx2(t) ] = aX1() + bX2()
(1)若信号增大a倍,则频谱亦增大a倍; (2)两个相加信号的频谱等于各个单独信号频谱的相加
3、对偶性
2
X (n1 ) 1
T1 / 2 x(t )e jn1t dt
T1 / 2
T1 ,对等式两边求极限(1 0,n1 )

典型非周期信号的频谱

典型非周期信号的频谱

1.无穷期指数函数 e j 0t 的傅立叶变换
jI
t R
e
j 0 t
0 2 ( 0 )

1 F [ ( 0 ] 2
1
(
0
)e
jt
1 j 0t d e 2
1 j 0t FF [ ( 0 )] F [e ] 2 jt 1 F[e ] 2FF [ ( 0 )] 2 ( 0 )
•.物理意义不同,前 者是单个复简谐波成
份的复振幅,而后者是单位带宽内所有 复简谐波成分的合的复振幅值。
•.单位不同,Fn的单位是伏特或安培,而
F(jw)的单位则是(伏特/赫,安培/赫) •.Fn代表的是信号的功率分配, 而 F ( j )
代表了信号的能量分布.
*求如图所示正弦信号经对称限幅后输出 波形的基波,二次和三次谐波的有效值.
0
1

四.常数的付立叶变换
EG (t ) E sa (
F [ E ] lim ESa(

f (t )

2
E
)
t


2
) 2E lim

sa( ) 2 2
P17.1-35 k (t ) lim [ sa(k t)]
k

F[ E ] 2E ( ) F[1] 2 ( )
1
2.F [cos1t ].and.F [sin 1t ]
1 j1t j1t cos1t (e e ) 2
cos1t [ ( 1 ) ( 1 )]
1 jt1 j1t sin 1t (e e ) 2j
sin 1t j [ ( 1 ) ( 1 )]

非周期信号及其频谱

非周期信号及其频谱

但若各正(余)弦信号的频率比不是有理数,例如 x(t)= sinω0t+sin2πω0t,各正(余)弦信号间找不到公共的周期,它们在合成 后不可能经过某一周期重复,所以合成后不可能是一个周期信号。但 是这样的一种信号在频域表达上却是离散频谱,这种信号称为准周期 信号。在工程技术领域内,不同的相互独立振源对某对象的激振而形 成的振动往往是属于这一类的信号。
1.2 傅里叶变换与非周期信号的频谱
在式
x(t)
x(t
)e
j2ft
dt
e
j2ft
df
括号里的积分中,t是积分变
量,因此积分的结果是一个以频率f为自变量的函数,记作
X ( f ) x(t)e j2ftdt
此式称为函数 x(t) 的傅里叶变换(FT)。傅里叶变换是把时域函数
x(t) 变换为频域函数 X(f)的桥梁,其功能与式
单乘积。
(3) δ 函数的频谱
将 δ 函数进行傅里叶变换,即可得到其频谱函数,即
( f )
(t)e j2ftdt e0
(t)dt 1
可根见据,傅时里域叶的变脉换冲的信对号称具性有、无时限移宽性广和的频频移谱性,等而,且可各得频到率下上列的傅信里叶
号变强换度对都: 相等。在信号的检测中,一般爆发电火花的地方(如雷电、火
(t )
0
t0 t0
(t)dt
0 s (t)dt 1
s (t)
O t
(a)
(t)
(1)
Ot
(b)
在工程上,常将 δ 函数用一个高度等于1的有向线段来表示,如下 图所示,这个线段的高度表示 δ 函数的积分,亦称 δ 函数的强度(并非 幅度值)。用这种方法表示的 δ 函数称为单位脉冲函数。

§305 典型非周期信号的频谱

§305 典型非周期信号的频谱



lim E
e j e j

j

E
lim

2
sin

2E
lim
ቤተ መጻሕፍቲ ባይዱ

sin
2E
F
2E
O

E 2E
时域无限宽,频带无限窄

lim

Sa



( )
X
四.符号函数
不满足绝对
e te j t dt
0


1
j


1
j


2
j2 2
F



lim
0
F1



lim
0

2
j2
2

2
j
X
频谱图
sgnt
2
j 2
2
j
e2
j
F





2

2

2


F 是偶函数
信号与系统
§3.5 典型非周期信号的频谱
X
主要内容
本节将讨论如下信号的频谱密度函数 矩形脉冲 单边指数信号 直流信号 符号函数
重点 矩形脉冲的频谱密度函数 难点 不满足绝对可积条件信号的频谱
X
一.矩形脉冲信号
f t
E 2 0 2
F


2 2
Ee
j
t
dt

E
f
(t
)

非周期信号的频谱分析

非周期信号的频谱分析

非周期信号的频谱分析一、实验目的1)掌握用MATLAB 编程,分析门信号的频谱;2)掌握用MATLAB 编程,分析冲击信号的频谱;3)掌握用MATLAB 编程,分析直流信号的频谱;4)掌握用MATLAB 编程,分析阶跃信号的频谱;5)掌握用MATLAB 编程,分析单边信号的频谱;二、实验原理常见的非周期信号有:1、门信号门信号的傅里叶变换对为:12sin()22()()202t g t F j Sa t ττωτωτωττω⎧<⎪⎪⎛⎫=⇔==⎨ ⎪⎝⎭⎪>⎪⎩它的幅度频谱和相位频谱分别为 ()2F j Sa ωτωτ⎛⎫= ⎪⎝⎭0sin()02()sin(02ωτϕωωτπ⎧>⎪⎪=⎨⎪<⎪⎩2、冲激信号冲激信号的傅里叶变换对为()1t δ⇔3、直流信号直流信号的傅里叶变换为12()πδω⇔4、阶跃信号阶跃信号的傅里叶变换为111()sgn()()22u t t j πδωω=+⇔+5、单边指数信号单边指数信号的傅里叶变换对为01()00ate tf t j t αω-⎧≥=⇔⎨+<⎩幅度频谱和相位频谱分别为()F j ω=()arctan(a ωϕω=-三、涉及的MATLAB函数1、fourier函数2、ifourier函数四、实验内容与方法1、验证性试验1)门信号的傅里叶变换MATLAB程序:Clear all;syms t wut=sym('heaviside(t+0.5)-heaviside(t-0.5)');subplot(2,1,1);ezplot(ut)hold onaxis([-1 1 0 1.1]);plot([-0.5 -0.5],[0,1]);plot([0.5 0.5],[0,1]);Fw=fourier(ut,t,w);FFP=abs(Fw);subplot(2,1,2);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);程序运行结果图2)冲激信号的傅里叶变换MATLAB程序:clear allsyms t wut1=sym('heaviside(t+0.5)-heaviside(t-0.5)');subplot(2,1,1);ezplot(ut1);title('脉宽为1的矩形脉冲信号')xlabel('t')hold onaxis([-1 1 0 1.1]);plot([-0.5 -0.5],[0 1]);plot([0.5 0.5],[0 1]);Fw=fourier(ut1,t,w);FFw=abs(Fw);subplot(2,1,2);ezplot(FFw,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);title('脉宽为1的矩形脉冲信号的幅度频谱')hold onpauseut2=10*sym('heaviside(t+0.05)-heaviside(t-0.05)'); subplot(2,1,1);ezplot(ut2);title('脉宽为1、0.1矩形脉冲信号')xlabel('t')hold onaxis([-1 1 0 11]);plot([-0.05 -0.05],[0 10]);plot([0.05 0.05],[0 10]);Fw2=fourier(ut2,t,w);FFw2=abs(Fw2);subplot(2,1,2);ezplot(FFw2,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);title('脉宽为1、0.1的矩形脉冲信号的幅度频谱')hold onpauseut3=100*sym('heaviside(t+0.005)-heaviside(t-0.005)'); subplot(2,1,1);ezplot(ut3);title('脉宽为1、0.1和0.01矩形脉冲信号')xlabel('t')hold onaxis([-1 1 0 110]);plot([-0.005 -0.005],[0 100]);plot([0.005 0.005],[0 100]);Fw3=fourier(ut3,t,w);FFw3=abs(Fw3);subplot(2,1,2);ezplot(FFw3,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.1]);title('脉宽为1、0.1和0.01的矩形脉冲信号的幅度频谱') hold onpause程序运行结果图3)直流信号的傅里叶变换MATLAB程序:clear all;display('Please input the value of a')a=input('a=');syms tf=exp(-a*abs(t));subplot(1,2,1)ezplot(f);axis([-2*pi 2*pi 0 1]);ylabel('时域波形');F=fourier(f);subplot(1,2,2)ezplot(abs(F));axis([-3 3 0 2/a])程序运行结果图a=0.1时:a=0.01时:a=0.001时:a=0.0001时:4)阶跃信号的傅里叶变换MATLAB程序:clear allsyms w;xw=1/(j*w);ezplot(abs(imag(xw)));axis([-3 3 -1.5*pi 1.5*pi]);hold ony=0:0.01:pi;plot(0,y);hold ony=-pi:pi;plot(0,y);hold ontitle('阶跃信号频谱');xlabel('\omega');axis([-pi pi -6 6]);x=-pi:0.001:pi;plot(x,0)hold ony=-6:0.01:6;plot(0,y);hold on程序运行结果图5)单边指数信号的傅里叶变换MATLAB程序:clear allsyms t v w phase im ref=exp(-2*t)*sym('heaviside(t)'); Fw=fourier(f);subplot(3,1,1);ezplot(f);axis([-1 2.5 0 1.1]);xlabel('时域波形');subplot(3,1,2)ezplot(abs(Fw));xlabel('幅度频谱');im=imag(Fw);re=real(Fw);phase=atan(im/re);subplot(3,1,3);ezplot(phase);xlabel('相位频谱');程序运行结果图2、程序设计实验确定下列信号的傅里叶变换的数学表达式1)的傅里叶变换2()()1t f t e U t -=+1()2()2F j j ωπδωω=++MATLAB 程序:clear allsyms t v w phase im ref=exp(-2*t)*sym('heaviside(t)')+1;Fw=fourier(f);Fw=simple(Fw);subplot(3,1,1);ezplot(f);axis([-1 2.5 0 1.1]);xlabel('时域波形');subplot(3,1,2)ezplot(abs(Fw));im=imag(Fw);re=real(Fw);xlabel('幅度频谱');phase=atan(im/re);subplot(3,1,3);ezplot(phase);xlabel('相位频谱');程序运行结果图2)的傅里叶变换2()(1)()t f t e U t G t -=-+12sin ()1j e F j j ωωωωω--=++MATLAB 程序:clear allsyms t v w phase im ref=exp(-1*t)*sym('heaviside(t-1)')+heaviside(t+1)-heaviside(t-1);Fw=fourier(f);Fw=simple(Fw);subplot(3,1,1);ezplot(f);axis([-2.5 2.5 0 1.1]);xlabel('时域波形');subplot(3,1,2)ezplot(abs(Fw));im=imag(Fw);re=real(Fw);xlabel('幅度频谱');phase=atan(im/re);subplot(3,1,3);ezplot(phase);xlabel('相位频谱');程序运行结果图3)的傅里叶变换()2()(4)f t U t t δ=+-41()2(())j j F j e e j ωωωπδωω--=++MATLAB 程序:clear all syms t v w phase im ref=2*sym('heaviside(t-1)')+dirac(t-4);Fw=fourier(f);Fw=simple(Fw);subplot(3,1,1);ezplot(f)axis([-1 6 0 1.5]);xlabel('时域波形');subplot(3,1,2)ezplot(abs(Fw));im=imag(Fw);re=real(Fw);xlabel('幅度频谱');phase=atan(im/re);subplot(3,1,3);ezplot(phase);xlabel('相位频谱');程序运行结果图。

非周期信号的频谱

非周期信号的频谱

(2) 若f(t)为t的奇函数,即f(-t)=-f(t),则f(t)的频 谱函数F(jω)为ω的虚函数,且为ω的奇函数。
与周期信号类似,也可将非周期信号的傅里叶变
换表示式改写成三角函数的形式,即
.
6
f(t)21
F(j)ejtd
21
F(j)ej[t()]d
2 1 F (j)co ts [()d ]
2
0
2
t
实偶
4
2
0
2
4
实偶
图 3.4-1 门函数及其频谱
一般而言,信号的频谱函数需要用幅度谱 F( j)和相位
谱 ( )两个图形才能将它完全表示出来。但如果频谱
函数是实函数或虚函数,那么只用一条曲线即可。
F(j) 为负代表相位为 ,
0
.
F(为j正) 代表相位为 。
11
由图可见,第一个零值的角频率为 2 (频率 1 )。
为了描述非周期信号的频谱特性,引入频谱密度的 概念。

F(j)T l i m 1F /n TT l i m FnT
称 F(j)为频谱密.度函数。
2
如何求频谱密度函数? F(j)T l i m 1F /n TT l i m FnT
由式
f(t) Fnejnt
n
,Fn
1 T
T
2 T
2
f(t)ej ntd t可得
可知
'(t)ejtd tdejt j
dt t 0
即 ℱ 'tj
同理可得 ℱ [(n)(t). ](j)n
23
例3.4-6 求单位直流信号的频谱
f(t)1 - t
显然,该信号不满足绝对可积条件,但其傅里叶变换

§3.05 典型非周期信号的频谱

§3.05 典型非周期信号的频谱
j 2
2
t
E 2源自.ej 2
E
sin

2
2
幅度频谱: F E Sa
2
E Sa 2
4 n 22n 1 0 相位频谱: 22n 1 22n 2
t 1
j 2 1 1 2 j j 2 2 j 2 F lim F1 lim 2 2 j 0 0
退出
F1 e e
t j t
dt e
0
t j t
e
dt
频谱图
2 2 2 j2 sgn t j e j

F ( )
2 2 2 F F 是偶函数
2

O

2
tg
1
2
是奇函数
/ 2, 0 / 2,
退出
n 0,1,2,
频谱图
幅度频谱
F E Sa
F
2
1
E
频宽:
B 2
2 0
2
4


或B f


2
0
2 4
相位频谱


退出
二.单边指数信号
Ee t t 0 0 f t t0 0
E
F E
2 2
F E F 0


tg 相位频谱:
1
0


0

9非周期信号的频谱分析第一节连续非周期信号的频谱、第二节常见连续信号的频谱分析

9非周期信号的频谱分析第一节连续非周期信号的频谱、第二节常见连续信号的频谱分析

讨论周期T增加对离散谱的影响:
周期为T宽度为t 的周期矩形脉冲的Fourier系数为
Cn
tA Sa( n0t
T
2
)
lim Cn T f 0

lim
T
TC
n
F(j)
3
一、从傅里叶级数到傅里叶变换
Cn

1 T
T
2T
fT (t)e jn0t dt
2
lim
T
C
n
(பைடு நூலகம்)]



f
(t )e jt
dt



d
(t )e jt
dt
1
取样性
d (t)
F ( j)
(1)
1
t 0
0

单位冲激信号及其频谱
15
一、常见非周期信号的频谱
4. 直流信号f(t)=1,<t<
直流信号不满足绝对可积条件,可采用极限的
方法求出其傅里叶变换。 0
sgn(t)


1 t 0
F[sgn(t)e t ] 0 (1)et ejt dt 0 et ejt dt
e( j)t
j
0 t
e ( j)t
j
t 0


1
j
1
j


1. 单边指数信号
F ( j) 1 a2 2
f (t) e at u(t),a 0,
() arctan( ) a
单边指数信号及其幅度频谱与相位频谱
f (t)
F(j)

1.3 非周期信号的频域分析

1.3 非周期信号的频域分析

2. 线性叠加性

f1 (t ) C1n ,
f 2 (t ) C2n
8
a1 f1 (t ) a2 f 2 (t ) a1 C1n a2 C2n
第三节 瞬变非周期信号与连续频谱
二、傅里叶变换的主要性质
3. 对称性
若 x(t) ←→ X(f),则 X(t) ←→ x(-f)
第三节 瞬变非周期信号与连续频谱
一、傅里叶变换 二、傅里叶变换的主要性质
三、几种典型信号的频谱
图1-11
1
第三节 瞬变非周期信号与连续频谱
非周期信号是时间上不会重复出现的信号,一般为时 域有限信号,具有收敛可积条件,其能量为有限值。
通常所说的非周期
信号是指瞬变非周期
信号如图1-11所示。 图1-11a为矩形脉冲信 号,图1-11b为指数衰 减信号,图1-11c为衰 减振荡,图1-11d为单 一脉冲。
2
( f ) = arctg
Im[ X ( f )] Re[ X ( f )]
第三节 瞬变非周期信号与连续频谱
与周期信号相似,非周期信号也可以分解为许多
不同频率分量的谐波和,
所不同的是,由于非周期信号的周期T∞,基频 fdf,它包含了从零到无穷大的所有频率分量,各 频率分量的幅值为X(f)df,这是无穷小量,所以频谱 不能再用幅值表示,而必须用幅值密度函数描述。
对称性举例如图1-14所示。
图1-14
9
第三节 瞬变非周期信号与连续频谱
二、傅里叶变换的主要性质 4. 时间尺度改变特性 若 x(t) ←→ X(f),则 x(kt) ←→ 1/k[X(f/k)]
时间尺度 改变特性举 例如图1-15 所示。

信号分析3.02 非周期信号的频谱分析─傅里叶变换

信号分析3.02 非周期信号的频谱分析─傅里叶变换
R ( )是的偶函数, X ( )是奇函数 R( ) ( ) arctan X( )
如果f(t)是实函数
F ( jw)


f (t )e jwt dt F ( jw)
F ( jw) F ( jw) F ( jw) 是w偶函数
F j F () ~ : 幅度频谱
提问:所有信号都可以由时域变换到频域分析吗?
三.傅里叶变换存在的充分条件
注意:



f t d t (有限值或收敛) 即f t 绝对可积
绝对可积 F(jw)存在
1)满足绝对可积,傅里叶变换一定存在(充分条件) 2)不满足绝对可积,傅里叶变换仍可能存在(不是必 1 (t ) (t ) 要条件)
第二节 非周期信号的频谱分析 -傅里叶变换
• 傅里叶变换的提出
•傅里叶变换的物理意义
•傅里叶变换的存在条件
•常用非周期信号的频谱 •非周期信号的频谱的特点
一.傅里叶变换的提出
周期信号向非周期信号过渡 fT t f (t ) T1 时域过渡
2π T1 频域过渡: 谱线间隔 `1 d T1
3)所有能量信号均满足此条件。
四.常用非周期信号的频谱
矩形脉冲(门函数)
单边指数信号
直流信号
单位阶跃信号 单位冲激信号
1.矩形脉冲信号-门函数

f (t ) Eg (t )
E
F ( j ) f (t )e j t d t Ee j t d t
E e .
简写
记做:
f t F j
F f (t ) F ( j )
F
1
F ( j )

非周期信号的频谱

非周期信号的频谱

F(j)称为 f(t) 的傅里叶变换或频谱密度函数,简称频谱;
f(t) 称为F(j) 的傅里叶反变换或原函数。
也可简记为: F ( j )
f (t)
f (t)
1 F ( j)
或者: f (t ) F ( j )
频谱密度函数
F ( j ) 一般为复函数,可写为
F ( j) F ( j) ej () F ( ) e j ()
0,
2
A e j tdt
2
A e j t 2
j
2A sin 2
A Sa( )
2
2
t
2
t
2
8.矩形脉冲信号的频谱
f (t ) A

F( j)
A
t 2 0 2
0 2π 4π
Ag (t)
A
Sa( )
2
傅里叶变换对 F ( j ) f ( t ) e j t d t
T
Fn
2Fn 1
Fn f1
T
2 T
f ( t ) e j n 1t d t
2
其中, Fn 或 Fn 表示单位频带上的频谱值,即频谱密度。
1
f1
对上式取极限 T ,各变量将相应改为 T
虽然 记作
Fn 0
F ( j)
,但
T
F
n 趋于一有限函数
1
2
T
d
n 1 n
F ( j )
et t 0
f (t) e t t 0
为 0的实数
F ( j) 0 eate jtdt eate jtdt j
2
0
2 a2
F (j) 2 2 a2

第五章 非周期信号频域分析

第五章 非周期信号频域分析

2
5.1 连续非周期信号的频谱
注意到
T0
lim fT0 (t ) f (t )
相应地,T (t ) 的Fourier级数将等于f(t)的Fourier级数。 f0
(a)
(b) 图5-1 非周期信号的周期化
3
5.1 连续非周期信号的频谱
为了避免 T0 时,式(5.2)中的Cn趋于零,将(5.1)和(5.2)等 价地定义为
1
2 2
相位频谱为 () arctan
(5 21)
20
5.2 常见连续信号的频域分析
5 单边指数信号 f (t ) e
t
u(t ), 0
单边指数信号的幅度频谱和相位频谱见图5-8。
图5-8 单边指数信号的幅度频谱和相位频谱
21
(5 13)
15
5.2 常见连续信号的频域分析
2 单位冲激信号 利用冲激信号的取样特性,可得
F[ (t )] f (t )e
jt
dt (t )e jt dt 1 (5 14)


单位冲激信号及其频谱函数见图5-5所示。
图5-5 单位冲激信号及其频谱函数
Dn jn0t fT0 (t ) e n=- T0 Dn
T0 / 2 T0 / 2

(5.3) (5.4)
fT0 (t )e jn0t dt
下面说明如何由周期矩形脉冲的频谱得出非周期矩形脉冲 信号的频谱。由4-1节知,周期为T0、宽度为 的周期矩形脉 冲的Fourier系数为
52常见连续信号的频域分析单位冲激信号利用冲激信号的取样特性可得图55单位冲激信号及其频谱函数171752常见连续信号的频域分析由单位冲激信号是偶函数得直流信号ft1利用单位冲激信号的频谱和fourier反变换公式可得图56直流信号及其频谱函数18因此单位阶跃信号的频谱函数为52常见连续信号的频域分析单位阶跃信号ut单位阶跃信号也不满足dirichlet条件但其fourier变换存在

第五章 非周期信号的频域分析新

第五章 非周期信号的频域分析新
ak T
2T1
周期T → ∞
F (ω) lim akT = 2T1Sa(ωT1 )
T →∞
F(ω)
2T1

π T1
π T1

kω0
4π T1

3π T1

π 2π − T1 T1
π T1
2π T1
3π T1
4π T1
ω
0 ω0
2ω0
0
由周期傅里叶级数:
∞ ⎧ f (t ) = ∑ Fn e jnΩ t ⎪ n = −∞ ⎪ ⇒ ⎨ T ⎪ F = 1 2 f (t )e − jnΩ t dt ⎪ n T ∫− T 2 ⎩ n = 0,±1,±2,...
0

t
− 2 jω = 2 α +ω2
−e
αt
−1
− 2 jω F1( jω) = 2 2 α +ω
2 F( jω) = limF1( jω) = α→0 jω 2 F( jω) =
F( jω)
ω
ω
ϕ(ω) π
2

⎧ π − ⎪ 2 ⎪ ϕ(ω) = ⎨ ⎪π ⎪2 ⎩
ω >0 ω <0
π
2
ω
(2)单位冲激信号
F
a 其中 a1 、 2 为任意常数
● 两个信号加权求和的傅氏变换等于各个信号傅 氏变换的加权求和; ● 线性同样适用于多个信号加权求和的情况。
例5-1:已知信号 f (t ) = 2 + 3δ (t ) 根据线性,其傅氏变换为 F (ω ) = 4πδ (ω ) + 3 已知信号f(t)
jω a 的傅氏变换 F (ω ) = jω + a = 1 − jω + a

02-连续非周期信号的频谱分析(课件)

02-连续非周期信号的频谱分析(课件)

X a ( j)
X (e j )
X N (e j )
DFT X N (k) X N (e j ) 2k / N
利用DFT计算连续信号的频谱
(1)混迭 对连续信号xa(t)进行数字处理前,要进行采


xa (nT ) x(t) (t nT ) n
采样序列的频谱是连续信号频谱的周期延拓 ,周期为fs,如采样率过低,不满足采样定理 ,fs<2fh,则导致频谱混迭,使一个周期内的谱 对原信号谱产生失真,无法恢复原信号,进一 步的数字处理失去依据。
就是一个冲击函数。
我们知道,时域的乘积对应频域的卷积,所以,
加窗后的频谱实际是原信号频谱与矩形窗函数频谱的
卷积,卷积的结果使频谱延伸到了主瓣以外,且一直
延伸到无穷。当窗口无穷大时,与冲激函数的卷积才
是其本身,这时无畸变,否则就有畸变。
7dft形式下的parseval定理32dft利用dft计算连续信号的频谱采样321连续非周期信号的频谱分析采样序列的频谱是连续信号频谱的周期延拓周期为fs如采样率过低不满足采样定理fs2f则导致频谱混迭使一个周期内的谱对原信号谱产生失真无法恢复原信号进一步的数字处理失去依据
变量

、f
k
周期
2
s、f s N
分辨率
2
N
fs N
w
k N
是z平面单位圆上幅角为

上的单位圆N等分后的第k点。
2
N
k
的点,即将z平面
结论:
1)X(k)也就是z变换序列傅氏变换X(ejω)的采样,采样 间隔为: ωN=2π/N。 即
X (k) X e jkN
采样定律告诉我们,一个频带有限的信号, 可以对它进行时域采样而不丢失任何信息;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档