【机械设计】第3章机械零件的疲劳强度分析
第三章 机械零件的疲劳强度计算
m
max min
2
200 100 2
50
a
max min
2
200 100 2
150
200
a
50
0
-100
min
max
m
t
机械设计 第三章 机械零件的疲劳强度计算
机械设计
3.2 材料的疲劳特性
3.2.1 材料的疲劳曲线
表示N次循环和疲劳极限间的关系曲线,称为疲劳曲线。
机械设计
曲线的BC段,随着循环次数的增加, 使材料疲劳破坏的最大应力不断下降。 C点相应的循环次数大约为104。把这一 阶段的疲劳现象称为应变疲劳。由于 应力循环次数相对很少,所以也叫低 周疲劳。
机械设计 第三章 机械零件的疲劳强度计算
机械设计
当N≥104时,称为高周循环疲劳。曲
线CD代表有限疲劳阶段。D点对应的 疲劳极限ND称为循环基数,用N0表示。 曲线CD段上任何一点所代表的疲劳极 限,称为有限寿命疲劳极限。
机械设计
1.稳定循环变应力
1) 对称循环变应力
最大应力σmax和最小应力σmin的
绝对值相等而符号相反
即σmax=-σmin
例如,转动的轴上作用一方向 不变的径向力,则轴上各点的弯曲 应力都属于对称循环变应力
机械设计 第三章 机械零件的疲劳强度计算
机械设计
2) 脉动循环变应力 脉动循环变应力中
σmin=0
劳极限。连接A′、D′得
直线A′D′
机械设计 第三章 机械零件的疲劳强度计算
机械设计
取C点的坐标值等于材料的 屈服极限σS,并自C点作一直 线与直线CO成45°的夹角, 交A′D′的延长线于 G′, 则CG′上的任何一
机械零件的疲劳强度计算分析
2 min 2
max m a m a min max min m 2 min a max 2 min r max
2、刚度 刚度是零件在载荷作用下抵抗弹性变形的能力。如果零件的刚度不足,产 生的弹性变形过大,会影响机器的正常工作(如果机床主轴刚度不足,会 影响零件的加工精度)。 设计计算时,必须使零件在载荷作用下产生的最大弹性变形量不超过许用 变形量:
[ ] [ ] [ ]
式中:
第三章 机械零件的疲劳强度计算
1、主要学习内容: 变应力的基本类型和材料的高周疲劳; 机械零件的疲劳强度计算; 机械零件疲劳强度计算的机构系数;
2、学习目标:
掌握变应力的基本类型; 掌握材料疲劳曲线;
掌握单向稳定变应力时机械零件的疲劳强度计算;
掌握双向稳定变应力时机械零件的疲劳强度计算; 了解单向不稳定变应力时机械零件的疲劳强度计算;
[ ] [ ] S lim [S ] lim [S ]
式中 [S ] 、 分别为正应力和切应力的许用安全系 [S ] 数; lim、 lim分别为极限正应力和极限切应力。
lim [S ] S lim [S ]
1、强度: 机械零件的强度可以分为体积强度和表面强度两种。 (1)体积强度: 零件的体积强度不足,会产生断裂或过大的塑性变形,体积强度就是 抵抗这两种失效的能力。 设计计算时必须使零件危险截面上的最大应力、 不超过材料的许 、 [ ] ,或使危险截面上的安全系数 S 、S 不小于零件的许用安 用应力[ ] [S ] 。 全系数 [S ] 、
第3章机械零件的疲劳强度
(kt ) D
说明
t t
kt
应力集中、零件尺寸和表面状态都只对应力幅有影 响,即疲劳极限主要受应力幅的影响
第三节 许用疲劳极限应力图
稳定变应力和非稳定变应力 许用(零件)疲劳极限应力图 工作应力增长规律
一、稳定变应力和非稳定变应力
稳定变应力:在每次循环中,平均应力σm、应力幅σa
和周期T都不随时间变化的变应力
2
45°
O
s0
2
45°
F S
sS
sm
sB
三、工程中的简化极限应力图(2)
sa
A B
疲劳塑性失 效区
s -1 s 0
疲劳和 塑性安 全区
2
45°
O
s0
2
F
sS
S
sm
sB
三、工程中的简化极限应力图(3)
sa
A B
疲劳塑性失 效区
s -1 s 0
疲劳和 塑性安 全区
2
45°
O
s0
2
45°
F
sS
S
sm
sB
sa
A
B
E
s -1
s0
2
45°
O
s0
2
45°
sS
S
sm
F
sB
s AE上各点: max s lim s m s a
如果 s max s max 不会疲劳破坏
s ES上各点: lim s m s a s s 如果 s max s s 不会屈服破坏
第三章 机械零件的疲 劳强度
机械零件的疲劳强度设计方法
1、安全——寿命设计
《机械设计》第3章_机械零件的强度(正式)
2.最小应力 s min s m s a
3.平均应力
sm
s max
s min
2
4.应力幅
sa
s max
s min
2
5.应力循环特性
s min s max
第三章 机械零件的强度
(a)非对称循环变应力
(b)脉动循环变应力
(c)对称循环变应力
疲劳曲线
s max
s min
2
sa
s max
s min
2
r s min
s max
1 r 1 (r 0)
smax
sm
0
t
sm
sa
s max
2
s min 0
r0
sa= smax
0
t
smin
sm 0
s a s max s min
r 1
二、应力的描述
第三章 机械零件的强度
稳定循环变应力的基本参数 共有5个基本参数,知其2就能求其他
应力循环特性 r 一定的条件下,记录出在 不同最大应力σmax下引起试件疲劳破坏所经历 的应力循环次数N,即可得到σ-N疲劳曲线 。
静应力强度(AB段):N≤103, σmax几乎不 随N变化,可近似看作是静应力强度。
(ND,σr∞)
低周疲劳(BC段):N↑→ σmax↓。C点对应 的循环次数约为104。
(非周期变化)
循环变应力
(周期变化)
符合统计规律
稳定循环变应力
(等幅变应力)
非稳定循环变应力
(变幅变应力)
非对称循环变应力 对称循环变应力 脉动循环变应力
s
1、非循环变应力 符合统计规律
机械设计 第九版 第03章
σmax﹣最大法向应力值 σ'max﹣最大法向应力极限值
σa﹣法向应力幅值 σ'a﹣法向应力幅值的极限值
S﹣安全系数
Sca﹣计算安全系数 Sτ﹣切向应力安全系数
Sσ﹣法向应力安全系数
五、提高机械零件疲劳强度的措施
机械零件的疲劳强度计算5
(1) 降低零件上的应力集中的影响。零件上应尽量避免 带尖角的孔或槽,在阶梯杆截面的突变处要用圆弧过渡
1. 应力比为常数:r=C
r为常数
也为常数
只有过原点的射线满足关系
当工作点是位于AOG区域的M时,零件的疲劳强度条件为 推导见下页 当工作点是位于GOC区域的N时,零件的疲劳强度条件为 静强度校核
公式推导
D E B
2.平均应力为常数:σm=C
当工作点是位于AOHG区域的M时,零件的疲劳强度条件为 推导见下页 当工作点是位于GCH区域的N时,零件的疲劳强度条件为
一、零件的极限应力线图
机械零件的疲劳强度计算1
由于零件几何形状的变化、尺寸大小、加工质量及强 化因素等的影响 材料试件的疲劳极限
>
零件的疲劳极限
定义综合影响系数为材料试件的疲劳极限与零件的疲 劳极限的比值。
材料对称循环 弯曲疲劳极限 综合影响系数
s 1 Ks s 1e
>1 零件对称循环 弯曲疲劳极限
计算举例 假设某种钢材承受500MPa对称循环应力时,循环次数 为10万次,400MPa时,循环次数为12万次,300MPa时,循 环次数为14万次,现在500MPa作用2万次, 400MPa时作用 3万次, 300MPa作用7万次,问是否损坏? 应力 500 400 300 循环次数 10万 12万 14万 实际作用次数 2万 3万 7万 损伤率 20% 25% 50%
机械设计第3章_机械零件的强度
(2)若该转轴工作时单向旋转,且经常开车与停车,试确定其计算安全系数Sca;
(3)若该转轴的工作状况与(2)相同,设计安全系数S=2,当承受的弯矩M=400N·m时,还允许承受多大的扭矩T?
分析:这是一个双向稳定变应力时的疲劳强度计算问题。解题时应注意①根据已知条件确定应力的循环特性,由于转轴频繁地正反转,因此弯曲应力和扭转剪切应力都可看成是对称循环变应力,r=-1;②当转轴单向旋转,且经常开车与停车时,其弯曲应力仍应为对称循环变应力,r=-1;而扭转剪切应力应为脉动循环变应力,r=0;③(3)是一个已知设计安全系数,反求载荷的问题。
因N3=108>N0=107,故应取N3=107。
KN3===1
例3.4一转轴的材料为40Cr,调质处理,其机械性能为ψσ=0.2,σ-1=355MPa,τ-1=205MPa,ψτ=0.1。,疲劳强度综合影响系数Kσ=2.5,Kτ=1.5。
例3.1某材料的对称循环疲劳极限 ,屈服极限 ,取循环基数N0=107,寿命指数m=9,试求循环次数N分别为105,5×106,108次时相应的寿命系数KN和疲劳极限σ-1N。
解:由题意知
KN1===1.67
由于σ-1N1=459MPa>355MPa=σs,所以取σ-1N1=σs=355MPa。
KN2===1.08
解:(1)弯曲应力
扭转剪切应力
弯曲应力的平均应力
弯曲应力的应力幅
机械设计-第三章 机械零件的强度(疲劳)
AB(103前):最大应力值变化很小,相当于静强度状况; BC(103-104):N增加,σmax减小,有塑性变形特征—应变疲
劳,低周疲劳,不讨论; CD(>104):有限寿命疲劳阶段 ,任意点的疲劳极限--有限寿
命疲劳极限σrN ,该曲线近似双曲线。
公式描述:
c,m—材料常数 D点后:材料不发生疲劳破坏,无限寿命疲劳阶段,
件的疲劳极限,用综合影响系数Kσ 表示。 如:对称循环弯曲疲劳极限的综合影响系数Kσ。 则:
σ -1试件的对称循环弯曲疲劳极限; σ -1e零件的对称循环弯曲疲劳极限。
不对称时:Kσ 是试件与零件的极限应力幅的比值。
零件的极限应力线图—ADGC 试件线图A’ D’ G’C—综合修正系数Kσ—零件线图ADGC
机械设计
第三章:机械零件的强度(疲劳强度)
主讲老师:吴克勤
第三章 机械零件的强度(疲劳)
一、材料的疲劳特性 1、 σ - N曲线 ①疲劳断裂:变应力下的零件损坏形式,与循环次数有关。 ②特征: σmax< σlim; 脆性材料和塑性材料都突然断裂; 损伤的积累。 ③疲劳极限:循环特征r一定时,应力循环N次后,材料不 发生破坏的最大应力σrN ; ④疲劳曲线:r一定的条件下,表示N与σrN 关系的曲线。
零件的极限应力曲线:
φσe-零件受循环弯曲应力时的材料常数; σ’ae -零件受循环弯曲应力时的极限应力幅; σ’me-零件受循环弯曲应力时的极限平均应力。
Kσ 为弯曲疲劳极限的综合影响系数
kσ-零件的有效应力集中系数(σ 表示在正应力条 件下);
εσ - 零件的尺寸系数; βσ -零件的表面质量系数; βq -零件的强化系数。 上面所有的计算公式,同样适用于剪切应力。
第3章 机械零件的疲劳强度
第3章机械零件的疲劳强度㈠基本内容:1. 疲劳断裂特征;2.疲劳曲线和疲劳极限应力图;3.影响机械零件疲劳强度的主要因素;4.许用疲劳极限应力图;5.机械零件的疲劳强度;6.稳定变应力时安全系数的计算;7.规律性非稳定变应力时机械零件的疲劳强度;㈡重点与难点:1重点:疲劳曲线和疲劳极限应力图;许用疲劳极限应力图;影响机械零件疲劳强度的主要因素;机械零件的疲劳强度;稳定变应力时安全系数的计算.2难点:绘制简化的零件疲劳极限应力图;根据许用疲劳极限应力图预测零件的失效;用图解法和解析法计算零件安全系数.㈢基本要求:1熟记疲劳曲线和疲劳极限应力图;2掌握材料的疲劳极限应力图与零件的许用疲劳极限应力图的区别;3掌握机械零件的疲劳强度的概念;4掌握零件的工作安全系数的计算方法.3.1 疲劳断裂特征在变应力下工作的零件,疲劳断裂是主要的失效形式之一。
表面无缺陷的金属材料,其疲劳断裂过程分为两个阶段:第一阶段是零件表面上应力较大处的材料发生剪切滑移,产生初始裂纹,形成疲劳源,疲劳源可以有一个或数个;第二阶段是裂纹尖端在切应力下发生反复塑性变形,使裂纹扩展直至发生疲劳断裂。
实际上,材料内部的夹渣、微孔、晶界以及表面划伤、裂纹、酸洗等都有可能产生初始裂纹。
因此一般说零件的疲劳过程是从第二阶段开始的,应力集中促使表面裂纹产生和发展。
疲劳断裂截面是由表面光滑的疲劳发展区和粗糙的脆性断裂区组成。
零件在变应力下反复变形,裂纹周期地压紧和分开,使疲劳发展区呈光滑状态,在电子显微镜下放大观察,有以疲劳源为中心,间隔为0.1 m一1 m的同心疲劳纹。
每一疲劳纹表示每次应力循环使裂纹延伸的结果。
人眼所见到的同心弧状前沿线是由于机器开停或载荷不稳定使裂纹前进不均衡所造成的。
当载荷稳定时,前沿线可能很轻微甚至没有。
此外,还可以看到自疲劳源向外辐射的条纹,称垄沟纹,粗糙的脆性断裂区是由于剩余截面静应力强度不足造成的。
截面大小与所受载荷有关。
机械设计作业第3章题解
答:先按单向应力分别计算出: Sσ,Sτ
再由: 检验。
四、设计计算题
3—27 某材料的对称循环弯曲疲劳极限应力σ-1=350Mpa,疲劳极限σS=550Mpa,强度极限
σB=750Mpa,循环基数N0=5×106,m=9,试求对称循环次数N分别为5×104、5×105、5×107次时的极限应力。
3—28 某零件如图所示,材料的强度极限σB=650Mpa,表面精车,不进行强化处理。试确定Ⅰ-Ⅰ截面处的弯曲疲劳极限的综合影响系数Kσ和剪切疲劳极限的综合影响系数Kτ
题3—28图
3—29 某轴只受稳定交变应力的作用,工作应力σmax=240MPa,σmin=-40MPa。材料的机械性能
σ-1=450MPa,σs=800MPa,σ0=700Mpa,轴上危险截面处的kσ=1.3,εσ=0.78,βσ=1,βq=1。
3—32 实心转轴的危险截面上受有载荷为:弯矩M=100N.m;转矩为周期变化,T=0—50N.m。轴的材料为碳钢,已知力学性能为:σs=300MPa,σ-1=170MPa,τs=180MPa,τ-1=100MPa。若截面直径d=25mm,有效应力集中系数kσ=1.79,kτ=1.47,尺寸系数εσ=0.84,ετ=0.78,表面质量系数βσ=βτ=0.9,强化系数βq=1,材料常数ψσ=0.34,ψτ=0.21。试确定安全系数S。计算时可按无限寿命考虑,忽略横向剪应力的作用。
题3—23图
3—24 零件的等寿命疲劳曲线与材料试件的等寿命疲劳曲线有何区别?在相同的应力变化规律下,零件和材料试件的失效形式是否总是相同的?为什环变应力的机械零件,在什么情况下可按静强度条件计算?什么情况下可按疲劳强度条件计算?
第3章机械零件的疲劳强度
材料的疲劳 特性曲线
σrN
低周疲劳
B C
A
曲线表示在一定 r 下 ,疲 劳极限σrN与应力循环次数N的 关系
D
N
NB= 103 NC=104 ND
s-N 曲线
AB段, N<103 ,σrN基本不变,可 看作是静应力强度。
BC段,随着 N↑→σmax↓, 因N较少,故称为:低周疲劳 ----高应力低循环疲劳
σrN
有限寿命疲劳阶段
B C 无限寿命疲劳阶段
A
σrN σr∞ σr
D
10
4
s rN s r (N N D )
ND = 106 ~ 25×107
N
N
N N0 D
循环基数N0,用N0来近似代表ND。 于是有:
s N s N0 C
m rN m r
循环基数N0作为特征点,其疲劳极限的表示采用简化标记: σr或τr,如为对称循环,
多数通用零件,其承受变应力循环次数总是大于 104的。所以本书不讨论低周疲劳问题。 机械零件的疲劳大多发生在s-N 曲线的 CD段 。
在此范围内,试件经过一 定次数的变应力作用后总 会发生疲劳破坏
σrN A B C
有限寿命疲劳阶段
D
ND
曲线CD段上任何一点 所代表的疲劳极限
N -----有限寿命疲劳极限σrN
疲劳极限,也不超过屈服极限--故为疲劳和塑性安全区,若在ABES以外 为疲劳或塑性失效区.工作应力点距ABES折线越远,安全程度越高.
极限应力线图
由图中A(0,σ-1)、B(σ0/2,σ0/2)两点可求得AE疲劳极限方程为
' s -1=s a
2s 1 s 0
机械设计第三章机械零件强度
45° B
C
σm
σS σB
AG直线上任意点代表了一定循环特性时的疲劳极限。
已知C点坐标:(σS , 0) CG直线的斜率: k=tan135°=-1
CG直线的方程:
a m s
CG直线上任意点的最大应力达到了屈服极限应力。
§3.1 材料的疲劳特性
疲劳破坏的判据:
1. 当循环应力参数( σm,σa )
静应力只能由静载荷产生。 注意: 静载荷和变载荷均可能产生变应力。
绝大多数机械零件都是处于变应力状态下工作的。
§3.1 材料的疲劳特性
四、 变应力的描述
平均应力:
m
max
min
2
应力幅值:
a
max
min
2
-1,对称循环应力
应力比 (循环特性):
r
min max
=
0,脉冲循环应力 描述规律性的变应力有5个参数,但
由于实际零件的几何形状、尺寸大小、加工质量及强化因素等与材料 标准试件有区别,使得零件的疲劳极限要小于材料标准试件的疲劳极限。
1. 应力集中
由于零件形状突然变化而引起的局部应力增大现象。 应力集中的存在会降低零件的疲劳极限。
2. 零件尺寸
其他条件相同的情况下,零件的绝对尺寸越大,其疲劳强度 越低。
零件的表面状态包括表面粗糙度和表面处理。
二、名义载荷与计算载荷
➢名义载荷Fn :根据额定功率用力学公式计算出作用在零件上的载荷。 ➢计算载荷Fca:考虑载荷的时间不均匀性、分布的不均匀性以及其它
影 响因素对名义载荷进行修正得到的载荷。
Fca K Fn
K—— 载荷系数
§3.1 材料的疲劳特性
三、应力
机械设计第三章机械零件的强度
学习要求:
1. 了解疲劳曲线及极限应力曲线的来源,意义及用途, 能从材料的几个基本机械性能及零件的几何特性,绘 制零件的极限应力简化线图
2. 学会单向变应力时的强度计算方法 3. 了解疲劳损伤累积假说的意义及其应用
4. 学会双向变应力时的强度校核方法
学习重点:
极限应力线图的绘制及含义
强度准则是设计机械零件的最基本准则。
通用机械零件的强度分为静应力强度和变应力 强度两个范畴。
在机械零件整个工作寿命期间应力变化次数小 于103的通用零件,均按静应力强度进行设计。
即使是承受变应力的零件,在按疲劳强度进行 设计的同时,还有不少情况需要根据受载过程 中作用次数很少而数值很大的峰值载荷作静应 力强度校核。本章以下只讨论零件在变应力下的疲劳、低应力下 的脆断和接触强度等问题。
根据零件载荷的变化规律以及零件与相邻零件互相约 束情况的不同,可能发生的典型的应力变化规律通常 有下述三种:
a)变应力的应力比保持不变,即r=C(例如绝大 多数转轴中的应力状态);
b)变应力的平均应力保持不变,即σm=C(例如 振动着的受载弹簧中的应力状态);
c)变应力的最小应力保持不变, σmin=C(例如 紧螺栓联接中螺栓受轴向变载荷时的应力状 态)。以下分别讨论这三种情况。
e 可用下式计算
e
K
1 K
2 1 0 0
(3 11)
Kσ——弯曲疲劳极限的综合影响系数
K
k
1
1
1
q
(3 12)
式中:kσ——零件的有效应力集中系数 εσ——零件的尺寸系数; βσ——零件的表面质量系数; βq——零件的强化系数。
(一)单向稳定变应力时机械零件的疲劳强度计算
第三章机械零件的疲劳强度设计
第三章机械零件的疲劳强度设计1一、多项选择题3-145钢的持久疲劳极限σ-1=270mpa,,设疲劳曲线方程的幂指数m=9,应力循环基数n0=5×106次,当实际应力循环次数n=104次时,有限寿命疲劳极限为____________mpa。
(1)539(2)135(3)175(4)4173-2有一根阶梯轴,用45钢制造,截面变化处过渡圆角的疲劳缺口系数kσ=1.58,表面状态系数β=0.28,尺寸系数εσ=0.68,则其疲劳强度综合影响系数kσd=____________。
(1)0.35(2)0.88(3)1.14(4)2.833-3形状、尺寸、结构和工作条件相同的零件,采用下列不同材料制造:a)ht200;b)35钢;c)40crni钢。
其中设计零件的疲劳缺口系数最大和最小的分别是____________。
(1) A)和b)(2)C)和A)(3)b)和C)(4)b)和A)(5)A)和C)(6)C)和b)3-4零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之____________。
(1)增加(2)不变(3)减少3-5零件的形状、尺寸、结果相同时,磨削加工的零件与精车加工相比,其疲劳强度____________。
(1)较高的(2)与较低的(3)相同3-6零件表面经淬火、渗氮、喷丸、滚子碾压等处理后,其疲劳强度____________。
(1)增高(2)降低(3)不变(4)增高或降低视处理方法而定3-7影响零件疲劳强度的综合影响系数kσd或kτd与____________等因素有关。
(1)零件的应力集中、加工方法、过载(2)零件的应力循环特性、应力集中和载荷状态(3)表面状态、零件的绝对尺寸和应力集中(4)材料、热处理方法和零件的绝对尺寸。
3-8已知设计零件的疲劳缺口系数kσ=1.3、尺寸系数εσ=0.9、表面状态系数βσ=0.8。
则疲劳强度综合影响系数kσd为____________。
机械设计第3章机械零件的强度
根据零件载荷的变化规律以及零件与相邻零件互相约 束情况的不同,可能发生的典型的应力变化规律通常 有下述三种:
a)变应力的应力比保持不变,即r=C(例如绝大 多数转轴中的应力状态);
b)变应力的平均应力保持不变,即σm=C(例如 振动着的受载弹簧中的应力状态);
c)变应力的最小应力保持不变, σmin=C(例如 紧螺栓联接中螺栓受轴向变载荷时的应力状 态)。以下分别讨论这三种情况。
(3—9)
直线CG的方程为
σa'+σm'=σs
(3—10)
式中:σae'——零件受循环弯曲应力时的极限应力幅; σme'——零件受循环弯曲应力时的极限平均应力; e ——零件受循环弯曲应力时的材料常数。
e 可用下式计算
e
K
1 K
2 1 0 0
(3 11)
Kσ——弯曲疲劳极限的综合影响系数
S a
ae a
1 m K a
对应于N点的极限应力由N2'点表示,它位于直线CG上,故 仍只按式(3—18)进行静强度计算,分析图3—7可知,凡是工 作应力点位于CGH区域内时,在σm=C的条件下,极限应力 统为屈服极限,也是只进行静强度计算。
3.σmin=C的情况
当σmin=C时,需找到一个其最小应力与零件工 作应力的最小应力相同的极限应力。因为
分别是: 1 K ae m e
1 K ae m
ae
1
m
K
m ax
ae
m e
1
m
K
m
1
K
K
m
Sca
lim
m ax max
1 (K ) m
K
也有文献上建议,在σm=C的情况下,按照应力幅来 校核零件的疲劳强度,即按应力幅求得安全系数计算 值为
机械设计整理答案
机械设计整理答案第三章机械零件的疲劳强度设计1.计算机械零件疲劳强度的两种方法是什么?计算标准是什么?答:a安全-寿命设计:在规定的工作期间内,不允许零件出现疲劳裂纹,一旦出现,即认为失效。
b破损-安全计算:允许零件存在裂纹并缓慢扩展,但须保证在规定的工作周期内,仍能安全可靠地工作。
2.在可变应力条件下,机械零件的疲劳断裂和失效过程是什么?答:第一阶段是零件表面上应力较大处的材料发生剪切滑移,产生初始裂纹,形成疲劳源,可以有多个或数个;第二阶段是裂纹尖端在切应力下发生反复塑性变形,使裂纹扩展直至发生疲劳断裂。
4什么是压力循环基数?一般碳钢和高硬度合金钢的循环基数是多少?答:应力循环基数(no),即对应于疲劳试验曲线上接触强度极限的应力循环数。
普通碳钢:10*6-10*7高硬度合金钢:10x10*7-25x10*75按疲劳曲线(σ―n)设计零件时,适用的条件是什么?当循环次数n<10*4时,(σ―n)曲线是否适用?为什么?在这种情况下应如何处理?答:对于循环特性R下的可变应力,N次循环后材料不会受损。
不适用。
疲劳极限很高,接近屈服极限,屈服极限几乎与循环次数的变化无关。
一般可根据静应力强度计算。
7影响机械零件疲劳强度的主要因素有哪些?提高机械零件疲劳强度的措施有哪些?A:1)应力集中、零件尺寸、表面状态、环境介质、加载顺序和频率。
2)减少应力集中的影响;选择具有高疲劳强度的材料或指定可提高材料疲劳强度的热处理方法和强化工艺,以改善零件的表面质量;尽可能减少或消除零件表面可能出现的初始裂纹尺寸。
8机械零件在受载时在什么地方产生应力集中?应力集中与材料的强度有什么关系?答:1)零件受载时,在几何形状突然变化处要产生应力集中。
2)降低应力集中,可以提高零件的疲劳强度。
9.如何区分可变应力是稳定的还是不稳定的?如何计算稳定变应力下零件的强度?如何计算零件在规则不稳定变应力下的强度?答:1)在每次循环中,平均应力,应力幅和周期都不随时间变化的变应力为稳定变应力,若其中之一随时间变化的则成为非稳定变应力。
3 第三章 机械零件的疲劳强度《机械设计》
C点的极限应力为
计算安全系数及疲劳强度条件为:
σ′ k N σ -1 max Sσ = = ≥ [S] σ max (Kσ ) Dσa + ψσ σ m
N点的极限应力点N’位于直线 E’S上, 有: σ'm a x = σ′ α + σ′ m = σs
这说明工作应力为N点时,首 先可能发生的是屈服失效。故 只需要进行静强度计算即可。 σS σS = ≥ [S] 强度计算公式为: Sσ = σ max σ a + σ m
三、规律性非稳定变应力时的疲劳强度计算 按损伤累积假说进行疲劳强度计算 不稳定 规律性 如汽车钢板弹簧的载荷与应力受载重量、行车速度、轮胎充气成都、路面状况、驾驶员水平等因素有关。 变应力 非规律性 用统计方法进行疲劳强度计算
σmax σ1 σmax σ2 σ3 σ4 n2 n3 σ1 σ2
σ-1∞ O n 1
2)当应力作用顺序是先小 后大时,等号右边值 >1; z ni 0 .7 ~ 2 .2 一般情况有: i 1 N i 极限情况:
ni 1 i 1 N i
z
1 m m m i 1 ( n n ... n ) 1 1 1 2 2 z z m m N 0 1 N 0 1
§机械零件的工艺性及标准化
1 何为工艺性?
所设计的零件便于加工且加工费用低
25
2、标准化
对产品的品种、规格、质量、检验等制订标准并加以实施。 1)产品品种规格的系列化: 2)零部件的通用化: 3)产品质量标准化: 标准化的意义:
在制造上可实行专业化大量生产,既可提高产品质量,又 可降低成本;
在设计方面可减小设计工作量; 在管理维修方面,可减小库存和便于更换损坏的零件。
机械设计第03章 机械零件的强度
• • •
• •
当σm =C时,需找到一个其平均应力与零件工作应力的平均 时 应力相同的极限应力。 应力相同的极限应力。 在图3- 中 作平行线MM’2(或NN’2),则该 ),则该 在图 -7中,过M(或N)点,作平行线 或 ) 线上的任何点所代表的应力循环都具有相同的平均应力值。 线上的任何点所代表的应力循环都具有相同的平均应力值。 σ 联解MM’2和AG两直线方程,求出 2的坐标的: me 、 σ ′ 两直线方程, 联解 两直线方程 求出M’ 的坐标的: ′ ae 点的疲劳极限应力: 则M点的疲劳极限应力: 点的疲劳极限应力 ψσ σ −1 + ( K σ − ψ σ )σ m ′ ′ ′ σ max = σ ae + σ me = σ −1e + σ m (1 − )= Kσ Kσ σ −ψ σ ′ σ ae = −1 σ m 零件的极限应力幅: 零件的极限应力幅: Kσ 计算安全系数: 计算安全系数:
•
E1、E2--为零件1、零件2材料的弹性模量。
在接触点、线连续改变位置时,显然 对于零件上任一点处的接触应力只能在 0~σH之间变化。 • 接触应力是脉动循环变应力。 • 在作接触疲劳计算时,极限应力也应 是脉动循环的极限接触应力。 •
总结: 1.材料的极限应力线图帮助我们了解零件的失 效的可能形式,要记住三个区域的意义,它是 讨论其它线图的基础。 σ−1 2.Sca = ≥ S 适用于各种循环特性的疲劳破坏。
§3-1 材料的疲劳特性
• 材料疲劳特性描述:最大应力 σ max • 应力循环次数 N σ min • 应力比(循环特性) r = σ • 其它符号:极限平均应力 • 极限应力幅值 • • 材料屈服极限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1.所谓机械零件的疲劳极限应力图是在 考虑了综合影响系数和寿命系数之后得 出的疲劳极限应力图 • 2.综合影响系数只对极限应力幅有影响, 而寿命系数对应力幅和平均应力均有影 响 • 3.工作应力点(m,a)必须落在安全区内, 当零件受到的应力增长导致发生破坏时, 最终发生的破坏形式与应力的增长规律 有关 。
注意:有色金属和高强度合金钢无无限寿命区。
3、循环特性r对疲劳曲线的影响
应力循环特性越大,材料的疲劳极限越大,对零件强度 越有利。对称循环(应力循环特性=-1)最不利
寿命系数:
如果已知循环基数N0和疲劳极限 ( r r ),则 N次循环时的疲劳极限为:
rN m rN m
N0 r k N r N N0 r k N r N0
1.图解法求安全系数 当工作应力处于疲劳安全区时 首先发生疲劳破坏
不均匀
• 疲劳断裂的过程一般由两个阶段构成: 第一个阶段是零件表面上应力较大位置 的材料发生剪切滑移,产生初始裂纹, 形成疲劳源; • 第二个阶段为裂纹尖端在切应力下发生 反复塑性变形,使裂纹扩展直至发生疲 劳断裂。 • 对于实际的零件疲劳过程来说,由于材 料内部存在夹渣、缺陷、微孔,表面存 在划伤、微裂纹、酸洗等形成天然疲劳 源,因此零件的疲劳破坏过程一般都是 从第二阶段开始的。
第三章 机械零件的疲劳设计
• • • • • • 3.1疲劳断裂的过程及断面特征 3.2材料的疲劳特性曲线 3.3影响零件疲劳强度的系数 3.4机械零件的疲劳极限应力图 3.5机械零件的疲劳安全系数计算方法 3.6现行疲劳损伤积累假说及其应用
3.1 疲劳破坏的过程及断面特征
• 为什么会造成疲劳破坏?
1)有限寿命区
当N<103(104)—低周循环,疲劳极限接近于屈服极限, 按静强度计算
当N>103(104)——高周循环疲劳当 10 3 (10 4 ) N N 0 时随循环次数↑疲劳极限↓
对于机械设计问题,大部分材料处于AB段,这一区域 中,疲劳曲线符合指数方程:
N N0 C
k 1 q( 1)
ασ 、ατ ——考虑零件几何形状的理论应力集中系数 q——考虑材料对应力集中感受程度的敏感系数
k 1 q( 1)
2、尺寸的影响----尺寸越大,材料的晶粒会愈 粗、出现缺陷的几率也就会愈大、机械加工后 所形成的表面冷作硬化层(对疲劳强度有利)相 对较薄。 尺寸系数:εα,ετ
塑性材料的σa -σm简化曲线
• 3.2.3常用疲劳极限数值 • 表3.1
max= m+ a= s m= s-a
3.3 影响零件疲劳强度的系数 上述曲线是用材料的标准试件进行试验的,实际零 件的疲劳极限由于应力集中、零件尺寸、表面状态 的不同而不同。 1、应力集中的影响: 应力集中系数
m rN m r
N N0 C
m rN m r
循环基数N0 与材料性质有关,硬度愈高,循环基数愈大。 对于钢:若硬度350HB,取N0=106~107; 350HB,取 N0=10×106~25 × 107 有色金属: rN m r
式中:
N0 kN ——寿命系数。 N
m
3.2.2材料的σa —σm曲线 用材料的标准试件实验,m-a曲线表达的是在不同 循环特性r的应力作用相同的次数N,材料的疲劳极限应 力分布图,在曲线上的每一点都是等寿命的,又称为疲 劳极限应力图.
图3.6 塑性材料的m-a曲线
图3.7 低塑性和脆性材料的m-a曲线
3.2 材料的疲劳特性曲线 3.2.1 材料的-N疲劳曲线 1.疲劳极限----在循环特性r一定的变应力作用 下,经过N次循环作用材料不发生疲劳破坏的最 大应力称为疲劳极限(rN或rN) 2.疲劳寿命(N)——材料疲劳失效前所经历 的应力循环次数N
3.疲劳曲线: 应力循环特性r一定时,材料的疲 劳极限rN或rN与应力循环次数N 之间关系的曲线
主要是材料表面有裂纹存在,在反复变应力 作用下,裂纹的表面周期性地压紧和分开,使裂 纹扩展,当裂纹发展到一定程度后,余下的截面 不能满足静强度要求而发生的突然性一次断裂而 形成的断面。
断裂面由光滑的疲劳发展区和粗糙脆性断裂区组成
断裂扩展→光滑疲劳发展区 脆性断裂→粗糙的脆性断裂区
→轴向变形不均匀
→载荷的波动,裂纹前进
图3.14 钢的尺寸系数(a)和铸铁的尺寸系数(b)
3、表面状态的影响:表面的质量好坏对疲劳源 的形成、应力集中、抗疲劳能力等多方面产生影 响。 ----表面状态系数:βσ, βτ
• 零件加工的后处理方法对表面状态的影 响也很大,淬火、渗碳、渗氮、抛光、 喷丸、滚压都可以提高抗疲劳强度,减 少初始裂纹产生和扩展作用 。
工作应力增长的规律
图3.17 三种常见的应力增长方式
3.5 机械零件安全系数的计算 疲劳强度的计算采用的是安全系数计算,即判 断危险截面处的安全程度,准则为: S[S] 该算法具有验算性质,因为计算是在零件的材 料,结构和尺寸均已确定的条件下进行的
min • 按r =常数进行加载时的疲劳安全系数的计算方法 max
lg N 0 lg N m lg rN lg r
对于钢:拉应力、弯曲应力和切应力时:m=9 接触应力:m=6 对于青铜:弯曲应力:m=9 接触应力:m=8
2)无限寿命区
N N0
rN r ——持久极限
1 对称循环:
1
脉动循环: 0
0
当作用在材料上的疲劳应力小于σr时,疲劳极限不 再随循环次数的增加而降低。
• 4、综合影响系数: • 计算时要将零件的工作应力幅乘以综合影响 系数。试验表明,应力集中、零件尺寸和表 面状态三种因素都只对应力幅产生影响,而 对平均应力的影响十分微弱,可以不予考虑。
(k ) D (k ) D
k
k
3.4 机械零件疲劳极限应力图 考虑综合影响系数(kσ)D和寿命系数kN