合肥工业大学高数下册书后习题
合肥工业大学第二学期高等数学试卷A试题
合肥工业大学第二学期高等数学试卷A试题 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩ 则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( ) 2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰(B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰(D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())()x xLy ye f x dx e f x d ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。
合肥工业大学高数下部分课后习题参考答案
AB 7 , AC 7 , BC 7 2 ; 等腰直角三角形.
14 3. M 0, 0, . 9
4. 5.
2x 6 y 6z 3 0 .
a b a b a b a b ; ; ; . 2 2 2 2
1 2 1 , cos ; 7. AB 2 ; cos , cos 2 2 2
5. 8x 9 y 22 z 59 0 . 6.
3 2 . 2
习题 8-5
1. (1)直线,平面; (2)抛物线,抛物柱面; (3)圆,圆柱面; (4)双曲线,双曲柱面. 2. (1)将 xOy 平面上双曲线 x2 y2 1绕 x 轴旋转一周;
(2)将 yOz 平面上直线 z y a 绕 z 轴旋转一周.
12. (1)见图 8-9;
(2)见图 8-10;
图 8-9
图 8-10
(3)见图 8-11;
(4)见图 8-12.
图 8-11 习题 9-1
图 8-12
1. ( 1 )为有界开区域;聚点为集合 {(x, y ) | x 2 + y 2 1} ,边界点为集合 {(x, y ) | x 2 + y 2 =1} {(0, 0)} ;
4
x2 y 2 1, ( 2 ) 在 xOy 面 投 影 曲 线 方 程 : 在 yOz 面 投 影 曲 线 方 程 : z 0;
z z y sin , x cos , 2 在 zOx 面投影曲线方程: 2 y 0. x 0;
3020max21minminmaxmax上的点到原点的距离的最大值与最小值分别为15max16总复习题九11122sincoscossincos10
高等数学下册第八章课后习题解答
习题8−11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y −1)2≥1}∩{(x , y )|x 2+(y −2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y −1)2=1}∪{(x , y )|x 2+(y −2)2=4}.2. 已知函数yx xy y x y x f tan ),(22−+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅−+= ),(tan 2222y x f t y x xy y x t =⎟⎠⎞⎜⎝⎛−+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x −y , xy ).解 f (x +y , x −y , xy )=(x +y )xy +(xy )(x +y )+(x −y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2−2x +1);高等数学下册第八章习题解答解 要使函数有意义, 必须y 2−2x +1>0,故函数的定义域为D ={(x , y )|y 2−2x +1>0}.(2)yx y x z −++=11; 解 要使函数有意义, 必须x +y >0, x −y >0,故函数的定义域为D ={(x , y )|x +y >0, x −y >0}.(3)y x z −=;解 要使函数有意义, 必须y ≥0,0≥−y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z −−+−=; 解 要使函数有意义, 必须y −x >0, x ≥0, 1−x 2−y 2>0,故函数的定义域为D ={(x , y )| y −x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u −+++−−−=(R >r >0); 解 要使函数有意义, 必须R 2−x 2−y 2−z 2≥0且x 2+y 2+z 2−r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +−→; 解110011lim 22)1,0(),(=+−=+−→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy y x 42lim)0,0(),(+−→; 解 xy y x 42lim)0,0(),(+−→)42()42)(42(lim )0,0(),(+++++−=→xy xy xy xy y x 41)42(1lim)0,0(),(−=++−=→xy y x . (4)11lim )0,0(),(−+→xy xy y x ; 解 11lim )0,0(),(−+→xy xy y x )11)(11()11(lim )0,0(),(−+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++−→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++−=++− 01sin lim cos 1lim 00==−=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x −+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==−+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(−=−=−+→=→y y y x y x y x y x . 因此, 极限y x y x y x −+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x −+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1lim )(lim 44022222 )0,0(),(==−+→=→x x y x y x y x x xy y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=−+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x −+→不存在. 8. 函数xy x y z 2222−+=在何处间断? 解 因为当y 2−2x =0时, 函数无意义,所以在y 2−2x =0处, 函数x y x y z 2222−+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤−+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x −x 0|<δ时, 有|f (x )−f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x −x 0|<δ, 从而 |F (x , y )−F (x 0, y 0)|=|f (x )−f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8−21. 求下列函数的偏导数:(1) z =x 3y −y 3x ;解 323y y x xz −=∂∂, 233xy x y z −=∂∂. (2)uvv u s 22+=; 解 21)(u v v u v v u u u s −=+∂∂=∂∂, 21)(v u u u v v u v v s −=+∂∂=∂∂. (3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理)ln(21xy y y z =∂∂. (4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅−⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y −= 根据对称性可知)]2sin()[cos(xy xy x yz −=∂∂. (5)yx z tan ln =; 解 y x y y y x yxx z 2csc 21sec tan 12=⋅⋅=∂∂, y x y x y x y x yx y z 2csc 2sec tan 1222−=−⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(−−+=⋅+=∂∂y y xy y y xy y xz , ]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xy xy xy y ++++=. (7)z yx u =;解 )1(−=∂∂z y x zy x u , x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂, x x zy z y x x z u z y z y ln )(ln 22⋅−=−=∂∂. (8) u =arctan(x −y )z ;解 z z y x y x z x u 21)(1)(−+−=∂∂−, z z y x y x z y u 21)(1)(−+−−=∂∂−, z z y x y x y x z u 2)(1)ln()(−+−−=∂∂. 2. 设gl T π2=, 试证0=∂∂+∂∂g T g l T l . 解 因为l g l T ⋅⋅=∂∂1π, g g g l gT 121(223⋅−=⋅−⋅=∂∂−ππ, 所以 0=⋅−⋅=∂∂+∂∂gl g l g T g l T l ππ. 3. 设)11(y x e z +−=, 求证z yz y x z x 222=∂∂+∂∂. 解 因为211(1xe x z y x ⋅=∂∂+−, 2)11(1y e y z y x ⋅=∂∂+−, 所以 z e e y z y x z x y x y x 2)11()11(22=+=∂∂+∂∂+−+− 4. 设yx y x y x f arcsin )1(),(−+=, 求. )1 ,(x f x解 因为x x x x f =−+=1arcsin )11()1 ,(, 所以1)1 ,()1 ,(==x f dxd x f x . 5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 242x x x z ==∂∂, αtan 1)5,4,2(==∂∂xz , 故4πα=. 6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4−4x 2y 2;解 2384xy x x z −=∂∂, 2222812y x xz −=∂∂; y x y y z 2384−=∂∂, 2222812x y yz −=∂∂; xy y x y yy x z 16)84(232−=−∂∂=∂∂∂. (2)x y z arctan=; 解 22222)(11y x y x y xy x z +−=−⋅+=∂∂, 22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy y z +=⋅+=∂∂, 22222)(2y x xy y z +−=∂∂; 22222222222222)()(2)()(y x x y y x y y x y x y y y x z +−=+−+−=+−∂∂=∂∂∂. (3) z =y x .解 y y x z x ln =∂∂, y y xzx 222ln =∂∂; 1−=∂∂x xy y z , 222)1(−−=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂−−y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, −1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x ,f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0,所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2,f yz (0, −1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyy x xy x z , x xy y x z 122==∂∂, 023∂∂∂yx z , y xy x y x z 12==∂∂∂, 2231y y x z −=∂∂∂. 9. 验证:(1)满足nx e y tkn sin 2−=22xy k t y ∂∂=∂∂; 证明 因为nx e kn kn nx e ty t kn t kn sin )(sin 2222⋅−=−⋅⋅=∂∂−−, nx ne x y t kn cos 2−=∂∂, nx e n xy t kn sin 2222−−=∂∂, nx e kn xy k t kn sin 222−−=∂∂, 所以22x y k t y ∂∂=∂∂. (2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂.证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r x r −=∂∂−=∂∂, 由对称性知32222ry r y r −=∂∂, 32222r z r z r −=∂∂, 因此 322322322222222rz r r y r r x r z r y r x r −+−+−=∂∂+∂∂+∂∂ r r r r r z y x r 23)(332232222=−=++−=.习题8−31. 求下列函数的全微分:(1)yx xy z +=; 解 dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=. (2)x ye z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=. (3) 22yx y z +=; 解 因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−, 2/3222222222)(y x x y x y x y y y x z +=++⋅−+=∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=. (4)u =x yz .解 因为1−⋅=∂∂yz x yz x u , x zx y u yz ln =∂∂, x yx zu yz ln =∂∂, 所以xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=− 2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分.解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x x z, 3221=∂∂==y x y z,所以 dy dx dz y x 323121⋅+===. 3. 求函数xy z =当x =2, y =1, Δx =0.1, Δy =−0.2时的全增量和全微分. 解 因为x y x x y y z −Δ+Δ+=Δ, y x x xy dz Δ+Δ−=12, 所以, 当x =2, y =1, Δx =0.1, Δy =−0.2时,119.0211.02)2.0(1−=−+−+=Δz , 125.0)2.0(211.041−=−+×−=dz . 4. 求函数z =e xy 当x =1, y =1, Δx =0.15, Δy =0.1时的全微分.解 因为y xe x ye y yz x x z dz xy xy Δ+Δ=Δ∂∂+Δ∂∂= 所以, 当x =1, y =1, Δx =0.15, Δy =0.1时,e e e dz 25.01.015.0=⋅+⋅=*5. 计算33)97.1()102(+的近似值.解 设33y x z +=, 由于y y z x x z y x y y x x Δ∂∂+Δ∂∂++≈Δ++Δ+3333)()(332233233y x y y x x y x +Δ+Δ++=, 所以取x =1, y =2, Δx =0.02, Δy =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6. 计算(1.97)1.05的近似值(ln2=0.693).解 设z =x y , 由于y yz x x z x x x y y y Δ∂∂+Δ∂∂+≈Δ+Δ+)(y x x x yx x y y y Δ+Δ+=−ln 1, 所以取x =2, y =1, Δx =−0.03, Δy =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z Δ+Δ+=Δ+Δ=≈Δ, 当x =6, y =8, Δx =0.05, Δy =−0.1时,05.0)1.0805.0686122−=⋅−⋅+≈Δz . 这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h ,ΔV ≈dV =2πRh ΔR +πR 2Δh ,当R =4, h =20, ΔR =Δh =0.1时,ΔV ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差.解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z Δ⋅∂∂+Δ⋅∂∂≤≈Δ|)|||(122y y x x yx Δ+Δ+=. 令x =7, y =24, |Δx |≤0.1, |Δy |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm . *10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=. zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈Δ. 令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则 55.2718021278631.0232631.023278=×××+××+××≈πδs , 82.21273sin 786321=⋅⋅⋅=πS , %29.182.212755.27==S s δ, 所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55 m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和. 证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u Δ+Δ≤Δ+Δ=Δ∂∂+Δ∂∂=≈Δ. 所以两数之和的绝对误差|Δu |等于它们各自的绝对误差|Δx |与|Δy |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和.证明 设u =xy , yx v =, 则Δu ≈du =ydx +xdy , 2y xdy ydx dv v −=≈Δ, 由此可得相对误差;ydy x dx xy xdy ydx u du u u +=+=≈Δy y x x y dy x dx Δ+Δ=+≤; y dy x dx yx y xdy ydx v dv v v −=⋅−==Δ2y y x x y dy x dx Δ+Δ=+≤.习题8−41. 设z =u 2−v 2, 而u =x +y , v =x −y , 求x z ∂∂, yz ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x , yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(−1)=2(u −v )=4y . 2. 设z =u 2ln v , 而yx u =, v =3x −2y , 求x z ∂∂, y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x −+−=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ )2()(ln 222−+−⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x −−−−=. 3. 设z =e x −2y , 而x =sin t , y =t 3, 求dtdz . 解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅−⋅+=−− .)6(cos )6(cos 22sin 223t t e t t e t t y x −=−=−− 4. 设z =arcsin(x − y ), 而x +3t , y =4t 3, 求dtdz . 解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x −−−+⋅−−= 232)43(1)41(3t t t −−−=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz . 解 dx dy y z x z dx dz ⋅∂∂+∂∂=xx x e x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+−=a z y e u ax , 而y =a sin x , z =cos x , 求dx du . 解 dxdz dz u dx dy y u x u dx du ⋅∂+⋅∂∂+∂∂= )sin (1cos 11)(222x a e x a a e a z y ae ax ax ax −⋅+−⋅+++−= )sin cos cos sin (122x x a x a x a a e ax ++−+=x e ax sin =. 7. 设y x z arctan =, 而x =u +v , y =u −v , 验证22v u v uv z u z +−=∂∂+∂∂. 证明 )()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂ )()(111)(11222y x y x y y x −⋅++⋅+=)1()()(111)(11222−⋅−⋅++⋅++y x yx y y x 22222v u v u y x y +−=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1) u =f (x 2−y 2, e xy );解 将两个中间变量按顺序编为1, 2号,2122212)()(f ye f x xe f x y x f x u xy xy ′+′=∂∂⋅′+∂−∂⋅′=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy ′+′−=∂∂⋅′+∂−∂⋅′=∂∂. (2) ,(zy y x f u =; 解 1211)()(f yz y x f y x x f x u ′=∂∂⋅′+∂∂⋅′=∂∂, )()(21z y y f y x y f y u ∂∂⋅′+∂∂′=∂∂2121f z f yx′+′−=,)()(21z y z f z x z f z u ∂∂⋅′+∂∂′=∂∂22f z y ′−=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅′+⋅′+⋅′=∂∂3211321f yz f y f ′+′+′=, 3232f xz f x xz f x f yu ′+′=⋅′+⋅′=∂∂, 33f xy xy f zu ′=⋅′=∂∂. 9. 设z =xy +xF (u ), 而xy u =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅)([])()([yu u F x x y x u u F x u F y x ∂∂′+⋅+∂∂′++= )]([)]()([u F x y u F xy u F y x ′+⋅+′−+= =xy +xF (u )+xy =z +xy .10. 设)(22y x f y z −=, 其中f (u )为可导函数, 验证211y zy z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222′−=⋅′⋅−=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()(′−+=−⋅′⋅−=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+′+′−=∂∂⋅+∂∂⋅211y z zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22xz ∂∂, y x z ∂∂∂2, 22y z ∂∂. 解 令u =x 2+y 2, 则z =f (u ),f x xu u f x z ′=∂∂′=∂∂2)(, f y y u u f y z ′=∂∂′=∂∂2)(, f x f x u f x f xz ′′+′=∂∂⋅′′+′=∂∂2224222,f xy yu f x y x z ′′=∂∂⋅′′=∂∂∂422, f y f y u f y f y z ′′+′=∂∂⋅′′+′=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).u f y vf y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0, vf u f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数.)()()(22u f x y uf y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂ 222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=, )(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yv v u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u f y uf xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(, )()()()(22v f y u f y x vf u f x y y z y y z ∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ yv v f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vf x u v f v u f x u f x2222222v f v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =; 解 令u =x , yx v =, 则z =f (u , v ). v f y u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1, vf y xdy dv v f y z ∂∂⋅−=⋅∂∂=∂∂2. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xv v f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂= 22222212v f y v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=, 1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= yv v f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅−∂∂⋅∂∂∂=22211 221v f y x v f y v u f y x ∂∂⋅−∂∂⋅−∂∂∂⋅−= ()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅−∂∂⋅−∂∂=∂∂∂∂=∂∂22423222322vf y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅−∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1′⋅y 2+f 2′⋅2xy =y 2f 1′+2xyf 2′,z y =f 1′⋅2xy +f 2′⋅x 2=2xyf 1′+x 2f 2′;z xx =y 2[f 11′′⋅y 2+f 12′′⋅2xy ]+2yf 2′′+2xy [f 21′′⋅y 2+f 22′′⋅2xy ] =y 4f 11′′+2xy 3f 12′′+2yf 2′′+2xy 3f 21′′+4x 2y 2 f 22′′=y 4f 11′′+4xy 3f 12′′+2yf 2′′+4x 2y 2 f 22′′,z xy =2y f 1′+y 2[f 11′′⋅2xy +f 12′′⋅x 2]+2xf 2′+2xy [f 21′′⋅2xy +f 22′′⋅x 2] =2y f 1′+2xy 3f 11′′+x 2y 2 f 12′′+2xf 2′+4x 2y 2f 21′′+2x 3yf 22′′ =2y f 1′+2xy 3f 11′′+5x 2y 2 f 12′′+2xf 2′+2x 3yf 22′′,z yy =2xf 1′+2xy [f 11′′⋅2xy +f 12′′⋅x 2]+x 2[f 21′′⋅2xy +f 22′′⋅x 2] =2xf 1′+4x 2y 2f 11′′+2x 3y f 12′′+2x 3yf 21′′+x 4f 22′′=2xf 1′+4x 2y 2f 11′′+4x 3y f 12′′+x 4f 22′′.(4) z =f (sin x , cos y , e x +y ).解 z x =f 1′⋅cos x + f 3′⋅e x +y =cos x f 1′+e x +y f 3′,z y =f 2′⋅(−sin y )+ f 3′⋅e x +y =−sin y f 2′+e x +y f 3′,z xx =−sin x f 1′+cos x ⋅(f 11′′⋅cos x + f 13′′⋅e x +y )+e x +y f 3′+e x +y (f 31′′⋅cos x + f 33′′⋅e x +y ) =−sin x f 1′+cos 2x f 11′′+e x +y cos x f 13′′+e x +y f 3′+e x +y cos x f 31′′+e 2(x +y ) f 33′′ =−sin x f 1′+cos 2x f 11′′+2e x +y cos x f 13′′+e x +y f 3′+e 2(x +y ) f 33′′, z xy =cos x [f 12′′⋅(−sin y )+ f 13′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−sin y cos x f 12′′+e x +y cos x f 13′+e x +y f 3′−e x +y sin y f 32′+e 2(x +y )f 33′ =−sin y cos x f 12′′+e x +y cos x f 13′′+e x +y f 3′−e x +y sin y f 32′′+e 2(x +y )f 33′′, z yy =−cos y f 2′−sin y [f 22′′⋅(−sin y )+ f 23′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−cos y f 2′+sin 2y f 22′′−e x +y sin y f 23′′+e x +y f 3′−e x +y sin y f 32′′+ f 33′′⋅e 2(x +y ) =−cos y f 2′+sin 2y f 22′′−2e x +y sin y f 23′′+e x +y f 3′+f 33′′⋅e 2(x +y ).13. 设u =f (x , y )的所有二阶偏导数连续, 而3t s x −=, 3t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321y u x u t yy u t x x u t u ∂∂⋅+∂∂⋅−=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂−+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(2yu x u s s u s s u ∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ (23)(212222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= 2321(23)2321(212222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(2yu x u t t u t t u∂∂⋅+∂∂⋅−∂∂=∂∂∂∂=∂∂ )(21)(232222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂−= )2123(21)2123(232222y u x y u y x u x u ∂∂⋅+∂∂∂⋅−+∂∂∂⋅+∂∂⋅−−=22222412343y uy x u x u ∂∂⋅+∂∂∂⋅−∂∂⋅=,所以 22222222y u x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8−51. 设sin y +e x −xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x −xy 2, 则F x =e x −y 2, F y =cos y −2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222−−=−−−=−=.2. 设x y y x arctan ln 22=+, 求dxdy. 解 令xyy x y x F arctan ln ),(22−+=, 则22222222)()(11221y x y x xy x y y x x y x F x ++=−⋅+−+⋅+=,22222221)(11221yx x y x xy y x y y x F y +−=⋅+−+⋅+=,yx y x F F dx dyy x −+=−=. 3. 设022=−++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(−++=, 则 xyz yz F x −=1, xyzxz F y −=2, xyz xyF z −=1,xy xyz xyz yz F F x z z x −−=−=∂∂, xy xyz xyz xz F F y zz y −−=−=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及yz ∂∂, 解 令yz z x z y x F ln ),,(−=, 则z F x 1=, y yzyz F y 1)(12=−⋅−=, 2211z z x y y z z x F z +−=⋅−−=,所以 z x z F F x z z x +=−=∂∂, )(2z x y z F F y z z y +=−=∂∂.5. 设2sin(x +2y −3z )=x +2y −3z , 证明1=∂∂+∂∂yz x z证明 设F (x , y , z )=2sin(x +2y −3z )−x −2y +3z , 则 F x =2cos(x +2y −3z )−1,F y =2cos(x +2y −3z )⋅2−2=2F x , F z =2cos(x +2y −3z )⋅(−3)+3=−3F x ,313=−−=−=∂∂x x z x F F F F x z , 3232=−−=−=∂∂x x z y F F F F y z ,于是 13231=+=−−=∂∂+∂∂z z z x F FF F yz x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1−=∂∂⋅∂∂⋅∂∂xz z yy x .解 因为x y F F y x −=∂∂, y z F F zy −=∂∂, z x F F x z−=∂∂,所以 1()()(−=−⋅−⋅−=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F xz z yy x .7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx −az , cy −bz )=0 所确定的函数z =f (x , y )满足c yz b x z a =∂∂+∂∂.证明 因为v u uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,所以 c b a c b b a c a y z b x z a v u vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z−xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z −xyz , 则F x =−yz , F z =e z −xy , xye yzF F x z z x −=−=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z −−∂∂−−∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y z z z −−−−+=32232)(22xy e e z y z xy ze y z zz −−−=. 9. 设z 3−3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3−3xyz −a 3, 则xy z yz xy z yz F F x z z x −=−−−=−=∂∂22333, xyz xz xy z xz F F y z z y −=−−−=−=∂∂22333, )()(22xyz yzy x z y y x z −∂∂=∂∂∂∂=∂∂∂222)()2())((xy z x y z z yz xy z yz y z −−∂∂−−∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz y z −−−−−⋅−+=322224)()2(xy z y x xyz z z −−−=.10. 求由下列方程组所确定的函数的导数或偏导数:(1)设, 求⎩⎨⎧=+++=203222222z y x y x z dx dy , dx dz; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧−=+−=−xdx dz z dxdy y xdx dz dx dy y 3222.解方程组得)13(2)16(++−=∂∂z y z x x y , 13+=z x dx dz.(2)设, 求⎩⎨⎧=++=++10222z y x z y x dz dx ,dz dy ;解 视x =x (z ), y =y (z ), 方程两边对z 求导得⎪⎩⎪⎨⎧=++=++022201z dz dy y dzdx x dz dy dz dx , 即⎪⎩⎪⎨⎧−=+−=+zdz dy y dz dx x dz dy dz dx 2221.解方程组得y x z y z x −−=∂∂, yx xz z y −−=∂∂. (3)设, 其中f , g 具有一阶连续偏导数, 求⎩⎨⎧−=+=),(),(2y v x u g v y v ux f u x u ∂∂,x v ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅′+−∂∂⋅′=∂∂∂∂⋅′+∂∂+⋅′=∂∂x v yv g x u g x v x v f x u x u f x u 21212)1()( , 即⎪⎩⎪⎨⎧′=∂∂⋅⋅−′+∂∂′′′−=∂∂⋅′+∂∂−′121121)12()1(g x v g yv x u g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ′′−−′−′′′−−′′−=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ′′−−′−′−′+′′=∂∂.(4)设, 求⎩⎨⎧−=+=v u e y v u e x u u cos sin x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得, 即, ⎩⎨⎧+−=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin ⎩⎨⎧=+−=++dy vdv u du v e dxvdv u du v e u u sin )cos (cos )sin (从中解出du , dv 得dy v v e v dxv v e v du u u 1)cos (sin cos 1)cos (sin sin +−−++−=, v v e u e v dx v v e u e v dv u uu u ]1)cos (sin [sin ]1)cos (sin [cos +−+++−−=,从而1)cos (sin sin +−=∂∂v v e v x u u , 1)cos (sin cos +−−=∂∂v v e vy u u ,]1)cos (sin [cos +−−=∂∂v v e u e v x v u , ]1)cos (sin [sin +−+=∂∂v v e u e v y v u.11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂−∂∂⋅∂∂=. 证明 由方程组可确定两个一元隐函数, 方⎩⎨⎧==0),,(),(t y x F t x f y ⎩⎨⎧==)()(x t t x y y 程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dxdt t f x f dx dy ,移项得⎪⎩⎪⎨⎧∂∂−=∂∂+⋅∂∂∂∂=⋅∂∂−x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂−=y F t f t F tF y F t fD 的条件下 yF t f t F x Ft f t F x f t Fx F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂−∂∂⋅∂∂=∂∂∂∂−∂∂−∂∂⋅=1.习题8−61. 求曲线x =t −sin t , y =1−cos t , 2sin 4t z =在点)22 ,1 ,12 (−π处的切线及法平面方程.解 x ′(t )=1−cos t , y ′(t )=sin t , 2cos 2)(t t z =′. 因为点)22 ,1 ,12 (−π所对应的参数为2 π=t , 故在点)22 ,1 ,12 (−π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(−π处, 切线方程为22211121−=−=−+z y x π, 法平面方程为0)22(2)1(1)12(1=−+−⋅++−⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=′, 21)(t t y −=′, z ′(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(−=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为21124121−=−−=−z y x , 即8142121−=−−=−z y x ; 法平面方程为0)1(2)2()21(41=−+−−−z y x , 即2x −8y +16z −1=0.3. 求曲线y 2=2mx , z 2=m −x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m −x 的两边 对x 求导, 得m dx dyy22=, 12−=dxdz z , 所以y m dx dy=, z dx dz 21−=.曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m −=T , 所求的切线方程为000211z z z y m y y x x −−=−=−, 法平面方程为0)(21)()(00000=−−−+−z z z y y y m x x . 4. 求曲线在点(1, 1, 1)处的切线及法平面方程.⎩⎨⎧=−+−=−++0453203222z y x x z y x 解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+−=−++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=−+−=+2533222dxdz dx dy x dx dz z dx dy y .解此方程组得z y z x dx dy 61015410−−−−=, z y y x dx dz 610946−−−+=. 因为169)1,1,1(=dx dy, 161)1,1,1(−=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111−−=−=−z y x , 即1191161−−=−=−z y x ; 法平面方程为0)1(161)1(169)1(=−−−+−z y x , 即16x +9y −z −24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4. 解 已知平面的法线向量为n =(1, 2, 1).因为x ′=1, y ′=2t , z ′=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =−1, 31−=t . 于是所求点的坐标为(−1, 1, −1)和)271 ,91 ,31(−−. 6. 求曲面e z −z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z −z +xy −3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z −1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x −2)+2(y −1)+0⋅(z −0)=0, 即x +2y −4=0,法线方程为02112−=−=−z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2−1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x −x 0)+by 0(y −y 0)+cz 0(z −z 0)=0,即 , 202020000cz by ax z cz y by x ax ++=++法线方程为00000cz z z by y y ax x x −=−=−.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x −y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2−1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, −1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =−=, 即z x 21=, z y 41−=, 代入椭球面方程得1)4(2)2(222=+−+z z z , 解得1122±=z , 则1122±=x , 11221∓=y . 所以切点坐标为)1122,11221,112(±±∓. 所求切平面方程为0)1122(2)11221()112(=±+−±z y x ∓, 即 2112±=+−z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2−16, 则点(−1, −2, 3)处的法向量为n 2=(F x , F y , F z )|(−1, −2, 3)=(6x , 2y , 2z )|(−1, −2, 3)=(−6, −4, 6).点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F −++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=−+−+−z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8−71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)cos ,(cos 23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy ′=4, 解得yy 2=′. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y ′(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +−=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222−+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a xF F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22b a b y a x b a −=−=n , 单位内法向量为)cos ,(cos ,(2222βα=+−+−=b a a b a b n e . 又因为a a x x zb a b a 222,2(2)2,2(−=−=∂∂, bb y y z b a b a 222,2(2)2,2(−=−=∂∂, 所以 222222222cos cos b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3−xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(−=−=∂∂yz y x u, 0)2()2,1,1()2,1,1(=−=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=−=∂∂xy z z u , 所以 5211122021)1(cos cos cos =⋅+⋅+⋅−=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9−5, 4−1, 14−2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u, 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u, 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2−1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111cos cos cos z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x −2y −6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).。
合肥工业大学-高等数学-下-9.1
解
设 p( x, y) 沿直线 y kx 趋于点 (0,0), 则有
k x2 k lim f ( x , y ) lim 2 2 x 0 x 0 x k 2 x 2 1 k y kx
k 值不同极限不同 !
n 维空间中的每一个元素 一个点, 当所有坐标
R n 中点 a 的 邻域为
称为空间中的
称为该点的第 k 个坐标 . 称该元素为 R n 中的零元,记作 O .
二、多元函数的概念
引例:
圆柱体的体积
定量理想气体的压强
r
h
三角形面积的海伦公式
b
a c
定义1. 设非空点集
的 n 元函数 ,记作
sin(xy) sin(xy) sin(xy) lim lim [ y] lim lim y ( x , y )( 0 , 2 ) ( x , y ) ( 0 , 2 ) xy 0 y2 x xy xy
例5 求 解
2 2 2 2 2 2 因 x2 y2 1 ( x y ) , 令 r x y , 则 4
P P0
则称 A 为函数
lim f ( P ) A (也称为 n 重极限)
当 n =2 时, 记 PP0 ( x x0 )2 ( y y0 )2 二元函数的极限可写作:
lim f ( x , y ) A lim f ( x , y ) A
0
x x0 y y0
故
lim f ( x , y ) 0
x 0 y 0
例2
1 y sin xy 0 x sin 1 y x, 设 f ( x, y ) 0 , xy 0
高等数学(下)课后习题答案
高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。
高等数学课后习题及参考答案(第一章)
高等数学课后习题及参考答案(第一章)习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11, 所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解 由d cx b ax y ++=得a cy b dy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y . 解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为x x y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u , u =2x , 81π=x ,42π=x ; 解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y .(4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义. 18. 设⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1||e 1|| )]([101)(x e x x e e xfg x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin h DC AB ==, 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0, 所以 h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0, 040cot 0>⋅-h hS 确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|, 所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ;分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x , 所以要使ε<-+-212413x x , 只须ε21|)21(|<--x .证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x .分析 因为xx x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx ,所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X .5. 证明函数f (x )=|x |当x →0时极限为零.证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(xx x f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在. 证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0, ∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ;∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小. (2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件,能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由: (1)xx x 12lim +∞→;(2)xx x --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ; 解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x . (8)13lim 242--+∞→x x x x x ; 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limnn n -+⋅⋅⋅+++∞→; 解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(limn n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31x x x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量).4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x xx x x sin lim sin lim 00.(2)xx x 3tan lim 0→;解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x .(5)xx x x sin 2cos 1lim 0-→;解 2)sin (lim 2sin 2lim 2cos 1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xx x nn n n nn =⋅=∞→∞→22sin lim2sin 2lim . 2. 计算下列极限:(1)x x x 1)1(lim -→; 解 11)(1)1()(101})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解 2221221010])21(lim [)21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数).解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim .3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明.设ε为任一给定的正数, 由于A x g x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ1>0, 使得当0<|x -x 0|<δ1时, 恒有|g (x )-A |<ε, 即A -ε<g (x )<A +ε.由于A x h x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ2>0, 使得当0<|x -x 0|<δ2时, 恒有|h (x )-A |<ε, 即A -ε<h (x )<A +ε.取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ时, A -ε<g (x )<A +ε与A -ε<h (x )<A +ε 同时成立, 又因为g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.证明 仅对x →x 0的情形加以证明. 因为A x g x x =→)(lim 0, A x h x x =→)(lim 0,所以对任一给定的ε>0, 存在δ>0, 使得当0<|x -x 0|<δ时, 恒有 |g (x )-A |<ε及|h (x )-A |<ε,即 A -ε<g (x )<A +ε及A -ε<h (x )<A +ε.又因为 g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I , 111lim =+∞→nn .(2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ;证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n .(3)数列2,22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221, 而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)1]1[lim 0=+→xx x .证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-xx x .又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -. 证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim=αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim limlim =⋅=βαγβγα. 因此α~γ. 习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x .所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=QQx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞). 在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→;(4)xx x 11lim 0-+→;(5)145lim 1---→x x x x ;(6)a x a x a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点4π=x 有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点6π=x 有定义, 所以0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim=++=++=→x x .(5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim 1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x .。
高数答案 合肥工业大学 中国电力出版社 朱士信
《高等数学》练习册参考答案第一章函数练习11−1.(1);(2).(,0)(0,)22ππ−U [1,0)(0,3]−U 2.3(4)4(4)1,3,(4)6,3.x x x f x x x ⎧++++≥−+=⎨+<−⎩3.(1);(2);(3).(2,3)23(,)e e 1(2,3)(02a a a +−<<4..11,,,11x x x x x −+−5.1,0,[()]0,0,1,0;x f g x x x <⎧⎪==⎨⎪−>⎩1,1,[()]1,1,, 1.e x gf x x e x −⎧<⎪==⎨⎪>⎩6.(1);(2);(3);2cos r a θ=2cos r a θ=−2sin r a θ=(4);(5).2sin r a θ=−r a =7.,r=cos ,sin .x r y r θθθθ⎧==⎨==⎩练习12−1.奇函数.2.3.(1);(2);(3)非周期函数;(4).11,()0,0,1.x f x x x −⎧>⎪==⎨⎪<−⎩2π2π5.22,0,()30,0.a ax x f x xx ⎧−≠⎪=⎨⎪=⎩6.21lg ,100,10[()]1(lg ),10,10x x x f g x x x ⎧≥<≤⎪⎪=⎨⎪<<⎪⎩或2lg ,1,[()]lg ,00 1.x x g f x x x x ≥⎧=⎨<<<<⎩-1或练习13−1.(1);(2);2,sin y u u x ==25,21y u u x ==+(3)(4).ln ,y u v v ===1arctan ,2x y u u v −===2.(1)是;(2)不是;(3)是;(4)不是.第二章极限与连续练习21−1.(1)正确;(2)错;(3)正确.练习22−4..X ≥练习23−1..0,02.(1);(2);(3);(4);(5);(6);(7);(8).01513303(21401323..11x−练习24−1.(1);(2)..C .D 2.(1)正确;(2)错;(3)错;(4)正确;(5)错;(6)正确;(7)错;(8)错.4.(1)同阶不等价;(2)等价.5.(1)当时,;当时,;当时,;(2);(3);n m >0n m =1n m <∞812(4);(5);(6).3121!n 6..6练习25−1.(1)(2);(3);(4);(5).12π2e −8e 2.(1);(2);(3).131练习26−1.(1)是可去间断点;(2)是跳跃间断点;(3)是无穷间断点.1x =−7x =1x =2.(1)是可去间断点,是无穷间断点;0,1x x ==11,2x x =−=(2)是可去间断点,是第二类间断点.0x =(0,1,2,)2x k k ππ=+=±±L 3..4.(1);(2);(3).5.,.a b =139−0ln 221−18.,.11()x f x e−=(1)0,(1)f f −+==+∞第三章导数与微分练习31−1.(1);(2);(3);(4).78x 5414x −−65x −−5616x −2.(1);(2),.()f x =1x =()cos f x x =3x π=3.切线方程为,法线方程为.4.连续且可导.5..2x y +=0x y −=2()ag a 6.,,不可导.10练习32−1.(1;(2),.)2π+32517152.(1);(2);4323226126(6)x x x x x −−++++2cos sin x x xx −(3);(4;22cos ln sin ln cos x x x x x x x x −+(5);(6).22sec tan x x x x−23322ln 26x xx x x ++3.切线方程为,法线方程为.2y x =20x y +=4.交点处夹角为,交点处夹角为.(0,0)2π(1,1)3arctan 45.,.45(3)x +45(6)x +6.(1)错,应为;(2)错,应为;22cos x x 22(1)x x x e +(3)错,应为;(4)错,应为.2x +21111arctan1x x x −⋅++−7.(1;(2);(3);x (sin cos )axe a bx b bx +2sin 12sin x x xθθ−−+(4;(5);(6;2sin sec (cos )x x −⋅(7;(8).+232ln (1)x xx −8..()[()()()]f x x x x e f e e f e f x ′′+练习33−1..2.(1);(2).23x x −+222(32)x xe x +22232()a a x −−3..4.,.2−(2)f ϕ′′⋅+(2)f f ϕϕ′′′′′′⋅++⋅5.(1),;(2)ln 1y x ′=+()1(2)!(1)(2)n nn n y n x −−=−≥.6..14cos(42n n x π−+2练习34−1.(1);(2);(3);22cos33x x y−+2csc ()x y −+cos sin()sin sin()y x x y x x y ++−++(4;(5).2121323(3)x x x +−+−−1(ln 1)a x aa x x +−+2..3..4.5.(1);(2).1210x y −±=43212t t t −−2(1)2t t e t t−+6.,.7..cos t t −cos (cot )t t t −22()(1)2(1)t y e t yt −+−8.切线方程为,法线方程为.3πθ=56πθ=练习35−1..0.122.(1);(2);(3);(4).4211ln 42ax bx x Cx +++2sin x ln sin x 2(arcsin )x 3.(1);(2).2ln(1)1x dx x −−4..5..2(1)y dx −+(ln 21)dx −6.(1);(2);(3);(4).9.98670.4850.494960.99第四章导数的应用练习41−2.,.1223练习42−1.(1);(2);(3);(4);(5);(6);(7).232π18−112e 032..3..4.(1);(2)()f x ′′9,12a b ==−(0)f ′2()(),0,()1(0),0.2xf x f x x x g x f x ′−⎧≠⎪⎪′=⎨⎪′′=⎪⎩练习43−1.,.14360−262..234562122211222221(1)cos(2)24!6!(2)!(21)!2n n n n n x x x x x n x n n θπ−+++−+++−−++L (01)θ<<3..5..12412练习44−1.(1)单调递增,单调递减;(2)单调递增,单调递减.3(0,)43(,1)4(0,)e (,)e +∞2..4.(1)1y =(y=(2)为极大值,为极小值;1(123y =(1)0y =(3)为极大值,为极小值.3243(2)4k y k πππ++=24(24k y k ππππ−−=5.为极小值,无极大值.6.,极大值.3()255f =27.8.,.(f =f =2959..10.11.;.12.米.64a ≥R 84 2.366≈练习45−1.(1)在内凸,在内凹,为拐点;(0,1)(1,)+∞(1,7)−(2)在内凹,在内凸,为拐点.1(,2−∞1(,)2+∞1arctan 21(,)2e 2..4.不是极值点,是拐点.3,0,5a b c =−==0x 00(,())x f x 第五章不定积分与定积分练习51−1.(3);(4);(5).0()()f b a ξ−()b af x dx b a−∫2.(1);(2).ln 23π3.(1);(2).22211xx e dx edx −−>∫∫11(1)xe dx x dx >+∫∫4.(1);(2.22I e ππ≤≤22I e ≤≤练习52−1.(1);(2).2.(1);(2).21[(2)(2)]2f x f a −3cos 2sin xx+0()()x xf x f t dt +∫3.(1);(2).4.(1);(2).5.连续且可导.22sin yyx e −−t −12136.在内连续.32,[0,1),3()11,[1,2].26x x x x x ⎧∈⎪⎪Φ=⎨⎪−∈⎪⎩(0,2)7..8..1212arctan ln(1)2x x x C −+++9.(1);(2)当时,;当时,;(3)38π0a <31(27)3a −−0a ≥31(27)3a −.1)−练习53−1.(2);(3);(4);2sin cos x x xx −−()F x C +()()F x x C −Φ=(5);(6);(7);(8).()f x C +111x C µµ+++C 43−2.(1);(2);(3);212ln 2x x x C −++1arctan x C x −++2tan 22x x x C +−+(4);(5).522()ln 2ln 33x x C −+−1(sin )2x x C −+练习54−1.(1);(2);(3);522(2)5x C −−+122(1)x C ++2ln 35x x C +++(4);(5);(6);1ln cos 22x C −+1ln 2ln 12x C ++1arcsin 2x C ++(7);(8);(9);cos x e C −+31sec sec 3x x C −+11sin 2sin 8416x x C −+(10);(11);357121sin sin sin 357x x x C −++1sin 6212x x C −+(12);(13);33sec sec x x C −+ln csc 2cot 2x x C −+(14);(15);(16);21arctan(sin )2x C +1arctan 22x e C +122(arcsin )x C +(17);(18);(19)ln ln sin x C +523311(31)(31)153x x C ++++;C(20;(21);(22);C +C 13arcsin 32xC +(23).arcsin x e C −2.(1;(2);(3);(4);(5);(6);241(1)4e −5322π−835(7);(8);(9);(10).516π14π−1)8153..4..()ln f x x x C =+311()(2)32f x x C x =−−−+−练习55−1.(1);(2);(3)(1)xx eC −−++arcsin x x C +;11cos 2sin 224x x x C −++(4);(5);21tan ln cos 2x x x x C +−+ln(21)ln 21x x x x C +−+++(6);(7);x x C ++C −++(8);(9);(10)221()2(1)nx a C n −++−1(sin cos )2x x x e C −−+.2ln 1ln 21x x x C x ++−+++2..cos 2sin 244x x C x−+3.(1);(2);(3);(4);(5);(6)111(sin1cos1)22e −+2πln 22π−142π−.1ln 23练习56−1.(1;(2)C +21ln(22)arctan(1)2x x x C+++++(3);(4);(5);31ln ln 13x x C −++sin ln sin 1x C x ++1x e C x ++(6);(7);(8)ln(1)1xx x xe e C e −+++221tan 12x arc x C x +++;C(9);(10).1ln 1xC x x −++−12C 2.(1);(2);(3).14π+132ln 41721(1)24e π+−练习57−1..2..3..4..5..1218π23−1ln 242π+第六章定积分的应用练习62−1..2..3..4..5..6..12e −27412(1)e −23a π54π27..8..9..10.,.1ln 32−22a π53ln 122+12e e −+−22(2)2e e π−+−11..12.,.13..14.(1);(2);(3)163485π245π22π(1,1)21y x=−.30π15..16.17..18134242244()b x a y a b +练习63−1..2.(1)吨;(2)米.57697.5()KJ 660113.(1);(2)一倍;(3).216ah 2512ah 第七章常微分方程练习71−1.(1)一阶;(2)二阶;(3)不是;(4)一阶;(5)三阶;(6)一阶.2.(1)特解;(2)通解;(3)特解;(4)不是解.练习72−1.(1);(2);(3);2221x y Cx=−22(1)(1)x y C −−=(1)(1)x y e e C +−=(4).()1yC a x ay =+−2.2221,1,(1), 1.x xe x y e e x −⎧−≤=⎨−>⎩若若3.(1);(2);(3);(4)2(2)y C x y =+arctany xxy Ce−=1Cx y xe+=.2()102y x y x C −+−=4.(1);(2);(3);()y x x C =+2ln 2x y x =3214()13y x C x =++(4);(5).2sin 1x C y x +=−22y xy C −=5.(1;(2);(3).x C =+44114xx Ce y −=−++4121x Ce x y=−−练习73−1.(1)线性无关;(2)线性无关;(3)线性无关;(4)线性相关.2.(1);(2);(3).33112x x y C e C xe =+2112x x y C e C e =+33112x x y C e C e −=+3..12cos ln sin ln ln y C x C x x =++4..5.是.2129xy x e ∗=−+6.(1);(2);(3);24112xx y C eC e =+112()x y C C x e =+112(cos sin )22xx x y e C C =+(4);(5).12cos 2sin 2y C x C x =+3142x x y e e =+7.(1);(2);(3)112xxy C C e xe=++21122xx y C C e −=++.112sin x y C C e x −=++8..1()sin cos 22xf x x x =+练习74−1.(1);(2);33125ln 183x x x y C x C =−++331232C x x y C =++(3);(4).21arcsin()xy C e C =+11y x=−2..12()ln f x C x C =+3.(1);(2);(3).21C y C x x =+3122ln C y C x C x x x =++32115C y C x x x =++第八章向量代数与空间解析几何练习82−1.(1)不成立;(2)成立;(3)不成立.2.(1);2()a b ×rr (2).3.28.4.(1);(2).2()a b c ×⋅r r r1k =−15k k =−=或5..6..7..3π2λµ=4练习83−3..4..5..362490x y z −+−=320x z −=22(3)x y −+2(2)51z ++=6..7..(1,2,3),8r −=22244(4)y z x +=−练习84−1..2..3.平行,.217511x y z −−==321421x y z −+−==−d =4..5..111x y z −=−=−2350x y z +−=6.22220x y y +−=22220,0.x y y z ⎧+−=⎨=⎩第九章多元函数微分法及其应用练习91−1.(1);(2);2{(,)210}x y y x −+≥2{(,)0,0}x y y x x ≤≤≥(3);(4).2222{(,)}x y r x y R ≤+≤22222{(,,)0}x y z z x y x y ≤++≠且2..(,(,))24f xy f x y x y xy =++练习92−1.不正确.因为此时未必有等式成立.00lim (,)(,)x x y y f x y f x y →→=3,对任给的.令,当≤0ε>2δε=时,则有02δε<<=,0ε≤<所以.00x y →→=练习93−1.,而,所以在处不连续.(0,0)(0,0)0x y f f ==0lim (,)1(0,0)x y xf x y f →==≠(,)f x y (0,0)2.连续且两个偏导数均存在.3.,4.(1),;1(2,1)2x f =(1,2)y f =22z y x x y ∂=∂+22z xxx y ∂−=∂+(2)z z x y∂∂==∂∂(3).u u uxy z ∂∂∂===∂∂∂5.(1);222222222126,12,126z z z x y xy y x x x y y∂∂∂=−=−=−−∂∂∂∂(2),22223222224csccot 4csc cot 2csc ,x x x x x x y z z y y y y yxy x y y −−∂∂==∂∂∂.22242224csccot 4csc x x xx xy zy y yy y −+∂=∂6..22222233222,2,(12)x y x y xyxy ex ye x y e −−−−−−练习94−1.(1)正确,因为可微一定是连续的;(2)不正确,因为一阶偏导数连续是可微的充分条件而不是必要条件.(3)正确,二阶偏导数连续一定有一阶偏导数连续,从而函数在点(,)f x y 00(,)x y 处一定可微.2.(1);(2);2)dz ydx xdy =−(1)(ln(1))1x xdydz y y dx y=++++(3).2222()x y z du e xdx ydy zdz ++=++3..4..5..0.150.10.250.68dz e e e =×+×=×≈ 3.97655.296.时及均存在.(0)0ϕ=(0,0)x f (0,0)y f 练习95−1..2..6)dz t dt =+22()()z y y xf xy f x y x x ∂′′′′=−∂∂3.;.2223132333u yf xyf xy f xy zf x z ∂=+++∂∂2222222233322u x f x zf x z f y ∂=++∂5..21(,2)2y x f x x −=6.(1);123123()()dz f f yf dx f f xf dy =+++−+(2).211222(f yf f xfdu dx dy dz z x x z=−+−练习96−1.(1);cos()cos()5xy xxydy x y ye e dx x y xe −−+=−++(2).20(0,1)211,1,2(1)1y x x x ydy e d y ye e e dxxe dx===−===−=−−2.(1);(2).2,()z z z z x x z y y x z ∂∂==∂+∂+2322322()z zz y ze xy z y z e e xy −−−3..dx 4..此结果表明是的一次函数.22,0dy x ay d ydx y ax dx+=−=+y x 5..6..22()(2),33u v u v z z y z z x x z y z ϕϕϕϕϕϕ∂+∂+==∂−∂−,dx y z dy x zdz x y dz y x−−==−−7..所以.1[(t dy f f dt f f F F dy dx x t dx x t F x y dx ∂∂∂∂∂∂=+⋅=+−+⋅∂∂∂∂∂∂f F f Fdy x t t x f F F dx t y t ∂∂∂∂−∂∂∂∂=∂∂∂+∂∂∂8..f g fg h du f y x yz x g g h dx x y y z∂∂∂∂∂⋅⋅⋅∂∂∂∂∂∂=−+∂∂∂∂⋅∂∂∂练习97−1.2..1,1,1),u∂=−−=−∂ol l 2(1,1,2){1,1,}gradf e −=3..2221{,,}()()()gradu x a y b z c x a y b z c −=−−−−+−+−所以当时.4..222()()()1x a y b z c −+−+−=1gradu =2π练习98−1..1(,)26(1)(1)2f x y x y =+−−−+222[10(1)2(1)(1)2(1)]x x y y R −+−−−−+2..22(,)2y f x y y xy R =+−+练习99−1.在点处取极小值6.2.在点处取极大值.(4,2)(0,0)13.时取极小值.该点是圆222222,ab a b x y a b a b ==++z 2222a b z a b =+极小222222a b x y a b+=+与直线的切点.1x ya b+=4.最大值为3,最小值为1.5.设为椭球面上的任一点,则该点处的切平面与坐标面所围成的四面体的体000(,,)x y z 积为.要求的问题是求函数满足条件的极22200016a b c V x y z =(,,)fx y z xyz=2222221x y z a b c++=大值问题,由拉格朗日乘数法可知所求的点为000x y z ===.min V =练习910−1.切线:,法线:.11211x y π−+−==402x y π+−−=2.切线:,法线:.11214132x y z −−−==−1413250x y z −+−=3.切平面:,法线:.0001ax x by y cz z ++=000000x xy y z z axby zz −−−==4..0=n =n 5.所求的点为或222.222第十章重积分练习101−1..016I ≤≤2.(1);(2).23()()D D x y d x y d σσ+≥+∫∫∫∫2(ln())ln()D Dx y d x y d σσ+≥+∫∫∫∫3..4..(0,0)f 124I I =练习102−1.(1);(2);(3);(4);(5).20312sin 1πππ−−6071163e−2.(1);(2);210(,)x x dx f x y dy ∫∫1(,)dy f x y dx ∫(3);(4);ln 10(,)exdx f x y dy ∫∫120(,)yydy f x y dx −∫∫(5).202(,)ydy f x y dx ∫∫3.(1);(2).(1)1(16x a b a x y V dx c dy abc a b −=−−=∫∫1122001()6x V dx x y dy −=+=∫∫5.(1);(2);2cos 400(cos ,sin )d f r r rdr πθθθθ∫∫4sin 02sin (cos ,sin )d f r r rdr πθθθθθ∫∫(3).23cos 04(cos ,sin )d f r r rdr πθπθθθ∫∫6.(1);(2);230cos (cos ,sin )aa d f r r rdr πθθθθ∫∫2cos 2202()d f r rdr πθπθ−∫∫(3).13cos 203()()d f r rdr d f r rdr ππθπθθ+∫∫∫7.(1);(2);(3).8..9..(1cos1)π−223π−34(33R π−3512R π54π练习103−1.(1);(2);222121(,,)x x y dx f x y z dz −−+∫∫∫2102(,,)x y dx f x y z dz ++−∫∫(3).2211(,,)x y dx f x y z dz −+∫∫2.(1(2).3..3ln 24−202()()t t f x dx t f t +∫4.柱面,球面.1101d rdr f dz πθ∫∫∫2cos 2410cos sin ()d d r f r dr ππϕϕθϕϕ∫∫∫5.(1)0;(2);(3).6415π11926.(1);(2).7.21(12π53π练习104−1.14.2..3.(1),重心为;22(2)a π−2,03y x ==2(0,)3(2).4.(1);(2).(,55a a 46320a 443()32b a π−5.重心为,球心位于原点,球体置于上半空间.3(0,0,)86.设正方体边长为,密度为,则有所求的.a 0ρ50I a ρ=第十一章曲线积分练习111−1.(1);(2);(3);411)12+−(4);(5).2.4(122a π练习112−1..2.(1);(2);(3)-32;3.4..23323965343a 3323k a ππ−5.(1);(2).(,)(,)L yP x y xQ x y ds a−+∫∫6..C u udy dx x y ∂∂−∂∂∫ 练习113−1.(1);(2);(3);(4).112−2ab π−23429π−23(2)22a b a ππ+−2.(1)不在内部时,原式;(2)在内部时,原式.(0,0)L 0=(0,0)L 2π=练习114−1.5.2.20.3..4..3412a =−C +5..6.22(,)cos cos u x y x y y x C =++522333123x x y xy y C +−+=7..8..9..32223y a x x y xy C −−−=332yx y x e C −++=2ln y x C x−=练习115−1.,重心坐标为.22m a =(0,4aπ2.(1);22224)3z I a a k ππ=+(2).22232222222222663(2),,343434ak ak k a k x y z a k a k a k ππππππ−+===+++3..R −F 第十二章曲面积分练习121−1.(1);(2).3a π练习122−2.(1);(2)3;(3);3..42R π−1132πΣ练习123−1.(1);(2).2..12415(2)16a ππ+sin()sin yz z +3.(1)0;(2).22a h π练习124−1..2.(1);(2).4π−{4,sin ,6}x y −{2,2,sin }z z y −−−第十三章无穷级数练习131−1.(1)收敛;(2)发散;(3)收敛,发散;(4)发散.1q <1q ≥2.(1)发散;(2)收敛;(3)发散;(4)发散.3.(1)发散;(2)收敛;(3)发散;(4)收敛.练习132−1.(1)收敛;(2)收敛;(3)发散;(4)收敛;(5)收敛,发散;(6)收敛;(7)收敛;1p >1p ≤(8)发散;(9)收敛;(10)收敛.4.(1)时收敛,时发散;(2)时收敛,时发散;1a >1a ≤1αβ−>1αβ−≤(3)时收敛,时发散.1b >1b ≤练习133−1.(1)收敛;(2)收敛;(3)收敛.2.(1)绝对收敛;(2)条件收敛;(3)发散;(4)条件收敛;(5)绝对收敛;(6)条件收敛.练习134−1.(1);(2);(3);111,[,]222R =−,(,)R =+∞−∞+∞0R =(4);(5);(6).4,4,4R =−()2,(3,7)R=R =−2.(1);(2);ln(1),[1,1)x −−−2,(1,1)(1)x x −−(3);,;(4),,8.2222(2)x x +−(3232(1)x x −(1,1)−练习135−1.(1),;(2),;0(1)!n nn x n ∞=−∑(,)−∞+∞20(2)!nn x n ∞=∑(,)−∞+∞(3),;(4),;2112112(1)(2)!n n n n x n −∞−+=−∑(,)−∞+∞11n n nx ∞−=∑(1,1)−(5),;(6),11(1)(1)n n n x x n n +∞=+−+∑(1,1)−2210(1)[](2)!(21)!n n nn x x n n +∞=−++∑;(,)−∞+∞(7),;(8),.11(1)!n n nx n −∞=+∑(0)x ≠10(1)2n n n n x ∞+=−∑(2,2)−2.,.3.,.11011(1)[4)532nn n n n x ∞++=−−++∑(6,2)−−210(1)421n n n x n π+∞=+−+∑[1,1]−练习136−1.(取麦克劳林展开式的前两项).0.95106cos x 2.(取被积函数的麦克劳林展开式的前三项).0.9461练习137−1..2221414(cos sin )3n x nx nx n n ππ∞==+−∑(02)x π<<2..121(){[1(1)]cos (1)sin }4n n n b a a b a b f x nx nx nn ππ∞+=−−+=+−−+−∑(,)ππ−4.,.11()2sin n f x nx n π∞==−∑(,0,1,2,)x k k π≠=±±L5.,;21122()(cos sin 22n n n f x nx n n n πππ∞==−+∑(0,2x x ππ<≤≠,.2213222()(sin cos )cos 822n n n f x nx n n n πππππ∞==+−++∑(0,)2x x ππ<≤≠6.,.7.提示:将展成余弦级数.318()sin(21)(21)n f x n x n π∞==−−∑[0,]πsin x 8.,.9.,.22174cos(21)2(21)n n x n ππ∞=−−−∑[1,1]−214()()sin sin 24n n n x f x n πππ∞==∑[0,4]。
合肥工业大学第二学期《高等数学》试卷A试题
一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( )2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰ (B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰ (D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())(x xLy ye f x dx e f x ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。
高数下课本详解答案(合工大版)
习题8-11.自点(),,P a b c 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解在,,xoy yoz zox 坐标面上的垂足坐标分别为(),,0a b 、()0,,b c 、(),0,a c ,在x 轴、y 轴、z 轴上垂足的坐标分别为(),0,0a 、()0,,0b 、()0,0,c .2.已知三角形个的三个顶点的坐标分别为()4,1,9A 、()10,1,6B -、()2,4,3C ,求该三角形的三边长度,此三角形由何特点?解7AB ==,7AC ==,BC =由于AB AC =,且222AB ACBC +=,故此三角形为等腰直角三角形.3.在z 轴上求与点()4,1,7P -和点()3,5,2Q -等距离的点的坐标.解设z 轴上的点为()0,0,M z,则MP MQ=即=,解得149z =,故点为140,0,9M ⎛⎫ ⎪⎝⎭.4.求到两定点()1,2,1A -和()2,1,2B -等距离的点(),,M x y z 的轨迹.解由于MA MB =,从而有=解得26630x y z +--=.5.设平行四边形的两条对角线向量为a 和b,求其四条边向量.解如意8-1所示,由向量加减法的平行四边形法则有,,c d a c d b ⎧+=⎪⎨-=⎪⎩ 故2a b c += ,2a b d -=,即平行四边形的四条边向量为2a b + 、2a b + 、2a b - 、2a b- .(图8-1)(图8-2)6.设A 、B 、C 、D 是一个四面体的顶点,M 、N 分别是边AB 、CD 的中点,证明:()12MN AD BC =+.证如图8-2所示,AD DN AN +=,BC CN BN += ,AN AM MN -= ,BN BM MN -= ,又DN CN =- ,AM BM =- ,于是22AN BN AD BC MN ++==.7.已知两点()A 和()3,0,2B ,计算向量AB 的模、方向余弦、方向角及与AB平行的单位向量.解由于{}1,AB =-,则有2AB = ,1cos 2α=-,cos 2β-,1cos 2γ=-,方向角为23πα=,34πβ=,3πγ=,与AB 平行的单位向量为121,,222⎧⎫⎪⎪±--⎨⎬⎪⎪⎩⎭.8.设358a i j k =++,27b i j k =--,求向量23c a b =+在x 轴上的投影及在z 轴上的分向量.解23945c a b i j k =+=+-,故c 在x 轴上的投影为9,在z 轴上的分向量为5k - .9.一向量的终点在点()2,1,7B -,它在x 轴、y 轴及z 轴上的投影依次为4,4-和7,求这向量的起点A 的坐标.解设起点(),,A x y z ,由{}{}2,1,74,4,7AB x y z =----=-解得()2,3,0A -.10.设{}3,5,1a =- ,{}2,2,3b = ,{}4,1,3c =-- ,求与a b c +-平行的单位向量.解{}1,8,5a b c +-=,故与a b c +-平行的单位向量为±.11.设5AB a b =+ ,618BC a b =-+ ,()8CD a b =-,试证A 、B 、D 三点共线.证因为()()6188210BD BC CD a b a b a b=+=-++-=+()252a b AB=+=所以AB平行BD ,即A 、B 、D 三点共线.12.已知向量AB 的模为10,与x 轴正向夹角为4π,与y 轴正向夹角为3π,求向量AB .解设向量AB的方向余弦为cos α、cos β、cos γ,由于4πα=,3πβ=,222cos cos cos 1αβγ++=,得1cos 2γ=±于是向量{}211cos ,cos ,cos 10,,222AB AB αβγ⎫⎪==±⎨⎬⎪⎪⎩⎭.习题8-21.设4a i j k =+-,22b i j k =-+ ,求(1)()()22a b a b +⋅-;(2)()()22a b a b +⨯- ;(3)a 与b 夹角.解(1)a =,3b =,4a b ⋅=-()()222223230a b a b a a b b +⋅-=-⋅-=;(2)114794221i j k a b i j k⨯=-=----()()225354520a b a b a b i j k +⨯-=-⨯=++;(3)设a 与b夹角为θ,则cos9a ba bθ⋅===-arccos9θ⎛⎫=-⎪⎪⎝⎭.2.已知向量a 和b相互垂直,且1a=,b=,求(1)()()a b a b+⋅-;(2)()()a b a b+⨯-;(3)()a b+与()a b-夹角.解(1)()()22222a b a b a b a a b b a b+⋅-=+⋅-⋅-=-=-;(2)()()2a b a b a a b a a b b b a b+⨯-=⨯+⨯-⨯+⨯=-⨯=(3)()a b+与()a b-夹角为θ,则()()()()21cos42a b a ba b a bθ+⋅--===-+-,故23πθ=.3.已知13a=,19b=,24a b+=,求a b-.解()()2222a b a b a b a a b b+=+⋅+=+⋅+()()2222a b a b a b a a b b-=-⋅-=-⋅+两式相加,得()22222a b a b a b-=+-+()2222131924484=+-=,22a b-=.4.已知()1,1,2A-、()5,6,2B-、()1,3,1C-,求:(1)同时与AB及AC垂直的单位向量;(2)三角形ABC的面积ABCS∆;(3)B点到边AC的距离d.解(1){}4,5,0AB=-,{}0,4,3AC=-,450151216043i j kAB AC i j k⨯=-=++-故同时与AB 及AC 垂直的单位向量为{}115,12,1625AB AC AB AC⨯±=±⨯;(2)12522ABC S AB AC ∆=⨯=;(3)由于1122ABC S AB AC AC d ∆=⨯=⋅,且5AC = ,则5d =.5.设平行四边形的对角线2c a b =+ ,34d a b =- ,其中1a =,2b = ,且a b ⊥ ,求平行四边形的面积.解设平行四边形的两邻边分别为m 、n,则c m n =+ ,d m n =-,从而()()1142222m c d a b a b =+=-=-,()()1126322n c d a b a b =-=-+=-+ ,55sin 102S m n a b a b π=⨯=⨯== .6.已知向量a 、b 、c两两垂直,且1a = ,2b = ,3c = ,求向量s a b c =++ 的长度,以及s 分别与a 、b 、c的夹角.解()()222214s a b c a b c a b c =++⋅++=++=,于是s =cos ,s a s a s a⎛⎫⋅===⎪⎝⎭cos ,s b s b s b ⎛⎫⋅== ⎪ ⎪⎝⎭cos ,s c s c s c ⎛⎫⋅== ⎪⎝⎭所以,s a arc ⎛⎫= ⎪⎝⎭,s b arc ⎛⎫= ⎪ ⎪⎝⎭,,s c arc ⎛⎫= ⎪⎝⎭7.试用向量证明直径上的圆周角是直角.证取圆心为原点建立坐标系如图8-3所示,则圆周方程为222x y R +=,在圆周上任取一点(),A x y ,直径BC ,(),0B R -,(),0C R ,().AB R x y =--- ,().AC R x y =--则()()22220AB AC R x R x y R x y ⋅=---+=-++=故AB AC ⊥,即直径BC 所对应的圆周角为直角,由圆周关于任意一条直径都对称的性质知,直径所对应的圆周角是直角.(图8-3)8.判断下列两组向量a 、b 、c是否共面:(1){}2,1,3a =- ,{}1,0,5b =- ,{}1,1,4c =-;(2){}4,2,1a =- ,{}2,6,3b =- ,{}1,4,1c =-.解(1)21310540114abc -⎡⎤=-=≠⎣⎦- ,故a 、b 、c 不共面;(2)4212630141abc -⎡⎤=-=⎣⎦-,故a 、b 、c共面.9.计算顶点()2,1,1A -、()5,5,4B 、()3,2,1C -、()4,1,3D 的四面体的体积.解{}3,6,3AB = ,{}1,3,1AC =- ,{}2,2,2AD =,则四面体的体积为36311132366222V ABAC AD ⎡⎤==-=⎣⎦ .10.如果存在向量c同时满足11a c b ⨯= ,22a c b ⨯= ,证明:12210a b a b ⋅+⋅= .证由于()()12211221a b a b a a c a a c ⋅+⋅=⋅⨯+⋅⨯ ()()2112a c a a c a =⨯⋅+⨯⋅ [][]2112a ca a ca =+ [][]21210a ca a ca =-=习题8-3.1.求出满足下列条件的各平面方程:(1)过点()2,1,1-且与平面32120x y z -+-=平行;(2)过三点()1,1,1-、()2,2,2--、()1,1,2-;(3)过点()2,1,2,且分别垂直于平面32x y z ++=和平面3241x y z +-=;(4)平行x 轴且过两点()1,0,1和()1,1,0;(5)通过z 轴和点()3,1,2-.解(1)设所求平面的法向量n ,可取平面的法向量为{}3,2,1n =-故过点()2,1,1-平面方程为()()()322110x y z ---++=,即3230x y z -+-=;(2)由三点式平面方程知,所求平面方程为1113330023x y z --+--=-即320x y z --=;(3)设所求平面的法向量n ,{}11,3,1n = ,{}23,2,4n =-{}1213114,7,7324i j kn n n =⨯==---,则所求平面方程为()()()14271720x y z --+---=,即250x y z -+-=;(4)设平面的一般式方程为0Ax By Cz D +++=,由于平面平行x 轴,且点()1,0,1、()1,1,0在平面上,从而有000A A C D A B D =⎧⎪++=⎨⎪++=⎩解得0A =,B D =-,C D =-,且0D ≠,故平面方程为10y z +-=;(5)设过z 轴的平面为0Ax By +=,且点()3,1,2-在平面上,则由30A B -=,得3B A =,且0A ≠所以平面方程为30x y +=.2.求平面2260x y z -++=与各坐标面的夹角的余弦.解平面的法向量{}2,2,1n =- ,取xoy 坐标面的法向量{}10,0,1n =,yoz 坐标面的法向量{}21,0,0n = ,zox 坐标面的法向量{}30,1,0n =,则平面与xoy 、yoz 、zox 各坐标面的夹角余弦分别为1cos 3α=,2cos 3β=,22cos 33γ-==.3.求过点()0,1,0-和()0,0,1,且与xoy 坐标面成3π角的平面.解设平面的一般式方程为0Ax By Cz D +++=,从而有0,0,cos ,3B D C D π⎧⎪-+=⎪⎪+=⎨⎪⎪=⎪⎩得,A B D C D ⎧=⎪=⎨⎪=-⎩于是,所求平面方程为10y z +-+=.4.在z 轴上求一点P ,使它到点()1,2,0M -与到平面:32690x y z π-+-=有相等的距离.解设z 轴上点()0,0,P z,则PM =又()1,2,0M -到:3269x y z π-+-=的距离为697z d -=则有697z -=,即2131081640z z ++=,解得2z =-或8213z =-,故所求点为()0,0,2-或820,0,13⎛⎫-⎪⎝⎭.5.试求平面270x y z -+-=与平面2110x y z ++-=的夹角平分面的方程.解设(),,M x y z 为该平面上任取的一点,那么M到两平面的距离相等,即有于是有()27211x y z x y z -+-=±++-故所求平面方程为240x y z --+=或60x z +-=.6.设从原点到平面1x y za b c++=的距离为ρ,试证明:22221111a b c ρ++=,并由此求点(),,a b c 到该平面的距离.证由点到平面的距离公式知ρ=1ρ=,即22221111a b c ρ++=.点(),,a b c到平面的距离2d ρ=.7.判别平面:3210x y z π+-+=与下列各平面之间的位置关系:(1)1:3210x y z π+--=;(2)2:520x y z π-++=;(3)3:2310x y z π-+-=.解(1)取平面π法向量{}1,3,2n =- ,1π法向量{}11,3,2n =-,由于n与1n 的坐标成比例,故n 与1n平行,且d ==;(2)取平面2π法向量{}25,1,1n =-,由于20n n ⋅= ,故2n n ⊥,即两平面相互垂直;(3)取平面3π法向量{}32,3,1n =-,两平面夹角余弦339cos 14n n n n θ⋅==所以两平面斜交,夹角9arccos14θ=.习题8-4.1.求满足下列条件的各直线方程:(1)过两点()13,2,1M -和()21,0,2M -;(2)过点()4,2,1-且平行于直线230,510,x y y z --=⎧⎨--=⎩平行;(3)过点()1,2,2-且垂直于平面3210x y z +-+=.解(1)直线的方向向量可取{}124,2,1s M M ==-于是直线方程为321421x y z -+-==-,(2)直线的方向向量可取{}1202,1,5051i j k s =-=-则直线方程为421215x y z -+-==;(3)平面法向量{}3,2,1n =- ,直线的方向向量可取{}3,2,1sn ==-于是直线方程为122321x y z -+-==-.2.用对称式方程和参数方程表示下列直线10,2340.x y z x y z +++=⎧⎨-++=⎩解直线的方向向量{}1114,1,3213ij k s ==---,可在直线上取一点()1,0,2A -,则直线的对称式方程和参数方程分别为12413x y z -+==--,14,4,2 3.x t y z t =+⎧⎪=-⎨⎪=--⎩3.求过点()0,1,2M 且与直线11112x y z --==-垂直相交的直线方程.解过点()0,1,2M 且垂直直线L 的平面方程为()()()01220x y z ---+-=即230x y z -+-=解方程组230,11,112x y z x y z -+-=⎧⎪⎨--==⎪⎩-,得直线与平面的交点为131,,122M ⎛⎫⎪⎝⎭由此可得121,,122s MM ⎧⎫==--⎨⎬⎩⎭,故所求直线方程为12312x y z --==--.4.求直线240,3290.x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解设过直线240,3290.x y z x y z -+=⎧⎨---=⎩的平面束方程为()()243290x y z x y z λ-++---=,(λ为非零常数)即()()()2341290x y z λλλλ+-++--=,上述平面法向量为{}23,4,12n λλλ=+--- ,已知平面法向量为{}14,1,1n =-选择λ使1n n ⊥,即()()()()234411210λλλ+⋅-+⋅-+-⋅=,解得1311λ=-故得与已知平面垂直的平面为1731371170x y z +--=则所求投影直线为1731371170,4 1.x y z x y z +--=⎧⎨-+=⎩5.求过点()3,1,2M -且通过直线43521x y z-+==的平面方程.解()4,3,0P -为直线上的一点,直线的方向向量为{}5,2,1s =,则平面的法向量{}1428,9,22521i j kn MP s =⨯=-=- 故所求平面方程为()()()83912220x y z --+-++=即8922590x y z ---=.6.已知平面220x y z +--=及平面外一点()2,1,4M -,求点M 关于已知平面的对称点N .解过点()2,1,4M -且垂直于平面220x y z +--=的直线方程为214121x y z +--==-设M 关于已知平面的对称点(),,N x y z ,则有214,121x y z +--⎧==⎪-⎪=解得0,5,2,x y z =⎧⎪=⎨⎪=⎩即对称点()0,5,2N .7.设0M 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为0d ⨯=MM s s.证设向量0MM 与直线L 的方向向量s 的夹角为θ,则00000sin MM s MM s MM MM MM ssd θ⨯⨯==⋅=.8.求点()03,1,2M -到直线10,240,x y z x y z +-+=⎧⎨-+-=⎩的距离.解直线的方向向量{}1110,3,3211=-=---ij ks ,在直线上取一点()1,2,0M -,则{}02,1,2=---MM ,{}02123,6,6033⨯=---=----i j kMM s 所以0322d ⨯===MM s s.习题8-51.指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形:(1)1x y +=;(2)22y x =;(3)222x y R +=;(4)22149x y -=.解(1)在平面解析几何表示直线,空间解析几何中表示平面;(2)在平面解析几何表示抛物线,空间解析几何中表示抛物柱面;(3)在平面解析几何表示圆,空间解析几何中表示圆柱面;(4)在平面解析几何表示双曲线,空间解析几何中表示双曲柱面.2.说明下列旋转曲面是怎样形成的:(1)2221x y z --=;(2)()222z a x y -=+.解(1)将xoy 平面上双曲线221x y -=绕x 轴旋转一周;(2)将yoz 平面上直线z y a =+绕z 轴旋转一周.3.根据常数k 的不同取值,分别讨论下列方程所表示的曲面是什么曲面.(1)22x ky z +=;(2)222x y z k +-=.解(1)当0k >时,为椭圆抛物面,特别地当1k =时为旋转抛物面,当0k =时,为抛物柱面,当0k <时,为双曲面;(2)当0k >时,为旋转单叶双曲面,当0k =时,为圆锥面,当0k <时,为旋转双叶双曲面.4.作出下列曲面所围成的图形:(1)22,1z x y z =+=;(2)z =,z ;(3)0x =,0y =,0z =,1x y +=,226x y z +=-;(4)2y x =,1x y z ++=,0z =.解(1)见图8-4;(2)见图8-5(图8-4)(图8-5)(3)见图8-6;(4)见图8-7(图8-6)(图8-7)习题8-61.将空间曲线222,:1,z x y x z ⎧=+Γ⎨+=⎩转换成母线平行于坐标轴的柱面的交线方程.解曲线Γ等价于212,1,y x x z ⎧=-⎨+=⎩,表示母线平行于z 轴的柱面212y x =-与母线平行于y 轴的柱面1x z +=的交线,或等价于221,1,y z x z ⎧=-⎨+=⎩,表示母线平行于x 轴的柱面221y z =-与母线平行于y 轴的柱面1x z +=的交线.2.将下列曲线的一般方程转化为参数式方程:(1)()22221,11,z x y x y ⎧=--⎪⎨-+=⎪⎩(2)2229,,x y z y x ⎧++=⎨=⎩.解(1)曲线的参数方程为1cos ,sin ,2sin ,2x t y t t z ⎧⎪=+⎪=⎨⎪⎪=⎩(02t π≤≤);(2)曲线的参数方程为,,3sin ,2x t y t t z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(02t π≤≤).3.试分别确定常数,,B C D 的各组值,使得平面0By Cz D ++=与圆锥面222z x y =+的截痕为:(1)一点;(2)一条直线;(3)两条相交直线(4)圆;(5)双曲线.解(1)取0B D ==,1C =,则平面0z =与圆锥面的截痕为一点()0,0,0;(2)取1B C ==,0D =,则平面0y z +=与圆锥面的截痕为一条直线0,0;y z x +=⎧⎨=⎩(3)取1B =,0C D ==,则平面0y =与圆锥面的截痕为为两条直线0,,y z x =⎧⎨=⎩和0,;y z x =⎧⎨=-⎩(4)取0B =,1C =,1D =-,则平面1z =与圆锥面的截痕为圆221,1;x y z ⎧+=⎨=⎩(5)取1B =,0C =,1D =-,则平面1y =与圆锥面的截痕为为双曲线221,1;z x y ⎧-=⎨=⎩4.求下列曲线在三个坐标面上的投影曲线方程:(1)22,1;z x y z x ⎧=+⎨=+⎩(2)cos ,sin ,2.x y z θθθ=⎧⎪=⎨⎪=⎩解(1)消去z 得曲线在xoy 面投影曲线方程:2210,0;y y x z ⎧+--=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:22310,0;y z z x ⎧+-+=⎨=⎩消去y 得曲线在zox 面投影曲线方程:1,0;x z y +=⎧⎨=⎩(2)消去z 得曲线在xoy 面投影曲线方程:221,0;x y z ⎧+=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:sin20;z y x ⎧=⎪⎨⎪=⎩消去y 得曲线在zox 面投影曲线方程:cos ,20.z x y ⎧=⎪⎨⎪=⎩5.求由旋转抛物面22z x y =+与222z x y =--围成的立体在三个坐标面上的投影区域.解立体在xoy 面投影区域(){}22,1xy D x y xy =+≤,立体在yoz 面投影区域(){}22,2,11yz D y z yz y y =≤≤--≤≤,立体在zox 面投影区域(){}22,2,11zx D x z xz x x =≤≤--≤≤总复习题八1.填空题(1)设()2a b c ⨯⋅= ,则()()()a b b c c a ⎡⎤+⨯+⋅+=⎣⎦;(2)设{}2,1,2a = ,{}4,1,10b =- ,c b a λ=- ,且a c ⊥,则λ=;(3)yoz 平面的圆()222,0,y b z a x ⎧-+=⎪⎨=⎪⎩(0b a >>)绕z 轴旋转一周所得环面的方程为;(4)点()2,1,0M 到平面3450x y z ++=的距离d=;(5)设有直线1158:121x y z L --+==-与26,:23,x y L y z -=⎧⎨+=⎩则1L 与2L 的夹角为.(1)答案“4”.解()()()()24a b b c c a a b c ⎡⎤+⨯+⋅+=⨯⋅=⎣⎦;(2)答案“3”.解{}42,1,102c b a λλλλ=-=---- ,由a c ⊥ ,()()()2421121020λλλ⋅-+⋅--+⋅-=,解得3λ=;(3)答案“()()2222222224x y z b a b x y +++-=+”.解绕z轴旋转环面的方程为()222b z a -+=,即222222x y b z a +±++=所以()()2222222224x y z b a b x y +++-=+(4)答案解d ;(5)答案“3π”.解1L 和2L 的方向向量分别为{}11,2,1s =-和{}21,1,2s =-- 则12121cos 2s s s s θ⋅== ,3πθ=.2.选择题(1)直线11:213x y z L +-==-与平面:1x y z π--=的关系为();(A )L 在π上(B )L 平行π但L 不在π上(C )L π⊥(D )一般斜交(2)两条直线111:201x y z L --==-与22:112x y z L +==的关系为();(A )平行(B )相交但不垂直(C )垂直相交(D )异面直线(3)直线方程23,1,x y z x y z --=⎧⎨+-=⎩可化为();(A )21213x y z -+==-(B )114213x y z +++==-(C )12213x y z ++==(D )122213x y z -+-==-(4)旋转曲面22z x y =+不是由平面曲线()旋转而成的.(A )2,0,z y x ⎧=⎨=⎩绕z 轴(B )2,0,z x y ⎧=⎨=⎩绕z 轴(C )2,,z xy x y =⎧⎨=⎩绕z 轴(D ),,z xy x y =⎧⎨=⎩绕z 轴.(1)答案选(B ).解直线L 的方向向量{}2,1,3s =-,()1,0,1M -为直线L 上一点,平面π的法向量为{}1,1,1n =--,显然0s n ⋅=,且点()1,0,1M -不在平面π上,故L 平行π但L 不在π上;(2)答案“C ”.解1L 、2L 的方向向量分别为{}12,0,1s =- 、{}21,1,2s = ,则120s s ⋅=,直线1L 与2L 垂直,又()11,1,0M 、()20,0,2M -分别为1L 、2L 上的点,且12122011120112s s M M -⎡⎤==⎣⎦---,即1L 、2L 在同一平面上;(3)答案选(C ).解直线的方向向量{}2112,1,3111i j k s =--=-,()0,1,2--为直线上一点,故选(C );(4)答案选(D ).解在曲线,:,z xy L x y =⎧⎨=⎩上任取一点()0000,,M x y z ,设(),,M x y z 是0M 绕z 轴旋转轨迹上任一点,则有20000,z z x y x ⎧===⎪==故得旋转曲面方程为()2212z x y =+.3.已知2c a b =+ ,d a b λ=+ ,2a = ,1b = ,且a b ⊥,求:(1)λ为何值时,c d ⊥;(2)λ为何值时,以,c d为邻边所围成的平行四边形的面积为6.解(1)由于c d ⊥ ,则0c d ⋅=,即()()22220a b a b a b λλ+⋅+=+= 解得2λ=-;(2)由题设条件知6c d ⨯=而()()()22c d a b a b a bλλ⨯=+⨯+=-⨯则有()22sin 222c d a b a b πλλλ⨯=-⨯=-=- 所以226λ-=,5λ=或1λ=-.4.设一平面通过从点()1,1,1-到直线10,0,y z x -+=⎧⎨=⎩的垂线,且与平面0z =垂直,求此平面方程.解过点()1,1,1M -且与直线10,:0,y z L x -+=⎧⎨=⎩垂直的平面1π的方程为()()()0111110x y z ⋅-+⋅++⋅-=,即y z +=解方程组10,0,0,y z x y z -+=⎧⎪=⎨⎪+=⎩得直线L 与平面1π的交点1110,,22M ⎛⎫ ⎪⎝⎭,平面0z =的法向量{}10,0,1n = ,则所求平面的法向量可取为111001,1,0211122ij kn n M M ⎧⎫=⨯==⎨⎬⎩⎭-所以所求平面方程为()()11102x y -++=,即210x y ++=.5.求通过直线3220,260,x y x y z -+=⎧⎨--+=⎩且与点()1,2,1的距离为1的平面方程.解设过直线3220,260,x y x y z -+=⎧⎨--+=⎩的平面束方程为()()322260x y x y z λ-++--+=(λ为非零常数)即()()321260x y z λλλλ+-+-++=,由点()1,2,1到平面的距离为1,即1d =解得2λ=-或3λ=-,所以所求平面方程为22100x y z ++-=或43160y z +-=.6.在xoy 面上求过原点,且与直线x y z ==的夹角为3π的直线方程.解设所求直线L 方程为,0,y Ax z =⎧⎨=⎩即10x y zA ==,直线L 的方向向量{}1,,0s A= 由题意知1cos32π==,得4A =-于是,所求直线方程为(40,0,xy z ⎧+=⎪⎨=⎪⎩或(40,0.x y z ⎧+=⎪⎨=⎪⎩7.求通过点()1,2,3--,平行于平面62350x y z --+=,且又与直线13x -=1325y z +-=-相交的直线方程.解过点()1,2,3M--作已知平面的平行平面,此平面方程为()()()6122330x y z +---+=即62310x y z --+=求此平面与已知直线的交点,由62310,113,325x y z x y z t --+=⎧⎪-+-⎨===⎪-⎩解得0t =,交点为()01,1,3M -,故所求直线的法向量为{}02,3,6s MM ==-所求直线方程为123236x y z +-+==-.8.确定常数k 的值,使得平面y kz =与椭球面222241xy z ++=的交线为圆.解平面与椭球面的交线222241,:,x y z y kz ⎧++=Γ⎨=⎩等价于方程组()22222241,:,x y k z y kz ⎧++-=⎪Γ⎨=⎪⎩要使交线为圆,只须242k-=,即k =,交线为2221,2.x y z y ⎧++=⎪⎨⎪=⎩9.求曲面2221x y z ++=和()()222111x y z -+-+=的交线在yoz 平面上的投影曲线方程.解由题设两曲面的方程消去x ,得交线在yoz 平面上的投影柱面方程22220y y z -+=所求投影曲线方程为22220,0.y y z x ⎧-+=⎨=⎩10.求两曲面22z x =与z =所围立体在三个坐标面上的投影区域.解两曲面的交线在xoy 面上的投影柱面为()2211x y -+=,则投影区域为()(){}22,11xy D x y x y =-+≤,两曲面的交线在yoz 面上的投影柱面为222112z y ⎛⎫-+=⎪⎝⎭,则投影区域为()222,112yz z D y z y ⎧⎫⎛⎫⎪⎪=-+≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,两曲面的交线在zox 面上的投影柱面为z 和z x =,则投影区域为(){,zx D x z x z =≤≤.11.画出下列曲面所围立体的图形:(1)22z xy =+,1x =,1y =,0z =;(2)z xy =,0z =,1x y +=;(3)22z xy =+,2y x =,1y =,0z =;(4)2y x =,212y x =,1x z +=,0z =.解(1)见图8-8;(2)见图8-9;(图8-8)(图8-9)(3)见图8-10;(4)见图8-11.(图8-10)(图8-11)习题9-11指出下列平面点集中,那些是开集、闭集、有界集、连通集、开区域以及闭区域?并分别求其聚点和边界点:(1)22{(,)|0<1}x y x +y <;(2){(,)|}x y y x >;(3){(,)|2,2,2}x y x y x y ≤≤+≥;(4)2222{(,)|1}{(,)|(1)1}x y x y x y x y +>⋂+-≤.解(1)为有界开区域;聚点为集合22{(,)|1}x y x +y ≤,边界点为集合22{(,)|=1}{(0,0)}x y x +y ⋃;(2)为无界的开区域;聚点为集合{(,)|}x y y x ≥,边界点为集合{(,)|,}x y y x x =-∞<<+∞;(3)为有界闭区域;聚点集合为该区域上所有点,边界点集合为三个直线段{(,)|2,02}x y x y =≤≤与{(,)|2,02}x y y x =≤≤及{(,)|2,02}x y x y x +=≤≤的并集;(4)为有界连通集合;聚点为2222{(,)|1}{(,)|(1)1}x y x y x y x y +≥⋂+-≤,边界点为圆弧221{(,)|1,2x y x y y +=≥及圆弧221{(,)|(1)1,}2x y x y y +-=≥的并集.2.证明:点0P 为点集E 的聚点的充分必要条件是点0P 的任意邻域内都至少含有一个点集E 中异于0P 的点.证明:“⇒”由聚点的定义即可得;“⇐”取101(,){|01}U P P P P δδ=<<=(其中0P P 表示点0P 与点P 的距离),则111(,)P U P E δ∃∈⋂,记20112P P δ=,则202(,)P U P E δ∃∈⋂ ,依此类推,由数学归纳法可知对于每个正整数n ,均可取到点01101111(,),22n n n n n P U P E P P δδ----∈⋂=≤ ,由此可得一个两两均不相同的点列{}n P ,若0δ>,因lim 0n n δ→∞=,则k δ∃使得k δδ<,那么当n k ≥时必有0(,)n P U P δ∈,即在0(,)U P δ中比含有集合E 的无穷多个点,因此点0P 为点集E 的聚点.3.求下列各函数值:(1)设22(,)2x y f x y xy-=,求(,1)x f y ;(2)设22(,)y xf x y x y xye =+-,求(,)f tx ty ;(3)设(,)3f x y x y =+,求(,(,))f x f x y ;(4)设(,,)v u v f u v w u w +=+,求(,,)f x y x y xy +-;(5)设22(,)y f x y x y x+=-,求(,)f x y .解(1)2221(,1)(,)22x y x x y f f x y x y xy y⎛⎫- ⎪-⎝⎭===;(2)222222(,)(,)yxf tx ty t x t y t xye t f x y =+-=;(3)(,(,))3(3)49f x f x y x x y x y =++=+;(4)2(,,)()()x y x f x y x y xy x y xy -+-=++;(5)设,,,11y u uv u x y v x y x v v =+===++,222(1)(,)111u uv u v f u v v v v -⎛⎫⎛⎫=-=⎪ ⎪+++⎝⎭⎝⎭,2(1)(,)1x y f x y y-=+.4.设1)z f =+-,若当1y =时,z x =,求函数()f u 及(,)z z x y =的表达式.解由题设有11),1)1x f f x =+=-,令1u =,则2(1)x u =+,所以有2()2f u u u =+,相应的有(,)1z z x y x ==-.5.求下列函数的定义域:(1)(,)f x y =;(2)(,)ln()f x y y x =-+;(3)22221(,)arcsin 4x y f x y x y+=+-;(4)(,,)f x y z =解(1){(,)|}D x y y x y =-<<;(2)22{(,)|0,,1}D x y x y x x y =≥>+<;(3)22{(,)|4,}D x y x y y x =+≤≠;(4)222{(,,)|1,D x y z x y z z =++<>.习题9-21.证明:2222001lim()sin0x y x y x y →→+=+.证明0ε∀>,因为2222221()sinx y x y x y+≤++,取δ=当0δ<<时,则有2222221()sin 0x y x y x y ε+-≤+<+,因此有2222001lim()sin 0x y x y x y →→+=+.2.求下列极限:(1)201ln()lim 2x x y e y x y →→++;(2)220x y →→(3)100lim(1sin )xyx y xy →→-;(4)22()lim ()x y x y x y e-+→+∞→+∞+解(1)原式0ln(1)ln 21e +==;(2)原式220220lim 21()2x y x y x y →→+==--+;(3)原式sin 11sin 00lim (1sin )xyxyxyx y xy e ---→→⎡⎤=-=⎢⎥⎢⎥⎣⎦;(4)原式222()()lim (2),lim lim 0,lim lim 0u x y x y x y x y u x y x x x x y y y x y x y x y u x ye e e e e e e =+++→+∞→+∞→+∞→+∞→+∞→+∞→+∞++=-⋅======,原式0=.3.证明下列极限不存在:(1)22400lim x y xy x y →→+;(2)2222200lim ()x y x y x y x y →→+-.解(1)当取点(,)P x y 沿曲线2:C y kx =趋于点(0,0)O 时则有222422000lim lim 1x x y xy kx k x y x kx k →→→==+++,k 取值不同,则该极限值不同,因此该极限不存在;(2)当取点(,)P x y 沿直线y x =趋于点(0,0)O 时则有2222200lim 1()x y x y x y x y →→=+-,而当取点(,)P x y 沿直线0y =趋于点(0,0)O 时则有2222200lim 0()x y x y x y x y →→=+-,因沿不同方向取极限,则该极限值不同,故该极限不存在.4.讨论下列函数的连续性:(1)22(,)y xf x y y x+=-;(2)22,(,)(0,0),(,)0,(,)(0,0);xyx y x yf x y x y ⎧≠⎪+=⎨⎪≠⎩(3),)(0,0),(,)0,(,)(0,0);x y f x y x y ≠=≠⎩(4)(,,)f x y z =.解(1)函数的定义域为2{(,)|}D x y y x =≠,它在D 内处处连续,抛物线2:C y x =上的点均为它的间断点;(2)函数在全平面内处处有定义,它在区域{(,)|(,)(0,0)}D x y x y =≠内处处连续,由于00lim (,)x y f x y →→不存在,故(0,0)O 是它的间断点;(3)当(,)(0,0)x y ≠时,函数显然是连续的,又00lim0(0,0)x y f →→==,所以它在(0,0)O 处也连续,因此该函数在全平面内处处连续;(4)函数(,,)f x y z 的定义域为222{(,,)|14}x y z x y z Ω=<++<,在定义域内(,,)f x y z处处连续,在球面2221x y z ++=及2224x y z ++=上函数间断.5.设二元函数(,)f x y 在有界闭区域E 上连续,点(,),1,2,,i i x y E i n ∈=⋅⋅⋅,证明至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.证明令112211(,)min{(,)},(,)max{(,)}i i i i i i i i i ni nm f x y f x y M f x y f x y ≤≤≤≤====,则有(,),1,2,,i i m f x y M i n≤≤=⋅⋅⋅,由此可得1(,)ni i i mn f x y Mn=≤≤∑,即1(,)niii f x y m M n=≤≤∑.(1)若m M =,则1122(,)(,)(,)n n f x y f x y f x y ==⋅⋅⋅=,取11(,)(,)x y ξη=即可;(2)若m M <,则有1(,)niii f x y m M n=<<∑,由连续函数介值定理知至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.习题9-31.求下列函数的一阶偏导数:(1)2tan()cos ()z x y xy =++;(2)arctanx yz x y+=-;(3)ln(z x =+;(4)(1)yz xy =+.解(1)22sec ()2cos()sin()sec ()sin(2)zx y y xy xy x y y xy x∂=+-=+-∂,由对称性可知2sec ()sin(2)zx y x xy y ∂=+-∂;(2)22222212,()1zy y z xxx y x y y x yx y x y ∂--∂=⋅==∂-+∂+⎛⎫++ ⎪-⎝⎭;(3)z z xy ∂∂==∂∂;(4)21(1),(1)[ln(1)]1y y z z xyy xy xy xy x y xy-∂∂=+=+++∂∂+.2.求下列函数在指定点的偏导数:(1)(,)sin(2)xf x y ex y -=+,求(0,)4x f π'及(0,)4y f π';(2)22(,)(2)arccos f x y x y x =++-,求(2,)y f y '.解(1)(0,)4(0,)[(cos(2)sin(2)]1,(0,)044x x y f e x y x y f πππ-''=+-+=-=;(2)()2(2,)42y f y yy ''=+=.3.求下列函数的二阶偏导数:(1)2cos ()z ax by =+;(2)z =;(3)arctan 1x yz xy+=-;(4)z yu x =,求2ux z ∂∂∂及22u y ∂∂.解(1)2cos()sin()sin 2(),sin 2()z za ax by ax by a ax byb ax by x y∂∂=-++=-+=-+∂∂,22222222cos 2(),2cos(),2cos 2()z z z a ax by ab ax by b ax by x x y y ∂∂∂=-+=-+=-+∂∂∂∂.(2)2222222222222222,,,()()z x z y z y x z xy x x y x x y x x y x y x y ∂∂∂-∂-====∂+∂+∂+∂∂+,2222222()z x y y x y ∂-=∂+;(3)22211()1(1)111z xy y x y xxy x x y xy ∂-++=⋅=∂-+⎛⎫++ ⎪-⎝⎭,由对称性可知211z y y ∂=∂+,22222222222,0,(1)(1)z x z z yx x x y y y ∂-∂∂-===∂+∂∂∂+;(4)2222112224ln ln 2ln ln ,,,zzzzy y y yu z u y z x u z x u yz x z x x x x x x y x z y y y y y --∂∂+∂∂+===-=∂∂∂∂∂.4.求下列函数的指定高阶偏导数:(1)ln()z x xy =,求32z x y ∂∂∂及32z x y ∂∂∂;(2)u x y z αβγ=,求3ux y z∂∂∂∂.解(1)23232222111ln()1,,0,,z z z z z xy x x x x y x y y x y y∂∂∂∂∂=+====-∂∂∂∂∂∂∂∂;(2)23111111,,u u u x y z x y z x y z x x y x y zαβγαβγαβγααβαβγ------∂∂∂===∂∂∂∂∂∂.5.设322,(,)(0,0),(,)20,(,)(0,0),xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩求(0,0)xyf ''及(0,0)yx f ''.解(,0)(0,0)(0,0)lim0,0x x f x f f y x →-'==≠时,0(,)(0,)1(0,)lim 2x x f x y f y f y y x →-'==,(0,)(0,0)1(0,0)lim 2x x xyy f y f f y →''-''==,0(0,)(0,0)(0,0)lim 0,0y x f y f f x y→-'==≠时,0(,)(,0)(,0)lim 0y y f x y f x f x y →-'==,0(,0)(0,0)(0,0)lim 0y y yx x f x f f x→''-''==.6.已知二元函数(,)z z x y =在区域{(,)|0}D x y x =>内有定义,且满足3,(1,)cos z x y z y y x x∂+==∂,试求(,)z x y .解由3z x yx x∂+=∂可得31(,)ln ()3z x y x y x C y =++,由(1,)cos z y y =可得1()cos 3C y y =-,因而31(,)(1)ln cos 3z x y x y x y =-++.7.分别讨论下列函数在点的连续性和可偏导性:(1)222,(,)(0,0),(,)0,(,)(0,0);xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩(2)(,)f x y =(3)2222,(,)(0,0),(,)1,(,)(0,0).x y x y f x y x yx y ⎧-≠⎪=+⎨⎪=⎩解(1)因为22212xy y x y ≤+,所以22200lim 0x y xy x y →→=+,因此该函数在点(0,0)处连续,又[][]0(0,0)(,0)0,(0,0)(0,)0x y x x f f x f f y ==''''====,因而该函数在(0,0)处存在偏导数;(2)因00(0,0)x y f →→==,因而该函数在点(0,0)处连续,而0(0,0)limx x x f x→'=不存在,同理(0,0)y f '也不存在,因而该函数在(0,0)处不存在偏导数;(3)当取点(,)P x y 沿直线y kx =趋于点(0,0)O 时,则有222222001lim 1x y x y k x y k →→--=++,由于k 取不同值时,上述极限不一样,故222200lim x y x y x y →→-+不存在,因而该函数点(0,0)处不连续,(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)limx y x y f x f f y f f f xy→→--''===∞,故在点(0,0)处偏导数(0,0)x f '存在,而偏导数(0,0)y f '不存在.8.考察函数2244,(,)(0,0),(,)0,(,)(0,0),x y x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩并回答下列问题:(1)(,)f x y 在点(0,0)处是否有二阶偏导数;(2)(,)x f x y '与(,)y f x y '在点(0,0)处是否连续.解(1)2444422(3),(,)(0,0),(,)()0,(,)(0,0),x xy x y x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩2444422(3),(,)(0,0),(,)()0,(,)(0,0),y x y y x x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩0(,0)(0,0)(0,0)lim 0x x xx y f x f f x →''-''==0(0,)(0,0)(0,0)lim 0y yyy f y f f y→''-''==,0(0,)(0,0)(0,0)lim 0x x xyy f y f f y→''-''==.(2)当取点(,)P x y沿直线(y kx k =≠趋于点(0,0)O 时则有2442444242000002(3)2(13)lim (,)lim lim ()(1)x x x x y y xy x y k k f x y x y x k →→→→→--'===∞++,故(,)x f x y '在点(0,0)处不连续,同理可证(,)y f x y '点(0,0)处也不连续.9.设arctan y u z x =,证明2222220u u ux y z∂∂∂++=∂∂∂.证明222221,1uy yz z y xx x y x∂--=⋅⋅=∂++222222()u xyz x x y ∂=∂+,同理有222222()u xyzy x y ∂-=∂+,22arctan ,0u y uz x z∂∂==∂∂,所以有2222222222222200()()u u u xyz xyz x y z x y x y ∂∂∂++=-+=∂∂∂++.10.证明:如果(,)f x y 在区域D 内偏导数(,)x f x y '与(,)y f x y '有界,则函数(,)f x y 在区域D 内连续.证明因为(,)x f x y '与(,)y f x y '在D 内有界,所以0M ∃>,对(,)x y D ∀∈均有(,),(,)x y f x y M f x y M ''≤≤,设000(,)P x y D ∈,则0δ∃>,当ρδ=<时有00(,)x x y y D +∆+∆∈,记100200(,),(,)P x x y P x x y y +∆+∆+∆,则线段01P P 与12PP 必完全属于D 内,由Lagrange 中值定理知0000(,)(,)f x x y y f x y +∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x x y f x x y f x y =+∆+∆-+∆++∆-001020(,)(,)y x f x x y y y f x x y x θθ''=+∆+∆∆++∆∆,0000(,)(,)()f x x y y f x y M x y +∆+∆-≤∆+∆,由夹逼准则可知00000lim[(,)(,)]0x y f x x y y f x y ∆→∆→+∆+∆-=,即函数(,)f x y 在点000(,)P x y 处连续,由点000(,)P x y 的任意性可知,函数(,)f x y 在区域D 内处处连续.习题9-41.求函数22z x xy y =+-在点000(,)P x y 处当自变量,x y 分别取得增量,x y ∆∆时相应的全增量及全微分.解222200000000()()()()()z x x x x y y y y x x y y ∆=+∆++∆+∆-+∆--+2200000000(2)(2),d (2)(2)x y x x y y x x y y y x y x x y y =+∆+-∆+∆+∆∆-∆=+∆+-∆.2.求下列函数的全微分:(1)yz yx =;(2)arctan y z x=;(3)2222x y z x y-=+;(4)u =.解(1)21d d (1ln )d y y z y x x x x y -=++;(2)22d d d y x x yz x y -+=+;(3)2224(d d )d ()xy y x x y z x y -=+;(4)d u =3.试证:(,)f x y =在点(0,0)处连续,偏导数存在,但不可微.证明000(0,0)x y f →→==,因而函数(,)f x y 在点(0,0)处连续,00(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)lim 0x y x y f x f f y f f f x y→→--''====,因而函数(,)f x y 在点(0,0)处偏导数存在,又00limx x y y →→→→''---=不存在,故该函数在点(0,0)处不可微.4.设221sin ,(,)(0,0),(,)0,(,)(0,0).xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩证明:(1)(0,0),(0,0)x y f f ''存在;(2)(,),(,)x y f x y f x y ''在点(0,0)处不连续;(3)(,)f x y 在点(0,0)处可微.解(1)00(,0)(0,0)(0,)(0,0)lim0,(0,0)lim 0y x y f x f f y f f x y→→--'====,因此(0,0)x f ',(0,0)y f '存在;(2)222222220000121lim (,)lim[sin cos ]()x x x y y x y f x y y x y x y x y →→→→'=-+++不存在,因而(,)x f x y '在(0,0)处不连续,又222222220000121lim (,)lim[sin cos ]()y x x y y xy f x y x x y x y x y →→→→'=-+++不存在,因此(,)x f x y '在(0,0)处也不连续;(3)22001sin lim0x x y y xy x y →→→→''---==,因而函数(,)f x y 在点(0,0)处可微.5的近似值.解令22(,)(,)(,)x y f x y f x y f x y ''===,则有(1.02,1.97)(1,2)(1,2)0.02(1,2)(0.03)x y f f f f ''=≈+⨯+⨯-130.022(0.03) 2.952=+⨯+⨯-=.6.设有一无盖的圆柱形容器,容器的壁与底厚均为0.1cm ,内高为20cm ,内半径为4cm ,求容器外壳体积的近似值.解若圆柱体的底半径为r ,高为h ,则体积为2V hr π=,223d 22 3.144200.1 3.1440.155.3cm V V rh r r h ππ∆≈=∆+∆=⨯⨯⨯⨯+⨯⨯=.。
高等数学(经管类)下及课后习题答案
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
高等数学(下)历试题解答
合肥工业大学高等数学<下)试卷参考解答2001-2002学年第二学期一、填空题<每小题3分,满分15分) 1.设12=+z xe z y ,则()0,1dz=2edx dy --.2.空间曲面1532:222=++∑z y x 在点(1,1,2)-处的法线方程为1122412x y z -+-==-. 二、选择题<每小题3分,满分15分) 1.考虑二元函数),(y x f 的下面4条性质: ①),(y x f 在点00(,)x y 处连续,②),(y x f 在点00(,)x y 处的两个偏导数连续, ③),(y x f 在点00(,)x y 处可微,④),(y x f 在点00(,)x y 处的两个偏导数存在. 若用“Q p ⇒”表示可由性质P 推出性质Q , 则有< .A ).A ②⇒③⇒① .B ③⇒②⇒① .C ③⇒④⇒① .D ③⇒①⇒④2.设函数(,)z f x y =在点00(,)x y 处的两个偏导数存在,则),(00y x f x '=0,),(00y x f y '=0是),(y x f 在点00(,)x y 处取得极值的<.B ).A 充分但非必要条件 .B 必要但非充分条件 .C 充分必要条件.D 既不是必要,也不是充分条件4.0)(22='''+''y x y 是<.C )微分方程.A 一阶 .B 二阶 .C 三阶 .D 四阶5.微分方程xe x y y y 2)13(6--=-'-''的特解形式为< .B ).A xeb ax y 2)(*-+=.B xeb ax x y 2)(*-+=.C xe b ax x y 22)(*-+=.D x xe C e C y 3221*+=-三、<8分)设),(22yx y x f z +=,其中f 具有二阶连续偏导数,求2zx y ∂∂∂.解:1212z xf f x y∂''=+∂,2111222122222112[2()][2()]z x xx yf f f f y f x y y y y y ∂'''''''''=+⋅--+⋅+⋅-∂∂21112222232214(2)x x xyf f f f y y y'''''''=+---. 七、<10分)求微分方程0)(22='+''y x y 满足初始条件(0)0,(0)1y y '==-的特解. 解:令y p '=,原方程化为220p xp '+=,即212dp xdx p-=,积分得:21x C p =+, 21p x C=+.又(0)1y '=-,得1C =-. 211y x '=-,12111ln 211x y dx C x x -==++-⎰, 将(0)0y =代入得10C =,所以特解为11ln21x y x -=+. 八<10分)求函数(,,)ln ln 3ln f x y z x y z =++在球面2225x y z ++=(0,0,0)x y z >>>上的最大值.解: 令222(,,)ln ln 3ln (5)F x y z x y z x y z λ=+++++-.由2220,0,0, 5.x y z F F F x y z '=⎧'=⎪⎨'=⎪++=⎩得222120,120,320,5.x x y yz z x y z λλλ⎧+=⎪⎪⎪+=⎨⎪+=⎪⎪++=⎩,解得1,x y z ⎧=⎪⎨⎪=⎩由于问题的解是唯一存在的.所以此驻点就是所求的最大值点.此时最大值为3ln 32.合肥工业大学试卷高等数学<下)参考解答2002-2003学年第 二 学期一、填空题<每小题3分,满分15分)1.设函数ln(32)xyz x y e =-+,则(1,0)dz =3144dx dy -. 5.微分方程0='+''y y x 的通解为12ln y C x C =+.二、选择题<每小题3分,共15分)1.设⎪⎩⎪⎨⎧=+≠++=,0,0,0,,),(222222,y x y x yx xy y x f 则<.C ).A ),(lim 0y x f y x →→存在 .B ),(y x f 在点(0,0)处连续.C )0,0(),0,0(y x f f ''都存在.D ),(y x f 在点(0,0)处可微2.曲线⎩⎨⎧=-+=+-632,922222z y x z e x y 在点(3,0,2)处的切线方程为<.B ).A 32x y z -==-.B 326y x z -==- .C 32214x y z --==-.D {3(2)0x z y -=--=5.设xx x x xe e y e x y xe y +=+==2321,)1(,为某二阶线性非齐次微分方程的三个特解,则该方程的通解为< .D ),其中321,,C C C 为任意常数..A 332211y C y C y C ++ .B 11223C y C y y ++.C x x xxe e eC e C -++2221.D x x x xe e C e C ++221三、设),)((2xy y x f z -=,其中f 具有二阶连续偏导数,求2zx y ∂∂∂.<本题10分)解:122()zx y f yf x∂''=-+∂,212(2())z x y f yf x y y∂∂''=-+∂∂∂ 1111222()[2()]f x y x y f xf '''''=-+---+22122[2()]f y y x f xf '''''++-+ 221111222224()2()f x y f x y f xyf f ''''''''=---+-++. 四<10分)、求函数)1(),(-=y x y x f 在由上半圆周)0(322≥=+y y x 与x 轴所围成的闭区域D 上的最大值和最小值.解:在闭区域D 内,由100x y f y f x ⎧'⎪=-=⎨'==⎪⎩得驻点(0,1),(0,1)0f =. 在D 的边界)0(322≥=+y y x 上, 令22(,,)(1)(3)F x y x y x y λλ=-++-,由22120,20,3.xy F y x F x y x y λλ⎧'=-+=⎪'=+=⎨⎪+=⎩得{x y =0f =. 在D 的边界x轴上,),(),)f=()f =比较以上各函数值,知最大值为()f =最小值为)f =合肥工业大学试卷高等数学<下)参考解答2003-2004学年第 二 学期一、填空题 <每小题3分,满分15分)1.微分方程02)(3=-+xdy dx x y 满足56|1==x y的特解为315y x =+.5.曲面22y x z +=与平面042=-+z y x 平行的切平面方程是245x y z +-=. 二、选择题<每小题3分,满分15分) 1.函数),(y x f 在点),(00y x 处连续是函数),(y x f 在该点处存在偏导数的< .D ).A 充分但非必要条件.B 必要但非充分条件 .C 充分必要条件.D 既不是必要,也不是充分条件2.微分方程xe x y y y 2323-=+'-"的特解形式为< .D ).A ()x ax b e +.B ()xax b xe +.C ()xax b ce ++.D ()x ax b cxe ++4..若),(y x f 函数在),(00y x 的某邻域内具有二阶连续偏导数,且满足2000000[(,)](,)(,)0xy xx yy f x y f x y f x y ->,则),(00y x (.A >.A 必不为),(y x f 的极值点.B 必为),(y x f 的极大值点.C 必为),(y x f 的极小值点.D 可能不是),(y x f 的极值点。
合肥工业大学-高等数学-下-8.6
例4 已知两球面的方程为 (1) x 2 y 2 z 2 1, 2 2 (2) 和 x 2 y 1 z 1 1, 求它们的交线C在xOy面上的投影方程. 解 先求包含交线C而母线平行于z轴的柱面方程. 因此要由 方程(1), (2)消去z, 为此可先从(1)式减去(2)式并化简, 得到 yz 1 再以z=1-y代入方程(1)或(2)即得所求的柱面方程为 x2 2 y2 2 y 0 容易看出, 这就是交线C关于xOy面的投影柱面方程, 于是两球 面的交线在xOy面上的投影方程是
.
x 2 y 2 1, z 0. 这是xOy面上的一个圆, 于是所求立体在xOy面上的投影, 2 2 就是该圆在xOy面上所围的部分: x y 1
这里 b
v
, 而参数为
三、空间曲线在坐标面上的投影
设空间曲线C的一般方程为
F x , y, z 0, G x , y, z 0.
(3)
现在我们来研究由方程组(3)消去变量z后所得的方程
H x, y 0
(4)
由于方程(4)是由方程组(3)消去z后所得的结果, 因此当x,y 和z满足方程组(3)时, 前两个数x,y必定满足方程(4), 这说明 曲线C上的所有点都在由方程(4)所表示的曲面上.
由上节知道, 方程(4)表示一个母线平行于z轴的柱面. 由上面的讨论可知, 这柱面必定包含曲线C. 以曲线C为准线, 母线平行于z轴(即垂直于xOy面)的柱面叫做曲线C关于xOy面 的投影柱面, 投影柱面与xOy面的交线叫做空间曲线C在xOy 面上的投影曲线, 或简称投影. 因此,方程(4)所表示的柱面必定 包含投影柱面, 而方程 H x , y 0, z0 所表示的曲线必定包含空间曲线C在xOy面上的投影. 同理, 消去方程组(3)中的变量x或变量y, 再分别和x=0或y=0联 立, 我们就可得到包含曲线C在yOz面或xOz面上的投影的曲线 方程: T x, z 0, R y, z 0, 或 y 0. x 0,
合肥工业大学高数习题册上下册答案详解
极限
【解】分之分母同除 3n ,利用四则运算极限法则和幂极限可得
2 ( ) n 1 1 3 L lim 。■ n 2 (2)( ) n 3 3 3 1 1 1 (2) lim(1 2 )(1 2 ) (1 2 ) ; n 2 3 n
1 cos(sin x) . x 0 x2 1 2 sin x 1 sin x 2 1 2 (lim ) 。■ 【解】 L lim 2 x 0 x 0 x 2 x 2 (3) lim
ln(1 2 x) , x 0, x f ( x) 存在. 2.设 f ( x) 确定正数 a 的值,使得 lim x 0 a x a x , 1 x 0, x
1 1 1 1 n 1 n 1 , 2 1 1 1 n 2n n 1 1 lim 。■ ∴L n 2n 2
(3) lim[(1 r )(1 r 2 )
n
(1 r 2 )] ( r 1) ;
n
n
(1 r )(1 r )(1 r 2 )(1 r 2 ) 【解】∵ (1 r )(1 r )(1 r ) 1 r
1
1
从而, l i mf ( x) l i m
x 0
1 e 1 e
1 x 1 x
1
x 0
1 l i m ex
x 0
1 l i m e
x 0
t 1 x
1 x
1,
1 1 1 lim t 1 t 1 et t e lim f ( x) lim lim lim e 1, 1 t 1 e t t 1 1 x 0 x 0 x 1 lim t 1 1 e t e et
高数答案 合肥工业大学 中国电力出版社 朱士信
《高等数学》练习册参考答案第一章函数练习11−1.(1);(2).(,0)(0,)22ππ−U [1,0)(0,3]−U 2.3(4)4(4)1,3,(4)6,3.x x x f x x x ⎧++++≥−+=⎨+<−⎩3.(1);(2);(3).(2,3)23(,)e e 1(2,3)(02a a a +−<<4..11,,,11x x x x x −+−5.1,0,[()]0,0,1,0;x f g x x x <⎧⎪==⎨⎪−>⎩1,1,[()]1,1,, 1.e x gf x x e x −⎧<⎪==⎨⎪>⎩6.(1);(2);(3);2cos r a θ=2cos r a θ=−2sin r a θ=(4);(5).2sin r a θ=−r a =7.,r=cos ,sin .x r y r θθθθ⎧==⎨==⎩练习12−1.奇函数.2.3.(1);(2);(3)非周期函数;(4).11,()0,0,1.x f x x x −⎧>⎪==⎨⎪<−⎩2π2π5.22,0,()30,0.a ax x f x xx ⎧−≠⎪=⎨⎪=⎩6.21lg ,100,10[()]1(lg ),10,10x x x f g x x x ⎧≥<≤⎪⎪=⎨⎪<<⎪⎩或2lg ,1,[()]lg ,00 1.x x g f x x x x ≥⎧=⎨<<<<⎩-1或练习13−1.(1);(2);2,sin y u u x ==25,21y u u x ==+(3)(4).ln ,y u v v ===1arctan ,2x y u u v −===2.(1)是;(2)不是;(3)是;(4)不是.第二章极限与连续练习21−1.(1)正确;(2)错;(3)正确.练习22−4..X ≥练习23−1..0,02.(1);(2);(3);(4);(5);(6);(7);(8).01513303(21401323..11x−练习24−1.(1);(2)..C .D 2.(1)正确;(2)错;(3)错;(4)正确;(5)错;(6)正确;(7)错;(8)错.4.(1)同阶不等价;(2)等价.5.(1)当时,;当时,;当时,;(2);(3);n m >0n m =1n m <∞812(4);(5);(6).3121!n 6..6练习25−1.(1)(2);(3);(4);(5).12π2e −8e 2.(1);(2);(3).131练习26−1.(1)是可去间断点;(2)是跳跃间断点;(3)是无穷间断点.1x =−7x =1x =2.(1)是可去间断点,是无穷间断点;0,1x x ==11,2x x =−=(2)是可去间断点,是第二类间断点.0x =(0,1,2,)2x k k ππ=+=±±L 3..4.(1);(2);(3).5.,.a b =139−0ln 221−18.,.11()x f x e−=(1)0,(1)f f −+==+∞第三章导数与微分练习31−1.(1);(2);(3);(4).78x 5414x −−65x −−5616x −2.(1);(2),.()f x =1x =()cos f x x =3x π=3.切线方程为,法线方程为.4.连续且可导.5..2x y +=0x y −=2()ag a 6.,,不可导.10练习32−1.(1;(2),.)2π+32517152.(1);(2);4323226126(6)x x x x x −−++++2cos sin x x xx −(3);(4;22cos ln sin ln cos x x x x x x x x −+(5);(6).22sec tan x x x x−23322ln 26x xx x x ++3.切线方程为,法线方程为.2y x =20x y +=4.交点处夹角为,交点处夹角为.(0,0)2π(1,1)3arctan 45.,.45(3)x +45(6)x +6.(1)错,应为;(2)错,应为;22cos x x 22(1)x x x e +(3)错,应为;(4)错,应为.2x +21111arctan1x x x −⋅++−7.(1;(2);(3);x (sin cos )axe a bx b bx +2sin 12sin x x xθθ−−+(4;(5);(6;2sin sec (cos )x x −⋅(7;(8).+232ln (1)x xx −8..()[()()()]f x x x x e f e e f e f x ′′+练习33−1..2.(1);(2).23x x −+222(32)x xe x +22232()a a x −−3..4.,.2−(2)f ϕ′′⋅+(2)f f ϕϕ′′′′′′⋅++⋅5.(1),;(2)ln 1y x ′=+()1(2)!(1)(2)n nn n y n x −−=−≥.6..14cos(42n n x π−+2练习34−1.(1);(2);(3);22cos33x x y−+2csc ()x y −+cos sin()sin sin()y x x y x x y ++−++(4;(5).2121323(3)x x x +−+−−1(ln 1)a x aa x x +−+2..3..4.5.(1);(2).1210x y −±=43212t t t −−2(1)2t t e t t−+6.,.7..cos t t −cos (cot )t t t −22()(1)2(1)t y e t yt −+−8.切线方程为,法线方程为.3πθ=56πθ=练习35−1..0.122.(1);(2);(3);(4).4211ln 42ax bx x Cx +++2sin x ln sin x 2(arcsin )x 3.(1);(2).2ln(1)1x dx x −−4..5..2(1)y dx −+(ln 21)dx −6.(1);(2);(3);(4).9.98670.4850.494960.99第四章导数的应用练习41−2.,.1223练习42−1.(1);(2);(3);(4);(5);(6);(7).232π18−112e 032..3..4.(1);(2)()f x ′′9,12a b ==−(0)f ′2()(),0,()1(0),0.2xf x f x x x g x f x ′−⎧≠⎪⎪′=⎨⎪′′=⎪⎩练习43−1.,.14360−262..234562122211222221(1)cos(2)24!6!(2)!(21)!2n n n n n x x x x x n x n n θπ−+++−+++−−++L (01)θ<<3..5..12412练习44−1.(1)单调递增,单调递减;(2)单调递增,单调递减.3(0,)43(,1)4(0,)e (,)e +∞2..4.(1)1y =(y=(2)为极大值,为极小值;1(123y =(1)0y =(3)为极大值,为极小值.3243(2)4k y k πππ++=24(24k y k ππππ−−=5.为极小值,无极大值.6.,极大值.3()255f =27.8.,.(f =f =2959..10.11.;.12.米.64a ≥R 84 2.366≈练习45−1.(1)在内凸,在内凹,为拐点;(0,1)(1,)+∞(1,7)−(2)在内凹,在内凸,为拐点.1(,2−∞1(,)2+∞1arctan 21(,)2e 2..4.不是极值点,是拐点.3,0,5a b c =−==0x 00(,())x f x 第五章不定积分与定积分练习51−1.(3);(4);(5).0()()f b a ξ−()b af x dx b a−∫2.(1);(2).ln 23π3.(1);(2).22211xx e dx edx −−>∫∫11(1)xe dx x dx >+∫∫4.(1);(2.22I e ππ≤≤22I e ≤≤练习52−1.(1);(2).2.(1);(2).21[(2)(2)]2f x f a −3cos 2sin xx+0()()x xf x f t dt +∫3.(1);(2).4.(1);(2).5.连续且可导.22sin yyx e −−t −12136.在内连续.32,[0,1),3()11,[1,2].26x x x x x ⎧∈⎪⎪Φ=⎨⎪−∈⎪⎩(0,2)7..8..1212arctan ln(1)2x x x C −+++9.(1);(2)当时,;当时,;(3)38π0a <31(27)3a −−0a ≥31(27)3a −.1)−练习53−1.(2);(3);(4);2sin cos x x xx −−()F x C +()()F x x C −Φ=(5);(6);(7);(8).()f x C +111x C µµ+++C 43−2.(1);(2);(3);212ln 2x x x C −++1arctan x C x −++2tan 22x x x C +−+(4);(5).522()ln 2ln 33x x C −+−1(sin )2x x C −+练习54−1.(1);(2);(3);522(2)5x C −−+122(1)x C ++2ln 35x x C +++(4);(5);(6);1ln cos 22x C −+1ln 2ln 12x C ++1arcsin 2x C ++(7);(8);(9);cos x e C −+31sec sec 3x x C −+11sin 2sin 8416x x C −+(10);(11);357121sin sin sin 357x x x C −++1sin 6212x x C −+(12);(13);33sec sec x x C −+ln csc 2cot 2x x C −+(14);(15);(16);21arctan(sin )2x C +1arctan 22x e C +122(arcsin )x C +(17);(18);(19)ln ln sin x C +523311(31)(31)153x x C ++++;C(20;(21);(22);C +C 13arcsin 32xC +(23).arcsin x e C −2.(1;(2);(3);(4);(5);(6);241(1)4e −5322π−835(7);(8);(9);(10).516π14π−1)8153..4..()ln f x x x C =+311()(2)32f x x C x =−−−+−练习55−1.(1);(2);(3)(1)xx eC −−++arcsin x x C +;11cos 2sin 224x x x C −++(4);(5);21tan ln cos 2x x x x C +−+ln(21)ln 21x x x x C +−+++(6);(7);x x C ++C −++(8);(9);(10)221()2(1)nx a C n −++−1(sin cos )2x x x e C −−+.2ln 1ln 21x x x C x ++−+++2..cos 2sin 244x x C x−+3.(1);(2);(3);(4);(5);(6)111(sin1cos1)22e −+2πln 22π−142π−.1ln 23练习56−1.(1;(2)C +21ln(22)arctan(1)2x x x C+++++(3);(4);(5);31ln ln 13x x C −++sin ln sin 1x C x ++1x e C x ++(6);(7);(8)ln(1)1xx x xe e C e −+++221tan 12x arc x C x +++;C(9);(10).1ln 1xC x x −++−12C 2.(1);(2);(3).14π+132ln 41721(1)24e π+−练习57−1..2..3..4..5..1218π23−1ln 242π+第六章定积分的应用练习62−1..2..3..4..5..6..12e −27412(1)e −23a π54π27..8..9..10.,.1ln 32−22a π53ln 122+12e e −+−22(2)2e e π−+−11..12.,.13..14.(1);(2);(3)163485π245π22π(1,1)21y x=−.30π15..16.17..18134242244()b x a y a b +练习63−1..2.(1)吨;(2)米.57697.5()KJ 660113.(1);(2)一倍;(3).216ah 2512ah 第七章常微分方程练习71−1.(1)一阶;(2)二阶;(3)不是;(4)一阶;(5)三阶;(6)一阶.2.(1)特解;(2)通解;(3)特解;(4)不是解.练习72−1.(1);(2);(3);2221x y Cx=−22(1)(1)x y C −−=(1)(1)x y e e C +−=(4).()1yC a x ay =+−2.2221,1,(1), 1.x xe x y e e x −⎧−≤=⎨−>⎩若若3.(1);(2);(3);(4)2(2)y C x y =+arctany xxy Ce−=1Cx y xe+=.2()102y x y x C −+−=4.(1);(2);(3);()y x x C =+2ln 2x y x =3214()13y x C x =++(4);(5).2sin 1x C y x +=−22y xy C −=5.(1;(2);(3).x C =+44114xx Ce y −=−++4121x Ce x y=−−练习73−1.(1)线性无关;(2)线性无关;(3)线性无关;(4)线性相关.2.(1);(2);(3).33112x x y C e C xe =+2112x x y C e C e =+33112x x y C e C e −=+3..12cos ln sin ln ln y C x C x x =++4..5.是.2129xy x e ∗=−+6.(1);(2);(3);24112xx y C eC e =+112()x y C C x e =+112(cos sin )22xx x y e C C =+(4);(5).12cos 2sin 2y C x C x =+3142x x y e e =+7.(1);(2);(3)112xxy C C e xe=++21122xx y C C e −=++.112sin x y C C e x −=++8..1()sin cos 22xf x x x =+练习74−1.(1);(2);33125ln 183x x x y C x C =−++331232C x x y C =++(3);(4).21arcsin()xy C e C =+11y x=−2..12()ln f x C x C =+3.(1);(2);(3).21C y C x x =+3122ln C y C x C x x x =++32115C y C x x x =++第八章向量代数与空间解析几何练习82−1.(1)不成立;(2)成立;(3)不成立.2.(1);2()a b ×rr (2).3.28.4.(1);(2).2()a b c ×⋅r r r1k =−15k k =−=或5..6..7..3π2λµ=4练习83−3..4..5..362490x y z −+−=320x z −=22(3)x y −+2(2)51z ++=6..7..(1,2,3),8r −=22244(4)y z x +=−练习84−1..2..3.平行,.217511x y z −−==321421x y z −+−==−d =4..5..111x y z −=−=−2350x y z +−=6.22220x y y +−=22220,0.x y y z ⎧+−=⎨=⎩第九章多元函数微分法及其应用练习91−1.(1);(2);2{(,)210}x y y x −+≥2{(,)0,0}x y y x x ≤≤≥(3);(4).2222{(,)}x y r x y R ≤+≤22222{(,,)0}x y z z x y x y ≤++≠且2..(,(,))24f xy f x y x y xy =++练习92−1.不正确.因为此时未必有等式成立.00lim (,)(,)x x y y f x y f x y →→=3,对任给的.令,当≤0ε>2δε=时,则有02δε<<=,0ε≤<所以.00x y →→=练习93−1.,而,所以在处不连续.(0,0)(0,0)0x y f f ==0lim (,)1(0,0)x y xf x y f →==≠(,)f x y (0,0)2.连续且两个偏导数均存在.3.,4.(1),;1(2,1)2x f =(1,2)y f =22z y x x y ∂=∂+22z xxx y ∂−=∂+(2)z z x y∂∂==∂∂(3).u u uxy z ∂∂∂===∂∂∂5.(1);222222222126,12,126z z z x y xy y x x x y y∂∂∂=−=−=−−∂∂∂∂(2),22223222224csccot 4csc cot 2csc ,x x x x x x y z z y y y y yxy x y y −−∂∂==∂∂∂.22242224csccot 4csc x x xx xy zy y yy y −+∂=∂6..22222233222,2,(12)x y x y xyxy ex ye x y e −−−−−−练习94−1.(1)正确,因为可微一定是连续的;(2)不正确,因为一阶偏导数连续是可微的充分条件而不是必要条件.(3)正确,二阶偏导数连续一定有一阶偏导数连续,从而函数在点(,)f x y 00(,)x y 处一定可微.2.(1);(2);2)dz ydx xdy =−(1)(ln(1))1x xdydz y y dx y=++++(3).2222()x y z du e xdx ydy zdz ++=++3..4..5..0.150.10.250.68dz e e e =×+×=×≈ 3.97655.296.时及均存在.(0)0ϕ=(0,0)x f (0,0)y f 练习95−1..2..6)dz t dt =+22()()z y y xf xy f x y x x ∂′′′′=−∂∂3.;.2223132333u yf xyf xy f xy zf x z ∂=+++∂∂2222222233322u x f x zf x z f y ∂=++∂5..21(,2)2y x f x x −=6.(1);123123()()dz f f yf dx f f xf dy =+++−+(2).211222(f yf f xfdu dx dy dz z x x z=−+−练习96−1.(1);cos()cos()5xy xxydy x y ye e dx x y xe −−+=−++(2).20(0,1)211,1,2(1)1y x x x ydy e d y ye e e dxxe dx===−===−=−−2.(1);(2).2,()z z z z x x z y y x z ∂∂==∂+∂+2322322()z zz y ze xy z y z e e xy −−−3..dx 4..此结果表明是的一次函数.22,0dy x ay d ydx y ax dx+=−=+y x 5..6..22()(2),33u v u v z z y z z x x z y z ϕϕϕϕϕϕ∂+∂+==∂−∂−,dx y z dy x zdz x y dz y x−−==−−7..所以.1[(t dy f f dt f f F F dy dx x t dx x t F x y dx ∂∂∂∂∂∂=+⋅=+−+⋅∂∂∂∂∂∂f F f Fdy x t t x f F F dx t y t ∂∂∂∂−∂∂∂∂=∂∂∂+∂∂∂8..f g fg h du f y x yz x g g h dx x y y z∂∂∂∂∂⋅⋅⋅∂∂∂∂∂∂=−+∂∂∂∂⋅∂∂∂练习97−1.2..1,1,1),u∂=−−=−∂ol l 2(1,1,2){1,1,}gradf e −=3..2221{,,}()()()gradu x a y b z c x a y b z c −=−−−−+−+−所以当时.4..222()()()1x a y b z c −+−+−=1gradu =2π练习98−1..1(,)26(1)(1)2f x y x y =+−−−+222[10(1)2(1)(1)2(1)]x x y y R −+−−−−+2..22(,)2y f x y y xy R =+−+练习99−1.在点处取极小值6.2.在点处取极大值.(4,2)(0,0)13.时取极小值.该点是圆222222,ab a b x y a b a b ==++z 2222a b z a b =+极小222222a b x y a b+=+与直线的切点.1x ya b+=4.最大值为3,最小值为1.5.设为椭球面上的任一点,则该点处的切平面与坐标面所围成的四面体的体000(,,)x y z 积为.要求的问题是求函数满足条件的极22200016a b c V x y z =(,,)fx y z xyz=2222221x y z a b c++=大值问题,由拉格朗日乘数法可知所求的点为000x y z ===.min V =练习910−1.切线:,法线:.11211x y π−+−==402x y π+−−=2.切线:,法线:.11214132x y z −−−==−1413250x y z −+−=3.切平面:,法线:.0001ax x by y cz z ++=000000x xy y z z axby zz −−−==4..0=n =n 5.所求的点为或222.222第十章重积分练习101−1..016I ≤≤2.(1);(2).23()()D D x y d x y d σσ+≥+∫∫∫∫2(ln())ln()D Dx y d x y d σσ+≥+∫∫∫∫3..4..(0,0)f 124I I =练习102−1.(1);(2);(3);(4);(5).20312sin 1πππ−−6071163e−2.(1);(2);210(,)x x dx f x y dy ∫∫1(,)dy f x y dx ∫(3);(4);ln 10(,)exdx f x y dy ∫∫120(,)yydy f x y dx −∫∫(5).202(,)ydy f x y dx ∫∫3.(1);(2).(1)1(16x a b a x y V dx c dy abc a b −=−−=∫∫1122001()6x V dx x y dy −=+=∫∫5.(1);(2);2cos 400(cos ,sin )d f r r rdr πθθθθ∫∫4sin 02sin (cos ,sin )d f r r rdr πθθθθθ∫∫(3).23cos 04(cos ,sin )d f r r rdr πθπθθθ∫∫6.(1);(2);230cos (cos ,sin )aa d f r r rdr πθθθθ∫∫2cos 2202()d f r rdr πθπθ−∫∫(3).13cos 203()()d f r rdr d f r rdr ππθπθθ+∫∫∫7.(1);(2);(3).8..9..(1cos1)π−223π−34(33R π−3512R π54π练习103−1.(1);(2);222121(,,)x x y dx f x y z dz −−+∫∫∫2102(,,)x y dx f x y z dz ++−∫∫(3).2211(,,)x y dx f x y z dz −+∫∫2.(1(2).3..3ln 24−202()()t t f x dx t f t +∫4.柱面,球面.1101d rdr f dz πθ∫∫∫2cos 2410cos sin ()d d r f r dr ππϕϕθϕϕ∫∫∫5.(1)0;(2);(3).6415π11926.(1);(2).7.21(12π53π练习104−1.14.2..3.(1),重心为;22(2)a π−2,03y x ==2(0,)3(2).4.(1);(2).(,55a a 46320a 443()32b a π−5.重心为,球心位于原点,球体置于上半空间.3(0,0,)86.设正方体边长为,密度为,则有所求的.a 0ρ50I a ρ=第十一章曲线积分练习111−1.(1);(2);(3);411)12+−(4);(5).2.4(122a π练习112−1..2.(1);(2);(3)-32;3.4..23323965343a 3323k a ππ−5.(1);(2).(,)(,)L yP x y xQ x y ds a−+∫∫6..C u udy dx x y ∂∂−∂∂∫ 练习113−1.(1);(2);(3);(4).112−2ab π−23429π−23(2)22a b a ππ+−2.(1)不在内部时,原式;(2)在内部时,原式.(0,0)L 0=(0,0)L 2π=练习114−1.5.2.20.3..4..3412a =−C +5..6.22(,)cos cos u x y x y y x C =++522333123x x y xy y C +−+=7..8..9..32223y a x x y xy C −−−=332yx y x e C −++=2ln y x C x−=练习115−1.,重心坐标为.22m a =(0,4aπ2.(1);22224)3z I a a k ππ=+(2).22232222222222663(2),,343434ak ak k a k x y z a k a k a k ππππππ−+===+++3..R −F 第十二章曲面积分练习121−1.(1);(2).3a π练习122−2.(1);(2)3;(3);3..42R π−1132πΣ练习123−1.(1);(2).2..12415(2)16a ππ+sin()sin yz z +3.(1)0;(2).22a h π练习124−1..2.(1);(2).4π−{4,sin ,6}x y −{2,2,sin }z z y −−−第十三章无穷级数练习131−1.(1)收敛;(2)发散;(3)收敛,发散;(4)发散.1q <1q ≥2.(1)发散;(2)收敛;(3)发散;(4)发散.3.(1)发散;(2)收敛;(3)发散;(4)收敛.练习132−1.(1)收敛;(2)收敛;(3)发散;(4)收敛;(5)收敛,发散;(6)收敛;(7)收敛;1p >1p ≤(8)发散;(9)收敛;(10)收敛.4.(1)时收敛,时发散;(2)时收敛,时发散;1a >1a ≤1αβ−>1αβ−≤(3)时收敛,时发散.1b >1b ≤练习133−1.(1)收敛;(2)收敛;(3)收敛.2.(1)绝对收敛;(2)条件收敛;(3)发散;(4)条件收敛;(5)绝对收敛;(6)条件收敛.练习134−1.(1);(2);(3);111,[,]222R =−,(,)R =+∞−∞+∞0R =(4);(5);(6).4,4,4R =−()2,(3,7)R=R =−2.(1);(2);ln(1),[1,1)x −−−2,(1,1)(1)x x −−(3);,;(4),,8.2222(2)x x +−(3232(1)x x −(1,1)−练习135−1.(1),;(2),;0(1)!n nn x n ∞=−∑(,)−∞+∞20(2)!nn x n ∞=∑(,)−∞+∞(3),;(4),;2112112(1)(2)!n n n n x n −∞−+=−∑(,)−∞+∞11n n nx ∞−=∑(1,1)−(5),;(6),11(1)(1)n n n x x n n +∞=+−+∑(1,1)−2210(1)[](2)!(21)!n n nn x x n n +∞=−++∑;(,)−∞+∞(7),;(8),.11(1)!n n nx n −∞=+∑(0)x ≠10(1)2n n n n x ∞+=−∑(2,2)−2.,.3.,.11011(1)[4)532nn n n n x ∞++=−−++∑(6,2)−−210(1)421n n n x n π+∞=+−+∑[1,1]−练习136−1.(取麦克劳林展开式的前两项).0.95106cos x 2.(取被积函数的麦克劳林展开式的前三项).0.9461练习137−1..2221414(cos sin )3n x nx nx n n ππ∞==+−∑(02)x π<<2..121(){[1(1)]cos (1)sin }4n n n b a a b a b f x nx nx nn ππ∞+=−−+=+−−+−∑(,)ππ−4.,.11()2sin n f x nx n π∞==−∑(,0,1,2,)x k k π≠=±±L5.,;21122()(cos sin 22n n n f x nx n n n πππ∞==−+∑(0,2x x ππ<≤≠,.2213222()(sin cos )cos 822n n n f x nx n n n πππππ∞==+−++∑(0,)2x x ππ<≤≠6.,.7.提示:将展成余弦级数.318()sin(21)(21)n f x n x n π∞==−−∑[0,]πsin x 8.,.9.,.22174cos(21)2(21)n n x n ππ∞=−−−∑[1,1]−214()()sin sin 24n n n x f x n πππ∞==∑[0,4]。
高等数学(下)_合肥工业大学中国大学mooc课后章节答案期末考试题库2023年
高等数学(下)_合肥工业大学中国大学mooc课后章节答案期末考试题库2023年1.设【图片】为微分方程【图片】的特征方程的单根,则【图片】________.参考答案:12.若【图片】且【图片】则该方程通解中的常数【图片】________.参考答案:3.设有直线【图片】及平面【图片】则直线【图片】()参考答案:垂直于4.设【图片】当【图片】为奇数时,【图片】____________.参考答案:5.过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程是()参考答案:3x-7y+5z-4=06.若区域【图片】为【图片】则【图片】___________.参考答案:7.过以下三点(1,1,-1)、(-2,-2,2)、(1,-1,2)的平面方程是()参考答案:x-3y-2z=08.设向量【图片】则向量【图片】在【图片】轴上的投影为____________.参考答案:139.若级数【图片】收敛【图片】,则下列结论正确的是()参考答案:一定收敛10.已知【图片】且【图片】收敛,则【图片】()参考答案:绝对收敛11.设【图片】则级数()参考答案:收敛而发散12.若级数【图片】发散,【图片】收敛,则【图片】发散。
参考答案:正确13.若级数【图片】收敛,则【图片】也收敛()参考答案:错误14.若级数【图片】收敛,则级数【图片】收敛()参考答案:错误15.设【图片】则【图片】()参考答案:816.设【图片】是球面【图片】的外侧,且【图片】则曲面积分【图片】————.参考答案:1217.设【图片】是平面【图片】被圆柱面【图片】所截的有限部分,则曲面积分【图片】————.参考答案:18.设【图片】是锥面【图片】介于【图片】与【图片】之间的部分,则曲面积分【图片】____________.参考答案:19.设向量【图片】和【图片】则【图片】__________.参考答案:220.直线【图片】与直线【图片】的夹角余弦为__________.参考答案:21.已知【图片】且【图片】,则【图片】在点【图片】处().参考答案:连续,偏导数存在,且可微22.已知【图片】为某函数的全微分,则【图片】__________.参考答案:223.计算【图片】____________,其中【图片】是以【图片】为顶点的正方形围成.参考答案:24.设【图片】是由【图片】所围成的空间闭区域,则【图片】().参考答案:2425.一向量的终点在点B(2,-1,7),它在x轴、y轴、z轴上的投影依次为4,-4,7,则该向量的起点A的坐标为()参考答案:(-2,3,0)26.设【图片】是圆锥面【图片】的外侧,则【图片】————.参考答案:27.下列关于【图片】在点【图片】的性质说法正确的是().参考答案:在处连续,则在点可微;28.若函数【图片】满足【图片】则【图片】________.参考答案:129.设微分方程【图片】的特解形式为【图片】则【图片】________.参考答案:430.在过点【图片】和【图片】的曲线簇【图片】中,当【图片】()时,沿着该曲线从【图片】到【图片】的积分【图片】的值为最小.参考答案:131.下列关于【图片】在点【图片】的性质说法正确的是().参考答案:偏导数连续,则沿任意方向方向导数存在;32.设有下列命题:(1)若【图片】收敛,则【图片】收敛;(2)若【图片】收敛,则【图片】收敛;(3)若【图片】,则【图片】发散;(4)若【图片】收敛,则【图片】都收敛。
合工大高数下(复习)
注:① 两类曲线积分之间的联系
L
P ( x , y )d x Q( x , y )d y P ( x , y )cos Q( x , y )cos d s
② 运用积分曲线方程简化计算!
§3 格林公式
Q P P ( x , y )d x Q( x , y )d y d L x y D 注:① L 封闭正向(补) ;② P ( x , y ), Q ( x , y ) 在 D 内偏导连续(挖) !
f ( x , y )d y d y
c
d
2 ( y)
1 ( y)
f ( x , y )d x
注:选择积分次序(根据积分区域特点、被积函数特点) 交换积分次序! ② 利用极坐标:
f ( x , y )d f (r cos , r sin )r d r d
x x(t ) ① y y( t ) 在 M 0 x ( t 0 ), y ( t 0 ), z ( t 0 ) 的切向量: x ( t 0 ), y ( t 0 ), z ( t 0 ) z z( t ) x x F ( x, y, z ) 0 ② y y( x ) 在 M 0 ( x0 , y0 , z0 ) 的切向量: 1, y( x0 ), z ( x0 ) G( x, y, z ) 0 z z( x )
x x区域连续! §3 偏导数 分段函数在分段点处的偏导数:
f x ( x0 , y0 ) lim
f ( x 0 x , y0 ) f ( x 0 , y0 ) x 0 x f ( x 0 , y 0 y ) f ( x 0 , y0 ) f y ( x0 , y0 ) lim y 0 y
合肥学院高数下册试题库(按知识点分)
高等数学下册试题库一、填空题 1.平面01=+++kz y x 与直线112zy x =-=平行的直线方程是___________2. 过点)0,1,4(-M 且与向量)1,2,1(=a 平行的直线方程是________________3. 设k i b k j i aλ+=-+=2,4,且b a ⊥,则=λ__________4. 设1)(,2||,3||-===a b b a ,则=∧),(b a ____________5. 设平面0=+++D z By Ax 通过原点,且与平面0526=+-z x 平行,则__________________,_______,===D B A6.设直线)1(221-=+=-z y m x λ与平面025363=+++-z y x 垂直,则___________________,==λm7.直线⎩⎨⎧==01y x ,绕z 轴旋转一周所形成的旋转曲面的方程是_______________8. 过点)1,0,2(-M 且平行于向量)1,1,2(-=a 及)4,0,3(b 的平面方程是__________ 9. 曲面222y x z+=与平面5=z 的交线在xoy 面上的投影方程为__________10. 幂级数12nnn n x ∞=∑的收敛半径是____________ 11. 过直线1 3222x z y --=+=-且平行于直线 1 1 3023x y z +-+==的平面方程是_________________ 12. 设),2ln(),(xyx y x f +=则__________)0,1('=y f13. 设),arctan(xy z =则____________,__________=∂∂=∂∂yz x z 14. 设,),(22y x y x xy f +=+则=),('y x f x ____________________15. 设,yxz =则=dz _____________ 16. 设,),(32y x y x f =则=-)2,1(|dz ______________17. 曲线t t z t y t x cos sin ,sin ,cos +===,在对应的0=t 处的切线与平面0=-+z By x 平行,则=B __________18. 曲面22y x z +=在点)2,1,1(处的法线与平面01=+++z By Ax 垂直,则==B A ________,______________19. 设}2,0,1{-=a ,}1,1,3{-=b ,则b a ⋅=________, b a ⨯=____________ 20. 求通过点)4,1,2(0-M 和z 轴的平面方程为________________21. 求过点)0,1,0(0M 且垂直于平面023=+-y x 的直线方程为_______________22. 向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,则向量d=___________________23. 向量b a 57-分别与b a 27-垂直于向量b a 3+与b a 4-,则向量a 与b的夹角为_______________24. 球面9222=++z y x 与平面1=+z x 的交线在xOy 面上投影的方程为______________25. 点)1,`1,2(0-M 到直线l :⎩⎨⎧=+-+=-+-032012z y x z y x 的距离d 是_________________26. 一直线l 过点)0,2,1(0M 且平行于平面π:042=-+-z y x ,又与直线l :122112-=-=-x y x 相交,则直线l 的方程是__________________ 27. 设____________b 3a 2则,3πb a 2,b 5,a =-=⎪⎪⎭⎫ ⎝⎛⋅==∧28. 设知量b ,a满足{}a b 3,a b 1,1,1⋅=⨯=-,则____________b ,a =⎪⎪⎭⎫ ⎝⎛∧29. 已知两直线方程13z 02y 11x :L 1--=-=-,1z11y 22x L :2=-=+,则过1L 且平行2L 的平面方程是__________________ 30. 若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a ____________31. =∂∂=xz,x z y则______________. y z ∂∂=_________________ 32. 设 ()()()____________2,1z ,x y x,sin x 11y z x 32='++-=则33. 设 ()1ylnx x lny y x ,u -+= 则 ______________________du = 34. 由方程2z y x xyz 222=+++确定()y x ,z z =在点()1,0,1-全微分=dz ______35. ()222yx f y z -+= ,其中()u f 可微,则 ___________yzx z y =∂∂+∂∂36. 曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 _________________37. 过原点且垂直于平面022=+-z y 的直线为__________________ 38. 过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 _________________ 39. 与平面062=-+-z y x 垂直的单位向量为______________ 40. )yx(x z 2ϕ=,(u)ϕ可微,则 ____________yz y x z 2=∂∂+∂∂ 41. 已知22lny x z +=,则在点)1,2(处的全微分_________________=dz42. 曲面32=+-xy e z z在点)0,2,1(处的切平面方程为___________________43. 设()y x z z .= 由方程02=+--z xy e z e ,求xz∂∂=________________ 44. 设()()xy x g y x f z,2+-=,其中()t f 二阶可导,()v u g ,具有二阶连续偏导数 有yx z2∂∂∂=___________________45. 已知方程y zln z x =定义了()y x z z .=,求22xz∂∂=_____________46. 设()z y x f u..=,()0..2=Φz e x y ,x y sin =,其中f,Φ都具有一阶连续偏导数,且0z≠∂∂ϕ,求dx dz=______________________47. 交换积分次序=⎰⎰-221),(y ydx y x f dy _______________________________48. 交换积分次序dx y x f dy dx y x f dy y y⎰⎰⎰⎰-+2120100),(),(=___________________49. _________==⎰⎰dxdy xe I Dxy其中}10,10),({≤≤≤≤=y x y x D50.=I ________)23(=+⎰⎰dxdy y x D,其中D 是由两坐标轴及直线2=+y x 所围51. =I ________1122=++⎰⎰dxdy yx D,其中D 是由422≤+y x 所确定的圆域 52. =I ___________222=--⎰⎰dxdy y x a D,其中D :222a y x ≤+53. =I ________)6(=+⎰⎰dxdy y x D,其中D 是由1,5,===x x y x y 所围成的区域54.⎰⎰-2202xy dy edx = _____________________55. 设L 为922=+y x ,则→→→-+-=j x x i y xy F )4()22(2按L 的逆时针方向运动一周所作的功为.___________ 56. 曲线()⎩⎨⎧+==1,2,7y3x z 2xy 22在点处切线方程为______________________ 57. 曲面22y 2x z +=在(2,1,3)处的法线方程为_____________________ 58.∑∞=11n p n ,当p 满足条件 时收敛 59. 级数()∑∞=---1221n nn n 的敛散性是__________60.nn nx a∑∞=1在x=-3时收敛,则n n n x a ∑∞=1在3<x 时61. 若()∑∞=1ln n n a 收敛,则a 的取值范围是_________62. 级数)21)1(1(1nn n n -+∑∞=的和为63. 求出级数的和()()∑∞=+-112121n n n =___________ 64. 级数∑∞=02)3(ln n nn的和为 _____ 65. 已知级数∑∞=1n n u 的前n 项和1+=n ns n ,则该级数为____________ 66. 幂级数nn n x n∑∞=12的收敛区间为67. ∑∞=--11212n n n x 的收敛区间为 ,和函数)(x s 为68. 幂级数∑∞=≤<0)10(n p np nx 的收敛区间为69. 级数∑∞=+011n na当a 满足条件 时收敛 70. 级数()2124nnn x n ∞=-∑的收敛域为 ______71. 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 _____72. 231)(2++=x x x f 展开成x+4的幂级数为 ,收敛域为 73. 设函数)21ln()(2x x x f --=关于x 的幂级数展开式为 __________,该幂级数的收敛区间为 ________ 74. 已知1ln ln ln =++x z z y y x ,则=∂∂⋅∂∂⋅∂∂zyy x x z ______ 75. 设xy y x z )1(22++= y,那么=∂∂xz_____________,=∂∂y z _____________ 76. 设D 是由2=xy及3=+y x 所围成的闭区域,则=⎰⎰Ddxdy _______________77. 设D是由1||=+y x 及1||=-y x 所围成的闭区域,则=⎰⎰Ddxdy _______________78.=+⎰Cds y x )(22________________,其中C为圆周)20(sin ,cos π≤≤==t t a y t a x79.=-⎰Ldx y x )(22________________,其中L 是抛物线2x y =上从点()0,0到点()4,2的一段弧。