2014届高三数学北京各区模拟分类汇编-线性规划(理)

合集下载

【2014西城高三二模】北京市西城区2014届高三二模试卷 数学理

【2014西城高三二模】北京市西城区2014届高三二模试卷 数学理

北京市西城区2014年高三二模试卷数学(理科) 2014.5第I 卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ).A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞2.在复平面内,复数2(12i)z =+对应的点位于( ).A . 第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线,则双曲线C 的离心率是( ).A .5B .52C .3D .324.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ). A . 2A ∈,且4A ∈ B .2A ∈,且4A ∈C . 2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是( ).A .1B .2C .π2D .π7.在平面直角坐标系xOy中,不等式组0,0,80xyx y⎧⎪⎨⎪+-⎩………所表示的平面区域是α,不等式组04,010xy⎧⎨⎩剟剟所表示的平面区域是β.从区域α中随机取一点(,)P x y,则P为区域β内的点的概率是().A.14B.35C.34D.158.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ①()x Ω的最大值为2;②()()x y Ω+Ω的取值范围是[2,22]; ③()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ). A .①B .②③C .①②D .①②③第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为_________.10.在ABC V 中,若14,3,cos 3a b A ===,则sin A =______,B =______.11.如图,AB 和CD 是圆O 的两条弦,AB 与CD 相交于点E ,且4,:4:1C E D E A E B E ===,则AE =_______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为_________.13.设抛物线2:4C y x =的焦点为,F M 为抛物线C 上一点,(2,2)N ,则MF M N +的取值范围为_________.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =,对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n (,)m n (,)n m(,)f x yn m n - m n +则(3,5)f =_______,使不等式(2,)4x f x …成立的x 集合是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在平面直角坐标系xOy中,点(cos,2sin),(sin,0)A Bθθθ,其中θ∈R.(I)当2π3θ=,求向量ABuu u r的坐标;(II)当π[0,]2θ∈时,求ABuu u r的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B两班中各抽5名学生进行视力检测.检测的数据如下:A班的5名学生的视力检测结果:43.,51.,46.,41.,49..B班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III)现从班的上述5名学生中随机选取3名学生,用X表示其中视力大于46.的人数,求X的分布列和数学期望.17.(本小题满分14分)如图,在三棱锥P ABC -中,PA ⊥底面,,ABC AC BC H ⊥为PC 的中点,M 为AH 的中点,2,1PA AC BC ===(I )求证:AH ⊥面PBC ;(II )求PM 与平面AHB 所成角的正弦值 (III )设点N 在线段PB 上,且,PNMN PBλ=∥平面ABC ,求实数λ的值.18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R(I )若0a =,求函数()f x 的极值;(II )当1a >时,试确定函数()f x 的单调区间.19.(本小题满分14分)设,A B 是椭圆22:143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与点,A B 不重合),O 为坐标原点.(I )如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程;(II )设N 为x 轴上一点,且4OM ON ⋅=uuu r uuu r,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分14分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*1,n n n a a a +∈<N .设*m ∈N ,记使得n a m …成立的n 最大值为m b .(I )设数列为1,3,5,7,L ,写出123,,b b b 的值; (II )若{}n b 为等差数列,求出所有可能的数列{}n a ;(III )设12,p p a q a a a A =+++=L ,求12q b b b +++L 的值.(用,,p q A 表示)。

2014年北京市各区高三一模试题汇编理科解析几何

2014年北京市各区高三一模试题汇编理科解析几何

2014年北京市各区高三一模试题汇编—解析几何(理科)1 (2014年东城一模理科)若双曲线()2222100x y a b a b -=>>,的渐近线与圆()2221x y -+=相切,则双曲线的离心率为( ).A .2 BCD答案:C2 (2014年西城一模理科)若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =___8__;C 的准线方程为__4x =-___.3 (2014年西城一模理科) “8m <”是“方程221108x y m m -=--表示双曲线”的(A ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件4 (2014年海淀一模理科)已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则( B ).A .0a =B .1a =C .2a =D .2a >5 (2014年海淀一模理科)已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m ____34___.6 (2014年朝阳一模理科) 直线y x m =+与圆2216x y +=交于不同的两点M ,N ,且MN ON ≥+uuu r r uuu r,其中O 是坐标原点,则实数m的取值范围是(D )A.(-UB.(⎡--⎣UC .[2,2]-D.[-7 (2014年朝阳一模理科)双曲线2221(0)y x b b-=>的一个焦点到其渐近线的距离是2,则b =2此双曲线的离心率为8 (2014年丰台一模理科)已知点F,B 分别为双曲线C:的焦点和虚22221(0,0)x y a b a b -=>>轴端点,若线段FB 的中点在双曲线C 上,则双曲线C 的离心率是___________.9 (2014年石景山一模理科)在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为(D ) A .2B .8C D .410 (2014年石景山一模理科) 已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF =且0MP MF ⋅=,则||PM 的最小值为(A )A B .3C .125D .111 (2014年顺义一模理科)已知抛物线()的焦点为,准线为,为抛物线上一点,,垂足为.如果是边长为的正三角形,则此抛物线的焦点坐标为____(1,0)_,点的横坐标__3_.12 (2014年延庆一模理科)设m 是常数,若点)5,0(F 是双曲线2219y x m -=的一个焦点,则m=___16___1. 13 (2014年东城一模理科) (本小题共13分)已知椭圆()2222:10x y G a b a b +=>>过点1,A ⎛ ⎝⎭和点()0,1B -. (1)求椭圆G 的方程;(2)设过点30,2P ⎛⎫ ⎪⎝⎭的直线l 与椭圆G 交于,M N 两点,且||||BM BN =,求直线l 的方程.解:(Ⅰ)因为椭圆()2222:10x y G a b a b +=>>过点1A ⎛ ⎝⎭和点()01B -,.所以1b =,由22111a ⎝⎭+=,得23a =. 所以椭圆G 的方程为2213x y +=.(Ⅱ)显然直线l 的斜率k 存在,且0k ≠.设直线l 的方程为32y kx =+.由22133.2x y y kx ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并整理得22153034k x kx ⎛⎫+++= ⎪⎝⎭,由2219503k k ⎛⎫=-+> ⎪⎝⎭△,2512k >.设()11M x y ,,()22N x y ,,MN 中点为()22Q x y ,, 得12229262x x k x k +==-+,12623262y y y k +==+. 由BM BN =,知BQ MN ⊥,所以6611y x k +=-,即2231162962k k k k ++=--+. 化简得223k =,满足0>△.所以k = 因此直线l的方程为32y =+. 14 (2014年西城一模理科)(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点. (Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . …………… 1分则线段CD 的中点11(,)24,||CD ==, ………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. …………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ………… 7分所以 2216880k m ∆=-+>, (*) …… 8分由韦达定理,得122412kmx x k -+=+, 21222212m x x k -=+. ………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, …………10分解得2k =±. …………… 11分 由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ………… 12分 即12||3||m x x k-==, 解得m =.……… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =,或y x =. ……………… 14分 15 (2014年海淀一模理科)(本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形. 解:(Ⅰ)设00(,)A x y ,00(,)-B x y ,————————————————1分因为∆ABM为等边三角形,所以00|||1|=-y x .————————2分 又点00(,)A x y 在椭圆上,所以002200||1|,239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y ,———————————3分 得到2003280--=x x ,解得02=x 或043=-x ,—————————4分 当02=x时,||=AB 当043=-x时,||=AB .———————————————————5分 {说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m ,————6分由0∆>得到222960--<m k ①————————————7分 所以122623+=-+km x x k ,121224()223+=++=+my y k x x m k ,——————8分 所以2232(,)2323-++km mN k k,又(1,0)M 如果∆ABM 为等边三角形,则有⊥MN AB ,————————————9分所以1MN k k ⨯=-,即2222313123mk k km k+⨯=---+,—————————————10分 化简2320k km ++=,②—————————————11分由②得232k m k+=-,代入①得2222(32)23(32)0k k k +-+<,化简得2340+<k ,不成立,————————————————13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.——————————14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以||MA ==———8分 设22(,)B x y,同理可得||MB =2[3,3]x ∈-———————9分 因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =,————————————11分 因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠,————————————————13分所以∆ABM 不可能为等边三角形.———————————————14分16 (2014年朝阳一模理科)已知椭圆2222:1(0)x y C a b a b+=>>经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.解:(Ⅰ)由题意得221314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =.所以椭圆C 的方程是2214x y +=.………………………… 4分(Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=u u u r u u u r恒成立. 又因为1012(,)2y PN x x =-uuu r ,2022(,)2y QN x x =-uuu r , 所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=----uuu r uuu r 恒成立.又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++22414k k =+, 212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k -=+, 所以222221200021212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x = 故以线段PQ 为直径的圆过x轴上的定点(.………………………… 14分 17 (2014年丰台一模理科) 已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆E 于A,B 两点,线段AB的中点为M,直线:交椭圆E 于C,D 两点.(Ⅰ)求椭圆E 的方程;(Ⅱ)求证:点M 在直线上;(Ⅲ)是否存在实数k,使得三角形BDM 的面积是三角形ACM 的3倍?若存在,求出k 的值;若不存在,说明理由. 解:(Ⅰ)由题意可知,,于是. 所以,椭圆的标准方程为程.------ ---------3分(Ⅱ)设,,,22221(0)x y a b a b +=>>(F k l 40x ky +=l c e a ==c =2,1a b ==2214x y +=11(,)A x y 22(,)B x y 00(,)M xy即.所以,,,, 于是.,所以在直线上----8分(Ⅲ)由(Ⅱ)知点A 到直线CD 的距离与点B 到直线CD 的距离相等,若∆BDM 的面积是∆ACM 面积的3倍,则|DM|=3|CM|,因为|OD|=|OC|,于是M 为OC 中点,;设点C 的坐标为,则.因为,解得. 于是,解得,所以.----------------14分 18 (2014年石景山一模理科) 给定椭圆C :22221(0)x y a b ab+=>>,称圆心在原点O ,半C的“准圆”.若椭圆C 的一个焦点为0)F ,,其短轴上的一个端点到F(Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值. 解:(Ⅰ)21c a b ==∴=,,∴椭圆方程为2213x y +=,………………………………2分准圆方程为224x y +=.………………………………3分22(14y k x x y ⎧=+⎪⎨+=⎪⎩2222(41)1240k x x k +++-=12x x +=1202x x x +==00(y k x =+=M ∴40k +=M l 33(,)x y 302y y =22414x kyx y =-⎧⎪⎨+=⎪⎩3y =2|41k k =+218k =4k =±(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±,………………………………6分所以12l l ,方程为22y x y x =+=-+,.………………………………7分 ,12l l ∴⊥.………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =1l:x =与准圆交于点1)1)-, 此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =12l l ,垂直.………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,,得2220000(13)6()3()30t x t y tx x y tx ++-+--=. 由0∆=化简整理得2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直.………………………………12分 综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l ,垂直. 121l l k k ⋅=-1l所以线段MN 为准圆224x y +=的直径,||4MN =, 所以线段MN 的长为定值.………………………………14分 19 (2014年顺义一模理科)已知椭圆的离心率,长轴的左右端点分别为,.(Ⅰ)求椭圆的方程;(Ⅱ)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.解:(Ⅰ)由已知————2分,椭圆的方程为;————4分,即————10分,对满足恒成立,,故在轴上存在定点,使得以为直径的圆恒过定点.——14分20 (2014年延庆一模理科) 已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a bya x C 的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆上位于x 轴上方的动点,直线AS ,BS 与直线4:=x l 分别交于N M ,两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求线段MN 的长度的最小值.解:(Ⅰ).椭圆C 的方程为1422=+y x .………………3分(Ⅱ)直线AS 的斜率k 显然存在,且0>k ,故可设直线AS 的方程为)2(+=x k y ,………………4分 从而)6,4(k M ………………5分由⎪⎩⎪⎨⎧=++=14)2(22y x x k y 得041616)41(2222=-+++k x k x k ,………………7分 设),(11y x S ,则22141416)2(k k x +-=⨯-,得2214182k k x +-=,………………8分 从而21414k k y +=,即)414,4182(222kkk k S ++-,………………9分 又)0,2(B ,故直线BS 的方程为)2(41--=x ky ………………10分 由⎪⎩⎪⎨⎧=--=4)2(41x x k y 得⎪⎩⎪⎨⎧-==k y x 214∴)21,4(k N -,………………11分 故kk MN 216||+=,………………12分 又∵0>k ,∴322162216||=⨯≥+=kk k k MN ,………………13分 当且仅当k k 216=,即63=k 时等号成立, ∴63=k 时,线段MN 的长度取得最小值为32.……………………14分。

2014年北京高考预测—理科数学试题及答案

2014年北京高考预测—理科数学试题及答案

为偶函数”
A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件
n≤ 3


4. 执行如图所示的程序框图,若输出 x 的值为 23,则输入 的 x 值为( ) A. 0 B.1 C. 2 D.11
2
输出x 结束
y
1 2
5 .如果存在正整数 和实数 使得函数 f ( x) cos (x ) ( , 为常数)的图象如图所示(图象经过点(1,0) ) ,那么 的 值为 ( ) A. 1 6. 已知椭圆 B. 2
k1 , k 2 ,试证明
1 1 为定值,并求出这个定值; kk1 kk2
(III)在第(Ⅱ)问的条件下,作 F2 Q F2 P ,设 F2 Q 交 l 于点 Q , 证明:当点 P 在椭圆上移动时,点 Q 在某定直线上.
第 8 页 共 16 页
20. (本小题满分 13 分) 已知数列 {cn } 满足(i) cn cn 2 ≤ cn 1 ,(ii)存在常数 M ( M 与 n 无关),使得 cn M 恒成立,则称 数列 {cn } 是和谐数列. (1) 已知各项均为正数的等比数列 {an } , S n 为其前 n 项和;且 a3 4 , S3 28 ,求证:数列
1 AD=1,CD= 3 . 2
P
M D Q
C B
A
第 6 页 共 16 页
18. (本小题满分 13 分) 已知 P x, y 为函数 y 1 ln x 图象上一点, O 为坐标原点,记直线 OP 的斜率 k f x . (Ⅰ)若函数 f x 在区间 a, a
2
A. 0,
B. ( , )

2014年全国高考真题(理科数学)分类汇编六、不等式和线性规划(逐题详解)

2014年全国高考真题(理科数学)分类汇编六、不等式和线性规划(逐题详解)

2014年高考题专题整理 --不等式和线性规划第I 部分1.【2014年四川卷(理04)】若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a bd c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>, 由不等式性质知:0a b d c ->->,所以a bd c<2.【2014年江西卷(理11)】(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为A.1B.2C.3D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=3.【2014年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1- (B )2或21(C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=,由题意知2=a 或1-2=-+y x 022=--y x 022=+-y x xyO1-=k 2=k 21=k4.【2014年天津卷(理02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值为A.2B.3C.4D.5【答案】B【解析】画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.5.【2014年山东卷(理09)】已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭。

2014北京市海淀区高三二模试卷数学理试题及答

2014北京市海淀区高三二模试卷数学理试题及答

数学(理科)参考答案2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.A2.C3.D4.A.5.D6.B7.C8.D二、填空题:本大题共6小题,每小题5分,共30分.9.01x <<{或(0,1)}12.213.14.6,5050{本题第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)由正弦定理可得sin sin a bA B=----------------------------2分因为,a A b =所以sin sin b A B a ===---------------------------5分 在锐角ABC ∆中,60B = ---------------------------7分 (Ⅱ)由余弦定理可得2222cos b a c ac B =+- ----------------------------9分 又因为3a c =所以2222193c c c =+-,即23c =-------------------------------11分解得c =-------------------------------12分经检验,由222cos 02b c a A bc +-==<可得90A >,不符合题意,所以c =.--------------------13分 16.解:(Ⅰ)因为1//C F 平面AEG又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,1所以1//C F AG . ---------------------------------3分 因为F 为1AA 中点,且侧面11ACC A 为平行四边形所以G 为1CC 中点,所以112CG CC =.------------------------4分 (Ⅱ)因为1AA ⊥底面ABC ,所以1AA AB ⊥,1AA AC ⊥, ----------------------------------5分 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得11(2,0,0),(0,2,0),(2,0,2),(0,0,2)C B C A -----------------------------6分因为,E G 分别是1,BC CC 的中点,所以(1,1,0),(2,0,1)E G . -----------------------------7分1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=.--------------------------------8分所以1EG CA ⊥,所以1EG AC ⊥. --------------------------------9分 (Ⅲ)设平面AEG 的法向量(,,)x y z =n ,则0,0,AE AG ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20.x y x z +=⎧⎨+=⎩--------------------------10分 令1x =,则1,2y z =-=-,所以(1,1,2)=--n .--------------------------11分 由已知可得平面1A AG 的法向量(0,1,0)=m -------------------------------11分所以cos ,||||⋅<>==⋅n m n m n m --------------------------------13分 由题意知二面角1A AG E --为钝角, 所以二面角1A AG E --的余弦值为.--------------------------------14分 16.解:(Ⅰ)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1,2,3,4,5i = 由已知可得()0.6,()0.5i i P A P B ==设该单位在星期一恰好出一台车的事件为C ,-------------------------------1分 因为,A B 两车是否出车相互独立,且事件1111,A B A B 互斥 ----------------2分所以111111111111()()()()()()()()P C P A B A B P A B P A B P A P B P A P B =+=+=+0.6(10.5)(10.6)0.5=⨯-+-⨯--------------------------4分0.5=所以该单位在星期一恰好出一台车的概率为0.5. --------------------------5分 {答题与设事件都没有扣1分,有一个不扣分}(Ⅱ)X 的可能取值为0,1,2,3 ----------------------------6分112(0)()()0.40.50.40.08P X P A B P A ===⨯⨯=2112(1)()()()()0.50.40.40.50.60.32P X P C P A P A B P A ==+=⨯+⨯⨯= 1122(2)()()()()0.60.50.40.50.60.42P X P A B P A P C P A ==+=⨯⨯+⨯=112(3)()()0.60.50.60.18P X P A B P A ===⨯⨯=----------------------------10分--------------11分()00.0810.3220.4230.18 1.7E X =⨯+⨯+⨯+⨯=-------------------------------13分18.解: (Ⅰ)当π2a =时,π()()sin cos ,(0,)2f x x x x x π=-+∈π'()()cos 2f x x x =- --------------------------------1分由'()0f x =得π2x = --------------------------------------2分(),'()f x f x 的情况如下--------------------------------------------------4分因为(0)1f =,(π)1f =-,所以函数()f x 的值域为(1,1)-. ---------------------------------------------------5分 (Ⅱ)'()()cos f x x a x =-,①当ππ2a <<时,(),'()f x f x 的情况如下-------------------------------------------------9分 所以函数()f x 的单调增区间为π(,)2a ,单调减区间为π(0,)2和(,π)a ②当πa ≥时,(),'()f x f x 的情况如下------------------------------------------------13分 所以函数()f x 的单调增区间为π(,π)2,单调减区间为π(0,)2. 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)1x y a a +=>.-------------------------------1分 由e =,可得222112a e a -==,-----------------------------------------------------2分 解得22a =, ----------------------------------------------3分所以椭圆的标准方程为22121x y +=. ------------------------------------------4分 (Ⅱ)法一:设00(,),C x y 且00x ≠,则00(,)D x y -. ----------------------------------------5分 因为(0,1),(0,1)A B -, 所以直线AC 的方程为0011y y x x -=+. ----------------------------------------6分 令0y =,得001M x x y -=-,所以00(,0)1x M y --. ------------------------------------7分 同理直线BD 的方程为0011y y x x +=--,求得00(,0)1x N y -+.-----------------------8分0000(,1),(,1),11x x AM AN y y -=-=--+ -----------------------------------------9分所以AM AN ⋅=202011x y -+-, --------------------------------------10分由00(,)C x y 在椭圆G :2212x y +=上,所以22002(1)x y =-,-------------------11分 所以10AM AN ⋅=-≠, -----------------------------13分 所以90MAN ∠≠,所以,以线段MN 为直径的圆不过点A .------------------------------14分 法二:因为,C D 关于y 轴对称,且B 在y 轴上所以CBA DBA ∠=∠. ------------------------------------------5分 因为N 在x 轴上,又(0,1),(0,1)A B -关于x 轴对称所以NAB NBA CBA ∠=∠=∠, ------------------------------------------6分 所以//BC AN , -------------------------------------------7分 所以180NAC ACB ∠=-∠, ------------------------------------------8分 设00(,),C x y 且00x ≠,则22002(1)x y =-. ----------------------------------------9分 因为22200000003(,1)(,1)(1)02CA CB x y x y x y x ⋅=-+=--=>,----------------11分 所以90ACB ∠≠, -----------------------------------12分 所以90NAC ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆不过点A . -------------------------------14分 法三:设直线AC 的方程为1y kx =+,则1(,0)M k-, ---------------------------------5分22220,1,x y y kx ⎧+-=⎨=+⎩化简得到222(1)20x kx ++-=, 所以22(12)40k x kx ++=,所以12240,21kx x k -==+, -----------------------------6分所以22222421112121k k y kx k k k --+=+=+=++,所以222421(,)2121k k C k k --+++, ----------------------------7分 因为,C D 关于y 轴对称,所以222421(,)2121k k D k k -+++.----------------------------8分所以直线BD 的方程为22211211421k k y x k k -+++=-+,即112y x k =-.------------------10分 令0y =,得到2x k =,所以(2,0)N k . --------------------11分1(,1)(2,1)10AM AN k k⋅=--⋅-=-≠, ----------------------12分所以90MAN ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆恒过(0,2)和(0,2)-两点.--------------------------14分{法4 :转化为文科题做,考查向量AC AN ⋅的取值} 20.解:(Ⅰ)110d =,27d =,20142d =---------------------------3分 (Ⅱ)法一:①当2d =时,则(,,)(,1,2)a b c a a a =++所以1(,1,2)(1,2,)f a a a a a a ++=++,122d a a =+-=,由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次 小数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以,当2d =时,(1,2,3,)n d d n ==恒成立. ②当3d ≥时,则1(,,)(1,1,2)f a b c a b c =++-所以11(1)d b a b a c a d =+-+=-<-=或12(1)3d c a d =--+=- 所以总有1d d ≠.综上讨论,满足(1,2,3,)n d d n ==的d 的取值仅能是2.---------------------8分 法二:因为a b c <<,所以数组(,,)a b c 的极差2d c a =-≥所以1(,,)(1,1,2)f a b c a b c =++-,若2c -为最大数,则12(1)3d c a c a d =--+=--< 若121b c a +≥->+,则1(1)(1)d b a b a c a d =+-+=-<-= 若112b a c +>+≥-,则1(1)(2)3d b c b c =+--=-+, 当3b c d -+=时,可得32b c -+≥,即1b c +≥ 由b c <可得1b c +≤ 所以1b c +=将1c b =+代入3b c c a -+=-得1b a =+所以当(,,)(,1,2)a b c a a a =++时,2n d =(1,2,3,n =)由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次小 数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变.所以满足(1,2,3,)n d d n ==的d 的取值仅能是2. ---------------------8分 (Ⅲ)因为,,a b c 是以4为公比的正整数等比数列的三项,所以,,a b c 是形如4k m ⋅(其中*m ∈N )的数,又因为1114(31)3331k k k k k k k C C --=+=++++所以,,a b c 中每两个数的差都是3的倍数.所以(,,)a b c 的极差0d 是3的倍数.------------------------------------------------9分 法1:设(,,)(,,)i i i i f a b c a b c =,不妨设a b c <<,依据操作f 的规则,当在三元数组(,,)i f a b c (1,2,3,,i x =,x ∈N )中,总满足i c 是唯一最大数,i a 是最小数时,一定有2a x b x c x +<+<-,解得3c b x -<. 所以,当2,3,,13c b i -=-时,111(2)(1)3i i i i i id c a c a d ---=-=--+=-. 3322(,,)(,,)333c b a c b c b c b f a b c -+-++=,3c bd b a -=- 依据操作f 的规则,当在三元数组(,,)i f a b c (,1,,333c b c b c b i y ---=++,y ∈N )中,总满足i i c b =是最大数,i a 是最小数时,一定有32233a cbc b y y +-++<-,解得3b a y -<. 所以,当,1,,1333c b c b c a i ---=+-时,111(1)(2)3i i i i i id c a c a d ---=-=--+=-. 3(,,)(,,)333c a a b c a b c a b c f a b c -++++++=,30c a d -= 所以存在3c a n -=,满足(,,)n f a b c 的极差0nd =.--------------------------------13分 法2:设(,,)(,,)i i i i f a b c a b c =,则①当(,,)i i i a b c 中有唯一最大数时,不妨设i i i a b c ≤<,则1111,1,2i i i i i i a a b b c c +++=+=+=-,所以111111,3,3i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=--=---=--所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i b c +≤,则3i d ≥,1130i i i i c b c b ++-=--≥, 所以111i i i a b c +++≤≤所以11133i i i i i i d c a c a d +++=-=--=--------------------------------------------11分 ②当(,,)i i i a b c 中的最大数有两个时,不妨设i i i a b c <=,则 1112,1,1i i i i i i a a b b c c +++=+=-=-,所以1111113,3,i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=---=---=-, 所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i a b +≤,则3i d ≥,1130i i i i b a b a ++-=--≥ 所以11133i i i i i i d b a b a d +++=-=--=-.所以当3i d ≥时,数列{}i d 是公差为3的等差数列.------------------------------12分 当3i d =时,由上述分析可得10i d +=,此时1113i i i a b c a b c +++++=== 所以存在3d n =,满足(,,)n f a b c 的极差0n d =.----------------------------------13分。

2014线性规划汇编(Word)含答案

2014线性规划汇编(Word)含答案

2014线性规划汇编1.【2014年天津卷(理02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值为A.2B.3C.4D.52.【2014年广东卷(理03)】若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.53.【2014年全国新课标Ⅱ(理09)】设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 4.【2014年全国新课标Ⅰ(理09)】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P5.【2014年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1- (B )2或21 (C )2或1 (D )2或1-6.【2014年北京卷(理06)】若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.【2014年山东卷(理09)】已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )28.【2014年全国大纲卷(14)】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .9.【2014年福建卷(理11)】若变量 x ,y 满足约束条件,则z=3x+y 的最小值为 .10.【2014年湖南卷(理14)】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤,,4,k y y x x y ,且y x z +=2的最小值为6-,则=k ____.【11.【2014年浙江卷(理13)】当实数x 、y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.【答案】1、B 2、C 3、B 4、C 5、D 6、D 7、B11、8、_5___ 9、__1__ 10、2。

北京市大兴区2014年高三一模数学(理)试题及答案

北京市大兴区2014年高三一模数学(理)试题及答案

北京市大兴区2014年高三统一练习数学(理科)本试卷分两部分,第一部分(选择题)和第二部分(非选择题)共4页,共150分,考试时间120分钟。

考试结束,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,选出符合题目要求的一项。

(1)已知集合{}1,0,1A =-,{}10B x x =+>,那么AB 等于A. {}1,0,1-B. {}0,1C. (1,)-+∞D. [)1,-+∞ (2)复数1i1i+=- A. i - B. i C. 2i - D. 2i (3)在极坐标系中,点(1,0)到直线π()4θρ=∈R 的距离是 A. 12 B. 22C. 1D.2(4)将函数sin 2y x =的图像向左平移π6个单位后,所得图像的解析式是 A. πsin(2)3y x =+ B.πsin(2)3y x =- C. πsin(2)6y x =+ D.πsin(2)6y x =- (5)“0x >”是“12x x+≥”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件(6)不等式组06,023x y x y +⎧⎨-⎩≤2≤≤≤在坐标平面内表示的图形的面积等于 A. 95 B. 185 C. 365D.1855(7)某三棱锥的三视图如图所示,则其表面中,直角三角形的个数为 A. 1个 B. 2个 C. 3个 D. 4个(8)给出下列函数:①12()f x x =;②()2x f x =;③2()log f x x =;④()sin f x x =.则满足关系式1313()()()()2222f f f f ''>->的函数的序号是A. ①③B. ②④C. ①③④D. ②③④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)椭圆2214x y +=的离心率等于 . (10)11x dx -=⎰ . (11)在锐角ABC 中,3a =,4b =,33ABC S =,则角C =__.(12)当圆224xy 的圆心到直线1y kx =+的距离最大时,k = .(13)已知数列{}n a 满足121a a ==,22,1,,n n na n a a n +⎧=⎨+⎩为偶数为奇数,则56a a += ; 前2n 项和2n S = .(14)如图所示,点,A B 是圆O 上的两点,120AOB ∠=,点D 是圆周上异于A ,B 的任意一点,线段OD 与线段AB 交于点C .若OC mOA nOB =+,则m n += ;若OD OA OB μλ=+,则μλ+的取值范围是 .三、解答题共6小题,共80分。

2014年北京市西城区高三二模数学(理)试卷Word版带解析

2014年北京市西城区高三二模数学(理)试卷Word版带解析

北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A = ,则实数a 的取值范围是( ) (A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞解析:{|20}{|2}A x x x x =-<=<,,A B A A B =⊆ ,所以满足2a ≥,所以答案选择D. 知识点;集合与常用逻辑用语--------集合的运算 难度系数:22.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:22=(12i)14434z i i i +=++=-+,所以复数对应的点(-3,4)点在第二象限。

知识点; 推理与证明、数系的扩充与复数--------复数---复数乘除和乘方 难度系数:23.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A )5(B )52(C )3(D )32解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,5bc a b c a e e a∴==+===,所以答案为C知识点:解析几何---------圆锥曲线--------双曲线 难度系数:34.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (B )2A ∈,且4A ∈(C ) 2A ∈,且25A ∈ (D )2A ∈,且17A ∈解析:有三视图可得,该四棱锥是底面边长为2的正方形,高为4的正四棱锥,所以每个侧棱长为24117+=。

2014年高考线性规划复习参考(答案)

2014年高考线性规划复习参考(答案)

线 性 规 划一:直线划分平面,同侧同号异侧异号:1、点(-2,t )在直线2x -3y+6=0的上方,则t 的取值范围是23t >2、已知点A (—2,4),B (4,2),且直线:2l y kx =-与线段AB 恒相交,则k 的取值范围是(][)31∞∞-,-,+)3、已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -25=0相交于A 、B 两点,且点C(m,0)在直线AB 的左上方,则m 的取值范围为 m<3【解析】因为圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -25=0相交,所以其相交弦方程为:x 2+y 2-6x -7-(x 2+y 2-6y -25)=0,即x -y -3=0,又因为点C(m,0)在直线AB 的左上方,所以m -0-3<0,解得m<3.二、线性规划常见题型:(一)由已知条件作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解、整数解。

4、(2011浙江卷理科5改编)设实数,x y 满足不等式组250270,0x y x y x +->⎧⎪+->⎨⎪≥≥⎩,y 0,若,x y 为整数,则34x y +取最小值的最优解是 (4,1)【解析】:作出可行域,5032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得,,x y 为整数,所以4,1x y ==,min 344116z =⨯+⨯=5、(2011年 广东卷理科5)已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若M(x ,y)为D 上动点,点A 的坐标为,1).则z OM OA =的最大值为 4 解:先确定目标函数(,)B z OM OA x y y y z ==⋅=+⇒=+⇒最优解为)另解:由题得不等式组对应的平面区域D 是如图所示的直角梯形OABC 。

||||cos 3||cos 3||z OM OA OM OA AOM OM AOM ON =⋅=⋅∠=∠=所以就是求||ON 的最大值,||ON 表示OMOA 在方向上的投影。

2014学年高考理科数学年北京卷

2014学年高考理科数学年北京卷

6.【答案】A
【解析】令
y
0 ,可得 x
5 ,即焦点坐标为 (-5,0) ,∴ c 5 ,∵双曲线
x2 a2

y2 b2
1(a
0,b 0) 的一条
渐近线平行于直线 l: y 2x 10 ,∴ b 2 ,∵ c2 a2 b2 ,∴ a2 5 , b2 20 , a
【提示】先将 f (x) 化简,注意到 x 0 ,即 f (x) 2lg | x | ,再讨论其单调性,从而确定其减区间。
【考点】复合函数的单调性。
13.【答案】2
【解析】解:∵ BC 3BE , DC DF ,
∴ BE 1 BC , DF 1 DC , AE AB BE AB 1 BC AB 1 AD ,
,在曲线
y

f
(x)
与直线
y
1
的交点中,若相邻交点距离的最小值为 π ,正好等于 f (x) 的周期的 1 倍,设函数 f (x) 的最小正周期为 T,
3
3
则 1 T π ,∴ T π ,故选:C. 33
【提示】根据
f
(x)

2sin x

6

,再根据曲线
y

f
(x) 与直线
输出 -4 。故答案为: -4 。
【提示】写出前二次循环,满足判断框条件,输出结果。
【考点】程序框图。 12.【答案】 (,0)
3/9
【解析】解: y lg x2 2lg | x | ,∴当 x 0 时, f (x) 2lg x 在 (0, ) 上是增函数;
当 x 0 时, f (x) 2lg(x) 在 (,0) 上是减函数。 ∴函数 f (x) lg x2 的单调递减区间是 (,0) 。故填 (,0) 。

2014年高三二模数学(理)北京市西城区试卷Word版带解析

2014年高三二模数学(理)北京市西城区试卷Word版带解析

北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ) (A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞解析:{|20}{|2}A x x x x =-<=<,,A B A A B =⊆,所以满足2a ≥,所以答案选择D.知识点;集合与常用逻辑用语--------集合的运算 难度系数:22.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:22=(12i)14434z i i i +=++=-+,所以复数对应的点(-3,4)点在第二象限。

知识点; 推理与证明、数系的扩充与复数--------复数---复数乘除和乘方 难度系数:23.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B (C(D解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,bc a b c a e e a∴==+===,所以答案为C知识点:解析几何---------圆锥曲线--------双曲线 难度系数:34.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (BA ,且4A ∈(C ) 2A ∈,且A (DAA解析:的正方形,高为4的正四棱锥,所以每个D 。

知识点:立体几何-------空间几何体----------空间几何体的三视图和直观图 难度系数:25.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:平面向量a ,b ,c 均为非零向量,()0⋅-=a b c ,可以得出=b c 或者()⊥-a b c ;所以为必要不充分条件。

2014年高考数学(北京)理

2014年高考数学(北京)理

2014·北京卷(理科数学)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2|20A x x x =-=,{}0,1,2B =,则A B =( )A :{0};B :{0,1};C :{0,2};D :{0,1,2}。

C ,交集2.下列函数中,在区间(0,)+∞上为增函数的是( )A:y B :2(1)y x =-;C :2x y -=;D :0.5log (1)y x =+。

A ,函数的单调性3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩,(θ为参数)的对称中心( )A :在直线2y x =上;B :在直线2y x =-上;C :在直线1y x =-上;D :在直线1y x =+上。

B ,参化普,圆的参数方程4.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( )A :7;B :42;C :210;D :840,条件分支,循环结构 5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A :充分而不必要条件;B :必要而不充分条件;C :充分必要条件;D :既不充分也不必要条件。

D ,等比通项,充要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A :2;B :2-;C :12;D :12-。

D ,线性规划,分类讨论,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内(4,0)A 点时z y x =-有最小值4-,将A 坐标代入20kx y -+=解得12k =-。

7.在空间直角坐标系Oxyz 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(1,1D ,若123,,S S S 分别是三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )A :123S S S ==;B :12S S =且31S S ≠;C :13S S =且32S S ≠;D :23S S =且13S S ≠。

2014年北京市海淀区高三二模数学(理)试题Word版带解析

2014年北京市海淀区高三二模数学(理)试题Word版带解析

海 淀 区 高 三 年 级 第 二 学 期 期 末 练 习数 学(理科) 2014.5一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.sin(150)- 的值为A.12-B.12C. 32-D. 32.解析:01sin(150)sin1502-=-=-知识点;三角函数--------三角函数-------诱导公式 难度系数:22.已知命题:p “0a ∀>,有1ae ≥成立”,则p ⌝为A.0a ∃≤,有1a e ≤成立B.0a ∃≤,有1ae ≥成立 C.0a ∃>,有1ae <成立 D.0a ∃>,有1ae ≤成立解析:命题的否命题,存在变为任意,任意变为存在,条件不变,结论变为对立。

知识点:集合与逻辑用语---------常用逻辑用语---------全称量词与存在性量词难度系数:13.执行如图所示的程序框图,若输出的S 为4,则输入的x 应为 A.2- B.16 C. 2-或8 D. 2-或16解析:该程序框图是一分段函数21,log ;4,16;1,2,16, 2.x x S x S x x S S x ->===≤===-知识点;算法与框图--------算法和程序框图 难度系数:24.在极坐标系中,圆2sin ρθ=的圆心到极轴的距离为 A.1 B.2 C. 3 D. 2 .解析:把极坐标方程转化为标准方程,两边同乘以ρ,222222sin ,2,(1)1x y y x y ρρθ=+=+-=圆心到极轴的距离为1. 知识点:解析几何---------极坐标方程-------简单曲线的极坐标方程难度系数:25.已知(,)P x y 是不等式组10300x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,表示的平面区域内的一点,(1,2)A ,O 为坐标原点,则OA OP的最大值是否开始输入1>xx S -=2 x S 2log =输出S结束A.2B.3C. 5D. 6解析:本题为不等式和向量的综合问题,做出平面区域2OA OP x y ∙=+,做出平面区域,把区域交点坐标带入,所以2OA OP x y ∙=+的最大值是6.知识点:不等式--------线性规划----------线性规划;平面向量---------数量积及其应用-------数量积的定义 难度系数:36.一观缆车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 的 长),巨轮的半径30m ,2AM BP ==m ,巨轮逆时针旋转且每12分钟转动一圈, 若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m , 则()h t = A.30sin()30122t ππ-+ B. 30sin()3062t ππ-+ C. 30sin()3262t ππ-+D. 30sin()62t ππ-解析:根据题意,函数的周期是2126ππ=,当t=0时,h (t )=0,所以答案B. 知识点:三角函数-----------三角函数-----------三角函数应用 难度系数:37.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是 A.(2,4) B.(,2)-∞ C. (2,)+∞ D. (4,)+∞ 解析:等差数列的单调性与公差d有关,d>0数列是增的,110181954,294,7272222a a a d a a d d d d +=+==+=-+=+>,所以答案C.知识点:数列-----------等差数列难度系数:38.已知点E ,F 分别是正方体1111ABCD A BC D -的棱AB ,1AA 的中点, 点M ,N 分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有 A.0条 B. 1条 C. 2条 D. 无数条.解析:直线11,D E C F 在平面上有投影,过F 一定能做出底面的平行面,此时面与11,D E C F 一定相交,所以这样的平面有无数多条。

北京市西城区2014年高三一模试卷 数学理

北京市西城区2014年高三一模试卷  数学理

北京市西城区2014年高三一模试卷数 学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()U A B = ð( ) (A )(,2]-∞ (B )(,1]-∞ (C )(2,)+∞ (D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( )(A )2 (B )12 (C )114 (D )114- 3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( )(A )2ρ= (B )2θπ= (C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x (D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4 (C )5 (D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( ) (A ) 4个 (B )6个 (C )10个 (D )14个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD = ,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:①当2a =时,函数()f x 的值域为[1,4]; ②(0,)a ∀∈+∞,都有(1)1f =成立; ③(0,)a ∀∈+∞,函数()f x 的最大值都等于4.其中所有正确结论的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos B 2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品. (Ⅰ)根据频率分布表中的数据,写出a ,b 的值; (Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按三个等级分......层抽样...所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望. 17.(本小题满分14分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 和侧面BCC 1B 1都是矩形,E 是CD 的中点,D 1E ⊥CD ,AB =2BC =2.(Ⅰ)求证:BC ⊥D 1E ; (Ⅱ)求证:B 1C ∥ 平面BED 1;(Ⅲ)若平面BCC 1B 1与平面BED 1所成的锐二面角的大小为π3,求线段D 1E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212xW y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.20.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<;(Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区2014年高三一模试卷参考答案及评分标准 高三数学(理科) 2014.41~4CBDC 5~8DAAC9.25-10.8 4x =- 11. 12.(3,5) 13.48 14.○2,○3 注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分) (Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==,…… 3分又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos 3=B ,(0,π)∈B ,所以 sin 3B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . …11分故△ABC 的面积1sin 2S bc A == ………………13分 16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. …… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验,所以033127(0)C (1)464P X ==⨯-=,1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. ………………13分(注:写出1(3,)4X B ,3311()C ()(1)44kk k P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥,又因为 1= CD CC C ,所以 BC ⊥平面11DCC D ,…………2分因为 1D E ⊂平面11DCC D ,所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . …………6分又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,所以 1//B C 平面1BED . ………………8分(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥,又因为1D E CD⊥,BC CD C = ,所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G .设平面1BED 法向量为(,,)x y z =n ,因为 1(1,1,0), (0,0,)EB ED a == ,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x =,得(1,1,0)=-n . ………………11分设平面11BCC B 法向量为111(,,)x y z =m ,因为 1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩ m m得 11110,0.x x y az =⎧⎨++=⎩ 令11z =,得(0,,1)a =-m . ………………12分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分 解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=,又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分 以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+, 令()ln 10h x x '=+=,解得1e=x . ……………… 9分 随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,且min 11()()e e==-h x h . ……… 11分 因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e [1].……………… 13分 19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==, ……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分 (Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412kmx x k -+=+, 21222212m x x k -=+. ……………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, ………………10分解得 2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =. 12|x x -= ……… 12分即 12||3||mx x k-==,解得 m = ……………… 13分 验证知(*)成立. 所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y y = ……………… 14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤,所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠. 所以 112b ≤, ……………… 6分 因为 514b b d =+,50b >,所以 51511422d b b b =-->-≥,即18d >-,综上,得108d -<<. ……7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q-++++=++++ .因为{}n c 为{}n a 的一个m 项子列,所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,K q K L L *=∈N ,且,K L 互质,2L ≥).当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++ 211111()()222≤-++++ m 112()2-=-m ,所以 112312()2m m c c c c -++++- ≤. ……………… 10分当1K ≠时, 因为 11111m m m m K c c qa L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a K M M N ,所以 211231(1)m m c c c c c q q q-++++=++++ 1232111111()----=++++ m m m m M K K L K L L.因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=- ≤. 综上, 1231122m m c c c c -++++-≤. ……………… 13分。

北京市高三数学一轮复习 试题选编16线性规划 理

北京市高三数学一轮复习 试题选编16线性规划 理

北京市2014届高三理科数学一轮复习试题选编16:线性规划一、选择题1 .(北京市西城区2013届高三上学期期末考试数学理科试题)已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是 ( )A .416(,)55B .4(,16)5C .(1,16)D .16(,4)5【答案】B解:原不等式组等价为2224a ba b <+⎧⎨+<⎩,做出不等式组对应的平面区域如图阴影部分,,22a b +表示区域内的动点(,)P a b 到原点距离的平方,由图象可知当P 在D 点时,22a b +最大,此时222416a b +==,原点到直线220a b +-=的距离最小,即22512d -==+,所以22245a b d +==,即22a b +的取值范围是224165a b <+<,选B .2 .(2013届北京丰台区一模理科)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2x ye +的最大值是 ( )A .3e B .2eC .1D .4e -【答案】B3 .(2013北京房山二模数学理科试题及答案)已知,M N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )A .34B 17C .32D .172【答案】B .4 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知2,,z x y x y=+满足2y xx y x m ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,则m 的值是( )A .14B .15C.16D .17【答案】A5 .(北京东城区普通校2013届高三12月联考理科数学)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数x y z 32-=的最大值为 ( )A .3-B .2C .4D .5【答案】C 【解析】做出约束条件对应的可行域如图,由23z y x =-得322z y x =+.做直线32y x =,平移直线得当直线322z y x =+经过点(0,2)B 时,直线322zy x =+的截距最大,此时z 最大,所以最大值234z y x =-=,选C .6 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知x ,y 满足不等式组0,0,,2 4.x y x y s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数y x z 23+=的最大值的变化范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【答案】D解:,当3s =时,对应的平面区域为阴影部分,由y x z 23+=得322z y x =-+,平移直线由图象可知当直线经过点C 时,直线322zy x =-+的截距最大,此时3,24x y y x +=⎧⎨+=⎩解得12x y =⎧⎨=⎩,即(1,2)C ,代入y x z 23+=得7z =。

2014北京顺义高考二模数学理答案及解析word

2014北京顺义高考二模数学理答案及解析word

正视图俯视图左视图北京市顺义区2014届高三4月第二次统练 数学(理科)试卷 2014.4第一部分(选择题 共40分)一、 选择题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.复数(1)i i -等于( ).A .1i +B . 1i -+C .1i --D .1i -2.已知2log 3a =,12log 3b =,123c -=,则( ). A .c b a >> B . c a b >> C .a b c >> D .a c b >>3.已知向量(1,1)a =,(1,1)b =-,若ka b -与a 垂直,则实数k =( ).A .1-B . 0C .1D .2 4.如图所示,一个空间几何体的正视图和左视图都是边长为2的正方形,俯视图是一个直径为2的圆,那么这个几何体的侧面积为( ). A .8π B . 4π C .2π D .π5.“0ϕ=”是“函数sin()y x ϕ=+为奇函数”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.执行如图所示的程序框图,若输入2x =,则输出y 的值是( ). A .2 B . 5 C . 11 D . 237.已知双曲线2221x y a-=(0a >),与抛物线24y x =的准线交于,A B 两点,O 为坐标原点,若AOB 的面积等于1,则a =( ).A .2B . 1C . 22D . 128.已知函数[]0,()(1)0,x x x f x f x x -≥⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,(如[ 1.1]2-=-,[]3π=,⋅⋅⋅).若直线(1)(0)y k x k =+>与函数()y f x =的图象恰有三个不同的交点,则实数k 的取值范围是( ). A .11[,)54 B .11[,)43 C . 11[,)32D .(0,1]二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上.9.在极坐标系中,点(2,)6π到极轴的距离是______.10.已知等比数列{}n a 的各项均为正数,若11a =,34a =,则2________;a = 此数列的其前n 项和__________.n S =11.如图,AB 是圆O 的直径,2AB =,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C .若DA DC =,则________;BDC ∠= __________.BC =12.对甲、乙、丙、丁4人分配4项不同的工作 A 、B 、C 、D ,每人一项,其中甲不能承担A 项工作,那么不同的工作分配方案有_________种.(用数字作答)13.在ABC 中,角,,A B C 所对的边分别为,,a b c . 若6a c ==,3sin 23B =,则c o s ______B =________.b =14.已知点(,)M a b 在由不等式0,0,2,x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(,)N a b a b -+所在的平面区域面积是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数()sin cos cos 2f x a x x x =-的图象过点(,0)8π.(Ⅰ)求实数a 的值;(Ⅱ)求函数()f x 的最小正周期及最大值.CABO D16.(本小题共13分)甲、乙两名运动员参加“选拔测试赛”,在相同的条件下,两人5次测试的成绩(单位:分)记录如下:甲86 77 92 72 78乙78 82 88 82 95(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从甲乙二人中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);(Ⅲ)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于80分的次数为X,求X的分布列和数学期望EX.17. (本小题共14分)如图:在四棱锥P ABCD -中,底面ABCD 是正方形,2PA AB ==,22PB PD ==,点E 在PD 上,且13PE PD =.(Ⅰ)求证:PA ⊥平面ABCD ; (Ⅱ)求二面角E AC D --的余弦值; (Ⅲ)证明:在线段BC 上存在点F ,使PF ∥平面EAC ,并求BF 的长.EPADBC18. (本小题共13分)已知函数2()xx ax af x e++=,其a 中为常数,2a ≤. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)是否存在实数a ,使()f x 的极大值为2?若存在,求出a 的值;若不存在,说明理由.19.(本小题共14分)已知椭圆E 的两个焦点分别为(1,0)-和(1,0),离心率22e =. (Ⅰ)求椭圆E 的方程;(Ⅱ)设直线:l y x m =+(0m ≠)与椭圆E 交于A 、B 两点,线段AB 的垂直平分线交x 轴于点T ,当m 变化时,求TAB 面积的最大值.20.(本小题共13分)已知集合{}123,,,n A a a a a =⋅⋅⋅,123(0,,3)n a a a a n N n +≤<<<⋅⋅⋅<∈≥具有性质P :对任意的,i j (1)i j n ≤≤≤,,j i j i a a a a +-至少有一个属于A . (Ⅰ)分别判断集合{}0,2,4M =与{}1,2,3N =是否具有性质P ; (Ⅱ)求证:①10a =;②1232n n na a a a a +++⋅⋅⋅+=; (Ⅲ)当3,4n =或5时集合A 中的数列{}n a 是否一定成等差数列?说明理由.北京市顺义区2014届高三4月第二次统练 高三数学(理科)试卷参考答案及评分标准一、选择题 题号 1 2 3 4 5 6 7 8 答案ADBBADCB二、填空题(本大题共6个小题,每小题5分,共30分)其它答案参考给分 9.1;10.2, 21n -;11. 030, 1;12.18;13.1,223;14. 4 1.答案:A 【解析】考查复数的概念与运算,i(1-i)=i-i 2=1+i2.答案:D 【解析】考查对数、幂的有关运算及转化思想.a=log 23>log 22=1,b=1122log 3log 10<=,1020331c -<=<=,所以a c b >>3.答案:B 【解析】考查向量的运算.由()110ka b a k k -=++-=r r rg ,得:k=04.答案:B 【解析】考查空间几何体的三视图及侧面积的计算.有三视图知该几何体是一个圆柱底面圆的半径为1,该柱体的高是2,所以侧面积是2πr 2h=4π5.答案:A 【解析】考查三角函数的奇偶性.若0ϕ=则y=sin(x+φ)=sinx 是一个奇函数,若y=sin(x+φ)是一个奇函数,则φ=k π,故答案选A.6.答案:D 【解析】考查程序框图的应用.当输入x=2时,执行了3次循环体y=2x+1分别为5,11,23;所以最后输出y 的值是237.答案:C 【解析】考查抛物线的方程和双曲线的方程.抛物线的准线方程为x=-1,设A 点坐标为y A ,根据△OAB 的面积等于1知1121,2A A y y ⨯⨯==所以|y A |=1,将双曲线方程与抛物线准线方程联立得:222222111=-1,=-11=1x y x a a y a=-⎧⎪=⎨-=⎪⎩2A ,解得:即y ,解得:a 1 8.答案:B 【解析】考查函数的周期性质,以及两个函数间的关系.有题意知f(x)是一个周期函数,周期是1,值域为(0,1],把x=2,代入y=k(x+1)得y=3k ,把x=3,代入y=k(x+1)得y=4k ,由题意3111<4143k k k <⎧≤⎨≥⎩,解得 9.答案:1【解析】考查极坐标方程.=2sin =16y π10.答案:2 , 2n -1解析:考查等比数列的通项公式及等比数列的求和公式.13211-2=1,=4=2,a =a q=2==2-11-2n na a q n 由解得公比所以;s 11.答案:30°,1【解析】考查切割线定理及勾股定理.设DC=DA=x ,BD=BC=y ,根据切割线定理和勾股定理得:222(2)x=34=1x y y x y y ⎧⎧=+⎪⎨⎨+==⎪⎩⎩,解得,即BC=1,又因为∠BDC=∠DAB,在RT △ABD 中AB=2,BD=1,所以∠BDC=30°12.答案:18【解析】考查计数原理排列组合的应用.利用分步乘法原理,先分配甲有133C =种方法,再分配其余三人有336A =,所以共有3×6=18种分配方案.13.答案:1,223【解析】考查二倍角公式、余弦定理.21cos =1-2sin cos =23B B B 由代入已知计算得,根据余弦定理可得:b 2=a 2+c 2-2accosB=8,所以22b =14.答案:4【解析】考查线性规划,可行域.设a-b=x ,a+b=y ,所以,22x y y xa b +-==代入已知不等式得02x+y 00,-0222x yy x y x y y +⎧≥⎪≥⎧⎪-⎪⎪≥≥⎨⎨⎪⎪≤⎩≤⎪⎪⎩化简得:在平面直角坐标系内画出其表示的平面区域,计算可得该区域的面积是4. 三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由已知函数()sin cos cos 2f x a x x x =-s i n 2c o s 22ax x =- ————3分 ()f x 的图象过点(,0)8π,∴sin cos 0244a ππ-=,————5分解得2a =————7分(Ⅱ)由(Ⅰ)得函数()sin 2cos 22sin(2)4f x x x x π=-=-———9分∴最小正周期22T ππ==,———11分 最大值为2.————13分 16.(本小题共13分) 解:(Ⅰ)茎叶图————3分(Ⅱ)由图可知,乙的平均成绩大于甲的平均成绩,且乙的方差小于甲的方差,且乙的最高分高于甲的最高分,因此应选派乙参赛更好. ————6分 (Ⅲ)记甲“高于80分”为事件A ,∴2()5P A =∴XB 2(3,)5,3322()()(1)55k kk P x k C -==-————8分X 的可能取值为0,1,2,3.分布列为: X 0123P27125 5412536125 81256257882287298乙甲————11分65EX =————13分 17.(本小题共14分)解:(Ⅰ)证明:2PA AB ==,22PB =,∴222PA AB PB += ∴PA AB ⊥,同理PA AD ⊥————2分又AB AD A =,∴PA ⊥平面ABCD .———4分(Ⅱ)以A 为原点,,,AB AD AP 分别为,,x y z 轴建立空间直角坐标系,则24(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(0,,)33A B C D P E ———6分 平面ACD 的法向量为(0,0,2)AP =,设平面EAC 的法向量为(,,)n x y z = ———7分24(2,2,0),(0,,)33AC AE ==,由00n A C n A E ⎧⋅=⎪⎨⋅=⎪⎩,∴020x y y z +=⎧⎨+=⎩,取221x y z =⎧⎪=-⎨⎪=⎩∴(2,2,1)n =-,———8分设二面角E AC D --的平面角为θ1cos 3||||n AP n AP θ⋅==⋅,∴二面角E AC D --的余弦值为13.———10分(Ⅲ)假设存在点F BC ∈,使PF ∥平面EAC , 令(2,,0)F a ,(02)a ≤≤ ———12分∴(2,,2)PF a =- 由PF ∥平面EAC ,∴0PF n ⋅=,解得1a = ∴存在点(2,1,0)F 为BC 的中点,即1BF =. ———14分18.(本小题共13分)解:(Ⅰ)1a =,21()xx x f x e++=,∴(0)1f =,———1分 22'2(21)(1)(1)()x x x x xx e e x x x x x x f x e e e+-++-+--===,∴'(0)0f =———3分 则曲线在(0,(0))f 处的切线方程为1y =.———5分(Ⅱ)2'2(2)()[(2)]()x x x xx a e e x ax a x x a f x e e+-++---== '()0f x =的根为0,2a -,———6分 2a ≤,∴20a -≥当2a =时,2'()0x x f x e-=≤,∴()f x 在(,)-∞+∞递减,无极值;——8分当2a <时,20a ->,()f x 在(,0),(2,)a -∞-+∞递减,在(0,2)a -递增;∴2(2)(4)a f a a e --=-为()f x 的极大值,———10分EPADBC令2()(4)a u a a e -=-,(2)a <,'2()(3)0a u a a e -=-> ∴()u a 在(,2)a ∈-∞上递增,∴()(2)2u a u <=,∴不存在实数a ,使()f x 的极大值为2.———13分19.(本小题共14分)解:(Ⅰ)由已知椭圆的焦点在x 轴上,1c =,22c a =, ∴2a =,1b =,———2分∴椭圆E 的方程为2212x y +=———4分 (Ⅱ)2212y x m x y =+⎧⎪⎨+=⎪⎩,消去y 得2234220x mx m ++-= 直线l 与椭圆有两个交点,∴0>,可得23m <(*)———6分 设11(,)A x y ,22(,)B x y ∴1243m x x +=-,212223m x x -=,弦长222||623AB m =-,———8分 AB 中点2(,)33m m M -, 设(,0)T x ,∴1AB MT k k ⋅=-,∴31123mm x ⋅=---, ∴3m x =-∴(,0)3m T -, 2||||3m TM =———11分 ∴222212239||||(62)2()29922S AB MT m m m ==-=--+ 23m <,∴232m =时,max 23S =,——14分 (或:2222122(62)2||||(62)2992m m S AB MT m m -⋅==-= 222622()2232292932m m -+≤=⋅=. ""=当且仅当232m =时成立,max 23S =.(用其它解法相应给分) 20.(本小题共13分)解:(Ⅰ)202,422,404,000,220,440,-=-=-=-=-=-=∴集合M 具有性质P , 336A +=∉,330A -=∉,∴集合N 不具有性质P .———3分(Ⅱ)由已知120n a a a ≤<<⋅⋅⋅<,∴2n n n a a a A +=∉, 则0n n a a A -=∈,仍由120n a a a ≤<<⋅⋅⋅<知10a =;———5分 ∴1210n n n n n n n a a a a a a a a --=-<-<-<⋅⋅⋅<- ,n n i n a a a -+>(1,2,32)i n =⋅⋅⋅-,∴n n i a a A --∈, ∴1211,,n n n n n n a a a a a a a a a -=-=-⋅⋅⋅=-———6分 将上述各式两边相加得12312()n n n a a a a na a a a +++⋅⋅⋅=-++⋅⋅⋅+ ∴1232()n n a a a a na +++⋅⋅⋅=,即1232n n n a a a a a +++⋅⋅⋅=;———8分 (Ⅲ)当3n =时,集合A 中的数列123,,a a a 一定是等差数列. 由(Ⅱ)知10a =,且1230a a a =<<,∴323a a a A +>∉ 故32a a A -∈,而这里323a a a -≠,反之若不然210a a == 这与集合A 中元素互异矛盾,∴只能322a a a -=,即2333120a a a a a ==+=+ ∴123,,a a a 成等差数列. ———9分当4n =时,集合A 中的元素1234,,,a a a a 不一定是等差数列. 如{}0,1,2,3A =,A 中元素成等差数列,又如{}0,2,3,5A =,A 中元素不成等差数列;———11分 当5时,集合A 中的元素12345,,,,a a a a a 一定成等差数列 证明:155545352510a a a a a a a a a a a ==-<-<-<-<- 令12540,a a a a ==-①353a a a =-②②-①有4332a a a a -=-,且由①245a a a +=43425a a a a a +>+=,∴43a a A +∉ ∴43a a A -∈ ∴1433230a a a a a a =<-=-<,∴4332221a a a a a a a -=-==- 又254a a a =-,∴5443322210a a a a a a a a a -=-=-=-=- ∴12345,,,,a a a a a 成等差数列. ———13分。

北京市高三数学一轮复习 试题选编16线性规划 理

北京市高三数学一轮复习 试题选编16线性规划 理

北京市2014届高三理科数学一轮复习试题选编16:线性规划一、选择题1 .(北京市西城区2013届高三上学期期末考试数学理科试题)已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是 ( )A .416(,)55B .4(,16)5C .(1,16)D .16(,4)5【答案】B解:原不等式组等价为2224a ba b <+⎧⎨+<⎩,做出不等式组对应的平面区域如图阴影部分,,22a b +表示区域内的动点(,)P a b 到原点距离的平方,由图象可知当P 在D 点时,22a b +最大,此时222416a b +==,原点到直线220a b +-=的距离最小,即d ==,所以22245a b d +==,即22a b +的取值范围是224165a b <+<,选B .2 .(2013届北京丰台区一模理科)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2x ye +的最大值是 ( )A .3e B .2eC .1D .4e -【答案】B3 .(2013北京房山二模数学理科试题及答案)已知,M N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )A.BC. D .172【答案】B .4 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知2,,z x y x y=+满足2y xx y x m ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,则m 的值是( )A .14B .15C .16D .17【答案】A5 .(北京东城区普通校2013届高三12月联考理科数学)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数x y z 32-=的最大值为 ( )A .3-B .2C .4D .5【答案】C 【解析】做出约束条件对应的可行域如图,由23z y x =-得322zy x =+.做直线32y x =,平移直线得当直线322z y x =+经过点(0,2)B 时,直线322zy x =+的截距最大,此时z 最大,所以最大值234z y x =-=,选C .6 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知x ,y 满足不等式组0,0,,2 4.x y x y s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数y x z 23+=的最大值的变化范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【答案】D解:,当3s =时,对应的平面区域为阴影部分,由y x z 23+=得322z y x =-+,平移直线由图象可知当直线经过点C 时,直线322zy x =-+的截距最大,此时3,24x y y x +=⎧⎨+=⎩解得12x y =⎧⎨=⎩,即(1,2)C ,代入y x z 23+=得7z =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年北京模拟真题--线性规划(理)
1(2013东城期末3-6)已知x ,y 满足不等式组0,0,
,2 4.
x y x y s y x ≥⎧⎪≥⎪⎨
+≤⎪⎪+≤⎩当35s ≤≤时,目标函数y x z 23+=的最大值的变化范围是( )
(A )[6,15]
(B )[7,15] (C )[6,8]
(D )[7,8]
2(2013丰台一模16-4).已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩
,则2x y
e +的最大值是( )
(A) 3
e (B) 2
e (C) 1 (D) 4
e -
3(2013顺义二模20-6).设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+14,42,22y x y x y x 则y
x -32的取值范围是( )
A.⎥⎦⎤
⎢⎣
⎡21,42 B.⎥⎦

⎢⎣⎡64,21 C.⎥⎦

⎢⎣⎡64,42 D.⎥⎦


⎣⎡22,641 4(2013丰台期末5-10).已知直线y x b =+与平面区域||2,
:||2x C y ≤⎧⎨≤⎩
的边界交于A 、B 两
点,若||22AB >,则b 的取值范围是 . 5(2013房山期末7). 已知函数ln ,0,
()1,0,
x x f x x x >⎧=⎨
--≤⎩D 是由x 轴和曲线()y f x =及该
曲线在点(1,0)处的切线所围成的封闭区域,则3z x y =-在D 上的最大值为( ) A. 4 B. 3 C. D. 1-
6(2013房山二模5).已知,M N 是不等式组1,1,10,6
x y x y x y ≥⎧⎪≥⎪
⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同
的点,则||MN 的最大值是( ) A.
34
2
B. 17
C. 32
D.
172
7(2013海淀期末1-13). 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪
+≤⎨⎪≥+⎩
表示的平面区域内,
若点(,)P x y 到直线1y kx =-的最大距离为22,则___.k =
8(2013海淀一模8-4).不等式组1,40,0x x y kx y ≥⎧⎪
+-≤⎨⎪-≤⎩
表示面积为1的直角三角形区域,则k 的
值为( )
A.2- B. 1- C. 0 D.1
9 (2013西城期末2-6).已知,a b 是正数,且满足224a b <+<.那么2
2
a b +的取值范围 是( ) (A )416
(,
)55
(B )4(,16)5
(C )(1,16) (D )16(
,4)5
10 (2013朝阳期末4-11).若关于x ,y 的不等式组0, , 10x y x kx y ⎧⎪
⎨⎪-+⎩
………(k 是常数)所表示的
平面区域的边界是一个直角三角形,则k = .
11(2013顺义一模7).设不等式组⎪⎩

⎨⎧≥-≥-≤+01,0,4x x y y x 表示的平面区域为D .若圆
()()22
2
11:r y x C =+++ ()0>r 不经过区域D 上的点,则r 的取值范围是( )
A.[]52,22
B.(]23,22
C.(]52
,23
D.()()
+∞⋃,52
22,0
12(2013石景山期末6-9). 已知不等式组,,,y x y x x a ≤⎧⎪
≥-⎨⎪≤⎩
表示的平面区域S 的面积为4,则=a
;若点S y x P ∈),(,则y x z +=2的最大值为 .。

相关文档
最新文档