26.3-4二次函数的图像

合集下载

二次函数的图像及性质

二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向

上海教育版数学九上26.3《二次函数y=ax2+bx+c的图像》(第4课时)ppt课件

上海教育版数学九上26.3《二次函数y=ax2+bx+c的图像》(第4课时)ppt课件
⑶ a,b决定对称轴的位置: b 抛物线对称轴是直线x =
2a
a,b同号,对称轴在y轴左侧; b=0,对称轴是y轴; a,b异号,对称轴在y轴右侧
6


1、已知函数y = ax2 +bx +c的图象如下图所示, 根据图象信息你能得到关于系数 a , b , c 的一 些什么结论?
y
-1
.
.
1
x
y
x o D -3
y
x
-3
9


开口方向
当a > 0时,抛物线开口向上 当a < 0时,抛物线开口向下 直线
b 4ac b 2 ( , ) 2a 4a
对称轴
顶点坐标
x =
b 2a
开口向上,顶点是最低点 开口向下,顶点是最高点
a>0,开口向上,a<0,开口向下 c<0,图象与y轴交点在x轴下方 c>0,图象与y轴交点在x轴上方 c =0,图象过原点 a,b同号,对称轴在y轴左侧; b=0,对称轴是y轴; a,b异号,对称轴在y轴右侧
4
思考与归纳
2 y ax bx c 的图象如图所示,则( 抛物线
)
A. a>0,b>0,c>0 C. a<0,b>0,c>0
B. a>0,b<0,c>0 D. a<0,b&
5
思考与归纳
⑴ a决定抛物线开口方向:a>0,开口向上 a<0,开口向下
⑵ c决定抛物线与y轴交点的位置: c<0,图象与y轴交点在x轴下方 c>0,图象与y轴交点在x轴上方 c =0,图象过原点
顶点坐标
a>0时,对称轴左侧部分是下降的,右侧部分是上升的 a<0时,对称轴左侧部分是上升的,右侧部分是下降的

二次函数的图像和性质PPT课件

二次函数的图像和性质PPT课件

-5
-6
y=-x2
-7
-8 -9
-10
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线y .
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y=x2
y
o
x
y=-x2的图像叫做抛物线y=-x2.
实际上,二次函数的图像 o
x
都是抛物线.
达式的二次项系数、一次项系数和常数项.
下列哪些函数是二次函数?哪些是一次函数?
(1) y=3x-l (2) y=2x² (3) y=x²+6 (4) y=-3x²-2x+4
(1)一次函数的图象是一条__直__线_, (2) 通常怎样画一个函数的图象? 列表、描点、连线 (3) 二次函数的图象是什么形 状呢?
1 -5 -4 -3 -2 -1 o 1
2
3
4
5
x
图像.
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
根据表中x,y的数值在 坐标平面中描点(x,y), 再用平滑曲线顺次连接 各点,就得到y=-x2的图
像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
二次函数的图像和性质PPT课 件
创设情境,导入新课
问题:
上面的图片都是二次函数的图片, 与我们生活密切相关
你们喜欢篮球吗?:投篮时,篮球运动的路 线是什么曲线?怎样计算篮球达到最高点 时的高度?
今天让我们来研究一下二次函数的图像 和性质吧
二次函数:
一般地,形如 y=ax2+bx+c(a、b、c为常数,a≠0)的函 数,叫做二次函数.其中,x是自变量,a,b,c分别是函数表

二次函数二次函数及其图象二次函数

二次函数二次函数及其图象二次函数

05
二次函数的求根公式 与判别式
求根公式与解的个数
求根公式
二次函数的一般形式为$ax^2+bx+c$,其求根公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$。
解的个数
根据判别式的值,二次函数有两个解、一个解或无解。判别式$b^2-4ac$大于等于0时,函数有两个不同的实数 解;等于0时,函数有一个解;小于0时,函数没有实数解。
与坐标轴的交点
与x轴交点
二次函数与x轴的交点坐标为(x1,0),(x2,0),其中x1,x2为方程ax^2+bx+c=0的两个根。当方程有实 数解时,与x轴的交点存在;当方程无实数解时,与x轴的交点不存在。
与y轴交点
二次函数与y轴的交点坐标为(0,c),其中c为常数项。
03
绘制二次函数的图象
直接绘制法
要点二
详细描述
通过观察二次函数的图像,可以发现其开口方向、对 称轴和顶点坐标,从而可以根据函数的图像特点,求 解与不等式相关的应用问题。例如,当函数的图像在x 轴上方时,可以得出对应的不等式成立;当函数的图 像在x轴下方时,可以得出对应的不等式不成立。
与方程相关的应用拓展
总结词
二次函数与方程的关系
详细描述
二次函数与方程之间存在密切的联系。通过观察二次函 数的图像,可以发现其开口方向、对称轴和顶点坐标, 从而可以用来求解一些与方程相关的应用问题。例如, 可以通过观察函数的图像来确定方程的根的个数和位置 ;也可以通过函数的图像来求解一些与方程相关的应用 拓展问题。
THANK YOU
•k
二次函数图像的顶点纵坐标
互为反函数的解析式
如果一个函数的反函数存在,那么函 数和它的反函数在同一直角坐标系中 的图像是关于直线 y = x 对称的。

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质二次函数是数学中的一个重要概念,它在中学数学中占据着重要的地位。

本文将从二次函数的图像和性质两个方面进行论述,旨在帮助中学生和他们的父母更好地理解和应用二次函数。

一、二次函数的图像二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不等于0。

我们先来讨论二次函数的图像。

1. 开口方向二次函数的图像可以是开口向上的,也可以是开口向下的。

当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

例如,考虑函数f(x) = x^2 - 2x + 1和g(x) = -x^2 + 2x + 1,它们的图像分别如下所示:(插入图片:开口向上和开口向下的二次函数图像)2. 对称轴和顶点二次函数的图像总是关于一个垂直于x轴的直线对称的。

这条直线称为二次函数的对称轴,它的方程可以通过求解二次函数的x坐标的平方项系数的相反数除以2倍的平方项系数得到。

对称轴上的点称为二次函数的顶点,它的横坐标和纵坐标可以通过代入对称轴的方程求解得到。

例如,考虑函数f(x) = -2x^2 + 4x - 1,它的对称轴方程为x = -b/2a = -4/(2*(-2))= 1。

代入对称轴方程可以求得顶点的坐标为(1, -3)。

3. 判别式和根的性质二次函数的判别式可以通过求解一元二次方程的判别式得到,它的表达式为Δ = b^2 - 4ac。

判别式的正负决定了二次函数的根的性质。

当判别式大于0时,二次函数有两个不相等的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根,但有两个共轭复根。

例如,考虑函数f(x) = x^2 - 2x + 1,它的判别式为Δ = (-2)^2 - 4*1*1 = 0。

由于判别式等于0,该二次函数有两个相等的实根x = 1。

二、二次函数的性质除了图像外,二次函数还有一些重要的性质,我们将在下面进行讨论。

1. 单调性和极值点二次函数的单调性是由二次函数的开口方向决定的。

二次函数的图像与性质ppt课件

二次函数的图像与性质ppt课件

函数的凹凸性
当a>0时,函数凹;当a<0时,函数凸。
函数的零点和方程
零点是方程y=0的解,方程求解可以用二次公式。
二次函数的应用
1
抛物线运动
抛物线可以描述物体在空中的轨迹,如
弹性系数
2
抛出物体的运动轨迹。
二次函数可以表示材料的弹性特性,如
描述力和变形的关系。
3
跳水成绩预测
通过二次函数建模,可以预测跳水运动
二次函数的图像与性质 ppt课件
通过本课件,你将深入了解二次函数的定义和表达式,并学习二次函数的图 像特征,如开口方向、对称轴、最值点和零点等。还将探究二次函数的性质, 如增减性、凹凸性、最值和零点方程。从抛物线运动到报价模型,掌握二次 函数的应用。最后,了解二次函数的变形与拓展,包括平移、缩放、翻转和 混合运用。同时,我们将解决常见错误和实际问题应用。
常见错误和解决方法
1 符号错误
检查符号的正确使用,特别是a的正负。
3 图像理解错误
注意开口方向、对称轴和最值点的判断。
2 方程解法错误
仔细检查求解方程是否正确,特别是二次方 程。
4 实际问题应用
将数学模型应用到实际问题时,需考虑问题 的实际情况并合理使用二次函数。
开口方向
当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
最值点
最值点是抛物线的最高点(当a>0)或最 低点(当a<0)。最值点的坐标为(-b/2a, f(-b/2a))。
二次函数的性质
函数的增减性
当a>0时,函数单调递增;当a<0时,函数单调 递减。
函数的最值
最值主要由最值点确定,注意开口方向和a的值 来确定最值。

二次函数的图像及性质ppt课件

二次函数的图像及性质ppt课件

同一数值时,这两个
7
函数的函数值之间有
6
什么关系?反映在图
象上,相应的两个点
5
之间的位置又有什么 4
关系?
3
y 2x2 1
(0,1)
2 y 2x2
1
24
函数y=2x2+1和y=2x2的图象有什么联系? 1、函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,
但顶点坐标不同,函数y= 2x2的图象的顶点坐标是(0,
6
y=2x²的图象有
5
什么关系?
4
y 2x2 1
3
(0,1)
2 y 2x2
1
23
x … –1.5 –1 –0.5 0 0.5 1 1.5 … y=2x2 … 4.5 2 0.5 0 0.5 2 4.5 … y=2x2+1 … 5.5 3 1.5 1 1.5 3 5.5 …
问题1:当自变量x取
y 1 (x 2)2 y 1 (x 2)2
2
2
观察三条抛物线的相互关系,并分别指
出它们的开口方向,对称轴及顶点.
6
y 1 x 22
2
5
4
y 1 x2 2
y 1 x 22
2
3
2
1
-8
-6
-4
-2 B
-1
2
4
6
37
在同一坐标系中作出下列二次函数:
y 1 x 2 y 1 (x 2)2
5
3、画函数图像的基本步骤是: 列表 、 描点 、 连线 。
6
7
1. y=ax2的函数图像
8
1、画函数y=x2的图像; 观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:

二次函数的图像及其性质

二次函数的图像及其性质

单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质在我们学习数学的过程中,二次函数是一个非常重要的概念。

它不仅在数学领域有着广泛的应用,在实际生活中,比如物理、经济等方面也经常能看到它的身影。

今天,咱们就来好好聊聊二次函数的图像与性质。

二次函数的一般形式是 y = ax²+ bx + c(其中 a、b、c 是常数,且a ≠ 0)。

当 a > 0 时,函数图像开口向上;当 a < 0 时,函数图像开口向下。

这就好像一个碗,如果开口向上,就能往里装东西;开口向下,东西就容易掉出来。

先来说说二次函数图像的对称轴。

对称轴的方程是 x = b / 2a 。

这条对称轴把二次函数的图像分成了两个对称的部分,就像镜子里的反射一样。

比如说,对于函数 y = x² 2x + 1 ,其中 a = 1 ,b =-2 ,那么对称轴就是 x =(-2) /(2×1) = 1 。

接下来看看顶点。

顶点就是二次函数图像的最高点或者最低点。

当a > 0 时,顶点是图像的最低点;当 a < 0 时,顶点是图像的最高点。

顶点的坐标可以通过把对称轴的 x 值代入函数中求得。

还是以 y = x²2x + 1 为例,对称轴 x = 1 ,把 x = 1 代入函数,得到 y = 1² 2×1 +1 = 0 ,所以顶点坐标就是(1, 0) 。

再说说二次函数的截距。

当 x = 0 时,y = c ,这个 c 就是函数在y 轴上的截距。

比如函数 y = 2x²+ 3x 1 ,这里的 c =-1 ,也就是说函数图像与 y 轴的交点是(0, -1) 。

二次函数的图像还与判别式Δ = b² 4ac 有着密切的关系。

如果Δ> 0 ,函数图像与 x 轴有两个交点;如果Δ = 0 ,函数图像与 x 轴有一个交点;如果Δ < 0 ,函数图像与 x 轴没有交点。

比如说,对于函数 y = x² 2x 3 ,其中 a = 1 ,b =-2 ,c =-3 ,那么Δ =(-2)² 4×1×(-3) = 16 > 0 ,所以函数图像与 x 轴有两个交点。

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数是数学中一种重要的函数形式,其图像形状特殊且具有许多性质。

本文将介绍二次函数的图像特点以及与其相关的性质。

一、二次函数的标准形式二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数,且a ≠ 0。

为了便于研究,我们可以将二次函数表示为标准形式f(x) =a(x - h)² + k,其中(h, k)为顶点坐标。

二、二次函数的图像特点1. 对称轴:二次函数的对称轴是与顶点坐标垂直的直线。

对称轴方程为x = h,其中h为顶点横坐标。

2. 顶点:二次函数的顶点是图像的最高点或最低点,是二次函数的关键特征。

顶点坐标为(h, k)。

3. 开口方向:二次函数的开口方向由二次项系数a的正负决定。

若a > 0,则开口向上;若a < 0,则开口向下。

4. 正定或负定:二次函数的图像在开口方向上是否有最值,与二次项系数a的符号有关。

若a > 0,则二次函数为正定;若a < 0,则二次函数为负定。

5. 零点:二次函数的零点是函数与x轴的交点,即f(x) = 0的解。

零点个数最多为2个。

三、二次函数的性质1. 零点和因式分解:二次函数的零点可以通过因式分解得到。

对于一般二次函数的标准形式f(x) = ax² + bx + c,我们可以利用求根公式或配方法将其因式分解为f(x) = a(x - x₁)(x - x₂),其中x₁、x₂为零点。

2. 最值:二次函数开口方向上的最值即为顶点,若二次函数开口向上,顶点为最小值;若二次函数开口向下,顶点为最大值。

3. 对称性:二次函数的图像关于对称轴对称,即对于任意x点,若(x, y)在图像上,则(x, -y)也在图像上。

4. 范围:二次函数的范围与二次项系数a的正负相关。

若a > 0,则函数的范围为区间(k, +∞);若a < 0,则函数的范围为区间(-∞, k),其中k为顶点纵坐标。

二次函数的图像

二次函数的图像
二次函数的图像
汇报人:
二次函数图像的形状 二次函数图像的平移 二次函数图像的对称变换 二次函数图像的翻折 二次函数图像的交点 二次函数图像的综合应用
二次函数图像的形状
开口方向
向上开口:二次项系数大于0
垂直于x轴:二次项系数等于0
添加标题
添加标题
向下开口:二次项系数小于0
添加标题
添加标题
水平线:一次项系数等于0
抛物线与坐标轴交点的应 用
抛物线在实际问题中的建 模应用
在数学竞赛中的应用
二次函数图像的综合应用可以解决数学竞赛中的代数问题。 通过分析二次函数图像,可以解决几何问题。 利用二次函数图像的性质,可以解决数列问题。 二次函数图像的综合应用在数学竞赛中具有广泛的应用价值。
在高中数学中的重要性
二次函数图像是高中数学的重要知识点,是理解和掌握函数性质的关键。 通过二次函数图像的综合应用,可以解决各种实际问题,提高数学应用能力。 二次函数图像在高中数学中占有重要地位,是高考数学的必考内容之一。 掌握二次函数图像的综合应用,有助于提高学生的数学素养和思维能力。
变化规律:顶点不变,开口方 向相反,对称轴不变
举例:y=x^2沿x轴翻折后为 y=-x^2
应用:理解次函 数图像在y轴两侧 对称翻转
效果:改变开口 方向和顶点位置
公式:将二次函 数的一般形式 y=ax^2+bx+c 中的a替换为-a, 得到新的二次函 数
上平移和下平移对函数值的影响:上平移会使函数值增大,下平移会使函数值减小。
上平移和下平移的代数表示:向上平移a个单位,函数解析式变为y=f(x+a);向下平移 a个单位,函数解析式变为y=f(x-a)。
上平移和下平移的实际应用:在解决实际问题时,可以通过平移二次函数的图像来调整 参数,从而得到最优解。

26.3 实践与探索第2课时 二次函数与一元二次方程之间的关系 华师大版数学九年级下册 课件

26.3 实践与探索第2课时 二次函数与一元二次方程之间的关系 华师大版数学九年级下册 课件

2.二次函数y=ax2+bx+c(a、b、c为常数,a≠0)与x轴的交点情况是怎样 的?
答:当Δ=b2-4ac>0 时,有两个交点,即方程ax2+bx+c=0有两个不等实根; 当Δ=b2-4ac=0时,有唯一交点,即方程ax2+bx+c=0有两个相等实根; 当Δ=b2-4ac<0时,无交点,即方程ax2+bx+c=0无实根.
三 教学过程
1.探究新知 1.一次函数y=ax+b(a≠0)与一元一次方程、一元一次不等式有 何联系?
答:一元一次方程ax+b=0可以看成是当一次函数值等于0时,求相 应自变量的值,即直线y=ax+b(a≠0)与x轴交点的横坐标;一元一 次不等式ax+b>0或ax+b<0可以看成是当一次函数值大(小)于0 时,求自变量的取值范围.
2.例题精讲
4.巩固练习 完成教材课 后同步练习
5.课堂小结与反思
小结:二次函数y=ax2+bx+c的图象和横轴的交点的个数与一元二次方程的根 的个数之间的关系. 反思:进一步体会方程与函数之间互相转化的关系,能够用函数的观点看方 程.
26.3 实践与探索
第2课时 二次函数与一元二次方程 之间的关系
一 学习目标
1.理解二次函数的图象和横轴的交点的个数与一元二次方程的 根的个数之间的关系. 2.经历探索二次函数、一元二次方程、一元二次不等式之间的 关系,体会数形结合思想,培养学生观察能力.
二 重难点
重点:理解二次函数与一元二次方程的关系. 难点:结合二次函数图象与x轴交点坐标,求y>0或y<0时Байду номын сангаасx的取值范围.

二次函数的性质及其图象

二次函数的性质及其图象

象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题

4a 2b 4 36a 6b 0
,解得
a
1 2

b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<

最全二次函数概念的图像与性质(系统归纳)完整版.doc

最全二次函数概念的图像与性质(系统归纳)完整版.doc

二次函数的图像与性质抛物线y=ax+bx+c与坐标轴的交点:①抛物线与y轴的交点坐标为(0,c)②抛物线与x轴的交点坐标为(x1,,0) (x2,,0),其中x1,、 x2是方程ax2+bx+c=0的两个实数根。

抛物线与x轴的交点情况:(可由对应的一元二次方程ax2+bx+c=0的根的判别式判定)①△>0⇔抛物线与x轴有两个交点;②△=0⇔抛物线与x轴有一个交点;③△<0⇔抛物线与x轴没有交点。

抛物线y=ax2+bx+c中a,b,c的作用:(1)a决定抛物线形状及开口方向:①若|a|相等,则形状相同。

②a>0⇔开口向上;a<0⇔开口向下。

③ |a|越大,开口越小.(2)a和b共同决定抛物线对称轴的位置,由于抛物线y=ax2+bx+c的对称轴是直线x= -b/2a 故①若b=0⇔对称轴为y轴;②若a与b同号⇔对称轴在y轴左侧;③若a与b异号⇔对称轴在y轴右侧。

(3)c的大小决定抛物线y=ax2+bx+c与y轴交点的位置。

当x=0时,y=c ,∴抛物线y=ax2+bx+c与y轴有且只有一个交点(0,c)。

①c=0⇔抛物线经过原点;②c>0⇔抛物线与y轴交于正半轴;③c<0⇔抛物线与y轴交于负半轴。

(4)判断a+b+c的符号:可以看图象上的点的横坐标为1时,点的纵坐标为何值决定正负。

判断a-b+c的符号:可以看图象上的点的横坐标为-1时,点的纵坐标为何值决定正负。

利用待定系数法求二次函数的方法:①已知抛物线过三点,设一般式y=ax2+bx+c ②已知抛物线顶点(对称轴、最值)及一点,设顶点式y=a(x-h)2+k③已知抛物线与x轴的两个交点(抛物线与x轴交点的横坐标),设两根式y=a(x-x1)( x-x2) 其中x1 、x2是抛物线与x轴交点的横坐标。

赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点.(2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,, 且2t t -,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II )由(I )得,t m =,即0m >.将t m =代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,, 且2t t ,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-.∴当0m >且2209n m =-时,有2AP PB =t (秒)间的关系式为210S t t =+,若滑到坡底第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间的时间为2秒,则此人下滑的高度为( ) A.24米 B.12米C.D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式; (3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大? (说明:市场销售单价和种植成本单价的单位:元/500克.)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+.)图(1)图(2)天)图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >. (3)设纯收益单价为W 元,则W =销售单价-成本单价.故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593; ③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56. 综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++) (2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-<(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+. 23617BD ∴=-=(米).解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式. (2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围); (2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围); (3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令M N x =,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.B A D MF第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式; (2)如果企业同时对A B ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b=+⎧∴⎨=+⎩ 解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中. (1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=.B 图(1)图(2)l3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。

《二次函数的图像》课件

《二次函数的图像》课件
二次函数图像的基本形状是一个U形或倒U形的抛物线。它的开口方向取决于二次项系数 a 的正负。
U形抛物线
当二次项系数 a > 0 时,函数图像呈现为U形抛物线,开 口向上。
倒U形抛物线
当二次项系数 a < 0 时,函数图像呈现为倒U形抛物线, 开口向下。
二次函数图像的参数
通过改变二次函数的参数 a、b、c,可以调整图像的位置、形状和大小。
2
表Hale Waihona Puke 式和图像特点掌握二次函数的标准形式、顶点、对称轴等图像特点。
3
回顾知识点和技巧
复习重要知识点和解题技巧,巩固对二次函数的理解。
结束语
1 鼓励继续学习
鼓励学生继续学习数学知识,深入理解二次函数及其应用。
2 提供建议和资源
提供实用的学习建议和资源,帮助学生进一步提升数学能力。
3 感谢参与和学习
感谢学生对本次课程的参与和学习,祝愿他们在数学学习中取得更大的成就。
1
a 的影响
改变 a 的值将扩大或压缩抛物线的形状,同时改变开口方向。
2
b 的影响
改变 b 的值将使抛物线水平平移,改变对称轴的位置。
3
c 的影响
改变 c 的值将使抛物线垂直平移,改变顶点的位置。
练习与应用
通过绘制二次函数图像的练习题,帮助学生巩固对二次函数图像的理解。同时介绍二次函数在物 理学和经济学中的实际应用。
二次函数图像呈现为抛物线形状,具有顶点、对称轴和开口方向。它的图像可以是开口向上或开 口向下,取决于二次项系数 a 的正负。
顶点
抛物线的最高点或最低点,对应函数的最小值或最大值。
对称轴
抛物线的中心线,对称地分割抛物线。
开口方向

二次函数的图像和性质PPT课件

二次函数的图像和性质PPT课件
顶点形式
二次函数的顶点形式是f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
二次函数图像的性质
对称轴
二次函数的对称轴是x = -最大值。
开口方向
二次函数开口向上当且仅当a > 0,开口向下当且仅当a < 0。
二次函数的变换
导数
二次函数的导数是一条直线,表示了函数的变化率。
凹性质
二次函数的凹性质取决于a的值,a > 0时函数向上凹,a < 0时函数向下凹。
凸性质
二次函数的凸性质取决于a的值,a > 0时函数向上凸,a < 0时函数向下凸。
二次函数的非负和非正性质
1 非负性质
2 非正性质
当a > 0时,二次函数的图像位于x轴以上。
建筑
物理
二次函数的图像和性质可应用 于建筑设计,优化结构和形状。
P物理实验中,二次函数可以 用于描述运动曲线和力学模型。
总结和展望
通过本课程,我们深入了解了二次函数的图像和性质,掌握了解析和图像求 解的方法,并应用于实际领域。希望你喜欢这次学习!继续思考和探索,创 造性地应用二次函数。
1
平移
平移变换可通过改变顶点来实现,横向平移表示为f(x ± h),纵向平移表示为f(x) ± k。
2
缩放
缩放变换可通过改变a的值来实现,a > 1时函数变窄,0 < a < 1时函数变宽。
3
反转
反转变换可通过改变a的符号来实现,a > 0时函数朝上,a < 0时函数朝下。
二次函数的导数和凹凸性质
二次函数的图像和性质
欢迎来到二次函数的图像和性质课程!通过本课程,您将学习二次函数的定 义和表达形式,并探索其图像的性质和变换。让我们开始吧!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_ 月_ _日 星期__ 第__周 课 教 目 重 难 题 学 标 点 点 26.3-4 二次函数 y ax2 bx c 的图像 课 型 新授 教 时 1
1.掌握二次函数 y ax2 bx c 的图像特征,并会运用图像特征确定抛物线 的对称轴、顶点坐标和变化情况. 2.体会数形结合和化归的数学思想. 二次函数 y ax2 bx c 的图像特征及运用. 二次函数 y ax2 bx c 的图像特征及运用. 多媒体课件
抛 物 线 y 2x 6x 4 , 它 的 开 口 方 向 向 下 , 顶 点 坐 标 是
2

3 17 3 , ) ,对称轴是直线 x . 2 2 2
问 3:还可以用什么方法求得对称轴和顶点坐标? 解法二: 解
y 2x 2 6x 4
2 x 2 3 x 4
2 3 9 2 x 2 3 x 4 2 4
3 9 2 x 4 2 2 3 17 2 x 2 2
2
2
这个函数的图像是抛物线 y 2x 2 6x 4 ,它的开口方向向
对称轴在y轴的左边
对称轴在y轴的左边
a 0, b 0 2a

a 0,
a 0, b 0
b 0 2a
a 0, b 0
a、b同号 归纳:二次函数的对称轴如果在 y 轴的左边,那么 a、b 同号;二 次函数的对称轴如果在 y 轴的右边,那么 a、b 异号. 简称:“左同右异”
2
归纳理解抛物线的性 质
见它的变化情况如下: (1)a>0 时,抛物线在对称轴的左侧部分是下降的,在对称轴的 右侧部分是上升的; (2)a<0 时,抛物线在对称轴的左侧部分是上升的,在对称轴的 右侧部分是下降的.
观察归纳 问:由以上几道题目,二次函数的一般式 y ax2 bx c中二次项系数 a 和一次项系数 b 在什么情况下, 对称轴在 y 轴的左边或右边?
2
利 用 配 方 法 将
y ax2 bx c 化成
顶点式
y (ax 2 bx) c b a x2 x c a b b b2 a x 2 x ( )2 2 c a 2a 4a
2 b b2 a x 2 c 2a 4a
y ax2 bx c b 抛物线 y ax2 bx c ( a 0 )的对称轴是直线 x , ( a 0 )的图像特征 2a
顶点坐标是(
b 4ac b 2 , ). 当 a>0 时,抛物线开口向上, 2a 4a
顶点是抛物线的最低点;当 a<0 时,抛物线开口向下,顶点是抛 物线的最高点. ( 二 ) 例题讲解: 例 7:指出二次函数 y 2x 6x 4 图像的开口方向、对称轴
教具准备
教 教师活动
一、复习旧知:


程 学生活动
复习旧知
问 1:顶点式 y a( x m )2 k 的图像有什么特征? 对称轴:直线 x= -m; 顶点坐标: (-m,k). 开口方向: (1)当 a>0 时,抛物线开口向上,顶点是抛物线的最低点; (2)当 a<0 时,抛物线开口向下,顶点是抛物线的最高点. 问 2:用配方法化顶点式的步骤是什么? • 一括(括二次项、一次项) • 二提(提取二次项系数) • 三配(配一次项系数一半的平方) • 四合(合成完全平方形式) • 五简(化简常数项). 化成顶点式很容易地说出它的开口方向、对称轴和顶点坐标. 问 3: 对于二次函数 y ax2 bx c ,你能求出它的对称轴和 顶点坐标吗?如何求? 先将 y ax2 bx c 化成顶点式,再求出. 二、新课探索: (一)新课导入: 将 y ax bx c 化成顶点式
三、练习: P101/1-2 四、小结: 谈收获和注意点
a、b同号
完成练习
五、作业: 练习册:习题 26.3(4)
板书设计:
1.二次函数 y ax bx c 的图像特征
2
2. 例题解题格式
课后反思:
2
和顶点坐标,并画出这个函数的图像. 问 1:开口方向是什么? 问 2:如何求对称轴和顶点坐标? 解法一. 解:a=-2<0,b=-6,c=4
熟悉一般式的二次函 数的对称轴表达式和 顶点坐标

b 6 3 2a 2 2 2
2
4ac b 2 4 2 4 6 17 这个函数的图像是 4a 4 2 2
b b2 a x c 2a 4a b 4ac b 2 a( x )2 2a 4a
将 上 式 y a( x
2
b 2 4ac b 2 ) 2a 4a
和 y a( x m )2 k 作 比
较,它的对称轴和顶点坐标是什么? 抛物线 y ax2 bx c ( a 0 )的图像特征 : 思考并归纳抛物线
下,顶点坐标是(
3 17 3 , ) ,对称轴是直线 x . 2 2 2
画抛物线 y 2x 2 6x 4 时,可先确定顶点的坐标,再画出 它的对称轴, 列表时要注意选取一些特殊的点.如与 y 轴的交点 (0, 4) ,然后利用轴对称性取它的对称点(-3,4). 由对称性列表:
x
y 2x2 6x 4
„ „
3
4
5 2 13 2
3 2 17 2
1 2 13 2
0 „ 4 „
问 4:沿着 x 轴的正方向看,图像是上升还是下降的? 问 5:当 a>0 时的抛物线的变化情况是什么(如下图)? 归纳: 一般地,抛物线 y ax bx c , 沿着 x 轴的正方向看,可
相关文档
最新文档