初中数学最新-对顶角教案 精品
对顶角初中教案
对顶角初中教案课程目标:1. 理解对顶角的定义和性质;2. 能够识别和判断对顶角;3. 能够运用对顶角解决实际问题。
教学重点:1. 对顶角的定义和性质;2. 对顶角的识别和判断。
教学难点:1. 对顶角的性质的理解和应用;2. 解决实际问题时的思维转换。
教学准备:1. 教学课件或黑板;2. 几何图形工具;3. 练习题。
教学过程:一、导入(5分钟)1. 引入新课:介绍对顶角的定义和性质;2. 举例说明:展示一些几何图形,让学生观察并指出对顶角;3. 学生尝试:让学生自己画出两个交叉的直线,并标出对顶角。
二、新课讲解(15分钟)1. 讲解对顶角的定义:对顶角是指两条交叉直线上的两对相对角,它们的度数相等;2. 讲解对顶角的性质:对顶角相等,即它们的度数相等;3. 示例讲解:通过几何图形,解释对顶角的性质,并让学生进行观察和理解;4. 应用讲解:讲解如何运用对顶角解决实际问题,如在几何题中找到对顶角等。
三、课堂练习(15分钟)1. 练习题:给出一些几何图形,让学生找出对顶角,并计算它们的度数;2. 学生独立完成练习题,老师进行解答和讲解;3. 练习题:给出一些实际问题,让学生运用对顶角进行解决;4. 学生独立完成练习题,老师进行解答和讲解。
四、课堂小结(5分钟)1. 回顾本节课的内容:对顶角的定义和性质;2. 学生总结:让学生自己总结对顶角的性质和应用;3. 提问回答:老师提问,学生回答,巩固对顶角的理解。
五、作业布置(5分钟)1. 布置作业:让学生回家后做一些关于对顶角的练习题,巩固所学知识;2. 作业要求:认真完成,正确解答,如有疑惑可以请教家长或同学。
教学反思:本节课通过讲解和练习,让学生掌握了对顶角的定义和性质,并能够识别和判断对顶角。
在教学过程中,要注意让学生充分理解对顶角的性质,并能够运用对顶角解决实际问题。
同时,也要注重学生的课堂参与和思考,培养他们的几何思维和解决问题的能力。
初中数学对顶角的技巧教案
初中数学对顶角的技巧教案教学目标:1. 让学生理解对顶角的定义和性质;2. 培养学生运用对顶角解决实际问题的能力;3. 提高学生对几何图形的观察和分析能力。
教学内容:1. 对顶角的定义和性质;2. 对顶角的运用和解决实际问题。
教学过程:一、导入(5分钟)1. 利用图片或实物展示对顶角的实例,引导学生观察和思考;2. 提问:什么是对顶角?它们有什么特点?二、新课讲解(15分钟)1. 讲解对顶角的定义:在两个相交的直线之间,位于同一顶点的两个角互称为对顶角;2. 讲解对顶角的性质:对顶角相等;3. 通过示例和练习,让学生理解和掌握对顶角的性质。
三、课堂练习(15分钟)1. 出示练习题,让学生独立完成;2. 讲解练习题,引导学生运用对顶角解决实际问题;3. 学生互相交流解题思路和方法。
四、拓展与应用(15分钟)1. 出示拓展题目,让学生思考和讨论;2. 引导学生运用对顶角解决实际问题,如在建筑设计、道路规划等方面应用;3. 学生展示自己的解题成果,互相学习和借鉴。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结对顶角的定义、性质和运用;2. 引导学生反思自己在学习过程中的优点和不足,提出改进措施;3. 鼓励学生积极参与课堂讨论,提出问题和疑问。
教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生练习的正确率和解题思路;3. 学生对拓展应用的参与度和解决问题能力;4. 学生对课堂总结和反思的深度。
教学资源:1. 图片或实物展示对顶角的实例;2. 练习题和拓展题目;3. 几何画板或黑板等教学工具。
教学建议:1. 在导入环节,可以利用生活中的实例,如道路交叉口、建筑物等,引导学生观察和思考对顶角;2. 在新课讲解环节,可以通过示例和练习,让学生理解和掌握对顶角的性质;3. 在课堂练习环节,可以给出不同难度的练习题,让学生独立完成,提高解题能力;4. 在拓展与应用环节,可以引导学生运用对顶角解决实际问题,提高学生的应用能力;5. 在总结与反思环节,可以让学生回顾所学内容,反思自己的学习过程,提出问题和疑问。
七年级数学上册《余角补角对顶角》教案、教学设计
(3)利用合作学习法,组织学生进行小组讨论,互相交流解题思路,提高问题解决能力。
2.教学过程:
(1)导入:以生活中的实例,如剪刀、三角板等,引导学生观察余角、补角以及对顶角的实例,为新课的学习做好铺垫。
(三)情感态度与价值观
1.激发学生对几何图形的兴趣,培养良好的学习习惯和探究精神。
2.通过对余角、补角以及对顶角的学习,让学生体会几何图形中的对称美、和谐美,提高审美能力。
3.培养学生严谨、踏实的科学态度,学会用数学的眼光观察世界,用数学的思维分析问题,增强解决问题的自信心。
教学设计:
一、导入:
1.利用生活实例,如剪刀、三角板等,引导学生观察余角、补角以及对顶角的实例,激发学生学习兴趣。
2.教师引导学生回顾之前学习的角的分类、度量等知识,为新课的学习做好铺垫。
3.教师提出问题:“除了剪刀,生活中还有哪些地方存在余角、补角以及对顶角?”让学生举例说明,激发学生学习兴趣。
(二)讲授新知,500字
1.教师通过直观演示,让学生观察并发现余角、补角以及对顶角的性质。如:出示一个等腰直角三角形,让学生观察其中两锐角的关系,引导学生得出余角的性质。
3.尝试运用余角、补角以及对顶角的性质,解决以下问题:
(1)已知一个角的补角,求这个角的度数。
(2)已知一个角的余角,求这个角的度数。
(3)证明:如果一个三角形的两个角相等,那么这两个角的对边也相等。
4.阅读拓展资料,了解余角、补角以及对顶角在建筑、艺术等领域的应用,拓宽知识视野。
5.结合本节课所学,思考以下问题并撰写学习心得:
4.教学策略:
(1)针对学生的个体差异,实施分层教学,让每个学生都能在原有基础上得到提高。
2.1第1课时对顶角、补角和余角(教案)
一、教学内容
本节课选自教材第二章第一节,主要教学内容包括:
1.对顶角的定义及性质;
2.补角的定义及性质;
3.余角的定义及性质;
4.判断和证明对顶角、补角、余角;
5.运用对顶角、补角、余角解决实际问题。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过对顶角、补角和余角的识别与运用,深化对几何图形的认识;
3.重点难点解析:在讲授过程中,我会特别强调对顶角的识别和补角、余角的计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与对顶角、补角和余角相关的实际问题。
2.实验操张或使用量角器来演示对顶角相等和补角、余角的计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“对顶角、补角和余角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了对顶角、补角和余角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
青岛版七年级数学下册:8.4对顶角教学设计
为了巩固学生对本章节对顶角知识的掌握,提高他们的几何素养,特布置以下作业:
1.基础知识巩固:
-完成课本第8.4节后的练习题,包括填空题、选择题和解答题,重点加强对顶角的性质和定理的记忆。
-从生活中找到含有对顶角的实物或图片,并标出对顶角,说明对顶角在实际中的应用。
2.能力提升:
-设计一道综合性的几何题目,要求包含对顶角的知识点,并给出解题步骤。
1.教师出示一些图片,如剪刀、窗户、桥梁等,让学生观察这些图片中的共同特征,引出对顶角的概念。
2.学生通过观察,发现这些图片中都包含有一对对顶角,从而对对顶角产生直观的认识。
3.教师提出问题:“为什么这些图片中都会出现对顶角?对顶角有什么特殊性质?”引发学生的思考,为新课的学习做好铺垫。
(二)讲授新知
2.教学步骤:
(1)导入新课:通过展示生活中含有对顶角的实例,如剪刀、窗户等,引起学生对对顶角的关注,为新课的学习做好铺垫。
(2)探索新知:引导学生观察、分析实例中的对顶角,发现对顶角的性质,并通过实际操作验证这些性质。
(3)巩固练习:设计具有梯度性的练习题,让学生在解答过程中加深对对顶角知识的理解和运用。
在导入新课的基础上,教师开始讲授对顶角的性质和定理。
1.教师引导学生通过观察、思考和实际操作,发现对顶角的性质,如对顶角相等、对顶角所在的直线平行等。
2.教师给出对顶角的定义,并用几何符号表示,让学生明确对顶角的含义。
3.讲解对顶角的相关定理,如对顶角之和等于180°,并给出证明过程。
4.结合实例,讲解对顶角在实际生活中的应用,如建筑设计、工艺品设计等。
青岛版七年级数学下册:8.4对顶角教学设计
一、教学目标
(一)知识与技能
《对顶角》参考教案
(二)探究新知:
1.问题导读:
自学课本16页前两个自然段,回答下列问题:
(1)什么是对顶角?对顶角满足哪些条件?图2
(2)两条直线相交形成几对对顶角?请在图2中找出来。
(3)在课本16页图8-18的风车照片中你能发现对顶角的形象吗?你还能举出
生活中对顶角的例子吗?如:剪刀、推拉式防盗门、伸缩式衣架、加号、乘
号等。(让学生畅所欲言,多举一些实例,加深对对顶角的理解)
(4)如下图,∠l和∠2是对顶角吗?为什么?
个性化设计:
设计意图:
本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨
认对顶角的要领,同时又用反例印证概念,使学生加深印象。
四、教与学过程:
(一)情境导入:
同学们,你知道同一平面上两条直线之间存在着哪些不同的位置关系吗?你能把它们之间存在的位置关系画出来吗?让两名学生板演,其他学生在练习
本上画出两条直线平行和相交的图形。
图1
在两直线相交的图形中共形成了几个角?这些角叫什么角?它们之间有
没有特殊的关系?今天这节课我们就来一起研究这一问题——出示课题。
所以∠BOD=∠AOC=70°
因为OE平分∠BOD
所以∠BOE=∠EOD=∠BOD= ×70°=35°
变式:若给出的是∠BOE=30°,其他条件不变,你能求出图中哪些角的度数?
设计意图:让学生掌握分析问题的方法,逐步熟悉并学会书写格式,并能进行相应的变式训练,提高学生的解题能力。
个性化设计:
(三)学以致用:
先让学生自学,独立完成以上题目后,小组再相互讨论答案,最后教师选
派小组代表统一答案,讲解疑难。
七年级数学下册《对顶角余角和补角》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.利用生活实例导入:教师展示一些生活中常见的物品,如剪刀、窗户、围棋等,引导学生观察这些物品中的角的特点,提出问题:“这些角有什么共同之处?”让学生思考并回答。
2.通过学生回答,教师总结出对顶角的概念:在两条交叉的直线上,有一对相互对立的角,它们的度数相等,这样的角称为对顶角。
3.进一步提问:“除了对顶角,我们在之前的几何学习中还学过哪些特殊的角?”引导学生回顾余角和补角的概念,为新课的学习做好铺垫。
(二)讲授新知,500字
1.教师通过PPT或黑板,呈现对顶角、余角和补角的定义,让学生明确它们的含义。作业 Nhomakorabea置要求:
1.作业要求学生独立完成,遇到问题时可以与同学讨论,但不能直接抄袭他人答案。
2.作业完成后,要认真检查,确保解答过程和答案的正确性。
3.家长要关注孩子的作业完成情况,适时给予指导和鼓励,培养孩子良好的学习习惯。
4.教师将及时批改作业,给予反馈,针对共性问题进行讲解,帮助学生查漏补缺。
5.总结反馈,查漏补缺:在教学过程中,教师应及时总结学生的掌握情况,针对学生的薄弱环节进行有针对性的辅导,帮助学生查漏补缺。
6.课后作业,巩固提高:布置适量的课后作业,旨在巩固所学知识,提高学生的应用能力。同时,鼓励学生在生活中发现对顶角、余角和补角的实例,将数学知识融入生活。
7.关注个体差异,实施分层教学:针对学生的不同层次,制定合适的教学计划,使每个学生都能在原有基础上得到提高。
5.小组合作题:以小组为单位,共同完成一道综合性的几何题目,要求学生运用对顶角、余角和补角的性质进行解答。此题旨在培养学生的团队协作能力和沟通能力。
七年级数学下册《对顶角》教案、教学设计
(一)教学重点
1.对顶角的定义及其性质的理解与应用。
2.能够正确识别并运用对顶角解决实际问题。
3.掌握对顶角相等的证明过程,并能运用到几何证明中。
(二)教学难点
1.对顶角概念的理解,特别是对于空间想象力较弱的学生,如何让他们直观地理解对顶角。
2.对顶角性质的推导和证明,如何引导学生通过逻辑推理掌握证明方法。
针对教学难点,我还设想以下具体措施:
1.对于空间想象力较弱的学生,可以通过画图、制作模型等方法,帮助他们直观地理解对顶角。
2.在对顶角性质的推导和证明过程中,教师可以逐步引导学生运用已知角度知识,进行逻辑推理,掌握证明方法。
3.结合实际问题,教师可以设计一些具有挑战性的题目,引导学生运用对顶角知识进行分析、解答,提高解题能力。
七年级数学下册《对顶角》教案、教学设计
一、教学目标
(一)知识与技能
1.理解对顶角的定义,知道对顶角是在两条交叉直线上,位于交叉点两侧且不邻补的两组角。
2.能够识别并正确标记对顶角,运用对顶角的性质解决实际问题。
3.掌握对顶角相等的性质,理解其证明过程,并能够运用到几何证明题中。
4.学会运用对顶角性质进行角度计算,提高解决问题的能力。
3.在实际问题中,如何运用对顶角的知识进行问题分析,提高解题能力。
(三)教学设想
为了有效突破教学重难点,我设想以下教学策略:
1.引入生活实例,激发学生学习兴趣。通过展示实际生活中的对顶角例子,如交叉路口的红绿灯、桥梁结构等,让学生感受到数学与生活的紧密联系,激发学习兴趣。
2.采用直观演示法,帮助学生建立空间观念。利用几何画板、实物模型等教学工具,直观展示对顶角的特点,让学生在观察、操作中理解对顶角的概念。
七年级数学下册《对顶角及其性质》教案、教学设计
1.让学生回顾本节课所学内容,分享学习收获和感悟。
2.教师对本节课的重点知识进行梳理和总结,强调对顶角的性质和运用。
3.布置课后作业,要求学生在课后进一步巩固所学知识。
4.鼓励学生在生活中发现对顶角的应用,将数学知识与实际生活相结合,提高数学素养。
五、作业布置
为了巩固学生对对顶角及其性质的理解,培养他们运用知识解决实际问题的能力,特布置以下作业:
(二)过程与方法
1.通过引导学生观察、思考、实践,使他们在自主探究和合作交流的过程中,理解对顶角的定义和性质。
2.引导学生运用比较、分析、归纳等方法,从特殊到一般,从具体到抽象,逐步掌握对顶角的知识。
3.创设生活情境,让学生在实际问题中发现对顶角的应用,提高学生将数学知识应用于实际生活的能力。
(三)情感态度与价值观
1.必做题:
-课本习题:完成课本第chapter页的习题1、2、3。
-生活观察:观察生活中至少三个应用了对顶角的场景,并简要说明其对顶角的特点和作用。
2.选做题:
-提高题:根据课堂学习,尝试完成以下几何证明题:
a.已知:如图,AB ∥ CD,BE ⊥ AB,CF ⊥ CD,垂足分别为E、F。求证:∠AEB = ∠CFD。
4.举例说明对顶角在实际问题中的应用,如建筑物的对称美、几何图形的绘制等。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
a.你能找出生活中哪些地方用到了对顶角的性质?
b.如何利用对顶角的性质解决几何问题?
c.对顶角与其它类型的角有什么区别和联系?
2.各小组汇报讨论成果,其他小组进行评价和补充。
-通过课后访谈、学习日志等方式,跟踪学生的学习进度,确保每位学生都能跟上教学节奏。
青岛版七年级数学下册:8.4对顶角优秀教学案例
3.通过对问题的引导和解答,使学生理解对顶角的性质,并能运用其解决实际问题。
(三)小组合作
1.将学生分成若干小组,每组选定一个研究主题,对顶角的性质进行深入探讨。
2.鼓励学生相互交流、合作,共同完成研究任务,提高学生的合作能力和沟通能力。
4.通过对顶角的学习,培养学生勇于面对困难、积极进取的精神品质。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的对顶角实例,如建筑物、道路交叉口等,引导学生关注对顶角的存在。
2.设计有趣的数学游戏,让学生在游戏中体验对顶角的概念,从而激发学生的学习兴趣。
3.创设问题情境,如在实际场景中给出一个图形,让学生找出其中的对顶角,培养学生的空间想象能力。
本节课的内容与实际生活联系紧密,对顶角的概念和性质在解决实际问题中有着广泛的应用。通过学习对顶角,学生可以培养观察能力、空间想象能力以及逻辑推理能力,进一步提高数学素养。
在教学设计上,我将以学生为主体,教师为主导,采用情境教学法、探究式教学法和小组合作学习法,引导学生观察、思考、探究,从而自主发现对顶角的性质。同时,注重对学生的个体差异的关注,因材施教,使每个学生都能在课堂上得到充分的发展。
青岛版七年级数学下册:8.4对顶角优秀教学案例
一、案例背景
本节内容为青岛版七年级数学下册第八章第四节“对顶角”,是对顶角的定义及其性质的学习。对顶角是基本几何概念之一,对于学生掌握几何知识,形成几何直观能力具有重要意义。在学习对顶角之前,学生已学习了角的概念,了解了角的分类,具备了一定的空间想象能力。但对顶角的概念较为抽象,性质的证明需要一定的逻辑推理能力,这对七年级的学生来说是一个挑战。
初中数学七年级上册苏科版6.3余角、补角、对顶角优秀教学案例
1.巩固余角、补角、对顶角的性质,提高学生的知识掌握程度;
2.培养学生的空间想象力,提高解决实际问题的能力;
3.鼓励学生进行小组合作,培养团队意识和沟通能力。
三、教学策略
(一)情景创设
1.生活实例导入:以学生熟悉的生活场景为例,如购物、建筑工人施工等,引导学生关注角度在实际生活中的应用,激发学习兴趣;
3.教师评价:教师对学生的学习情况进行评价,关注学生的学习态度、问题解决能力等方面的发展,为学生活实例导入:以学生熟悉的生活场景为例,如购物、建筑工人施工等,引导学生关注角度在实际生活中的应用,激发学习兴趣;
2.情境模拟:通过模拟真实场景,如教室内的座位安排、道路交叉口等,让学生直观地感受余角、补角、对顶角的概念,提高学生的参与度;
二、教学目标
(一)知识与技能
1.让学生掌握余角、补角、对顶角的定义和性质;
2.培养学生运用角度概念解决实际问题的能力;
3.帮助学生建立空间几何直观,提高空间想象力。
(二)过程与方法
1.通过生活情境导入,激发学生学习兴趣,引导学生主动参与课堂;
2.采用观察、思考、交流、探讨的方式,培养学生自主学习能力和合作精神;
在这个阶段,学生已经学习了平行线、相交线等基本几何知识,对于角度的概念有了一定的认识。然而,他们在实际运用中,往往会因为对概念理解不深而出现混淆。因此,本节课的教学案例,将以生活情境为导入,引导学生通过观察、思考、交流、探讨的方式,发现余角、补角、对顶角的性质,提高他们的数学思维能力。同时,通过案例的实践,让学生体会数学与生活的紧密联系,激发他们的学习兴趣。
(三)学生小组讨论
1.分组讨论:将学生分为若干小组,每组选择一个角度进行讨论,共同探讨余角、补角、对顶角的性质及其在实际问题中的应用;
初一数学教案之对顶角.doc
初一数学教案之对顶角
一、素质教育目标
(一)知识教学点
1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3.会用对顶角的性质进行有关的推理和计算.
(二)能力训练点
1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.
(三)德育渗透点
从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.
(四)美育渗透点。
《对顶角》数学教学PPT课件(4篇)
∠COB=180°- ∠AOC=130°
因为∠AOD与∠BOC是对顶角,
所以∠BOC= ∠AOD=130°
请同学们谈谈本节课的收获与体会
1.对顶角的概念; 2.对顶角的性质。
谢谢
第8章 相交线与平行线
对顶角
1.掌握对顶角的定义并能够在图形中识别出来. 2.能够用对顶角的性质解决有关的问题.
大桥上的钢梁和钢索
C 1(2()O)3 B
A4 D
说一说:下列各图中,∠l和∠2是对顶角吗?为什么?
你好棒啊!!
探究活动
在纸上任意画两条直线,分别度 量对顶角的大小有什么关系?你能说 明为什么有这种关系吗?与同学交流。
A
∠1与∠3都是∠2的补角,因为同角的补角 相等,所以∠1= ∠3
D
C
2 1﹙O 3
4
B
性质:如果两个角是对顶角,那么这两个角相等。
C
O B
∠ AOD与∠BOC;∠AOC与∠BOD有什么位置关系?
1.它们都是两条直线相交形成的; A
2.它们分别有公共的顶点O;
3.其中一个角的两边分别是另 D 一个角的两边的反向延长线。
C
·
O B
对顶角的概念:
对顶角:如果一个角的两边是 另一个角的两边的反向延长线,那 么这两个角互为对顶角。
想一想生活中还 有那些对顶角的实例?
C
B
因为∠BOD与∠AOC是对顶角, 所以∠BOD=∠AOC=70°
由OE平分∠BOD得 ∠BOE=∠EOD=1/2 ∠BOD
=1/2×70°= 35°
巩固检测
1.如图,直线AB、EF相交于点D, ∠ADC=90°。
(1)∠1的对顶角是_∠_B_D__F_;∠2的余角有 ∠_1_和___∠_B__D_F__。
《对顶角》教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《对顶角》教案[教学目标]1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解对顶角,能找出图形中的一个角的对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学过程]一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征.观察剪刀剪布的过程,引入两条相交直线所成的角.学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二、小组交流认识对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.当学生直观地感知角有“对顶”关系时,教师引导学生用几何语言准确表达AOD∠;AOC∠与OA,延长线它们的另一边互为反向有一条公共边∠与有公共的顶点O,而且AOCAOC∠BOD∠两边的反向延长∠的两边分别是BOD线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:对顶的两个角相等)3.学生根据观察和度量完成下表:两条直线相交 所形成的角分类 位置关系 数量关系AOC ∠4.概括对顶角概念和对顶角的性质三、展示提升练习:下列说法对不对(1)对顶角可以看成是平角被过它顶点的一条射线分成的两个角(2)对顶角相等,相等的两个角是对顶角四、反馈拓展1、如图,直线a ,b 相交,ο401=∠,求432∠∠∠,,的度数.2、已知,如图,οο8035=∠=∠COF AOC ,,求:DOF AOD ∠∠和的度数[作业]填空题1、如图,直线AB 、CD 、EF 相交于点O ,AOE ∠的对顶角是 ,COF ∠的邻补角是若AOC ∠:AOE ∠=2:3,ο130=∠EOD ,则BOC ∠= 2、如图,直线AB 、CD 相交于点Oοο3090=∠=∠=∠AOC FOB COE ,则=∠EOF。
青岛版七年级数学下册8.4对顶角优秀教学案例
3.各小组展示研究成果,其他小组进行评价和提问,促进学生之间的互动和交流。
(四)总结归纳
1.教师引导学生对所学知识进行总结和反思,加深学生对对顶角性质的理解;
2.学生相互评价,发现他人的优点和自己的不足,促进学生的自我提升;
在教学过程中,我将以生动形象的语言、贴近生活的实例,激发学生的学习兴趣,提高学生的学习积极性。同时,注重启发式教学,引导学生主动思考、积极参与,培养学生的自主学习能力。在课堂活动中,我将关注每个学生的个体差异,给予充分的时间和空间,使学生在探索中对顶角的性质有更深入的理解。
此外,我还将在教学过程中注重情感教育的渗透,让学生在学习对顶角的性质的同时,感受到数学与生活的紧密联系,培养学生的情感态度与价值观。通过本节课的教学,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
(二)问题导向
1.引导学生提出问题,如“对顶角的性质是什么?如何证明对顶角相等?”;
2.引导学生通过观察、操作、交流等环节,寻找对顶角的性质和证明方法;
3.教师给予及时的反馈和引导,帮助学生建立正确的数学观念,提高学生的逻辑思维能力。
(三)小组合作
1.将学生分成若干小组,每组选定一个研究主题,如“探索对顶角的性质”;
三、教学策略
(一)情景创设
1.利用多媒体展示生活中的实际场景,如房屋建筑、道路规划等,引导学生发现对顶角的存在,激发学生学习对顶角性质的兴趣;
2.设计具有挑战性的问题,如“如何在未知角度的情况下,判断两个角是否为对顶角?”引导学生思考,引发学生的探究欲望;
3.创设轻松愉快的学习氛围,鼓励学生发表自己的观点,培养学生的自信心和积极参与精神。
华师大版七年级数学上5.1.1《对顶角》优秀教学案例
(四)总结归纳
1.引导学生对对顶角的性质进行总结和归纳,帮助他们巩固和加深理解。
2.通过总结归纳,使学生形成系统化的知识结构,提高他们的思维能力。
3.强调对顶角在几何学中的重要性,激发学生对后续几何学习的兴趣。
(五)作业小结
1.布置相关的作业,让学生巩固所学知识,提高他们的实践能力。
三、教学策略
(一)情景创设
1.利用实物模型、几何画板等教学工具,创设生动直观的教学情境,让学生能够直观地观察和操作对顶角。
2.通过生活中的实际例子,让学生感受到对顶角的存在和应用,激发学生的学习兴趣和积极性。
3.设计具有挑战性和启发性的问题,引导学生主动思考和探索,激发学生的求知欲和好奇心。
(二)问题导向
(二)讲授新知
1.通过对顶角的定义和性质进行讲解,明确对顶角的含义和特点。
2.结合几何画板的动态演示,让学生直观地理解对顶角的性质。
3.通过例题讲解,展示对顶角的性质在解决几何问题中的应用。
(三)学生小组讨论
1.给学生发放练习题,让他们在小组内进行讨论和解答。
2.引导学生运用对顶角的性质,解决实际问题,培养他们的应用能力。
二、教学目标
(一)知识与技能
1.让学生掌握对顶角的定义和性质,能够识别和判断对顶角。
2.培养学生运用对顶角的性质解决实际问题的能力,能够运用对顶角解释和证明一些简单的几何问题。
3.通过对顶角的学习,使学生了解几何图形中的对顶角概念,培养学生的空间想象能力和逻辑思维能力。
(二)过程与方法
1.通过观察、操作、思考、讨论等教学活动,让学生经历对顶角的发现和探索过程,培养学生的观察能力和思维能力。
6.3余角、补角、对顶角优秀教学案例
3.利用多媒体手段:通过PPT展示生动形象的余角、补角和对顶角的图形,帮助学生直观理解概念,增强记忆。
(二)问题导向
1.设计层次化问题:提出由浅入深、循序渐进的问题,引导学生逐步深入学习,如先问“什么是余角?”再问“余角和补角之间有何关系?”;
2.强调重点难点:教师强调本节课的重点和难点,提醒学生注意;
3.总结数学与生活的联系:强调数学知识在实际生活中的应用,激发学生学习兴趣。
(五)作业小结
1.布置具有针对性的作业:布置一些有关余角、补角和对顶角的练习题,帮助学生巩固所学知识;
2.鼓励学生自主学习:鼓励学生自主完成作业,培养学生的自主学习能力;
四、教学内容与过程
(一)导入新课
1.生活实例导入:以一个简单的日常生活中的情景为例,如判断两个角的余角和补角关系,提出问题:“你们知道这两个角有什么特殊关系吗?”引发学生的思考和兴趣;
2.利用多媒体手段:通过PPT展示生动形象的余角、补角和对顶角的图形,帮助学生直观理解概念,为学习新知识做好铺垫。
(二)讲授新知
3.设置具有针对性的练习题,巩固所学知识,提高学生的解题能力;
4.鼓励学生自主学习,培养学生的探究精神和合作能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,树立自信心,激发学习动力;
2.培养学生勇于探究、积极思考的科学精神,以及面对困难时不轻言放弃的意志品质;
3.使学生认识到数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力;
2.自己的观点,培养学生的团队协作能力;
3.小组代表展示:各小组代表上台展示讨论成果,其他小组成员可进行补充和评价,提高学生的表达能力和批判性思维。
5.1.1对顶角教学设计
5.1.1对顶角教学设计师:这些图形都出现了两条相交直线,每两条相交直线形成几个角?这些叫什么?它们之间有什么特殊关系吗?一、对顶角的概念师:我们已经知道,两条直线相交,只有一个交点。
例如,在下图中,直线AB与直线CD相交,交点为O,可以说成“直线AB、CD相交于点O”。
两条直线相交形成了∠1、∠2、∠3和∠4师:我们已经知道,有些角之间存在一定的关系,例如:师:从位置关系与数量关系上看,图中还有哪些角之间存在某种关系呢?师:看一看,想一想,将你的发现填入下面的表中:我们可以直观地发现图中的∠1和∠3是相对的两个角,而且似乎相等。
注:射线OA的反向延长线是指从点A到点O方向延长得到的一条射线,即射线OB。
例1 在图中,∠1=30°,那么∠2、∠3和∠4各等于多少度?图中存在哪些相等关系?解:∠2=180°-∠1=180°-30°=150°,∠3=180°-∠2=180°-150°=30°,∠4=180°-∠1=180°-30°=150°。
由此,我们得到∠1=∠3,∠2=∠4.二、对顶角的性质对于任意两条直线相交形成的对顶角,由于它们都有一个相同的补角,所以它们是相等的。
例如,右图中的∠1、∠3都和∠2互补,即∠1+∠2=180°,∠3+∠2=180°因此∠1=∠3,同理∠2=∠4.对顶角相等。
例2 如图,直线AB、CD相交于点E,∠AEC=50°,求∠BED的度数。
解:因为直线AB、CD相交于点E,所以∠AEC与∠BED1、下列说法正确的是()A.∠1=∠2,所以∠1和∠2是对顶角B.若∠1和∠2有公共顶点,那么∠1和∠2是对顶角C.对顶角都是锐角D.锐角的对顶角也是锐角2、如下图,∠1、∠2是对顶角的是()ABCD3、下列说法中正确的有()①对顶角相等②相等的角是对顶角③若两个角不相等,那么这两个角一定不是对顶角④若两个角不是对顶角,那么这两个角不相等A.1个B.2个C.3个D.4个4、图中是对顶角的共有对。
《对顶角》 教学设计
《对顶角》教学设计一、教学目标1、知识与技能目标学生能够理解对顶角的概念,掌握对顶角的性质,并能运用对顶角的性质进行简单的几何推理和计算。
2、过程与方法目标通过观察、操作、猜想、推理等活动,培养学生的观察能力、逻辑思维能力和推理能力。
3、情感态度与价值观目标让学生在探索对顶角的过程中,感受数学的严谨性和逻辑性,激发学生对数学的兴趣和热爱。
二、教学重难点1、教学重点对顶角的概念和性质。
2、教学难点对顶角性质的推理和应用。
三、教学方法讲授法、讨论法、演示法、练习法四、教学过程1、导入新课通过展示生活中相交线的图片,如十字路口的道路、剪刀的刀刃等,引导学生观察并思考相交线所形成的角的关系,从而引出对顶角的概念。
2、讲授新课(1)对顶角的概念教师在黑板上画出两条相交直线,指出相交线所形成的四个角,并引导学生观察这四个角的位置关系。
然后给出对顶角的定义:如果两个角有公共顶点,并且其中一个角的两边分别是另一个角两边的反向延长线,那么这两个角叫做对顶角。
(2)对顶角的性质让学生通过测量、观察等方法,探究对顶角的大小关系。
学生分组进行讨论和交流,然后教师引导学生总结出对顶角的性质:对顶角相等。
(3)对顶角性质的证明教师引导学生利用平角的定义和等量代换的方法,证明对顶角相等。
3、课堂练习通过一些简单的练习题,让学生巩固对顶角的概念和性质。
例如,给出一些相交线的图形,让学生找出其中的对顶角,并计算对顶角的度数。
4、课堂小结教师与学生一起回顾本节课所学的内容,包括对顶角的概念、性质以及证明方法。
5、布置作业布置适量的课后作业,让学生进一步巩固所学知识。
作业可以包括书面作业和实践作业,如让学生观察生活中还有哪些地方存在对顶角,并记录下来。
五、教学反思在教学过程中,要充分发挥学生的主体作用,让学生通过自主探究和合作学习来理解和掌握知识。
同时,要注重对学生思维能力的培养,引导学生进行逻辑推理和证明。
在练习的设计上,要注重层次性和针对性,满足不同学生的学习需求。
2022年初中数学《对顶角及其性质》精品教案
10.1相交线第1课时对顶角及其性质1.理解并掌握对顶角的概念及性质;2.能够运用对顶角的性质求角的度数并解决问题.(重点、难点)一、情境导入如图,假设把剪刀的两局部看成是两条相交的直线,那么形成的角中小于平角的角有几个,你能发现它们之间的联系吗?二、合作探究探究点一:对顶角的概念以以下图形中,∠1与∠2是对顶角的是()解析:选项A中的两个角的顶点没有公共;选项B、D中的两个角的两边没有在互为反向延长线的两条直线上,只有选项C中的两个角符合对顶角的定义.应选C.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点二:对顶角的性质【类型一】直接运用对顶角的性质求角度如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.解析:结合图形,由∠1和∠BOC求得∠BOF的度数,根据对顶角相等可得∠2的度数.解:因为∠1=40°,∠BOC=110°(),所以∠BOF=∠BOC-∠1=110°-40°=70°.因为∠BOF =∠2 (对顶角相等),所以∠2=70°(等量代换).方法总结:两条相交直线构成对顶角,这时应注意“对顶角相等〞这一隐含的结论.在图形中正确找到对顶角,利用角的和差及平角等关系找到角的等量关系,然后结合条件进行转化.【类型二】 结合方程思想求角度如图,∠1=12∠2,∠1+∠2=162°,求∠3与∠4的度数.解析:由∠1=12∠2,∠1+∠2=162°,可求∠1、∠2;又∠1与∠3是对顶角,∠4与∠2是邻补角,根据对顶角,邻补角的数量关系可求解.解:由∠1=12∠2,∠1+∠2=162°,解得∠1=54°,∠2=108°.∵∠1与∠3是对顶角,∴∠3=∠1=54°.∵∠2与∠4是邻补角,∴∠4=180°-∠2=72°.方法总结:解决此题的关键是先求出∠1与∠2的度数,再利用对顶角,邻补角的性质求解.【类型三】 会应用对顶角的性质解决实际问题如图,要测量两堵墙所形成的∠AOB 的度数,但人不能进入围墙,如何测量请你写出测量方法,并说明几何道理.解析:可以利用对顶角相等的性质,把∠AOB 转化到另外一个角上.解:反向延长射线OB 到E ,反向延长射线OA 到F ,那么∠EOF 和∠AOB 是对顶角,所以可以测量出∠EOF 的度数,故∠EOF 的度数就是∠AOB 的度数.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化. 【类型四】 与对顶角有关的探究问题我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,…(1)十条直线交于一点,对顶角有________对;(2)n (n ≥2)条直线交于一点,对顶角有________对.解析:(1)如图①,两条直线交于一点,图中共有〔4-2〕×44=2对对顶角;如图②,三条直线交于一点,图中共有〔6-2〕×64=6对对顶角;如图③,四条直线交于一点,图中共有〔8-2〕×84=12对对顶角;…;按这样的规律,十条直线交于一点,那么对顶角共有〔20-2〕×204=90对,故答案为90;(2)由(1)得n (n ≥2)条直线交于一点,对顶角有2n 〔2n -2〕4=n (n -1)对.故答案为n (n-1).方法总结:像这样探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数列的特征.三、板书设计 1.对顶角的概念两条直线相交,有公共顶点且两边分别互为反向延长线的角是对顶角. 2.对顶角的性质 对顶角相等.本节课学习了对顶角及其性质.教学中可让学生自己画这些角,结合图形说出对顶角的特征.对顶角识别是易错点,可以结合例题进行练习,让学生在学习中不断纠错,不断进步第2课时用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数复原为原数.一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2021年6月18日中商网报道,一种重量为千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人用科学记数法可表示为()A×10-4×10-5×10-5D.106×10-6解析:×10-4.应选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数复原为原数用小数表示以下各数:(1)2×10-7; ×10-5;×10-3; ×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7×10-5=0.0000314;×10-3=0.00708;×10-1=0.217.方法总结:将科学记数法表示的数a×10-n复原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活泼,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.4对顶角
一、教学目标:
1、了解对顶角的概念,会在图形中认识对顶角。
2、掌握对顶角的性质——对顶角相等,并会运用此性质进行简单计算。
3、会用简单的几何证明语言进行叙述。
教学重点:对顶角的定义和性质。
教学难点:利用对顶角的性质进行简单推理和计算,在复杂的图形中确定对顶角的组数。
学情分析:本节课是青岛版义务教育课程实验教材初中数学七年级下册第八章第四节内容,是在学生学习了角的相关知识后对图形进行的进一步研究。
本节从生活中两条交叉的公路形成的角引出对顶角的概念,再引导学生通过观察和度量,先取得对顶角相等感性认识后再利用“同角的补角相等”推导出对顶角相等的性质,最后对这一性质加以应用。
学生是在初一上学期只学习了图形的基本知识,对图形的认识大多只停留在感性认识的层面上,对对顶角相等这一性质的运用难以用准确的几何语言加以描述,解题过程的书写是难点。
学生探究的过程中在学习了对顶角后很容易地联想到相邻两角的关系,同时通过测量发现对顶角相等的性质后,推导的过程中用到相邻两角的关系,在此引入邻补角是十分有必要的,在这里补充邻补角的相关知识。
在图形中找对顶角和邻补角的对数时,学生会出现重复和遗漏的情况,部分同学会觉得无从下手。
我让学生先掌握两条直线相交有几对
对顶角和邻补角对数,由简到繁,依次探索三条直线相交于一点、四条直线相交于一点、直至n条直线相交于一点的情况,提示他们两条直线相交对顶角和邻补角的对数我们已经知道,那么这些图形可以分解成多少个两条直线相交?同学们恍然大悟,结合组合规律快速地判断准对顶角和邻补角对数。
在此基础上再出示一些不相交于点的直线相交的情形让学生找对顶角和邻补角对数,学生自然也就知道如何处理了。
教学方法:以情境导入,提炼问题,合作探究、总结归纳、拓展提升
二、教学过程:
1、课前预习:
1.请同学们每人搜集生活中常见的一至两幅相交线的图片,在课堂上描述交流。
2.自学课本P16~P17内容,完成下列问题.
(1)两条直线相交可以得到几个角?结合图8-17识别,哪些是对顶角,并试述定义.
(2)通过测量你能得出对顶角的重要性质是什么吗?试用学过的知识说明理由.
(3)两条直线相交所成的角中,相邻的两个角有什么关系?你能说明理由吗?
(4)在复杂的图形中你能迅速准确地确定对顶角的组数吗?
2、教学流程:
(1)设置情境,引入课题
欣赏我们身边直线的实例,看图片,能用几何图形表示吗?计算机播放笔直的公路、桥梁等图片,让学生建立感性认识,从而体会数学来源于实践的思想,培养学生的空间观念,引出课题:8.4 对顶角
(2)检查预习,提炼问题
根据预习提出的问题,小组内交流自学过程中遇到的问题,充分发挥学生主体作用,体验学习成功的喜悦,培养合作精神。
通过交流提出以下问题:
(1)什么是对顶角,怎样描述其定义。
(2) 两条直线相交所成的角中,相邻的两个角是互补关系,理由是什么?
(3)通过测量得出对顶角相等这一重要性质,怎样用学过的知识说明理由并写出这一过程。
(4)在复杂的图形中你能迅速准确地确定对顶角的组数。
(3)合作探究:
观察图形8-17相交线的模型,
(1)图中谁与谁是对顶角?对顶角有什么特点?
交流后归纳:对顶角是由两条直线相交形成的一对角,它们有公
共的顶点,一个角的两边分别是另一个角两边的反向延长线。
练习:判断下列图中的∠1与∠2是否是对顶角?说明理由。
(2)图中相邻的两角有什么关系?它有什么特点?
教师补充:两条直线相交,有一个公共顶点且有一条
公共边的两个角叫做邻补角。
交流归纳:这两个角的和正好是一个平角,因此邻补 角是有特殊位置关系的两个互补的角。
练习:如右图所示:已知直线AE 、BD 相交于点C ,哪些角是邻补角?
(3)动手实践:学生亲自动手通过测量,得出对顶角的性质。
理论推导:谁能用原有的知识来推导一下这个重要性质。
学生小组内结合图形讲解,提高学生的语言表达能力,小组长在
B
C A
4
32
1E D
全班展示。
(4)观察分析,知识应用
自学教材第17页例1,通过自学,学生学会利用对顶角性质解题的方法,强调 规范的格式步骤。
例1: 如图所示,直线AB,CD 相交于点
已知∠AOD=110°,求∠COB,∠AOC •,∠
4.拓展提升
如图4-6-19,AB 、CD 、EF 相交于点O , 试说出图中所有的对顶角.
分析: 因为图中的角很多,一一识别本身很难,所以确定对顶角就更难了,如何做到不重复不遗漏,准确地数出所有的对顶角。
学生分析讨论后,动画展示将图形进行分解过程,如图4-6-20,
每个图形各有两对对顶角,
共有6对.分别是:∠AOE
和∠BOF,
∠AOF和∠BOE,∠AOC
和∠BOD,
∠BOC和∠AOD,∠COF和∠DOE,
∠COE和∠DOF.
思考:你能用上面的方法,数出图4-6-19中所有的邻补角吗?
三、对应训练
(一)选择题:
(1)如图所示,三条直线AB,CD,EF相交于一点O,
则∠AOE—∠DOB+∠COF等于( • )
A.150°
B.180°
C.210°
D.120°
(2)下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
A.1个
B.2个
C.3个
D.4个
(二)填空题:
(1)如图所示,直线AB,CD,EF 相交于点O,
则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______; 若∠AOC=50°,则∠BOD=______, ∠COB=_______.
(2)如图所示,直线AB,CD 相交于点O,
OE 平分∠AOC,若∠AOD-∠DOB=50°, •则∠EOB=______________.
(3)如图所示, 图中有 对对顶角,
有 对邻补角?
A
B C
O F
E D
A
B
D
O
E C
A
B
D
F
E
C
(4)若4条不同的直线相交于一点,则图中共有对对顶角?
若n条不同的直线相交于一点呢?。