七上3勾股定理复习学案(含答案)
七年级上册第三章《勾股定理》复习
七年级上册第三章《勾股定理》学习目标:1、明确勾股定理及其逆定理的内容.2、能利用勾股定理及逆定理解决实际问题.重点难点:重点:勾股定理及逆定理的应用.难点:灵活运用勾股定理及逆定理解决实际问题.自学设计自学任务一:梳理知识1、勾股定理:____________________________________________________________________ 也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么______________________. 公式的变形:a2 = _________, b2= ____________.2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足______________,那么三角形ABC 是直角三角形.这个定理叫做勾股定理的逆定理.利用勾股定理逆定理证明三角形是否是直角三角形的步骤:3、勾股数如果三角形ABC的三边长分别是a,b,c,满足a2 + b2= c2的三个正整数,称为勾股数。
常用的勾股数组有:____________________________________________________注意:①勾股数必须是正整数,不能是分数或小数.②一组勾股数扩大相同的正整数倍后,仍是勾股数.自学任务二:考点剖析考点一、已知两边求第三边1.已知直角三角形的两边长为6,8,则第三条边长是________________.2.在直角三角形中,若两直角边的长分别为1,2,则斜边长平方为_____________.变式:已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求①AD的长的平方;②ΔABC的面积.CBAS 2S 3S 1CBAS 3S 2S 1S 3S 2S 1CBA考点二:利用勾股定理求面积1.求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.2.如图1,分别以Rt △ABC 的三边为边向外作三个正方形,其面积分别为321S S S 、、,则321S S S 、、之间的关系是(1) (2) (3)变式1:如图2,如果以Rt △ABC 的三边为直径向外作三个半圆,其面积分别为321S S S 、、,则321S S S 、、之间的关系是变式2:如图3,如果以Rt △ABC 的三边为边向外作三个正三角形,其面积分别为321S S S 、、,则321S S S 、、之间的关系是考点三:利用列方程求线段的长 1.如图1 ,将一个边长为4、8的长方形纸片ABCD 折叠使C 点与A 点重合,则EB 的长是( ) A 、3 B 、4 C 、5 D 、5 变式:如图2,有一片直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB 上,且与AE 重合,试求CD 的长。
《勾股定理》复习学案(单元复习)
《勾股定理》复习学案★知识汇总1.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:设直角三角形的两直角边和斜边长由短到长分别为a,b,c 方法一:如图,S △AFD = EF= S 正方形EFGH = S 正方形ABCD = = 化简过程为:方法二:如图,S △= S 大正方形= S 小正方形= = 化简过程为:方法三:如图,S △AED = S △BEC = S △AEB = S 梯形ABCD = = , 化简过程为:2.面积问题:⑴如图1,以直角三角形的三边长作正方形,则三个正方形的面积之间存在关系是 ⑵如图2,以直角三角形的三边长为直径作半圆,则三个半圆的面积之间存在关系是 ⑶如图3,以直角三角形的三边长为斜边作等腰直角三角形,则三个三角形的面积之间存在关系 是 小练习:1.如图1,①若S 1=9 S 2=16,则S 3= ,BC= ;②若AB=2,S 3=10,则S 2= ; ③若S 3=10,则S 1+S 2+S 3= ;④若S 1+S 2=5,则S 1+S 2+S 3= 。
2.如图2,①若S 1=2π S 3=258π,则S 2= ;②若S 1=3π,S 2=32π,则S 3= ,BC= ; ③若BC=10,则S 1+S 2= 。
3.如图3,BC=6,则S 1+S 2+S 3= 。
4.如图4,以直角三角形的三边长为直径作半圆,若AB=12,AC =5,则S 阴影= 。
5.如图5,所有的四边形都是正方形,所有的三角形都是直角三角形,①若最大的正方形的边长为7㎝,则正方形A 、B 、C 、D 的面积之和为 ;②若最大的正方形的边长为10㎝,正方形A 的边长为6㎝,B 的边长为5㎝,C 的边长也为5㎝,则正方形D 的边长为 。
鲁教版七年级上第三章勾股定理单元测试含答案解析
单元评价检测第三章(45分钟 100分)一、选择题(每小题4分,共28分)1.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2的值是( )(A)4 (B)6 (C)8 (D)92.下列各组数是勾股数的为( )(A)2,4,5 (B)8,15,17 (C)11,13,15 (D)4,5,63.已知△ABC的三边长分别为a,b,c,且满足(a-17)2+|b-15|+(c-8)2=0,则△ABC是( )(A)以a为斜边的直角三角形(B)以b为斜边的直角三角形(C)以c为斜边的直角三角形(D)不是直角三角形4.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1.其中正确的是( )(A)①②(B)①③(C)①④(D)②④5.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )(A)14 (B)14或4 (C)8 (D)4或86.折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想.把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )(A)角的平分线上的点到角的两边的距离相等(B)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半(C)直角三角形斜边上的中线等于斜边的一半(D)如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a,b,那么(a+b)2的值是( )(A)12 (B)16 (C)20 (D)25二、填空题(每小题5分,共25分)8.如图,在Rt△ABC中,∠C=90°,若BC=3,AC=4,则AB的长是________.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A 和B 的距离为________mm.10.如图(1)所示,在矩形ABCD 中,动点P 从点B 出发,沿BC →CD →DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,那么△ABC 的面积是________.11.已知:如图,在四边形中ABCD 中,AB=1,BC=34,CD=134,AD=3,且AB ⊥BC ,则四边形ABCD 的面积为________.12.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为________cm2.三、解答题(共47分)13.(10分)“道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)14. (12分)如图,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F 点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积.15.(12分)如图,已知长方体的长AC=2cm,宽BC=1cm,高AA′=4cm.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?16.(13分)如图,等腰三角形ABC的底边BC长为8cm,腰AB,AC的长为5cm,一动点P在底边上从B向C以0.25cm/s的速度移动,当点P运动到PA与腰垂直的位置时,求点P运动的时间.答案解析1.【解析】选 C.因为斜边AB=2,所以AB2=BC2+AC2=4,所以AB2+BC2+AC2=4+4=8.2.【解析】选B.A中22+42=20≠52,故不是;B中82+152=289=172,故是勾股数;C中112+132=290≠152,故不是;D中42+52=41≠62,故不是.3.【解析】选A.因为(a-17)2≥0,|b-15|≥0,(c-8)2≥0.又因为(a-17)2+|b-15|+(c-8)2=0,所以a-17=0,b-15=0,c-8=0,所以a=17,b=15,c=8.又因为172=152+82,所以△ABC是以a为斜边的直角三角形.4.【解析】选C.①正确,因为a2+b2=c2,所以(4a)2+(4b)2=(4c)2;②错误,直角三角形两边为3,4,则斜边可能是4或5;③错误,因为122+212≠252,所以不是直角三角形;④正确,因为b=c,c2+b2=2b2=a2,所以a2∶b2∶c2=2∶1∶1.5.【解析】选B.当高AD在△ABC内部时得:CD2=152-122=81,所以CD=9,又BD2=132-122=25,所以BD=5,所以BC=14;当AD在△ABC外部时,易得BC=9-5=4.所以BC的长为14或4.6.【解析】选C.如图,由第一步得△ADE≌△CDE,由全等性质得AD=DC,由第二步得△BDF≌△CDF,由全等的性质得BD=DC,故AD=DC=BD,即DC为直角三角形斜边上的中线,且长度为斜边的一半.7.【解析】选D.每个直角三角形的面积是:(13-1)÷4=3,即12ab=3,则ab=6.又因(a-b)2=1,所以(a+b)2=(a-b)2+4ab=1+4×6=25.8.【解析】在Rt △ABC 中,∠C=90°,因为BC=3,AC=4,所以AB 2=BC 2+AC 2=25=52,则AB 的长是5.答案:59.【解析】如图构造直角△ABC ,因为AC=150-60=90(mm),BC=180-60=120(mm),所以AB 2=AC 2+BC 2=902+1202=1502.故AB=150mm.答案:15010.【解析】由图(2)可知,矩形的宽BC=4,长CD=9-4=5,所以△ABC 的面积为12×5×4=10. 答案:1011.【解析】连接AC ,因为AB ⊥BC ,所以△ABC 是直角三角形,所以AC 2=AB 2+BC 2=12+(34)2 =(54)2,所以AC=54.S △ABC =12AB ·BC=12×1×34=38. 因为在△ACD 中,AC 2+AD 2=(54)2+32=(134)2=CD 2,所以△ACD 是直角三角形.所以S △ACD =12AC ·AD=12×54×3=158.所以四边形ABCD 的面积为S △ABC +S △ACD =38+158=94. 答案:9412.【解析】设AB 为3xcm ,BC 为4xcm ,AC 为5xcm ,因为周长为36cm ,则AB+BC+AC=36cm ,所以3x+4x+5x=36,得x=3,所以AB=9cm ,BC=12cm ,AC=15cm ,因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S △PBQ =12BP ·BQ=12×6×6=18(cm 2). 答案:1813.【解析】在Rt △ABC 中,AC=30m ,AB=50m ;据勾股定理可得:BC 2=AB 2-AC 2=502-302=402,所以BC=40(m),所以小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h).因为72km/h>70km/h ,所以这辆小汽车超速了.14.【解析】由折叠可知△ADE 和△AFE 关于AE 成轴对称,故AF=AD ,EF=DE=DC-CE=8-3=5(cm),所以CF=4cm.设BF=xcm ,则AF=AD=BC=(x+4)cm.在Rt △ABF 中,由勾股定理,得82+x 2=(x+4)2.解得x=6,故BC=10cm. 所以阴影部分的面积为:10×8-2S △ADE =80-50=30cm 2.15.【解析】根据题意,如图所示,可能最短路径有三种情况:(1)沿AA ′,A ′C ′,C ′B ′,B ′B ,BC ,CA 剪开,得图(1)AB ′2=AB 2+BB ′2=(2+1)2+42=25;(2)沿AC ,CC ′,C ′B ′,B ′D ′,D ′A ′,A ′A 剪开,得图(2)AB ′2=AC 2+B ′C 2=22+(4+1)2=4+25=29;(3)沿AD ,DD ′,B ′D ′,C ′B ′,C ′A ′,AA ′剪开,得图(3)AB ′2=AD 2+B ′D 2=12+(4+2)2=1+36=37;综上所述,最短路径应为图(1)所示,且最短路程为5cm.16.【解析】如图,当点P 运动到PA 与腰AC垂直时,过点A 作AD ⊥BC 于点D ,则BD=4.在Rt △ABD 中,易知AD=3cm ,设PD=xcm ,在Rt △APD 中,PA 2=x 2+9,在Rt △PAC 中,PC 2=x 2+9+25,PC=x+4,所以x=94,所以BP=BD-PD=4-94=74(cm),所以740.25=7(s).所以此时点P 运动的时间为7秒.当P 点运动到PA 与腰AB 垂直时,同理可得BP=254cm ,此时点P 运动的时间为25s.故当点P 运动到PA 与腰垂直的位置时,点P运动的时间应为7s或25s.。
勾股定理复习学案(2)
八年级数学课堂学习活动设计 设计人: 时间:勾股定理复习学案(2)一、学习目标:1.掌握直角三角形的边、角之间所存在的关系,2.熟练应用直角三角形的勾股定理和逆定理来解决实际问题. 二、学习重点:重点:掌握勾股定理以及逆定理的应用难点:在应用勾股定理以及逆定理解决问题时,直角三角形的确定三、学习过程 一、知识回顾:1.已知△ABC 是直角三角形,两直角边长分别为5,12,则斜边长为 .2、已知三边长分别为8,15,17则△ABC 为 三角形.3、勾股数 满足22b a =2c 的三个正整数,称为勾股数 请任意写出几组勾股数: ; ; . 二、合作探究:例1、已知:在△ABC 中,AB =15 cm ,AC =13 cm ,高AD =12 cm ,求S △ABC .例2、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?例3、某风景区有2个景点A 、B(B 位于A 的正东方),为了方便游客,风景区管理处决定在相距2千米的A 、B 两景点之间修一条笔直的公路(即图中的线段AB),经测量,在点A 的北偏东60°方向、点B 的北偏西45°方向的C 处有一个半径为0.7千米的小水潭,问小水潭会不会影响公路的修筑,为什么?参考数据:三、矫正补偿1.下列线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5 ,b=3,c=2D .a :b :c=2:3:42.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的是( ) A .CD,EF,GH B .AB,EF,GH C .AB,CD,GH D .AB,CD,EF3. 在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?( ) A .一定不会 B .可能会 C .一定会 D .以上答案都不对4.已知:如图,AD 是△ABC 的高,AB=10,AD=8,BC=12 . 求证: △ABC 是等腰三角形.四、 拓展提高5.已知:如图,四边形ABCD ,AB=1,BC=2,CD=2,AD=3, 且AB ⊥BC.求四边形 ABCD 的面积.小测试:1、正方形的面积是4,则它的对角线长是( ) A 、2 B 、2 C 、22 D 、42.如果直角三角形两直角边的比为5∶12,则斜边上的高与斜边的比为( )A 、60∶13B 、5∶12C 、12∶13D 、60∶1693、如图,在△ABC 中,AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC =( )A 、6B 、6C 、5D 、43题图 4题图 5题 4.如图中字母A 所代表的正方形的面积为( ) A . 4 B . 8 C . 16 D . 645.如图,在△ABC 中,AD ⊥BC 于D ,AB =3,BD =2,DC =1,求AC 2的值.6、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如下图,据气象观测,距沿海城市A•的正南方向260千米B 处有一台风中心,沿BC 的方向以15千米/时的速度向D 移动,已知AD•是城市A 距台风中心的距离最短,且AD=100千米,求台风中心经过多长时间从B 点移到D 点?。
最新勾股定理复习学案(配培优试卷含答案)
最新勾股定理复习学案(配试卷)一、【重点】1、明确勾股定理及其逆定理的内容2、能利用勾股定理解决实际问题二、【知识小管家】通过本章的学习你都学到了三、【练习】考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1,2,则斜边长平方为_____________.2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求①AD的长;②ΔABC的面积.考点二、利用列方程求线段的长4.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?5.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.考点三、判别一个三角形是否是直角三角形6.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有_________________.7.若三角形的三别是a2+b2,2ab,a2-b2(a>b>0),则这个三角形是_________________.ADE BC8、如图,在我国沿海有一艘不明国际的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西400.那么甲巡逻艇的航向是怎样的?四、【灵活变通】9、直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .10、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外 壁爬行,要从A 点爬到B 点,则最少要爬行 cm 11、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管最大程度倾斜放进杯里,杯口外面至少要露出4.6㎝,问吸管至少要做多长?12、如图:带阴影部分的半圆的面积是 ( 取3)13、若一个三角形的周长123c m,一边长为33c m,其他两边之差为3c m,则这个三角形是______________________.五、【能力提升】15、已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高. 求证:AB 2-AC 2=BC(BD-DC).A B16、如图,正方形ABCD 中,F 为DC 的中点,E 为BC 上一点, 且BC CE 41.你能说明∠AFE 是直角吗?六、【跳出陷阱】1、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B=90°,已知a=6,b=10,求边长c .2、已知一个Rt △ABC 的两边长分别为3和4,则第三边长的平方是3、已知a ,b ,c 为⊿ABC 三边,a=6,b=8,b<c ,且c 为整数,则c=七、【思想方法】本节主要思想方法有数形结合的思想、方程的思想、化归的思想及分类的思想;例1、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求出CD ?配套练习1、如图,用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•C B AD E F2、在矩形纸片ABCD 中,AD=4cm ,AB=10cm ,按图所示方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长。
勾股定理专题复习导学案
《勾股定理》专题复习一、核心内容归纳●基本概念:勾股定理及逆定理的内容。
●基本知识点:1、已知两边求第三边;2、利用方程求线段长;3、利用方程解决翻折问题;4、勾股定理在立体图形中的应用。
●基本经验:在直角三角形中已知两边求第三边通常利用勾股定理求解,立体图形中的勾股定理问题通常转化为平面图形来解决。
二、常见问题枚举:知识点1:已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm,3cm ,则斜边长为___________.解:2.已知直角三角形的两条边长分别为6、8,则另一条边长是________________.解:知识点2:利用方程求线段长探索:等腰三角形A B C底边上的高为8,周长为32,求△A B C的面积?解:知识点3:利用方程解决翻折问题如图,在矩形A B C D中,B C=8,C D=4,将矩形沿B D折叠,点A落在A′处,求C F的长。
解:知识点4:勾股定理在立体图形中的应用如图,已知圆柱体底面直径为4cm ,高为8cm 。
求一只蚂蚁从A 点到F 点沿着圆柱侧面爬行的最短路程。
(π的值取3)解:知识点5:判断一个三角形是否为直角三角形1.直接给出三边长度;比如判断由a 、b 、c 组成的三角形是不是直角三角形:(1) a =3 , b =5, c =2 (2) a =1, b =2 , c = 解: 解:2.间接给出三边的长度或比例关系(1)若一个三角形的周长12c m,一边长为3c m,其他两边之差为1c m,则这个三角形是________。
解:(3)在△ABC 中,,那么△ABC 的形状是___________。
解:3、一位同学向西南走40米后,又走了50米,再走30米回到原地。
问这位同学又走了50米后向哪个方向走了?解:::a b c。
鲁教版数学七年级上第三章《勾股定理》(含答案及解析)
勾股定理时间:100分钟总分:100题号一二三四总分得分一、选择题〔本大题共8小题,共32.0分〕1.直角三角形的斜边为20cm,两直角边比为3:4,那这个直角三角形的周长为()A. 27cmB. 30cmC. 40cmD. 48cm2.如图,直线L上有三个正方形a,b,c,假设a,c的面积分别为1和9,那么b的面积为()A. 8B. 9C. 10D. 113.合适以下条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45∘;③a=2,b=2,c=2√2;④∠A=38∘,∠B=52∘.A. 1个B. 2个C. 3个D. 4个4.以以下各组数为一个三角形的三边长,能构成直角三角形的是()A. 2,3,4B. 4,6,5C. 14,13,12D. 7,25,245.在直线L上依次摆放着七个正方形,斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,那么S1+2S2+2S3+S4=( )A. 5B. 4C. 6D. 、106.在△ABC中,AB=15,AC=13,BC边上的高AD=12,那么△ABC的周长为()A. 14B. 42C. 32D. 42或327.△ABC的三边为a、b、c且满足a2(a−b)+b2(a−b)=c2(a−b),那么△ABC是()A. 等腰三角形或直角三角形B. 等腰直角三角形C. 等腰三角形D. 直角三角形8.如图,在四边形ABCD中,AD//BC,∠ABC=90∘,E是AB上一点,且DE⊥CE.假设AD=1,BC=2,CD=3,那么CE与DE的数量关系正确的选项是()A. CE=√3DEB. CE=√2DEC. CE=3DED. CE=2DE二、填空题〔本大题共7小题,共28.0分〕第 1 页9.如图,有一块田地的形状和尺寸如下图,那么它的面积为______ .10.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______ 元钱.11.在Rt△ABC中,两边长为5、12,那么第三边的长为______ .12.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入(填“能〞或“不能〞).13.如图,等腰△ABC中,AB=AC,AD是底边上的高,假设AB=5cm,BC=6cm,那么AD=______cm.14.如图,Rt△ABC中,∠ACB=90∘,CD⊥AB于D,假设AC=4,BC=3,那么AD=______ .15.如图,在△ABC中,∠A=30∘,∠B=45∘,AC=2,那么BC=______ .三、计算题〔本大题共4小题,共24.0分〕16.如图,四边形ABCD中,∠B=90∘,AB=4,BC=3,CD=12,AD=13,求这个四边形的面积.17.如下图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.18.公园里有一块形如四边形ABCD的草地,测得BC=CD=20米,∠A=45∘,∠B=∠C=120∘,恳求出这块草地面积.19.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60∘,∠C=45∘.(1)求∠BAC的度数.(2)假设AC=2,求AB的长.四、解答题〔本大题共2小题,共16.0分〕20.如图,等腰直角△ABC中,∠ABC=90∘,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90∘后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.21.如图,Rt△ABC中,∠B=90∘,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的途径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒进步了2cm,并沿B→C→A的途径匀速运动;点Q保持速度不变,并继续沿原途径匀速运动,两点在D点处再次相遇后停顿运动,设点P原来的速度为xcm/s.(1)点Q的速度为______cm/s(用含x的代数式表示).(2)求点P原来的速度.答案和解析【答案】1. D2. C3. C4. D5. C6. D7. A8. B9. 2410. 61211. 13或√11912. 能13. 414. 16515. √216. 解:连接AC,如下图:∵∠B=90∘,∴△ABC为直角三角形,又AB=4,BC=3,第 3 页∴根据勾股定理得:AC=√AB2+BC2=5,又AD=13,CD=12,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90∘,那么S四边形ABCD =S△ABC+S△ACD=12AB⋅BC+12AC⋅CD=12×3×4+12×12×5=36.17. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{AD=DE∠ADB=∠EDC BD=DC,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC2=AE2+CE2,∴∠E=90∘,由勾股定理得:CD=√DE2+CE2=√61,∴BC=2CD=2√61,答:BC的长是2√61.18. 解:连接BD,过C作CE⊥BD于E,如下图:∵BC=DC=20,∠ABC=∠BCD=120∘,∴∠1=∠2=30∘,∴∠ABD=90∘.∴CE=12CD=10,∴BE=10√3,∵∠A=45∘,∴AB=BD=2BE=20√3,∴S四边形ABCD =S△ABD+S△BCD=12AB⋅BD+12BD⋅CE =12×20√3×20√3+12×20√3×10=(600+100√3)m2.19. 解:(1)∠BAC=180∘−60∘−45∘=75∘.(2)∵AC=2,∴AD=AC⋅sin∠C=2×sin45∘=√2;∴AB=ADsin∠B =√2sin60∘=2√63.20. 解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45∘,∠ABP=∠CPQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90∘,∠ABP+∠PBC=∠CPQ+∠PBC=90∘,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有AC=4√2,AP=√2,PC=3√2,∴PQ=√PC2+CQ2=2√5.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=√2PB,∵AP=CQ,∴PQ2=PC2+CQ2=PA2+PC2,故有2PB2=PA2+PC2.21. 43x【解析】1. 解:根据题意设直角边分别为3xcm与4xcm,由斜边为20cm,根据勾股定理得:(3x)2+(4x)2=202,整理得:x2=16,解得:x=4,∴两直角边分别为12cm,16cm,那么这个直角三角形的周长为12+16+20=48cm.应选D根据两直角边之比,设出两直角边,再由的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.此题考察了勾股定理,利用了方程的思想,纯熟掌握勾股定理是解此题的关键.2. 解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90∘;∵∠ACB+∠DCE=∠ACB+∠BAC=90∘,即∠BAC=∠DCE,在△ABC和△CED中,{∠ABC=∠DEC=90∘∠ACB=∠CDEAC=DC,∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,应选C.运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.此题主要考察对全等三角形和勾股定理的综合运用,关键是证明△ACB≌△DCE.第 5 页3. 解:①a=3,b=4,c=5,∵32+42=25=52,∴满足①的三角形为直角三角形;②a=6,∠A=45∘,只此两个条件不能断定三角形为直角三角形;③a=2,b=2,c=2√2,∵22+22=8=(2√2)2,∴满足③的三角形为直角三角形;④∵∠A=38∘,∠B=52∘,∴∠C=180∘−∠A−∠B=90∘,∴满足④的三角形为直角三角形.综上可知:满足①③④的三角形均为直角三角形.应选C.根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方〞或“有一个角是直角〞,由此即可得出结论.此题考察了勾股定理的逆定理以及直角三角形的定义,解题的关键是根据勾股定理的逆定理和直角三角形的定义验证四组条件.此题属于根底题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方(或寻找三角形中是否有一个角为直角)〞是关键.4. 解:∵72+242=49+576=625=252.∴假如这组数为一个三角形的三边长,能构成直角三角形.应选:D.根据勾股定理的逆定理,对四个选项中的各组数据分别进展计算,假如三角形的三条边符合a2+b2=c2,那么可判断是直角三角形,否那么就不是直角三角形.此题主要考察学生对勾股定理的逆定理的理解和掌握.此题难度不大,属于根底题.5. 解:如图,∵图中的四边形为正方形,∴∠ABD=90∘,AB=DB,∴∠ABC+∠DBE=90∘,∵∠ABC+∠CAB=90∘,∴∠CAB=∠DBE,∵在△ABC和△BDE中,{∠ACB=∠BED ∠CAB=∠EBD AB=BD,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S2+S3=2,S3+S4=3,∴S1+2S2+2S3+S4=1+2+3=6.应选C.先根据正方形的性质得到∠ABD=90∘,AB=DB,再根据等角的余角相等得到∠CAB=∠DBE,那么可根据“AAS〞判断△ABC≌△BDE,于是有AC=BE,然后利用勾股定理得到DE2+BE2=BD2,代换后有ED2+AC2=BD2,根据正方形的面积公式得到S1= AC2,S2=DE2,BD2=1,所以S1+S2=1,利用同样方法可得到S2+S3=2,S3+S4= 3,通过计算可得到S1+2S2+2S3+S4=1+2+3=6.此题考察了全等三角形的断定与性质:断定三角形全等的方法有“SSS〞、“SAS〞、“ASA〞、“AAS〞;全等三角形的对应边相等.也考察了勾股定理和正方形的性质.6. 解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD 2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=5+9=14.∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.应选D.此题应分两种情况进展讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.此题考察了勾股定理及解直角三角形的知识,在解此题时应分两种情况进展讨论,易错点在于漏解,同学们考虑问题一定要全面,有一定难度.7. 解:∵a2(a−b)+b2(a−b)=c2(a−b),∴(a−b)(a2+b2−c2)=0,∴a=b或a2+b2=c2.当只有a−b=0成立时,是等腰三角形.当只有a2+b2−c2=0成立时,是直角三角形.当两个条件同时成立时:是等腰直角三角形.应选:A.因为a,b,c为三边,根据a2(a−b)+b2(a−b)=c2(a−b),可找到这三边的数量关系.此题考察勾股定理的逆定理的应用,以及对三角形形状的掌握.8. 解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB=√CD2−CH2=√32−12=2√2,∵AD//BC,∠ABC=90∘,∴∠A=90∘,∵DE⊥CE,∴∠AED+∠BEC=90∘,∵∠AED+∠ADE=90∘,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴ADBE =AEBC=DECE,第 7 页设BE=x,那么AE=2√2−x,即1x =2√2−x2,解得x=√2,∴ADBE =DECE=1√2,∴CE=√2DE,应选:B.过点D作DH⊥BC,利用勾股定理可得AB的长,利用相似三角形的断定定理可得△ADE∽△BEC,设BE=x,由相似三角形的性质可解得x,易得CE,DE的关系.此题主要考察了相似三角形的性质及断定,构建直角三角形,利用方程思想是解答此题的关键.9. 解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB=√AD2+BD2=√32+42=5,因为52+122=132,所以△ABC是直角三角形,那么要求的面积即是两个直角三角形的面积差,即12×12×5−12×3×4=30−6=24.先连接AB,求出AB的长,再判断出△ABC的形状即可解答.巧妙构造辅助线,问题即迎刃而解.综合运用勾股定理及其逆定理.10. 解:由勾股定理,AC=√AB2−BC2=√132−52=12(m).那么地毯总长为12+5=17(m),那么地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.地毯的长是楼梯的竖直局部与程度局部的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.此题考察了勾股定理的应用,正确理解地毯的长度的计算是解题的关键.11. 解:①假设12为直角边,可得5为直角边,第三边为斜边,根据勾股定理得第三边为√52+122=13;②假设12为斜边,5和第三边都为直角边,根据勾股定理得第三边为√122−52=√119,那么第三边长为13或√119;故答案为:13或√119.分两种情况考虑:假设12为直角边,可得出5也为直角边,第三边为斜边,利用勾股定理求出斜边,即为第三边;假设12为斜边,可得5和第三边都为直角边,利用勾股定理即可求出第三边.此题主要考察了勾股定理,利用了分类讨论的思想,纯熟掌握勾股定理是解此题的关键.12. 解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.在长方体的盒子中,一角的顶点与斜对的不共面的顶点的间隔最大,根据木箱的长,宽,高可求出最大间隔,然后和木棒的长度进展比拟.此题考察了勾股定理的应用.解题的关键是求出木箱内木棒的最大长度.13. 【分析】此题考察了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:BD=12BC=12×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=√AB2−BD2=√52−32=4cm.故答案为4.14. 解:∵AC=4,BC=3,∴AB=5,∵S△ABC=12×3×4=12×5×CD,∴CD=125.∴AD=√AC2−CD2=√16−14425=165,故答案为:165.根据勾股定理求得AB的长,再根据三角形的面积公式求得CD,然后再利用勾股定理计算出AD长即可.此题主要考察了直角三角形面积及勾股定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.15. 解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=2,∠A=30∘,∴CD=12AC=1,∵在Rt△BCD中,∠B=45∘,∴CD=BD=1,那么BC=√CD2+BD2=√2,故答案为:√2.作CD⊥AB,由AC=2、∠A=30∘知CD=1,由∠B=45∘知CD=BD=1,最后由勾股定理可得答案.此题主要考察勾股定理、直角三角形的性质,纯熟掌握直角三角形的性质和勾股定理是解题的关键.16. 连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.此题考察了勾股定理,以及勾股定理的逆定理,纯熟掌握定理及逆定理是解此题的关键.17. 延长AD到E使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=90∘,根据勾股定理求出CD即可.第 9 页此题综合考察了勾股定理、勾股定理的逆定理、全等三角形的性质和断定、三角形的中线等知识点的应用,关键是正确地作辅助线,把条件转化成一个直角三角形,题型较好.18. 易得∠CDB的度数,连接BD可得一个等腰三角形和一个直角三角形,作出等腰三角形底边上的高,利用∠CDB的正弦值可得等腰三角形底边上的高,进而求得两个三角形的面积,让它们相加即可.此题考察解直角三角形在实际生活中的应用;把四边形问题整理为三角形问题是解决此题的打破点,作等腰三角形底边上的高,是常用的辅助性方法.19. (1)根据三角形的内角和是180∘,用180∘减去∠B、∠C的度数,求出∠BAC的度数是多少即可.(2)首先根据AC=2,AD=AC⋅sin∠C,求出AD的长度是多少;然后在Rt△ABD中,求出AB的长是多少即可.此题主要考察了勾股定理的应用,以及直角三角形的性质和应用,要纯熟掌握.20. (1)由于∠PCB=∠BCQ=45∘,故有∠PCQ=90∘.(2)由等腰直角三角形的性质知,AC=4√2,根据条件,可求得AP,PC的值,再由勾股定理求得PQ的值.(3)由于△PBQ也是等腰直角三角形,故有PQ2=2PB2=PA2+PC2.此题利用了旋转的性质,等腰直角三角形的性质,勾股定理求解.21. 解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=43x,故答案为:43x;(2)AC=√AB2+BC2=√32+42=5,CD=5−1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得3+14x3=4+4x+2,解得:x=65(cm/s),答:点P原来的速度为65cm/s.(1)设点Q的速度为ycm/s,根据题意得方程即可得到结论;(2)根据勾股定理得到AC=√AB2+BC2=√32+42=5,求得CD=5−1=4,列方程即可得到结论.此题考察了分式方程的应用,勾股定理,正确的理解题意是解题的关键.。
勾股定理复习优秀教案
(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?
【课后作业】
1、等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为____________。
2、若正方形的面积为18cm2,则正方形对角线长为__________cm。
3、如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,则该河流的宽度为。
课题
勾股定理
教学目标
学会利用勾股定理求直角三角形的边长、面积和实际应用
重点
☆勾股定理的逆定理及勾股定理的应用
难点
☆勾股定理的应用
【知识要点】
1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即:a2+b2=c2.
(1)勾股定理的证明:
(2)勾股数:
2、勾股定理逆定理如果三角形三边长a,b,c有下面关系:
【基础训练】
一、填空题
1、若直角三角形两直角边分别为6和8,则斜边为___________;
2、已知两条线的长为5cm和4cm,当第三条线段的长为_________时,这三条线段能组成一个直角三角形;
3、 能够成为直角三角形三条边长的正整数,称为勾股数。请你写出三组勾股数:_________________________;
4、在△ABC中,∠C=90°,若AB=5,则 + + =__________。
5、木工周师傅做一个长方形桌面,测量得到桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”)。
6、如图,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=。
鲁教版七年级数学上册第三章勾股定理复习
【变式 1-2】如图 2:在一个高 6 米,长 10 米的楼梯表面铺地毯,则该地毯的长
度至少是 14cm 米.
【变式 1-3】一根旗杆在离地面 9 m 处断裂,旗杆顶部落在离旗杆底部 12 m 的
地面上,旗杆在折断之前高度为 24m . 【变式 1-4】一直角三角形两条边长分别是 12 和 5,则第三边平方为 169或11. 9
4、要注意防止漏解 例 4 在 Rt△ABC 中,a=3,b=4,求 c.
当c为斜边时,c a2 b2 32 42 5 当b为斜边时,c b2 a2 42 32 7 c的值为5或 7
5、要注意正逆合用 在解题中,我们常将勾股定理及其逆定理结合起来使用,一个是性质,一个是判
定,真所谓珠联壁合.当然在具体运用时,到底是先用性质,还是先用判定,要
学习目标
XUE XI MU BIAO
1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边. 2.勾股定理的应用. 3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用.
1 巩固新知
PART THREE
标题
一、勾股定理:_直__角__三__角__形__两__直 ___角__边__的__平__方__和__等__于 ___斜__边的平方
3 2x 4 3x, 解得x 1
BC 3x 2x 5x 5
又 32 +42 =52,即AC2 AB2 BC2
ABC是直角三角形,A=90,
SABC
1 2
AB •
AC
1 2
43
6
18.如图等腰△ABC 的底边长为 8cm,腰长为 5cm,一个动点 P 在底边上从 B 向 C 以 0.25cm/s
勾股定理的复习导学案
THANKS FOR WATCHING
感谢您的观看
答案
BC=3
解析
根据勾股定理,在直角三角形中,直角边的平方和等于 斜边的平方。即,AC²+BC²=AB²。代入已知值, 4²+BC²=5²,所以BC=3。
进阶练习题
题目
在直角三角形ABC中,∠C=90°,AC=√5,BC=2√5,则 AB的长度为多少?
答案
AB=3√5
解析
根据勾股定理,在直角三角形中,直角边的平方和等于斜边 的平方。即,AC²+BC²=AB²。代入已知值, (√5)²+(2√5)²=5+20=25,所以AB=3√5。
通过勾股定理可以推导出直角三角形的 面积公式为$frac{1}{2}ab$,其中a和b 为直角边。
勾股定理与相似三角形的关系
勾股定理与相似三角形之间存在一定的联系。 如果两个直角三角形相似,那么它们的对应边长比例满足勾股定理。
勾股定理与三角函数的关系
勾股定理与三角函数之间存在密切的 联系。
在直角三角形中,三角函数(如正弦、 余弦、正切)可以用于描述角度和边 长之间的关系。
误解二
只有当直角三角形中两条直角边分别为3和4时,斜边才为5。实际上,勾股定理适用于任意直角三角形,只要满 足勾股定理的条件即可。
勾股定理应用中的单位问题
单位不统一
在应用勾股定理时,必须确保涉及的所有边长单位统一,否则会导致计算错误。
忽视单位换算
在涉及不同单位时,需要正确进行单位换算,以确保计算结果的准确性。
确保给定的三边满足勾股定理的条件 ,避免误解。
3勾股定理的应用精品导学案对应练习题附答案
1.3勾股定理的应用一、自主预习(感知)1、勾股定理:直角三角形两直角边的等于。
如果用a,b和c表示直角三角形的两直角边和斜边,那么a2+ b 2= c 22、勾股定理逆定理:如果三角形三边长a,b , c满足那么这个三角形是直角三角形。
3、判断题(1).如果三角形的三边长分别为a,b,c,贝U a2+ b2= c2()(2)如果直角三角形的三边长分别为a,b,c,贝U a2+ b2= c2 ()(3)由于0.3 , 0.4 , 0.5不是勾股数,所以以0.3 , 0.4 , 0.5为边长的三角形不是直角三角形 ()4、填空:(1).在^ ABC中,Z C=90° , c=25,b=15,贝U a= .(2).三角形的三个内角之比为:1 : 2 : 3 ,那么此三角形是.假设此三角形的三边长分别为a,b,c,那么它们的关系是.(3)三条线段m,n,p满足n2-n2=p2,以这三条线段为边组成的三角形为( )。
二、合作探究(理解)1、课本P13页蚂蚁爬行最短路线问题2、课本P13页做一做3、课本P13贞例1三、轻松尝试(运用)1.甲、乙两位探险者到沙漠进行探险,某日早晨8: 00甲先出发,他以6 km/h 的速度向正东行走,1时后乙出发,他以5 km/h的速度向正北行走.上午10: 00,甲、乙两人相距多远?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距3.有一个高为1.5 m半径是1m的圆柱形油桶,在靠近边的地方有一小孔, 从孔中插入一铁棒,铁棒在油桶外的局部为0.5 m,问这根铁棒有多长?四、拓展延伸〔提高〕4如图,带阴影的矩形面积是多少?6如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5, 一只蚂蚁如果要沿着长方体的外表从点A爬到点B,需要爬行的最短距离是多少?五、收获盘点〔升华〕六、当堂检测〔达标〕1、甲、乙两位探险者到沙漠进行探险.某日早晨8 : 00甲先出发,他以6千米/ 时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10 : 00, 甲、乙两人相距多远?2、如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,铁棒在油桶外的局部是0.5米,问这根铁棒应有多长?3、在我国古代数学著作?九章算术?中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?七、课外作业〔稳固〕1、必做题:①整理导学案并完成下一节课导学案中的预习案。
《勾股定理》复习学案
勾股定理复习一、知识再现1.勾股定理:在直角三角形中,两条直角边的平方之和等于. 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么.2.勾股定理的逆定理:如果三角形的三边长a,b,c,满足,那么这个三角形是直角三角形。
3.勾股数:满足的三个称作勾股数二、小试牛刀1.已知ΔABC中,∠C=90º,(1)若a=6, b=8, 则c= _________(2)若a=5, c=13, 则b= _________2.判断下面以a、b、c 为边的三角形是不是直角三角形(1)a=0.5,b=1.3,c=1.2 (2)a=2,b=3,c=43.判断各题中的a、b、c是不是勾股数(1)a=15,b=12,c=9 (2)a=0.5,b=1.3,c=1.2 (3)a=2,b=3,c=44.直角三角形的两条边为3和4,求这个直角三角形的第三边的长?三、合作提升1.小区里有一块四边形的绿地,∠B=90°,AB=3,BC=4,CD=12,AD=13,你能求出绿化带的面积吗?B CDa cb AC2.已知如图,将长方形的一边BC 沿CE 折叠,使得点B 落在AD 边的点F 处,已知AB =8,BC =10, 求BE 的长.四、课堂检测1.小区里有一块四边形的绿地,∠B =90°,AB =3,BC =4,CD =12,AD =13,你能求出绿化带的面积吗?2.如图, 把长方形的纸片折叠,使BC 边与对角线BD 重合,点C 落到点F 处,折痕为BE ,已知CD 边长4cm,BC 边长3cm ,你能求出CE 的长吗?ABDCF EBCD34 1312。
《勾股定理》复习学案(期末复习)
第3题 第4题 《勾股定理》复习学案【知识点归纳】1、勾股定理直角三角形两直角边a ,b 的 等于斜边c 的 ,即2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系 ,那么这个三角形是 三角形。
3、勾股数:满足222c b a =+的三个 ,称为勾股数。
★注意:1.勾股定理仅适用于 三角形;2.常见的勾股数(请举出几组):3.若a ,b ,c 为勾股数,则ka ,kb ,kc (k 为正整数)也是勾股数。
【基础训练】1.一架2.5m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m .那么梯子的顶端距墙脚的距离是( ).(A)0.7m (B)0.9m (C)1.5m (D)2.4m2..以下各组数中,能组成直角三角形的是( )(A)2,3,4 (B)1.5,2,2.5 (C)32,42,52 (D)8,9,103.如图,为了求出湖两岸A 、B 两点之间的距离,一个观测者在点C 设桩,使三角形ABC 恰好为以∠B 为直角的直角三角形.通过测量,得到AC 长160m ,BC 长128m ,则AB 长 m .4.利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图2中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而 c 2= + 。
化简后即为 c 2= 。
5.有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米。
【本章小专题】☞专题一:勾股定理及应用1.计算下列直角三角形的边长(注意运用规律):(1) (2) (3)2.一个零件的形状如图所示,工人师傅按规定做得AB =3,BC =4,AC =5,CD =12,AD =13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?3.波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?☞专题二:面积问题1.如图:以Rt △的三边长为边在外面作三个正方形M 、N 、P(1)若S M =5,S N =6,则S M +S N +S P = ;(2)若S P =10,则S M +S N +S P = 。
勾股定理
课题:勾股定理复习学案1.知识点梳理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用,a b 和c 分别表示直角三角形的直角边和斜边,那么__________2c =.(2)勾股定理各种表达式:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边也分别为,,a b c ,则2a =_________,2b =_________,2c =_________.(3)勾股定理的逆定理:在△ABC 中,若,,a b c 三边满足___________,则△ABC 为___________.(4)勾股数:满足___________的三个___________,称为勾股数.(5)几何体上的最短路程是将立体图形的________展开,转化为_________上的路程问题,再利用___________两点之间,___________解决最短线路问题.(6)直角三角形的边、角之间分别存在着什么关系?从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形中有一个特殊的角即直角,所以直角三角形的两个锐角 .直角三角形作为一个特殊的三角形.如果又有一个锐角是30︒,那么30︒的角所对的直角边是斜边的 .(7)举例说明,如何判断一个三角形是直角三角形?可以从角、边两个方面判断.①从定义即从角出发去判断一个三角形是直角三角形.例如:在△ABC 中,7515B C ∠=︒∠=︒,,根据三角形的内角和定理,可得A ∠= ,根据定义可判断△ABC 是直角三角形.在△ABC 中,1123A B C ∠=∠=∠,由三角形的内角和定理可知,A 30∠=︒,2B A ∠=∠= °,3C A ∠=∠= °,△ABC 是直角三角形.②从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理).例如:△ABC 的三条边分别为72524a b c ===,,,而2222262572524a c b +=+===,根据勾股定理的逆定理可知△ABC 是 三角形,但这里要注意的是b 所对的角90B ∠=︒.在△ABC 三条边的比为::5:12:a b c = ,△ABC 是直角三角形.8.通过回顾与思考中的问题的交流,由学生自己建立本章的知识结构图.三边的关系--勾股定理→历史、应用直角三角形直角三角形的判别→应用二、典型例题 1.利用勾股定理求边长.例1 已知直角三角形的两边长分别为3、4,求第三边长的平方.跟踪训练1:一个直角三角形的两直角边长分别为3和4,那么它斜边上的高线长为A. 5B. 2.5C. 2.4D. 22.利用勾股定理求图形面积.(1)如图,BC 长为3cm ,AB 长为4cm ,Af 长为12cm .求正方形CDEF 的面积.3.利用勾股定理逆定理判定△ABC 的形状或求角度. 例3 在△ABC 中,A B C ∠∠∠,,的对边分别为a b c ,,,且2()()a b a b c +-=,则(A )A ∠为直角(B )C ∠为直角 (C )B ∠为直角(D )不是直角三角形跟踪训练3:已知△ABC 的三边为a ,b ,c ,有下列各组条件,判定△ABC 的形状. ①41409a b c ===,,; ②222220a m n b m n c mn m n =-=+=>>,,().4.勾股定理及逆定理的综合应用.例4 B 港有甲、乙两艘渔船,若甲船沿北偏东60︒方向以每小时8 n mile 的速度前进,乙船沿南偏东某个角度以每小时15 n mile 的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34 n mile ,你知道乙船是沿哪个方向航行的吗?跟踪训练4:如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时, A 处受噪音影响的时间为 .{例5 如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20 B.25 C.30 D.35三、巩固练习1.下列四组线段中,可以构成直角三角形的是().A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,32.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于().A.75 B.100 C.120 D.1253.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为().A.2 B.4 C.8 D.164.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是().A. 25B. 14C. 7D. 7或255.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.7.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)四、拓展提升1.已知Rt △ABC 中,90C ∠=︒,若1410a b c m c c m +==,,求Rt △ABC 的面积.2.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2 m ,坡角30906A B BC ∠=︒∠=︒=,,m .当正方形DEFH 运动到什么位置,即当AE = m 时,有222DC AE BC =+.3.有一个如图所示的长方体透明玻璃鱼缸,假设其长AD =80cm ,高AB =60cm ,水深AE =40cm .在水面上紧贴内壁G 处有一块面包屑,G 在水面线EF 上,且EG =60cm ,一只蚂蚁想从鱼缸外的A 点沿鱼缸壁爬进鱼缸内的G 处吃面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.4.如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?第一章勾股定理单元测试题一、选择题.(共10道小题,每题3分,共30分)1.下列长度的三条线段,能组成直角三角形的是().A.1cm,3cm,3 cm; B.2 cm,3 cm,4 cm;C.4 cm,6 cm,8 cm; D.5 cm,12 cm,13 cm.2.若直角三角形两边长分别是3和4,则第三边的长的平方为().A.5 B.7 C.25 D.25或73.三角形的三边长分别为5,12,13,边长为12的边上的高为().A.5 B.12 C.13 D.60 134.已知一个直角三角形的斜边长比直角边长多2,另一条直角边长为8,则斜边长为().A.12 B.6 C.17 D.155.如图,在正方形ABCD中,AB=8,AE=4,DF=2,图中有()个直角三角形.A.1个 B .2个 C .3个 D .4个6.下列条件中,不能..判断一个三角形是直角三角形的是A. 三个角的比为1:2:3B. 三条边满足关系a2 =b2 - c2C. 三条边的比为1:2:3D. 三个角满足关系∠B+∠C=∠A7.如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().A. 14B. 16C. 20D. 288.如图,在△ABC中,AC=10,DC=6,AD=8,BC=21,则AB 的长为().A. 15B. 16C. 14D. 179.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为().A.3cm2B.4cm2 C.6cm2 D.12cm210.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m.同时梯子的顶端B下降至B′,那么BB′().A.小于1mB.大于1m C.等于1mCBDFD .小于或等于1 m二、填空题.(共10道小题,每题3分,共30分)11.如图,数轴上点A 表示的数是__________.12.强大的台风使得一根旗杆在离地面3m 处折断倒下,旗杆顶不落在离旗杆底部4m 处,则旗杆折断之前的高度是 .14.如图,Rt △ABC 中,AB =9,BC =6,∠B = 90,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段DN 的长为 .17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为 厘米.18.如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm ,30 cm ,在AB 中点C 处有一滴蜜糖,一只小虫从P 处爬到C 处去吃,有多种走法,则最短路程是 .20.如图,在一个长方形草坪ABCD 上,放着一根长方体的木块,已知AD =6米,AB =5米,该木块的较长边与AD 平行,横截面是边长为1米的正方形,一只蚂蚁从点A 处爬过木块到达C 处需要走的最短路程是_________米.三.解答下列各题.21.如图是一个滑梯的示意图,若将滑道AC 水平放置,则刚好与AB 一样长,已知滑梯的高CE =BD =3m ,CD =1m ,求滑道AC 的长.(6分)22.如图,已知四边形ABCD 中,AB =15,BC =20,AD =7,CD =24,∠B =90○,求四边形ABCD 的面积. (6分)23.如图,25米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?(6分)24.如图正方形网格中的△ABC ,若小方格边长为1,请你根据所学的知识.(6分)(1)判断△ABC 是什么形状?并说明理由.(2)求△ABC 的面积.25.构造定义(8分)学习了勾股定理及其逆定理,我们知道:在一个三角形中,如果一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形是直角三角形,反之结论也成立。
勾股定理复习导学案
勾股定理复习导学案一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和 ;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 。
2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,无重叠、空隙,面积不改变 ②根据同一种图形的面积不同的表示方法,列等式,推导出定理 常见方法如下:方法一:4E F G H S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可得: 。
方法二:四个直角三角形的面积与小正方形面积的和=大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c=⨯+=+大正方形面积为S= ,所以222a b c +=。
方法三:S梯形= ,2112S 222ADE ABE S S ab c∆∆=+=⋅+梯形,化简得证。
3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是 三角形。
4.勾股定理的应用已知直角三角形的任意两边长,主要求第三边在A B C ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-5、利用勾股定理作长为的线段 例如:作长为、、的线段。
思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。
作法:如图所示6.勾股定理的逆定理①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a cb +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 7.勾股数:①记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ②用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n为正整数) ,2222,2,m n mn m n -+(,m n >m ,n 为正整数)题型一:直接考查勾股定理例1.在A B C ∆中,90C ∠=︒.⑴ 已知6AC =,8B C =.求AB 的长 ⑵已知17AB =,15A C =,求BC 的长 解:题型二:应用勾股定理建立方程例2.⑴在A B C ∆中,90AC B ∠=︒,5A B =cm ,3B C =cm ,C D AB ⊥于D ,C D =⑵直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 例3.如图A B C ∆中,90C ∠=︒,12∠=∠, 1.5C D =, 2.5BD =,求A C 的长例4.如图R t A B C ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积BACcba HG F EDCB Abacba ccabcab a bcc baE D CBA21EDCBA题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8A B =m ,2C D =m ,8B C =m ,过点D 作DE AB ⊥,垂足为E ,则6A E =m ,8D E =m 在R t A D E ∆中,由勾股定理得2210AD AE DE=+=题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a ,b ,c ,判定A B C ∆是否为R t ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?解:此三角形是直角三角形理由:222()264a b a b ab +=+-= ,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知A B C ∆中,13AB =cm ,10B C =cm ,BC 边上的中线12AD =cm ,求证:A B A C = 证明:填空:1.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是8cm 2,10cm 2,14cm 2,则正方形D 的面积是 cm 2.2.如图2,在△ABC 中,∠C =90°,BC =60c m ,CA =80c m ,一只蜗牛从C 点出发,以每分钟20c m 的速度沿CA →AB →BC 的路径再回到C 点,需要 分钟的时间.3.已知x 、y 为正数,且|x 2-4|+(y 2-16)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为 .4.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上(设梯子上端要到达或超过挂拉花的高度才能挂上),小虎应把梯子的底端放在距离墙 米处.5.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为 和 .(注:两直角边长均为整数) 6、如果正方形ABCD 的面积为29,则对角线AC 的长度为( ) 选择:1.下列各组数为勾股数的是( ) A .6,12,13B .3,4,7C .4,7.5,8.5D .8,15,162.要登上某建筑物,靠墙有一架梯子,底端离建筑物5,顶端离地面12,则梯子的长度为( )A .12B .13C .14D .15 3.直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cm B .3cm C .4cm D .5cm 4.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的( )A .2倍B .3倍C .4倍D .5倍5.下列说法中, 不正确的是( )A .三个角的度数之比为1∶3∶4的三角形是直角三角形B .三个角的度数之比为3∶4∶5的三角形是直角三角形C .三边长度之比为3∶4∶5的三角形是直角三角形D .三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a +b )2=c 2+2ab ,则这个三角形是( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形7.某直角三角形的周长为30,且一条直角边为5,则另一直角边为( )A .3B .4C .12D .13解答:四边形ABCD 中已知AB=3,BC=12,CD=13,DA=4, ∠BAD=900,求这个四边形的面积.D CBA勾股定理练习 姓名一.填空题:1. 在Rt △ABC 中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S △ABC =________。
勾股定理的复习导学案
,
3、勾股定理的证明
图三: 证明:∵S梯形= (a+b)2/2 又∵S梯形=2•ab/2+c2/2
∴(a+b)2/2=2•ab/2+c2/2
因此,a2+b2=c2
【典型例题】 (题型一) 直接运用勾股定理求边 已知:Rt△ABC中,∠C=90°, 若a=3, b=4, 求c的值。 解:在Rt△ ABC 中,∠ C =90°, 由勾股定理得: c2=a2+b2=32+42=25 , c= 5 , 所以,c的值为 5 。
(题型三)、直接运用勾股定理的逆定理 已知在△ABC中, AC=10cm ,BC=24cm, AB=26cm,试说明△ABC是直角三角形。 证明:∵AC2+ BC2= 10 2+24 2= 676 , 而AB2= 26 2= 676, ∴ AC 2+ BC 2= AB 2 由勾股定理的逆定理可知: 故△ABC是直角三角形.
(题型二)先构造Rt△,再运用勾股定理 如图所示,在等腰三角形ABC中,腰AB=5, 底BC=6,求△ABC的面积. 解:在△ABC中,过点A作AD⊥BC, 垂足为D; 又∵△ABC为等腰三角形, ∴AD为底边BC上的中线, ∴BD=BC/2=3 在Rt△ABD中,有勾股定理可知: AD2=AB2-BD2=52-32=16 ∴AD=4 ∴S△ABC=AD•BC/2=4•6/2=12 因此:△ABC的面积为12.
鲁教版五四制七年级数学(上册)
勾股定理、勾股定理 在Rt△ABC中,∠C=900,则有 a2+b2=c2 。 2、勾股定理的逆定理 若 a2+b2=c2 ,则此三角形是Rt△。
2021-2022学年鲁教版七年级数学上册《第3章勾股定理》期末复习自主提升训练(附答案)
2021-2022学年鲁教版七年级数学上册《第3章勾股定理》期末复习自主提升训练(附答案)1.在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想2.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形3.一个圆桶底面直径为7cm,高24cm,则桶内所能容下的最长木棒为()A.20cm B.25cm C.26cm D.30cm4.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是()A.B.C.D.5.在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=4,c=76.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是()A.16B.25C.144D.1697.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m8.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④9.如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=()A.9B.5C.53D.4510.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.1211.已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A.9B.12C.15D.1812.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是()A.5米B.7米C.8米D.9米13.小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米14.三角形的三边分别为a、b、c,由下列条件不能判断它是直角三角形的是()A.B.a2﹣b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:1215.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米16.若直角三角形两边分别是3和4,则第三边是.17.在△ABC中,AB=15,AC=20,D是BC边所在直线上的点,AD=12,BD=9,则BC =.18.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部B恰好碰到岸边的B',则这根芦苇的长度是尺.19.如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.20.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是.21.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B 点,那么它所走的最短路线的长是cm.22.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是cm.23.若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为.24.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.25.如图,把一块直角三角形(△ABC,∠ACB=90°)土地划出一个三角形(△ADC)后,测得CD=3米,AD=4米,BC=12米,AB=13米.(1)求证:∠ADC=90°;(2)求图中阴影部分土地的面积.26.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m 和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?27.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?28.甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?29.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.30.如图,已知等腰△ABC的底边BC=13cm,D是腰AB上一点,且CD=12cm,BD=5cm.(1)求证:△BDC是直角三角形;(2)求△ABC的周长.参考答案1.解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想,故选:C.2.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.3.解:如图,AC为圆桶底面直径,CB是桶高,∴AC=7cm,CB=24cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===25(cm).故桶内所能容下的最长木棒的长度为25cm.故选:B.4.解:A、∵ab+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×ab+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.5.解:A、82+152=172,是勾股数,不符合题意;B、92+122=152,是勾股数,不符合题意;C、72+242=252,是勾股数,不符合题意;D、32+42≠72,不是勾股数,符合题意.故选:D.6.解:根据勾股定理得出:AB=,∴EF=AB=5,∴阴影部分面积是25,故选:B.7.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子底端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.8.解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设,,则=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,当a=c,b=d时,ad﹣bc=0,∴两个广义勾股数的积不一定是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.9.解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故选:A.10.解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,所以阴影部分的面积S=×π×()2+×()2+﹣×π×()2=6,故选:A.11.解:过点A作AD⊥BC,∵AB=AC,∴BD=CD=BC=18=9,∴AD==12(cm),∴它底边上的高为12cm;故选:B.12.解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,∴AB=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C.13.解:如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=1米,CH=5米,设AB=AC=x 米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x﹣1)2,∴x=13,∴AB=13(米),故选:D.14.解:A、∵,b=,c=,∴b2+c2≠a2,即此三角形不是直角三角形,故本选项符合题意;B、∵a2﹣b2=c2,∴b2+c2=a2,即此三角形是直角三角形,故本选项不符合题意;C、∵a2=(b+c)(b﹣c)=b2﹣c2,∴a2+c2=b2,即此三角形是直角三角形,故本选项不符合题意;D、∵a:b:c=13:5:12,∴b2+c2=a2,即此三角形是直角三角形,故本选项不符合题意;故选:A.15.解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.16.解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.17.解:如图1所示,当点D在线段BC上时,∵AD=12,BD=9,AB=15,∴AD2+BD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,∴∠ADC=90°,∴DC===16,∴BC=BD+CD=9+16=25;如图2所示,当点D在CB的延长线上时,同理可得,DC=16,∴BC=CD﹣BD=16﹣9=7;由于AC>AB,所以点D不在BC的延长线上.综上所述,BC的长度为25或7.故答案为:25或7.18.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.19.解:∵四边形ABCD、四边形FHIJ和四边形BEFG都是正方形,∴∠BCG=∠BGF=∠GJF=90°,BG=GF,∴∠CBG+∠BGC=90°,∠JGF+∠BGC=90°,∴∠CBG=∠JGF,在△BCG和△GJF中,,∴△BCG≌△GJF(AAS),∴BC=GJ,∵正方形ABCD的面积为4,正方形FHIJ的面积为3,∴BC2=4,FJ2=3,∴GJ2=4,在Rt△GJF中,由勾股定理得:FG2=GJ2+FJ2=4+3=7,∴正方形BEFG的面积为7.故答案为:7.20.解:过F作FM⊥AB交AB的延长线于点M,则AM=AB+DC+EF=8,FM=BC+DE=6,在Rt△AMF中,∵AF2=AM2+FM2,∴AF=10.故答案为:10.21.解:由题意可得,当展开前面和右面时,最短路线长是:==15(cm);当展开前面和上面时,最短路线长是:==7(cm);当展开左面和上面时,最短路线长是:=(cm);∵15<7<,∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15cm,故答案为:15.22.解:如图所示:由于圆柱体的底面周长为24cm,则AD=24×=12cm.又因为CD=AB=9cm,所以AC==15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.23.解:设AB交半圆于点D,连接CD.∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD垂直平分斜边AB,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=S Rt△ABC﹣S Rt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.24.解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.25.(1)证明:∵∠ACB=90°,BC=12米,AB=13米,∴AC===5(米),∵CD=3米,AD=4米,∴AD2+CD2=AC2=25,∴∠ADC=90°;(2)解:图中阴影部分土地的面积=A×BC﹣AD×CD=×5×12﹣×4×3=24(平方米).26.解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉机周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.27.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO=(米);(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2﹣0.5)=1.5(米),根据勾股定理:OB′==2(米),所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5(米),答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.28.解:∵甲的速度是30海里/时,时间是2小时,∴AC=60海里.∵∠EAC=35°,∠F AB=55°,∴∠CAB=90°.∵BC=100海里,∴AB=海里.∵乙船也用2小时,∴乙船的速度是40海里/时.29.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵∠A=60°,当AM=AN时,△AMN是等边三角形∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图2,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得t=;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得t=.综上所述,当t为或s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.30.(1)证明:∵BC=13cm,CD=12cm,BD=5cm,∴BC2=BD2+CD2∴△BDC为直角三角形;(2)解:设AB=x,∵△ABC是等腰三角形,∴AB=AC=x,∵AC2=AD2+CD2x2=(x﹣5)2+122,解得:x=,∴△ABC的周长=2AB+BC=2×+13=.。
初中数学勾股定理导学案及课堂练习(含答案)
勾股定理要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b,,斜边长为c,那么222+=.a b c要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222=-,()2b c a=-,222a c b22c a b ab=+-.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.要点四、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点五、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点六、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;(2)2222,21,221n n n n n ++++(n ≥1,n 是自然数)是直角三角形的三条边长; (3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长; 1.如图,正方形A ,B ,C 的边长分别为直角三角形的三边长,若正方形A ,B 的边长分别为3和5,则正方形C 的面积为( )A. 4B. 15C. 16D. 182.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?( )A. 一定不会B. 可能会C. 一定会D. 以上答案都不对3.图中字母所代表的正方形的面积为144的选项为()A. B. C. D.4.下列各组长度的线段能构成直角三角形的一组是( )A. 30,40,50B. 7,12,13C. 5,9,12D. 3,4,65.已知△ABC的三边长分别为5,13,12,则△ABC的面积为()A. 30B. 60C. 78D. 不能确定6.我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A. 13B. 19C. 25D. 1697.在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积()A. 4B. 6C. 16D. 558.一个直角三角形的两直角边长分别为5和12,则它斜边上的高长为()A. 13B.C.D.9.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A. B. C. D.10.△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法中,错误的是()A. 如果∠C﹣∠B=∠A,那么∠C=90°B. 如果∠C=90°,那么c2﹣b2=a2C. 如果(a+b)(a﹣b)=c2,那么∠C=90°D. 如果∠A=30°∠B=60°,那么AB=2BC11.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形()A. 仍是直角三角形B. 可能是锐角三角形C. 可能是钝角三角形D. 不可能是直角三角形12.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是________.13.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH 都是正方形.如果AB=10,EF=2,那么AH等于________ .14.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.15.在△ABC中,AB=AC,D是BC延长线上的点,求证:.16.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.17.如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?18.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?19.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?20.如图,在中,,,,.求的长.21.学校校内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?答案解析部分一、单选题1.【答案】C2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】C7.【答案】C8.【答案】C9.【答案】A10.【答案】C11.【答案】A二、填空题12.【答案】813.【答案】6三、计算题14.【答案】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB= =10,∵S△ABC= AB•CD= AC•BC,∴CD= = =4.8四、解答题15.【答案】解:证明过点A作AE⊥BD于E,易得在Rt△AED,Rt△ABE,中由勾股定理即16.【答案】解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC= =5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30-6=24.17.【答案】解: ∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.18.【答案】解:不对.理由:如图,依题意可知AB=25(米),AO=24(米),∠O=90°,∴ BO2=AB2﹣AO2=252-242,∴ BO=7(米),移动后,A'O=20(米),B'O2=(A'B')2-(A'O)2=252-202=152,∴ B'O=15(米),∴ BB'=B'O-BO=15-7=8(米).19.【答案】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,第九讲在Rt△AEC中,AC= = =10m,故小鸟至少飞行10m.20.【答案】解:,在中,在中,21.【答案】解:过点D作AD⊥BC于点D,设BD=x,则CD=14﹣x,在Rt△ABD与Rt△ACD中,∵AD2=AB2﹣BD2,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即132﹣x2=152﹣(14﹣x)2,解得x=5,∴AD2=AB2﹣BD2=132﹣52=144,∴AD=12(米),∴学校修建这个花园的费用=30× ×14×12=2520(元).答:学校修建这个花园需要投资2520元.。
中学数学勾股定理的复习教案
中学数学勾股定理的复习教案一、学习目标1.熟练掌握勾股定理的内容。
2.能对不同的勾股定理问题进行合理判断,并对相应问进行解决。
3.能解决空间基本图形的勾股定理问题。
二、知识点总结1.勾股定理的排列组合⑴若 A、B 为直角边,C 为斜边,则有 A²+B²=C²。
⑵若 A、C 为两条直角边,B 为斜边,则有 A²+C²=B²。
⑶若 B、C 为两条直角边,A 为斜边,则有 B²+C²=A²。
其中,⑴和⑵是等式的两种变形形式,而⑶则是勾股定理的两种不同定义形式。
2.应用问题⑴求出长度为多少的直角边?左图为已知斜边为 5,一条直角边为 3,问另一直角边长 B?右图为已知斜边长度 8,求其另一直角边长 A 与 B。
⑵判断图形是否为直角三角形?某几何图形各边长为 4、5、6,是否三角形?是否是直角三角形?三、教学流程1.引入⑴回忆勾股定理的知识点。
⑵引入教学主题:本次的复习将会了解如何应用勾股定理,解决一些勾股定理在几何图形中的应用问题。
2.教学重点⑴勾股定理的应用。
⑵怎样进行图形判断。
3.教学步骤与方法⑴教师出示勾股定理相关练习题讲解方法,可在小黑板上,或PPT等辅助教具上讲解。
⑵针对练习题,进行讲解解决步骤,同时加深同学们对勾股定理知识点的理解。
⑶介绍解决勾股定理在空间基本图形上的应用问题,如立方体、直角三角形等。
4.教学策略⑴合作学习:通过进行课堂练习,在小组合作完成教师留下的应用题目,在轮流发言的学习模式下达到合作学习的目的。
⑵讲授:通过教师的讲授,让学生更好地掌握勾股定理的知识点,同时,让学生更自主地思考题目及其解决方法。
⑶案例分析:通过案例分析,让同学们理解勾股定理在几何图形中的应用,能够遇到问题及时进行判断、解决。
5.教学提示在教学过程中,教师要注重对同学们的思维引导,同时营造积极、自信的课堂环境。
应遇到问题及时指导,但不应破坏学生自主思考、独立解决问题的机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
B
A
七年级(上)第三章 勾股定理复习学案
[学习目标]
1、能熟练掌握勾股定理及其逆定理。
2、能熟练运用勾股定理及其逆定理解题。
[知识梳理]
1.勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么________________.
即直角三角形两直角边的平方和等于斜边的平方.
2.勾股逆定理:如果三角形的三边长a ,b ,c 满足a 2
+b 2
=c 2
,那么这个三角形是_________. 勾股数组:满足a 2
+b 2
=c 2
的三个___________,称为勾股数 3.直角三角形的性质
角:直角三角形的两锐角_______.
边:(1)直角三角形两直角边的平方和等于斜边的平方.符号语言:在Rt △ABC 中,a 2
+b 2
=c 2
(2)直角三角形中,30°锐角所对的直角边等于斜边的一半. 面积:两种计算面积的方法.
S Rt △ABC =12ch =1
2
ab ,其中a ,b 为两直角边,c 为斜边,h 为斜边上的高;
4.如何判定一个三角形是直角三角形呢 (1)有一个内角为直角的三角形是直角三角形. (2)两个内角互余的三角形是直角三角形.
(3)如果三角形的三边长为a 、b 、c 满足a 2
+b 2
=c 2
,那么这个三角形是直角三角形. [典型例题]
•1、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8,
求AB 、CD 的长
C
B
A D E
F
2、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当
小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•
3、求知中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经 测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?
4、如图,一个牧童在小河的南4km 的A
处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
[跟踪训练]
1.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c= ( )
A.5
B.7
C.5或7
D.5或6
小河
C
2、.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A .钝角三角形
B .锐角三角形
C .直角三角形
D .等腰三角形
3、下列各组数中,能构成直角三角形的是( )
A :4,5,6
B :1,1,2
C :6,8,11
D :5,12,23 4、在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15cm ,则△ABC 的面积等于( )
(A )108cm 2
(B )90cm
2
(C )180cm
2
(D )54cm 2
5、等边三角形的边长为2,则该三角形的面积为( )
A 、43
B 、3
C 、23
D 、3
6、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )
A 、6
B 、7
C 、8
D 、9
7、在Rt △ABC 中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
8、在Rt △ABC 中,∠C=90°,AB=4, 则AC 2
+BC 2
+AB 2
= .
9、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE=3,AB=8,则CF=___________。
10、如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是 。
11、如图,四边形ABCD 中,AB =3cm ,BC =4cm ,CD =12cm ,DA =13cm ,且∠ABC =900
,求四边形ABCD 的面积。
A
B
C
D
E
F 第9题
第10题
12、已知等腰三角形ABC,底边BC=20,D为AB上一点,且CD=16,BD=12,•求AD的长.
13、如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风影响,那么A城遭受
这次台风影响有多长时间?
[链接中考]
1、(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,
∠ADC=2∠B,AD=,则BC的长为()
A.﹣1 B.+1 C.﹣1 D.+1
2、(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()
A.B.2C.D.10﹣5
C
B A D E
F
第三章勾股定理学案参考答案
[典型例题]
1、解:在Rt △ABC 中,BC=6,AC=8
AB2=AC2+BC
2
AB= =100=10 CD=
AB
BC AC ⋅=108
6⨯=4.8
2、∵四边形ABCD 为矩形,
∴AB=CD=8,BC=AD=10,∠B=∠C=90°,
∵长方形纸片ABCD 折纸,顶点D 落在BC 边上的点F 处(折痕为AE ), ∴AF=AD=10,DE=EF , 在Rt △ABF 中,AB=8,AF=10, ∴BF=6, ∴CF=BC-BF=4, 设CE=x ,则DE=EF=8-x , 在Rt △CEF 中, ∵CF 2
+CE 2=
EF 2
, ∴42
+x 2
=(8-x )2
, 解得x=3, 即EC 的长为3cm .
3、学校需投入7200元购买草皮。
4、如图,作出A 点关于MN 的对称点A ′,则A ′A=8 km,连接A ′B 交MN 于点P , 则A ′B 就是最短路线.
在Rt △A ′DB 中,A ′D=15 km,BD=8 km
由勾股定理得A ′B 2
= A ′D 2
+BD 2
=289
∴A ′D =17km
8436+
[跟踪练习]
1、C
2、C3.、C 4.、D5、B6、C 7、12 16 8、32 9、4 10、12cm ≤a ≤13cm 11、解:连接AC
∵在Rt △ABC 中,AC2=AB2+BC2
AC=169+=5cm ∴S △ABC=
2
BC AB ⋅=243⨯=6cm 2
在△ACD 中,AC2
+CD 2
=25+144=169,DA 2
=132
=169,
∴DA 2=AC2+CD 2
∴△ACD 是Rt △ ∴S △ACD=
2DC AC ⋅=2
125⨯=30 cm 2
∴S 四边形ABCD= S △ABC+ S △ACD=6+30=36 cm 2
12、
13、
(1)由A 点向BF 作垂线,垂足为C ,
在Rt △ABC 中,∠ABC=30°,AB=320km ,则AC=160km , 因为160<200,所以A 城要受台风影响;
(2)设BF 上点D ,DA=200千米,另一点G ,有AG=200千米. ∵DA=AG ,∴△ADG 是等腰三角形,
∵AC ⊥BF ,∴AC 是DG 的垂直平分线,CD=GC , 在Rt △ADC 中,DA=200千米,AC=160千米, 由勾股定理得, CD=120千米,
则DG=2DC=240千米,
遭受台风影响的时间是:t=240÷40=6(小时).
[链接中考]
1、解:∵∠ADC=2∠B ,∠ADC=∠B+∠BAD , ∴∠B=∠DAB , ∴DB=DA=,
在Rt△ADC中,
DC===1;
∴BC=+1.
故选D.
2、解:如图,延长BG交CH于点E,
在△ABG和△CDH中,
,
∴△ABG≌△CDH(SSS),
AG2+BG2=AB2,
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=8﹣6=2,
同理可得HE=2,
在RT△GHE中,GH===2,。