线性规划基本模型

合集下载

1-线性规划的基本性质

1-线性规划的基本性质
对于n 维空间的一组向量 P1, P2 , , Pm ,若在数
域 F中有一组不全为 0的数 ai (i 1,2, , m) 使 a1P1 a2P2 L amPm 0
成立,则称这组向量在 F上线性相关,否则称 这组向量在 F上线性无关。
37
基本概念与基本定理
2. 秩:
设A是m n矩阵。若A的n个列向量中有r个线
日销量
产品
B1=3
A1=5
4
A2=7
1
A3=8
7
B2=4
11 9 4
B3=5 B4=8
3
10
2
8
10
5
6
线性规划的数学模型
设从生产点i到销售点j的调运数量为 xij 吨,
则目标函mi数n z为: 4x11 11x12 3xm13inz10x41x41111x12 3x13 10x14
min z x42x111911xx2212 23xx1233108xx1244x721x391 x224x232x23 8x24 7x31 4x32
39
基本概念与基本定理
线性规划的基本概念:
1. 可行解:满足上述约束条件(1.3.1)和 (1.3.2)的解。
2. 最优解:满足上述约束条件(1.3.3)的
可行解。 AX b
(1.3.1)
X 0
(1.3.2)
min z CX (1.3.3)
40
基本概念与基本定理
3. 基:已知A是约束条件的m n 系数矩阵, 其秩为m。若B是A中 mm非奇异子矩阵 (即可逆矩阵,有 B 0 ),则称B是线性 规划问题的一个基,B是由A中m个线性 无关的系数列向量组成的。
2. 若原模型中约束条件为不等式,如何化为 等式:

第三章线性规讲义划模型

第三章线性规讲义划模型
➢ 对偶问题的对偶是原问题。
Min W= Yb
YA - YS= C Y,YS≥0
➢ 若两个互为对偶问题之一有最优解,则另一个必有最优解, 且目标函数值相等(Z*=W*),最优解满足CX*=Y*b。
第三章 线性规划模型
▪ 线性规划问题的提出 ▪ 线性规划问题的建模 ▪ 典型特征和基本条件 ▪ 一般模型和标准模型 ▪ 线性规划的图解方法 ▪ 影子价格与敏感分析 ▪ 线性规划模型的应用
第三章 线性规划模型
• 对偶问题的提出
某厂生产甲、乙两 种产品,消耗A、B两 种原材料 。生产一件 甲产品可获利2元,生 产乙产品获利3元。问 在 以 下条件下如何安 排生产?
设备 A 设备 B 设备 C 利润(元/件)
产品 产品 产品 产品 甲乙丙丁 1.5 1.0 2.4 1.0 1.0 5.0 1.0 3.5 1.5 3.0 3.5 1.0 5.24 7.30 8.34 4.18
设备能力 (小时)
2000 8000 5000
第三章 线性规划模型
▪ 建立的模型如下:
z=12737.06(元)
▪ 请注意最优解中利润率最高的产品丙在最优生产计 划中不安排生产。说明按产品利润率大小为优先次 序来安排生产计划的方法有很大局限性。尤其当产 品品种很多,设备类型很多的情况下,用手工方法 安排生产计划很难获得满意的结果。另外,变量是 否需要取整也是需要考虑的问题。
第三章 线性规划模型
用线性规划制订使总利润最大的生产计划。
每件产品占用的 产品 产品 产品 产品 设备能力
机时数(小时/件) 甲 乙 丙 丁 (小时)
设备 A
1.5 1.0 2.4 1.0
2000
设备 B
1.0 5.0 1.0 3.5

线性规划模型

线性规划模型

线性规划模型● 知道线性规划模型的一般形式● 知道什么是可行解、可行域、最优解、最优值 ● 会用图解法求解二个变量的线性规划问题● 会利用软件WINQSB 求线性规划问题的最优解、最优值 ● 会建立简单的线性规划问题● 知道什么是缩减成本、影子价格,会利用软件WINQSB 进行灵敏度分析一、基本概念1. 线性规划模型的一般形式可以表示为:目标函数 max (或min )=c l x 1+c 2x 2+ … + c n x n 。

约束条件: ⎪⎪⎩⎪⎪⎨⎧≥=≤+++≥=≤+++≥=≤+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ),(),(),(22112222212111212111或或或 非负条件: x 1≥0, x 2≥0, …, x n ≥0可简写为 max(或min)=∑=n j j j x c 1 约束条件: ∑=n j j ij x a1≤(或=,≥) b i ,i=1,2,…,m非负条件: x j ≥0,j=1,2,…,n目标函数中的系数c i , i=1,2, …,n , 常称为价值系数,它反映某种价值(如利润、收益或效益);约束条件中的右端项bj ,j=1,2, …,m ,右端系数,它反映某种资源的限制(如劳动力、原材料等);约束条件中的a ij 常称为技术系数。

一般,它们都是已知的常数。

2.一个线性规划问题有解,是指能找出一组x j(j=1,2,…,n),使其满足所有的约束条件和非负条件。

称任何一组这样的x j(j=1,2,…,n)是线性规划问题的一个可行解。

通常,线性规划问题含有多个可行解。

称全部可行解的集合为该线性规划问题的可行域。

使目标函数值达到最优的可行解称为该线性规划问题的最优解,最优目标函数值称为该线性规划问题的最优值。

对不存在可行解的线性规划问题,称该线性规划问题无解。

二、两个变量的线性规划问题的图解法图解法的步骤为:第1步:在平面上建立直角坐标系;第2步:图示约束条件和非负条件,找出可行域;第3步:图示目标函数,并寻找最优解。

第二章线性规划模型

第二章线性规划模型

m
n
ai bj ,
i 1
j 1
又从产地 Ai到需求点 B j的单位运输成本为 cij , 求相应的运
输方案.
模型建立
设 xij表示从产地 Ai到需求点B j 的运输量, 则合适的运输
方案表现为
n
对产量的要求
xij ai
i 1, 2, ,m;
j 1
m
对需求量的要求 xij bj i 1
第五年 x54 1.0235x44 1.06x31,
投资收益函数为
z 1.06x41 1.215x23 1.165x32 1.0235x54.
由此得到该问题的数学模型
max z 1.06x41 1.215x23 1.165x32 1.0235x54,
s.t.x11 x14 120,
项目C: 于第二年的年初进行投资, 并于第五年的年末完成 成投资, 投资收益为21.5%, 投资额不超过40万; 项目D: 于每年的年初可进行投资, 并于当年末完成, 投资 收益为2.35%.
该公司现有资金120万, 试为该公司制定投资计划.
模型建立
以i 1, 2,3, 4,5代表年份, j 1, 2,3, 4分别表示4个项
0.1x1 0.3x2 0.9x3 1.1x5 0.2x6 0.8x7 1.4x8,
由此得到该问题的数学表达式:
min z 2.92x1 x2 x3 x4 200 2.12x2 x3 3x5 2x6 x7 200 1.5 x1 x3 3x4 2x6 3x7 4x8 200
3 2
x2
C
D
E
A
1

线性规划模型

线性规划模型

j 1
i 1
将目标函数和约束条件放在一起,即得指派问题的数学模型.
第i人花费在第j项工作的时间用cijxij表示,在所有的工作中,第i人干仅干一项工作,
若第i人被分配去干第j0项工作,则当j0≠j时,cijxij=0,所以花费的总时间为T

nn
cij xij
.
i1 j 1
n
n
对于第i人,应有 xij 1 ;对于第j项工作,应有 xij 1 .
cT x
Ax b

A
eq
x beq
l b x u b
Matlab中求解线性规划的命令为:
[x,fval]=linprog(c,A,b,Aeq,beg,lb,ub)
其中,x返回的决策变量x的取值,fvla返回的是目标函数的最优值.
注:若没有某种约束,则相应的系数矩阵赋值为空矩阵,如没有等式约束,则令Aeq=[], beq=[].
(7)模型的分析与评价
在建立线性模型是,总是假定aij,bi,cj都是常数,但实际上这些系数往往是估计值 和预测值,如市场条件一变,aij值就会变化;bi往往因工艺条件的改变而改变;cj是根据 资源投入后的经济效果决定的一种决策选择.因此,这些参数在什么范围内变化时,线 性规划问题的最优解不变.
2.整数规划模型
3. 0-1整数模型
在部分规划问题中,每个需要做的决策只有两种时,可以使用0-1整数规划建模,它的 变量xi仅取值0或1.此类模型可用Lingo和Matlab求解.Matlab中规定0-1整数规划模型中的标准形 式为:
min cT x Ax b
s.t. Aeq x beq
Matlab中求解0-1规划的命令为: [x,fval]=bintprog(c,A,b,Aeq,beq)

线性规划基本模型

线性规划基本模型
单纯形法是一种求解线性规划问题的经 典算法,其基本思想是通过不断迭代来 寻找最优解。
在每次迭代中,单纯形法会根据目标函数的 系数和约束条件,通过一系列的数学运算, 将问题转化为更简单的形式,直到找到最优 解或确定无解。
单纯形法具有简单易懂、易于实现 的特点,是解决线性规划问题最常 用的方法之一。
对偶问题
等式约束
等式约束优化是指在优化问题中包含等式约束的线性规划问题。等式约束通常 表示决策变量之间的关系,满足等式约束是找到最优解的必要条件。
求解算法
对于包含等式约束的线性规划问题,可以采用一些特殊的算法进行求解,如消 元法或拉格朗日乘子法。这些算法能够更高效地处理等式约束,并找到最优解。
05
线性规划的扩展模型
线性规划基本模型
• 线性规划概述 • 线性规划的基本概念 • 线性规划的求解方法 • 线性规划的优化方法 • 线性规划的扩展模型 • 线性规划的实际应用案例
01
线性规划概述
定义与特点
定义
线性规划是一种数学优化方法,通过 在一定的约束条件下最大化或最小化 一个线性目标函数,来找到一组变量 的最优解。
现状
目前,线性规划已经发展成为一 个成熟的学科分支,有许多成熟 的算法和软件工具可用于解决各 种实际问题。
02
线性规划的基本概念
线性方程组
线性方程组
01
线性规划问题通常由一组线性方程组成,这些方程描述了决策
变量之间的关系。
线性方程的解
02
线性方程组可能有多个解,但在线性规划中,我们通常只关心
满足特定约束条件的解。
资源利用
线性规划可以确定最佳的资源利用方案,包括原材料、设备、劳动力等,以最小化生产成本或最大化 利润。

第1章 线性规划基本性质

第1章 线性规划基本性质

1. X1≥0, X2 ≥0 2. 2X1 + 3X2 ≤ 100 3. 4X1 + 2X2 ≤ 120
所有约束条件的的交集为R.
A B R
10 60
现在,问题变为在R内找一点, O 使目标函数值最大.如何找?…
C
20 30 40 50
X1
§1.2 线性规划的图解法
X2
(三)目标函数的图形表示 Z = 6X1 + 4X2 将上式改写: X2 =-3X1/2 + Z/4 令Z为参量,使其取不同 的值,则得到以-3/2为斜率的 一族平行等值线. 如令: 60, 则经过点(10,0)和(0,15); Z=0, 则经过原点; Z=120,则经过点(20,0)和(0,30);
0.8X1 + X2≥1.6 X1 X2 ≤2 ≤1.4
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型
所谓线性规划问题: 就是求一组变量 ( x1 , x2 , , xn ) 的值,它们 在满足一组线性等式或不等式的限制条件下,使某 一线性函数的值达到极大或极小。而线性规划就是 研究并解决这类问题的一门理论和方法。 请问在企业中有哪些问题属于线性规划问题?
§1.2 线性规划的图解法
maxZ = 6X1 + 4X2 2X1 + 3X2 ≤ 100 --① 4X1 + 2X2 ≤ 120 --② X1≥0, X2 ≥0 (一)建立坐标系 (二)约束条件的图形表示
X2
60 50 40 30 20 10
两个概念:
1.可行解:满足约束条件的点. 2.可行域:全部可行解的集合, 即区域OABCO,用R表示.
X1 ≥0, X2 ≥0
§1.1 线性规划的一般模型

线性规划模型

线性规划模型

第一节 线性规划模型
(一)制定生产计划
例1:某炊具生产企业生产四种产品,生产过程中要经过5 个车间,每个车间所能提供的工时数量、每种产品的工时定额、 各种产品的单位成本、销售价格、市场需求量预测等如下表。 下月生产产品B和D的金属板供应量紧缺,最大供应量为2000 平方米,若产品B每件需要2平方米,产品D每件需要1平方米。 希望实现最大利润,制定下月的生产计划。
X 11 X 21 X 31 5000 X 12 X 22 X 32 7500 X 13 X 23 X 33 7500 X 14 X 24 X 34 2000 (三)物资调运问题
产品 车间
单位产品的工时定额 (时)
ABCD
可用
工时 (时/ 月)
冲压 0.03 0.15 0.05 0.1 400
钻孔 0.06 0.12
0.1 400
装配 0.05 0.10 0.05 0.12 500
喷漆 0.04 0.20 0.03 0.12 450
包装 0.02 0.06 0.02 0.05 400
求总费用最小,运费= 单件运费× 运送量,因此目标函数为
Z min 8X11 6 X12 7 X13 4 X 21 3X 22
5X 23 7 X 31 4X 32 8X 33
即供应量的约束为:
X11 X12 X13 6000
X 21 X 22 X 23 4000
X 31 X 32 X 33 10000
约束条件为满足三种规格钢筋的最低需求,所以线性 规划模型为
Zmin 4X1 12X 2 2X 3 5X 5 10X 6
2 X1 X 2 XHale Waihona Puke 3 30s.t.X
2
3X 4

线性规划的数学模型和基本性质

线性规划的数学模型和基本性质

月份 所需仓库面积 合同租借期限 合同期内的租费
1 15 1个月 2800
2 10 2个月 4500
3 20 3个月 6000
4 12 4个月 7300
2.线性规划数学模型
用数学语言描述
例1
项目
I
设备A(h)
0
设备B(h)
6
调试工序(h) 1
利润(元)
2
II
每天可用能力
5
15
2
24
1
5
1
解:用变量x1和x2分别表示美佳公司制造家电I和II的数量。
肯尼斯-J-阿罗(KENNETH J. ARROW),美国人,因与约翰-希克 斯(JOHN R. HICKS)共同深入研究了经济均衡理论和福利理论获得 1972年诺贝尔经济学奖。
牟顿-米勒(MERTON M. MILLER),1923-2000, 美国人,由于他在 金融经济学方面做出了开创性工作,于1990年获得诺贝尔经济奖。
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高? 某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
2.线性规划数学模型
练习1 生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
24
利润 40 50

第4章线性规划

第4章线性规划

f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量

线性规划模型

线性规划模型

线性规划模型线性规划的英文全称为:Linear Programming ,可简称为LP . 一、线性规划所属学科线性规划是“运筹学”中应用最广泛、理论最成熟的一个分支.0-1⎧⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩线性规划非线性规划静态规划整数规划规划论规划多目标规划动态规划运筹学对策论决策论排队论图论存储论模型论 二、线性规划发展简史早在19世纪法国数学家傅里叶关于线性不等式的研究表明,他对线性规划已有所了解,还提出了单纯形法求解线性逼近中的线性规划20世纪三是年代末,苏联数学家康托洛维奇开始研究生产组织中的线性规划问题,并写出了线性规划应用于工业生产问题的经典著作《生产组织与计划中的数学方法》.1947年美国数学家丹奇格提出了单纯形(Simplex)方法及有关理论,为线性规划奠定了理论基础.五十年代,线性规划成为经济学家分析经济问题的重要工具.随着计算机的迅猛发展,线性规划现被广泛应用于工业、农业、商业等各个领域. 三、用线性规划方法解决实际问题的两大特点1、全局性——从全局出发,将全局目标作为追求目标;2、定量性——通过建立数学模型,对实际问题进行定量分析,而不是只做定性分析. 数学模型指:将实际问题用一系列数学表达式(函数、方程、不等式等)表示出来,称这一系列数学表达式为该实际问题的数学模型. 四、线性规划方法解决的两类问题1、任务一定,如何安排,可使人、财、物最省;2、人、财、物一定,如何安排,可使任务完成量最多. 五、线性规划可解决以下几方面的问题1、运输问题:某产品有若干个产地、若干个销地,如何运输,使总运费最省;2、生产组织问题:⎩⎨⎧产,使成本最低产值一定,如何安排生最高或利润产,使产值资源一定,如何安排生)(3、配料问题:如何搭配各种原料,既符合质量(营养)要求,又使成本最低;4、投资问题:资金一定,投向谁、投多少、期限多长,使若干年后本利和最高;5、库存问题:在仓库容量有限情况下,如何确定库存物资的品种、数量、期限,使库存效益最佳;6、合理播种问题:在土地资源有限的情况下,种什么、种多少,使效益最高;……第一节 线性规划模型的基本概念 一、建立模型的方法1 根据影响所要达到的目的的因素找到决策变量2 由决策变量和所要到的目的之间的函数关系确定的目标函数3 由决策变量所受到的限制条件确定决策变量所要满足的约束条件若模型满足:1 目标函数是线性函数 2 约束条件是线性等式或不等式; 则称为线性规划模型 二、常用模型 例1: 生产计划莫工厂生产I II 两种产品需要A 、B 两种原料,问怎样生产获利最大?1) 决策变量:设12,x x 分别生产I II 的数量 2) 目标函数:获利最大 12max 24x x + 3) 约束条件:1228x x +≤ 设备约束 12416,412x x ≤≤ 原料约束 12,0x x ≥ 基本约束 则我们可以建立模型12121212max 24.28416412,0z x x s tx x x x x x =++≤≤≤≥例2: 配料问题某养鸡场有一万只鸡,用动物饲料和谷物饲料混合喂养,每天每只鸡平均吃混合饲料一斤,其中动物饲料不少于1/5,动物饲料每斤0.25元,谷物饲料每斤0.2元,饲料公司每周至多能供应谷物饲料5万斤,问怎样混合饲料才能使每周成本最低? 解:1)决策变量 设动物饲料1x 斤,谷物饲料2x 斤。

线性规划的数学模型和基本性质

线性规划的数学模型和基本性质

1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?

线性规划知识点

线性规划知识点

线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将详细介绍线性规划的相关知识点。

一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。

目标函数是一条线性方程,表示需要优化的目标。

1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。

1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。

二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。

2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。

2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。

三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。

3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。

对偶性理论可以帮助我们求解原始问题的最优解。

3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。

整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。

四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。

4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。

4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。

五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。

对于非线性问题,我们需要使用非线性规划方法进行求解。

第1章 线性规划模型

第1章 线性规划模型

第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。

本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的专门软件——Lingo。

学习本章要求掌握以下内容:⏹线性规划模型的结构。

包括:决策变量,目标函数,约束条件。

⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的基本概念。

包括:约束直线,可行域,可行解,凸集,极点,目标函数等值线,最优解⏹线性规划的软件求解。

包括:lingo软件简介,lingo软件求解规划问题§1.1 线性规划1.1.1 线性规划线性规划(LinearProgramming,LP)是运筹学中最重要的一种系统优化方法。

它的理论和算法已十分成熟,应用领域十分广泛,通常研究资源的最优利用、设备最佳运行等问题。

例如,当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多、利润最大)。

还包括生产计划,物资调运,资源优化配置,物料配方,任务分配,经济规划等问题。

随着计算机硬件和软件技术的发展,目前用微型计算机就可以求解大规模的规划问题。

Lingo软件就是其中的代表软件之一。

在本章中,我们将介绍线性规划的基本概念,线性规划在经济分析中的应用。

§1.2 线性规划问题线性规划问题由目标函数、约束条件以及变量的非负约束三部分组成。

根据实际问题的条件和要求,可以建立线性规划问题数学模型。

下面列举五种最常见的线性规划问题的类型。

1.2.1 生产计划问题例1.1某工厂拥有A、B、C三种类型的设备,生产甲、乙、丙、丁四种产品。

每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如下表所示:表1-1用线性规划制订使总利润最大的生产计划。

设变量x i为第i种产品的生产件数(i=1,2,3,4),目标函数z为相应的生产计划可以获得的总利润。

线性规划模型

线性规划模型

线性规划模型线性规划(Linear Programming,LP)是一种用于求解线性优化问题的数学建模方法。

线性规划模型是在一组线性约束条件下,通过线性目标函数来寻找最优解的数学模型。

其基本形式如下:最大化或最小化:Z = c₁x₁ + c₂x₂ + … + cₙxₙ(目标函数)约束条件为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,c₁, c₂, …, cₙ为目标函数中各项的系数;a₁₁,a₁₂, …, aₙₙ为约束条件中各项的系数;b₁, b₂, …, bₙ为约束条件中的常数项;x₁, x₂, …, xₙ为决策变量。

线性规划模型的求解过程分为以下几个步骤:1. 建立数学模型:根据问题的描述,确定决策变量,确定最优化目标,建立目标函数和约束条件。

2. 确定可行解区域:根据约束条件,画出约束条件所确定的可行解区域。

3. 求解最优解:在可行解区域内寻找目标函数最大化或最小化的解。

常用的求解方法有单纯形法和对偶单纯形法。

4. 解释结果:根据最优解,给出对决策变量和目标函数的解释,进一步分析结果的意义。

线性规划模型适用于许多实际问题的求解,如生产计划、资源分配、物流调度等。

通过构建适当的数学模型,可以帮助管理者做出理性决策,最大化或最小化目标函数。

然而,线性规划模型也有其局限性。

首先,线性规划只能处理线性约束条件和线性目标函数,对于非线性问题无法求解。

其次,线性规划假设决策变量是连续的,对于离散的决策问题,线性规划无法适用。

此外,线性规划模型还需要求解算法的支持,对于复杂问题需要较高的计算资源。

总之,线性规划模型是一种常用的数学建模方法,通过线性约束条件和线性目标函数,求解最优解,帮助解决实际问题。

但线性规划模型也有其适用范围和局限性,需要根据具体问题来选择合适的求解方法。

01线性规划数学建模

01线性规划数学建模

01-线性规划(数学建模) 线性规划是一种数学建模技术,用于解决一类特定的优化问题。

这些问题通常涉及到在一组线性约束条件下最大化或最小化一个线性目标函数。

线性规划的应用广泛,包括诸如生产计划、货物运输、资源分配等问题。

线性规划的基本模型由以下三个要素组成:1.决策变量:这是我们希望优化的变量。

它们通常是连续的实数变量,可以在问题中自由设定其范围。

2.目标函数:这是我们希望最大化或最小化的函数。

目标函数通常是决策变量的线性函数。

3.约束条件:这些是限制决策变量选择的条件。

它们通常是由决策变量的线性不等式或等式表示。

线性规划问题的一般形式可以表示为:最大化(或最小化)目标函数: c^T x在满足以下条件的情况下:Ax = bx >= lbx <= ub其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧常数向量,lb和ub分别是决策变量的下界和上界。

线性规划问题的求解方法有很多种,其中最常用的方法是使用单纯形法。

单纯形法的基本思想是通过在约束条件下不断迭代,寻找最优解。

在每次迭代中,我们根据目标函数的系数和约束条件,计算出每个约束条件的"优势",然后选择具有最大优势的约束条件进行扩展,直到找到最优解或确定无解。

线性规划问题在现实世界中的应用非常广泛。

例如,我们可以使用线性规划来安排生产计划,使得总成本最低。

我们也可以使用线性规划来分配资源,使得某种资源的需求总和不超过供应总和。

下面是一个具体的例子:假设我们有一个公司,生产三种产品:A、B和C。

每种产品都有各自的生产成本(单位成本),以及各自的预期销售量(单位售价)。

我们希望确定每种产品的生产量,以使得总生产成本最低,同时总销售收入最高。

这个问题可以通过一个线性规划来解决。

我们可以将生产量作为决策变量,将总生产成本和总销售收入分别作为目标函数和约束条件。

通过求解这个线性规划问题,我们可以得到最优的生产计划。

线性规划模型

线性规划模型

线性规划模型线性规划模型是一种数学模型,用于解决优化问题,确保特定的目标实现而满足一定约束条件。

它是基于线性关系的一类优化模型,其目的是最大化或最小化一个线性函数,同时满足相关的线性约束条件。

线性规划模型涉及了数学、经济、管理、工程等领域,常常被用于优化决策和资源分配。

线性规划模型有五个基本要素:决策变量、目标函数、约束条件、可行解和最优解。

其中,决策变量是待优化的参数或变量;目标函数是一个以决策变量为自变量的线性函数,代表目标的数学表达式;约束条件是必须满足的限制条件,它们也是线性函数形式;可行解是满足所有约束条件的决策变量组合,这些组合可以被用于计算目标函数的值;最优解是在所有可行解中,能够使目标函数取得极值(最大化或最小化)的可行解。

线性规划模型的主要应用在资源优化领域,例如制造、物流、贡献分析和供应链管理。

其中,生产调度和库存管理是常见的应用场景。

生产调度通常涉及如何分配生产设备的时间和资源,以最小化成本并最大化效益。

库存管理通常涉及如何保持合理库存水平以满足需求,同时尽量减少成本和风险。

线性规划模型计算软件广泛应用,其中最广泛的是 Microsoft Excel 中的插件,如Solver。

Solver 可以通过线性规划模型来找到最佳决策组合,以最小化或最大化目标函数。

其他流行的线性规划软件包包括 MATLAB,AMPL 和 Gurobi 等。

然而,线性规划模型有几个限制:一是实际问题往往不是线性的,因此需要更复杂的模型来处理更复杂的问题;二是线性规划模型假设所有参数是确定的,但在许多情况下参数是不确定的,需要采用随机规划模型。

因此,针对问题的实际特点和需求,选择更合适的数学模型和工具是非常重要的。

总之,线性规划模型是优化问题的一个强大工具,可以在许多领域帮助决策者做出最佳决策。

然而,在应用模型过程中要仔细考虑模型的局限性,并尝试更复杂的模型,以获得更好的决策结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
max z c j x j j 1
n
aij x j bi
s.t.
j 1
xj
e
j
x
j
d
j
i 1, 2,L , m
j 1, 2,L , n j 1, 2,L , n
13
山西大学经济与管理学院 范建平
2020年6月18日星期四
2、产品配套模型
例1.2某厂生产一种部件,由3个A零件和5个B零件配套 组装成品。该厂有甲、乙、丙三种机床可加工A,B两种 零件,每种机床的台数,以及每台机床每个工作日全部 用于加工某一种零件的最大产量(即生产率:件/日)见 表1-2。则应如何安排生产?试建立其数学模型。
单耗/(工时/件)


1
0
0
2
C
2
3
利润/(1×100元/件) 3
2
设 x1, x2 分别为甲、乙产品的周产量(决策变量)
最大生产能力 /(工时/周)
6 8 18
z为这两种产品每周的总利润,则 z 3x1 2x2 0
式(0)称为目标函数,z为目标值
由于,z取值受限于x1, x2 ,而x1, x2 受限于A,B,C三个车
间的生产能力,则
1x1 0x2 6 0x1 2x2 8 2x1 3x2 18


约束条件

6
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型
又因产量x1, x2 取值不能为负,则
x1 0, x2 0 ④ 非负性约束
上述函数约束和非负性约束,统称为约束条件或约束方程, 简称约束。
某企业拟将现有的 m 种资源(用 i =1,2,···,m 表示)投 入 n 项生产或商务活动(用 j=1,2,···,n表示)。其中第 i 种资源的数量为 bi,项目 j 每经营1个单位所创造的利润 (或价值)为 cj,所消耗的第 i 种资源的数量为aij。为履行 合同,项目 j 的经营数量至少为 ej;而市场调查,其最高需 求量为dj。试建立其数学模型。
目标函数
衡量决策优劣的准则,如时间最省、利润最大、成本最低 目标函数是决策变量的线性函数 有的目标要实现极大,有的则要求极小
9
山西大学经济与管理学院 范建平
2020年6月18日星期四
模型隐含假定
(1)线性化假定
目标函数、约束条件
(2)同比例假定
决策变量变化引起目标函数和约束方程的改变量比例。
j 1
(1)合同约束
xj ej j 1, 2,L , n
(2)需求约束 (3)资源约束
xj d j j 1, 2,L , n
n
aij x j bi i 1, 2,L , m
j 1
12
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型—小结
综上所述可得LP模型如下:
表1-2
机床种类
甲 乙 丙
现有数量/台
2 3 4
14
山西大学经济与管理学院 范建平
每台机床生产率/(件/日)
A零件
B零件
30
40
25
35
27
30
2020年6月18日星期四
若全为线性表达式,则称为线性规划(模型); 若组中有一个或更多表达式非线性,则称为非线性规划
(模型)。
8
山西大学经济与管理学院 范建平
2020年6月18日星期四
线性规划的三个要素
决策变量
决策问题待定的量值 取值要求非负
约束条件
任何管理决策问题都是限定在一定的条件下求解 把各种限制条件表示为一组等式或不等式称约束条件 约束条件是决策方案可行的保障 约束条件是决策变量的线性函数
(3)可加性假定
决策变量对目标函数和约束方程的影响是独立于其他变量的。 目标函数值是决策变量对目标函数贡献的总和。
(4)连续性假定
决策变量取值连续。
(5)确定性假定
所有参数都是确定的,不包含随机因素。
10
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型—小结
小结:对于例题1.1的资源分配问题(经营规划问题), 一般可表述为:
11
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型—小结
建立线性规划模型的一般步骤:
1.正确设立决策变量
设 xj(j=1,2,···,n)为项目j的经营数量。
2.恰当建立目标函数
n
n 项经营活动的总利润(或总产值,总收入)为 z c j x j
3. 适度构建约束方程
3
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型
例1.1 某装配厂拟生产甲、乙两种新产品,每件利润分 别为300元和200元。甲、乙产品的部件分别在A、B两个 车间生产,每件甲、乙产品的部件分别消耗A、B车间1、 2工时。两种产品的部件最后都要在C车间装配,装配每 件甲、乙产品分别消耗2工时和3工时。已知A,B,C三 个车间每周可用于这两种产品的最大生产能力分别为6工 时、8工时、18工时,则每周各生产甲、乙产品多少件? 试建立该问题的数学模型。
4
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型
解: 列出数元/件)
单耗/(工时/件)


1
0
0
2
2
3
3
2
5
山西大学经济与管理学院 范建平
最大生产能力 /(工时/周) 6 8 18
2020年6月18日星期四
车间
产品
1、资源分配模型 A B
山西大学经济与管理学院 《运筹学》
第一章 线性规划基本模型
主讲:范建平 博士
1.1 线性规划的实用模型
2
山西大学经济与管理学院 范建平
2020年6月18日星期四
在管理中一些典型的线性规划应用
合理利用线材问题:如何在保证生产的条件下,下料最少 配料问题:在原料供应量的限制下如何获取最大利润 投资问题:从投资项目中选取方案,使投资回报最大 产品生产计划:合理利用人力、物力、财力等,使获利最大 劳动力安排:用最少的劳动力来满足工作的需要 运输问题:如何制定调运方案,使总运费最小
综上所述,例题1.1的数学模型简记如下:
max z 3x1 2x2 0
1x1
6 ①
s.t.
2x2 8
2x1 3x2 18
② ③
x1 , x2 0 ④
7
山西大学经济与管理学院 范建平
2020年6月18日星期四
1、资源分配模型—小结
由目标函数和约束方程构成的一组数学表达式,称为数 学规划(模型);
相关文档
最新文档