第17讲-图形的相似
人教版数学九年级下册教学设计27.1《图形的相似》
人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。
但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.学会运用相似图形解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。
2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。
3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。
2.练习题:准备相关的练习题,巩固学生的学习效果。
3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。
七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。
提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。
教师总结:这就是我们今天要学习的相似图形。
2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。
通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。
第十七讲 等腰三角形、等边三角形、直角三角形
CG=CD,DF=DE,则∠E= 15 度.
4.边长为 6cm 的等边三角形中,其一边上高的长度为__3__3__c_m_.
5.(2013 滨州)在△ABC 中,∠C=90°,AB=7,BC=5,则边 AC 的长为
.
6.如图所示,在 Rt△ABC 中,CD 是斜边 AB 上的高,∠ACD=40°,则∠EBC= 140 度.
7.(2013 佛山)如图,若∠A=60°,AC=20m,则 BC 大约是(结果精确到 0.1m)( B )
A.34.64m
B.34.6m
C.28.3m
D.17.3m
思路点拨:首先计算出∠B 的度数,再根据直角三角形的性质可得 AB=40m,再利用勾 股定理计算出 BC 长即可.
★随堂检测★
1.(2013 白银)等腰三角形的周长为 16,其一边长为 6,则另两边为 6,4或5,5 .
★课前预习★
1.(2013 新疆)等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为( B )
A.12
B.15
C.12 或 15
D.18
2.(2013 成都)如图,在△ABC 中,∠B=∠C,AB=5,则 AC 的长为( D )
A.2
B.3
C.4
D.5
3.(2013 黔西南州)如图,已知△ABC 是等边三角形,点 B、C、D、E 在同一直线上,且
形;④有一个角是直角的三角形是直角三角形.
A.1 个
B.2 个
C.3 个
D.4 个
7.已知△ABC 的三边长分别为 5,13,12,则△ABC 的面积为( A )
A.30
B.60
C.78
D.不能确定
8.(2013 东营)如图,圆柱形容器中,高为 1.2m,底面周长为 1m,在容器内壁离容 器底部 0.3m 的点 B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿 0.3m 与 蚊子相对的点 A 处,则壁虎捕捉蚊子的最短距离为 1.3 m(容器厚度忽略不计).
相似图形数学教案
相似图形数学教案
标题:相似图形数学教案
一、教学目标
1. 让学生理解并掌握相似图形的基本概念和性质。
2. 培养学生的观察力和空间想象力,提高他们解决实际问题的能力。
3. 通过探究活动,培养学生的合作精神和创新意识。
二、教学内容
1. 相似图形的基本概念:定义、特征、分类。
2. 相似图形的性质:对应角相等、对应边成比例、周长比等于面积比的平方。
三、教学过程
1. 导入新课:利用生活中的实例引入相似图形的概念,激发学生的兴趣。
2. 新课讲解:通过示例、图解等方式详细解释相似图形的基本概念和性质。
3. 学生实践:设计一些与相似图形相关的练习题,让学生进行独立或小组完成。
4. 总结反馈:对学生的解答进行点评,并对学生的学习情况进行总结。
四、教学方法
1. 探究式学习:鼓励学生主动探索,发现相似图形的规律。
2. 合作学习:通过小组讨论,培养学生的团队协作能力。
3. 实践操作:通过绘制图形,加深学生对相似图形的理解。
五、教学评价
1. 过程评价:关注学生在课堂上的参与度,以及他们在解决问题过程中的思考和表现。
2. 结果评价:通过对学生作业的批改,了解他们对相似图形知识的掌握程度。
六、教学反思
教师应反思自己的教学方法是否有效,是否能激发学生的学习兴趣,是否能让学生真正理解和掌握相似图形的知识。
2013年中考数学第四单元三角形
图15-16
第15讲┃ 几何初步、相交线与平行线
解:如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140° . 又∵BF,EF分别平分∠ABC,∠CED, 1 1 ∴∠ABF= ∠ABC,∠DEF= ∠DEC, 2 2 1 ∴∠ABF+∠DEF= (∠ABC+∠DEC)=70° . 2 过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF, ∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70° .
第16讲┃ 三角形与全等三角形
7.如图16-4,一个直角三角形纸片,剪去直角后,得到一个四边 270 形,则∠1+∠2=________度.
图16-4
[解析] 如图,根据题意可知∠5=90° , ∴∠3+∠4=90° ,∴∠1+∠2=2∠5+∠3+∠4=2×90° +90° =270° .
错角相等,或结合三角形的外角性质求证即可.
第15讲┃ 几何初步、相交线与平行线
解:如图:
图15-15
第15讲┃ 几何初步、相交线与平行线
(1)∠APC=∠PAB+∠PCD; 证明:过点P作AB∥PF, ∵AB∥PF,∴AB∥CD∥PF, ∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等). (2)∠APC+∠PAB+∠PCD=360°; (3)∠APC=∠PAB-∠PCD; (4)∵AB∥CD,∴∠POB=∠PCD. ∵∠POB是△AOP的外角, ∴∠APC+∠PAB=∠POB, ∴∠APC=∠POB-∠PAB, ∴∠APC=∠PCD-∠PAB.
[解析] 设第三边的长为x,则7-3<x<7+3,所以4<x<10.又x为 整数,所以x可取5,6,7,8,所以这个三角形的周长的最小值为15.
相似图形的概念ppt课件
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
(B)
(1)所有的圆都是形状相同的图形; (2)所有的正方形都是形状相同的图形; (3)所有的等腰三角形都是形状相同的图形; (4)所有的矩形都是形状相同的图形;
A、1个 B、2个 C、3个 D、4个
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
4、下列说法中正确的是 (D ) A、所有平行四边形都是相似图形 B、所有菱形都是相似图形 C、所有等腰梯形都是相似图形 D、所有全等三角形都是相似图形
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
想一想:我们刚才所见到的图形有什么相同 和不同的地方?
位似ppt17 湘教版
如图连接AB,A′B′,可以得到下图,则 AB∥A′B′吗? A B
OA OB = , OA' OB'
A
o
∵
∴ △OAB∽△OA′B′. ∴ ∠OAB =∠OA′B′. ∴ AB∥A′B′.
∠AOB =∠A′OB′,
两个图形位似,则这两个图形不仅相
而且对应点的连线相交于一点,对应边互 行(或在同一条直线上).
课堂练习
1.把四边形ABCD缩小到原来的1/2
A D C C' D' B' A' O B
A
B
2.如图,已知正方形OABC的顶点坐标依次
O(0,0),A(3,0),B(3,3),C(
(1)在平面直角坐标系中,以坐标
原点O为位似中心,将正方形OABC 放大为原图形的2倍; (2)在平面直角坐标系中,以坐标 原点O为位似中心, 将正方形 OABC缩小为原图形的1/2.
o
这两个图形的形状相同,但大小不同, 它
们是相似图形.
分别在左、右两个小狗的头顶上取 别在狗尾巴尖上取一点B,B′.
A
o
B
发现点A,A′与点O在一条直线上.点
B,B′与点O在一条直线上.
分别量出线段OA,OA′, OB,OB′的长度, 计算(精确到 0.1): 6 .1
2 .2 O A ' 2 ._ 8_ _ _ _ _ _ _ _ _ O A
例题探究
步骤:
例1 利用位似把△ABC缩 小为原来的一半. A′
A
B′
1、在三角形外选一点O;
2、过点O分别作射线 OA、OB、OC;
O
C′
3、在OA、OB、OC上分别选取A′、B′、C′, 使OA′/OA=1/2、OB′/OB=1/2、OC′/OC=1/2;
人教版九年级数学下册教案《 图形的相似》
图形的相似教学设计课题名称图形的相似授课时间教师姓名学生年级九年级课型课时新授目标确立依据课标分析通过具体实例认识图形的相似. 了解相似多边形和相似比.考纲分析通过具体实例认识图形的相似. 了解相似多边形和相似比.教材分析学生已学完全等三角形, 但全等只是相似的一种特殊情况, 这节课一是介绍相似图形的概念, 并将放大、缩小两种操作与相似图形联系起来;二是给出相似多边形的概念.学情分析学生已学完全等三角形, 但全等只是相似的一种特殊情况, 这节课一是介绍相似图形的概念, 并将放大、缩小两种操作与相似图形联系起来;二是给出相似多边形的概念.学习目标1.通过一些相似的实例, 自己观察相似图形的特点, 感受形状相同的意义, 理解相似图形的概念.2.通过相似多边形特征识别两个多边形是否相似, 并会用其性质进行相关计算. 重点1、相似图形的认识. 2、比例的根本性质的应用.难点1、相似图形的认识. 2、比例的根本性质的应用.评价任务评价任务1:评价任务2:评价任务3:教学环节教师活动学生活动效果及问题预设导通过回忆全等, 以相似相关常见生活实例, 简洁导入新课通过回忆全等, 如果两个图形大小不一样, 而形状一样, 那它们之间又有怎样的关系呢?相似图形指的是平面图形, 举例应该举平面图形.思布置同学们完成导学提纲中的任务一、二. 巡视课堂,观察同学们在做导学提纲出现知识上的问题.任务一、阅读课本24到27页, 完成以下问题1.相似图形的概念:我们把的图形叫做相似图形.2.两个图形相似, 其中一个图形可以看作由另一个图形得到.3.思考:人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?相似比的理解、多边形相似的概念严格议“相似多边形〞概念、总结相似多边形性质任务二、1.相似多边形的概念:两个边数相同的多边形, 如果它们的角 , 边 , 那么这两个多边形叫做相似多边形. 相似多边形对应边的比叫做 .几何语言:在四边形ABCD 和四边形A 1B 1C 1D 1中假设∠A= , ∠B= , ∠C= , ∠D= ;=11B A AB= = . 那么四边形ABCD 和四边形A 1B 1C 1D 1相似. 2.由相似多边形定义可知:〔1〕相似多边形的对应角 , 对应边的比 〔2〕相似比为1时, 相似的两个图形 , 因此 形是一种特殊的相似形.议、展、评运用性质熟练解题任务三、1.如图, 图形a ~f 中, 哪些是与图形〔1〕或(2)相似的?2.如图, 四边形ABCD 和EFGH 相似, 求角βα和的大小和EH 的长度x测检测所学1.如下图的两个五边形相似, 求未知边a 、b 、c 、d 的长度.板书设计图形的相似一、相似图形: 二、相似多边形: 三、相似比:教学反思检查结果及修改意见:合格[ ] 不合格[ ]组长〔签字〕:检查日期:年月日第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是()A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是() 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是() A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是() A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(1)y 是x 的函数吗?为什么?(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置A 种树苗x 棵, 造这片树林的总费用为y 元, 解答以下问题: (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章 反比例函数 实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x 吨, 这批原材料能用y 天, 那么y 与x 之间的函数表达式为〔 〕 A .y =100x B .y =C .y =+100D .y =100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m 3的圆柱形煤气储存室, 那么储存室的底面积S 〔单位:m 2〕与其深度d 〔单位:m 〕的函数图象大致是〔 〕A .B .C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2〕成反比例函数关系〔如图〕.当该物体与地面的接触面积为m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小,此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…如果按上述方法测得一副老花镜的镜片与光斑的距离为m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mg.研究说明当每立方米空气中含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.实验数据显示, 一般成人喝半斤低度白酒后, 小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕成正比例;小时后〔包括小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式〔2〕当每立方米空气中的含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?〔3〕当室内空气中的含药量每立方米不低于mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是()A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是() 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是() A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是() A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
人教版九年级数学下册《第二十七章 相似》教案
人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。
本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。
这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。
但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。
此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。
2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.相似图形的定义和性质的理解。
2.相似三角形的性质和判定方法的掌握。
3.图形变换的熟练运用。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。
2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。
3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。
3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。
可以提供一些提示和指导,帮助学生解决问题。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。
教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。
《图形的位似》PPT课件 (共16张PPT)
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
概念与性质 2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。
11.君子藏器于身,待时而动。 ——《周易》
译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。
12.满招损,谦受益。 ——《尚书》
A’
A
B
B’
O
C
C’
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1.在四边形外任选一点O(如图),
2.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D', 使得 OA' OB' OC' OD' 1
OA OB OC OD 2 3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D' 就是所要求的图形.
湘教版数学九年级上册3.3《相似图形》说课稿2
湘教版数学九年级上册3.3《相似图形》说课稿2一. 教材分析湘教版数学九年级上册3.3《相似图形》是本册教材中的一个重要内容。
本节课主要让学生掌握相似图形的概念,理解相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过丰富的例题和习题,引导学生探究相似图形的性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认知和操作有一定的基础。
但是,他们对相似图形的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,我要充分考虑学生的实际情况,有针对性地进行教学。
三. 说教学目标1.知识与技能目标:让学生掌握相似图形的概念,理解相似图形的性质,学会运用相似图形解决实际问题。
2.过程与方法目标:通过观察、操作、探究、交流等方法,培养学生的动手操作能力和抽象思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,提高学生的问题解决能力。
四. 说教学重难点1.教学重点:相似图形的概念及其性质。
2.教学难点:相似图形的性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作探究法、案例分析法等。
2.教学手段:利用多媒体课件、几何画板等辅助教学。
六. 说教学过程1.导入新课:通过展示一些生活中的相似图形,引导学生发现相似图形的特征,激发学生的学习兴趣。
2.自主探究:让学生通过观察、操作、交流等方式,探究相似图形的性质,总结出相似图形的定义和性质。
3.课堂讲解:对相似图形的性质进行详细讲解,通过举例说明相似图形在实际问题中的应用。
4.巩固练习:让学生通过解答习题,巩固所学知识,提高解题能力。
5.课堂小结:对本节课的主要内容进行总结,引导学生形成知识体系。
七. 说板书设计板书设计要简洁明了,突出相似图形的概念和性质。
可以设计如下:•定义:形状相同,大小不同的图形1.对应边成比例2.对应角相等3.面积比等于对应边长比的平方八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况、习题解答能力等方面进行。
17.图形的位似—知识讲解
图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化.【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案. 【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形. 据此可得A 、B 、C 三个图形中的两个图形都是位似图形; 而D 的对应顶点的连线不能相交于一点,故不是位似图形. 故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点. 举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD的距离是6cm ,则像CD 的长是物AB 长的 ( ). A. 3倍 B.21C.31D.不知AB 的长度,无法判断【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.A BC DE【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比 为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5. 4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5.则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧. 【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小. 举一反三【变式】在已知三角形内求作内接正方形.【答案与解析】 作法:A 1B 1C 1D 1E 1(1)在AB 上任取一点G ′,作G ′D ′⊥BC; (2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′; (3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ; ∴四边形DEFG 即为所求.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k (k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k |.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k 或-k.类型二、坐标系中的位似图形3.(2015•漳州)如图,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB′C′D′,使它与四边形ABCD 位似,且相似比为2. (1)在图中画出四边形AB′C′D′; (2)填空:△AC′D′是 三角形.GFF'BCG'【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(2015•枣庄)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.【答案与解析】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【总结升华】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.图形的位似--巩固练习一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有().A.2个B.3个C.4个D.5个2.下列说法错误的是().A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是() .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C (2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2) B.(4,1)C.(5,2)D.(5,1)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).A.1个B.2个C.3个D.4个6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是().A. AB:AC=AC:BCB. AC=512AB-C.AB=512AC+D.BC≈0.618AB7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A. 512-B.512+C.3D.2二.填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为__________.9.已知ABC,以点A为位似中心,作出ADE,使ADE是ABC放大2倍的图形,则这样的图形可以作出______个,它们之间的关系是__________.10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A B C D E''''',已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A B C D E'''''的周长的比值是__________.11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.(2015•钦州)如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第,三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC 边长的倒数,则n= .14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.(2014秋•海陵区校级月考)如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误.故正确的是:(2)(3)(5).故选B.2.【答案】D.3.【答案】C.4.【答案】C.【解析】设点B的坐标为(x,y),∵△ABE和△CDE是以点E为位似中心的位似图形,∴=,=,解得x=5,y=2,所以,点B的坐标为(5,2).故选C.5.【答案】B【解析】由位似图形的概念可知③和④对,故选B. 6.【答案】D.【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:AB:AC=AC:BC,AC=512AB-, AB=512ACAC≈0.618AB.故选D.7.【答案】B.【解析】∵AB=1,设AD=x,则FD=x-1,FE=1,∵四边形EFDC与矩形ABCD相似,∴EF AD FD AB=,111xx=-,解得11+5 =2x,21-5 =2x,(负值舍去),经检验11+5 =2x是原方程的解.故选B.二、填空题8.【答案】50cm.9.【答案】2个;全等.10.【答案】1:2.【解析】∵五边形ABCDE与五边形A′B′C′D′E′位似,OA=10cm,OA′=20cm,∴五边形ABCDE∽五边形A′B′C′D′E′,且相似比为:OA:OA′=10:20=1:2,∴五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比为:OA:OA′=1:2.故答案为:1:2.11.【答案】 .【解析】由BC∥DE可得△ADE∽△ABC,所以,故.12.【答案】2:1.【解析】矩形ABCD对折后所得矩形与原矩形相似,则矩形ABCD∽矩形BFEA,设矩形的长为a,宽为b .则AB=CD=b ,AD=BC=a ,BF=AE=2a ,根据矩形相似,对应边的比相等得到:,BF EF AB BC 即:2=ab b a,则b 2=22a ∴22=2,a b ∴2=1a b13. 【答案】16.【解析】由图形的变化规律可得×256=, 解得n=16.14. 【答案】25-2.【解析】∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°,又BD 平分∠ABC ,∴∠ABD=∠CBD=36°,∴∠BDC=72°,∴BC=BD=AD ,∵D 点是AC 的黄金分割点,∴BC=AD=4×5-12=25-2.三.解答题15.【答案与解析】(1)△ADE和△ABC是位似图形.理由是:DE∥BC,所以∠ADE=∠B,∠AED=∠C.所以△ADE∽△ABC,所以.又因为点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C 是对应点,直线BD与CE交于点A,所以△ADE和△ABC是位似图形.(2)DE∥BC.理由是:因为△ADE和△ABC是位似图形,所以△ADE∽△ABC所以∠ADE=∠B所以DE∥BC.16.【答案与解析】解:(1)△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形,理由:∵AB∥CD∥EF,∴△DFE∽△DBA,△BFE∽△BDC,△AEB∽△DEC,且对应边都交于一点,∴△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形;(2)∵△BFE∽△BDC,△AEB∽△DEC,AB=2,CD=3,∴==,∴==,解得:EF=.17.【答案与解析】(1)∵矩形ODEF∽矩形ABCO,其相似比为1:4,∴S矩形ODEF=116S矩形ABCO=116×4×43=3;(2)存在.所以点E的轨迹为以点O为圆心,以2为半径的圆,设点O到AC的距离为h,。
初中相似图形的教学教案
教案:初中相似图形教学教学目标:1. 让学生理解相似图形的概念,掌握相似图形的性质和判定方法。
2. 培养学生运用相似图形解决实际问题的能力。
教学内容:1. 相似图形的定义和性质2. 相似图形的判定方法3. 相似图形在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的图形变换知识,如平移、旋转等。
2. 提问:你们认为什么是相似图形?二、新课讲解(15分钟)1. 讲解相似图形的定义:在平面内,如果两个图形的形状相同,但大小不一定相同,那么这两个图形叫做相似图形。
2. 讲解相似图形的性质:a. 相似图形的对应边成比例。
b. 相似图形的对应角相等。
c. 相似图形的大小可以通过比例关系来计算。
3. 讲解相似图形的判定方法:a. 如果两个图形的对应角相等,对应边成比例,那么这两个图形相似。
b. 如果两个图形互相旋转或翻转后能够重合,那么这两个图形相似。
三、例题讲解(15分钟)1. 讲解例题:判断两个图形是否相似。
2. 引导学生通过对应角和对应边的关系来判断图形是否相似。
四、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 引导学生通过相似图形的性质和判定方法来解决问题。
五、总结与拓展(5分钟)1. 总结本节课所学内容,让学生明确相似图形的概念和性质。
2. 提问:相似图形在实际生活中有哪些应用?3. 拓展知识:介绍相似图形在几何学中的重要性,如相似三角形的性质和应用。
教学评价:1. 课后作业:布置相关习题,巩固所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的掌握程度。
3. 单元测试:进行单元测试,评估学生对相似图形的理解和应用能力。
最新中考数学总复习第四章三角形 第17讲 相似三角形
题25(2), 题19(2), 1分 2分
题10,1分
题10,1分
相似三角形的 题23,2 题25(3),
判定
分 2分
题24(3), 1分
题25(3),
题24(3), 1分
3分
题24(3), 1分
题25(3), 1分
题24(1), 2分
返回
数学
相似三角形 题23,1 的性质 分
题
25(3), 2分
qr p
返回
数学
考点2 相似三角形的判定 3.(2021西安模拟)如图,D是△ABC边AB上一点,添加一个条件 后,仍不能使△ACD∽△ABC的是( D )
A.∠ACD=∠B
B.∠ADC=∠ACB
C.AC2=AD·AB
D.AD = CD
AC BC
返回
数学
4.(2021北京模拟)如图,在四边形ABCD中,CA是∠BCD的平分 线,且AC2=CD·BC,求证:△ABC∽△DAC.
234
yz
5 6
.
返回
数学
2.(2021盘锦)“今有井径五尺,不知其深,立五尺木于井上,从木 末望水岸,入径四寸,问井深几何?”这是我国古代数学著作 《九章算术》中的“井深几何”问题,它的题意可以由示意图 获得,设井深为x尺,所列方程正确的是( A )
A. 5 = 0.4
5+x 5
C. 12.(2013广东)如图,在矩形ABCD中,以对角线BD为一边构造 一个矩形BDEF,使得另一边EF过原矩形的顶点C. (1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的 面积为S3,则S1 = S2+S3(用“>”“=”或“<”填空); (2)写出图中的三对相似三角形,并选择其中一对进行证明.
第17讲 图形变换性问题-2019年中考数学总复习巅峰冲刺28讲(原卷版)
2019年中考数学总复习巅峰冲刺专题17图形变换性问题【难点突破】着眼思路,方法点拨, 疑难突破;平移解题要领:关键是确定图形平移的方向和距离,从一个点或一条线段的平移前后的变化,归纳出平移的规律,进而得出图形其他部分的平移变化.折叠解题要领:①图形的折叠本质上就是轴对称问题,根据轴对称的性质,可探求出图形变换前后的等量关系;②求解线段和最小值问题,本质上就是两点间线段最短(间接运用三角形三边大小关系),通过点的轴对称变换,把线段和转化为某一条线段求解,选择作适当的点的轴对称点往往是解题的突破口.旋转解题要领:①由旋转角相等,可以得到等角,由对应点到旋转中心的距离相等,可以得到线段相等和等腰三角形;②由图形的旋转求线段长时,常常用到勾股定理、锐角三角函数,全等三角形及相似三角形的判定与性质;③图形的旋转常常与求解弧长或扇形的面积整合在一起,注意学习运用.相似解题要领:①证明两个三角形相似,最常用的方法:一是利用平行线构造相似三角形,二是两个角对应相等证明两三角形相似;②探求两个三角形相似的条件时,根据确定的已知条件,不拘泥于现成的图形,充分考虑三角形相似的情形.具体性质有:①相似三角形对应线段的比等于相似比,其中只要说明两线段是对应线段,就可以直接运用性质定理;②利用相似三角形的性质求面积时,不要忽视“相似比的平方”.位似解题要领:①利用点的坐标表示位似变换时,一般地是以原点为位似中心,但是,要注意位似中心不是原点的情况;②求位似图形相应点的坐标时,要注意是缩小还是扩大,是一种还是两种情形. 【名师原创】原创检测,关注素养,提炼主题;【原创】在平面直角坐标系中,抛物线294y ax x c =++与y 轴交于点A(0,6),与x 轴的正半轴交于点B(8,0),连接AB ,将线段AB 绕着点A 顺时针旋转,点B 恰好落在y 轴C 点处,试解答下列问题:(1)这条抛物线的解析式;(2)求sin BAC ∠的值;(3)在抛物线上存在点H ,使得点H 到A 、B 两点的距离相等,求点H 的横坐标。
新人教版八年级数学下册第17讲 相似三角形(中考知识梳理)
第17讲 相似三角形知识点一:比例线段关键点拨与对应举例1. 比例线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱. 2.比例的基本性质(1)基本性质:a c b d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0)(3)等比性质:a c b d ==…=mn =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定 (1) 两角对应相等的两个三角形相似(AAA). 如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC AB DF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAED CBAFEDC B AFEDC BAFE DC BA6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
初中数学竞赛专题培训(5)
初中数学竞赛专题培训第十七讲* 集合与简易逻辑我们考察某些事物的时候,常常要考虑由这些事物组成的群体,我们把这个群体叫作集合.组成某个集合的事物,叫作这个集合的元素.通常用大写字母A,B,C…等表示集合,小写字母a,b,c,…等表示元素.如果m是集合A的元素,就说m属于A,记作m∈A.如果n(i)你的家庭中所有成员组成一个集合,你和你的家庭中的其他各个成员都是这个集合中的元素.(ii)自然数全体1,2,3,…组成一个集合(通常把它叫作自然数集).(iii)如果A,B是平面上两个不同的点,那么A,B两点所确定的直线上的点组成一个集合,这条直线上每个点都是这个集合的元素.总之,集合是数学中一个最基本、最常用的概念,下面进一步给同学们介绍一些关于集合的基本知识.1.集合的描述方法(1)列举法当一个集合所含元素个数较少时,一个最简单的描述方法就是把它所含的每个元素都列举出来,这叫列举法.用列举法表示集合,通常是将这个集合的每个元素一一填写在{}中,每个元素之间用逗点隔开.填写集合的元素时,与元素的排列次序无关.例如:(i)由a,b,c,d,e五个小写字母组成的集合A,记作A={a,b,c,d,e},也可记作A={b,a,c,d,e).(ii)由小于40的质数组成的集合B,记作B={2,3,5,7,11,13,17,19,23,29,31,37}.(iii)平方等于1的有理数集合C,记作C={1,-1}.(iv)三条直线l1,l2,l3组成的集合D,记作D={l1,l2,l3}.(2)特征性质描述法当一个集合所含元素较多时,用列举法描述很麻烦,这就要用到特征性质描述法.所谓特征性质是指集合中元素的特征性质,即:(i)这个集合中每个元素都具有这些性质;(ii)具有这些性质的事物都是这个集合的元素.例如,集合={1,-1}用特征性质描述法表示就是A={x│x2=1},或者A={x││x│=1}.全体偶数组成的集合B,用特征性质描述法表示就是B={x│x是能被2整除的整数},或者B={2n│n是整数}.全体奇数组成的集合C,用特征性质描述法表示就是C={x│x是不能被2整除的整数},或者C={2n+1│n是整数},C={2n-1│n是整数}.一般地,用特征性质α表示集合A的形式是:A={x│x具有性质α}.2.集合之间的关系和运算(1)包含与子集(i)你班上的同学的集合和你学校的同学的集合之间的关系是:前者是后者的子集,后者包含前者.(ii)设集合例1设A={1,2,3,4},试写出A的所有子集.{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{2,3,4},{1,3,4},{1,2,3,4}.(2)交集运算对于给定的集合A,B,由它们的公共元素所构成的集合叫作集合A与B的交集.我们用A∩B 表示A,B的交集(图2-88).例如(i)如图2-89,设A={x│x是12的正因数},B={x│5<x<13,x是整数},则A={1,2,3,4,6,12},B={6,7,8,9,10,11,12}.所以 A∩B={6,12}.(ii)设l1,l2是平面上两条不同的直线,则l1∩l2就是由它们的交点组成的集合.如果l1与l2相交于一点P,则l1∩l2={P}(图2-90);(3)并集运算对于给定的两个集合A,B,把它们所含的元素合并起来所构成的集合,叫作集合A,B的并集,我们用符号A∪B表示A,B的并集(图2-92).例如(i)设M,N分别表示你班上男生、女生的集合,那么M∪N就是你班上同学的集合.(ii)设A={1,3,5,7,9},B={2,3,4,5,6},则 A∪B={1,2,3,4,5,6,7,9}.注意在求上述集合A,B的并集时,虽然在A,B中都有3和5,但在A∪B中,3,5只取一次.(iii)设E={x│x是实数,且x≥4},F={x│x是实数,且x≤-4},G={x│x2≥16}.则 E∪F=G.一般地说,如果α,β分别是集合A,B的特征性质,即A={x│x具有性质α} ,B={x│x具有性质β},则A∪B就是那些具有性质α或性质β的元素组成的集合,也就是A∪B={x│x具有性质α或β},或者A∪B={x│x∈A或x∈B}.例2设A={x│x是12的正因数},B={x│x是18的正因数},C={x│0≤x≤5,且x∈Z}.求:(1)A∩B∩C;(2)A∪B∪C.解根据已知条件,用填文氏图各区域的元素的方法来解决(如图2-93(a),(b)).(1)A∩B∩C={1,2,3};(2)A∪B∪C={0,1,2,3,4,5,6,9,12,18}.例3设A={1,a,a2} ,B={1,a,b),假定A,B中的元素都是整数,并且A∩B={1,3},A ∪B={1,a,2a,3a},求a,b的值.解因为A={1,a,a2},B={1,a,b},所以A∩B={1,a}.已知A∩B={1,3}.所以a=3.又由于A∪B={1,a,b,a2}={1,a,2a,3a}={1,3,6,9},所以b=6.简易逻辑逻辑一词是LOGIC的音译,它是研究思维法则的一门学科.数学和逻辑的关系非常密切,在此,对逻辑知识做一些初步介绍.1.推出关系如果设A={x│x是4的倍数},B={x│x是2的倍数},则A中元素具有性质α——4的倍数;B中元素具有性质β——2的倍数.我们知道:如果某元素x是4的倍数,那么x一定是2的倍数,即具有性质一般地说,如果具有性质α的元素也具有性质β,我们便说由α推下面再举一个例子.2.命题和证明(1)命题和逆命题人们在思维活动中,经常要对客观事物做出判断.例如:(i)雪是白的;(ii)如果∠1和∠2是对顶角,那么∠1=∠2;(iii)3+4=6;上述所列都是对客观事物做出判断的语句.人们对客观事物的情况做出判断可能是正确的(真),也可能是错误的(假).我们把肯定或否定的判断语句叫作命题.上述语句(i),(ii),(iii),(iv)都是命题.关于命题的真假性,有些容易判断,如(i),(ii)是真命题,(iii)是假命题.但对(iv)的真假性就不是显然可判断的.可通过设x=1,y=0(x>y),那么因此,命题(iv)为假命题(注意:证明一个命题为真命题,必须通过逻辑推演,但要证明一个命题为假命题只须举出一个反例即可).数学命题具有多种形式,经常采用的命题形式是“若α,则β”,“如果α,那么β”.命题“若α,则β”或是真命题,或是假命题,二者必居其一.“若当由α不可能推出β时,“若α,则β”便是假命题.在命题“若α,则β”中,α叫作这个命题的条件,β叫作这个命题的结论.如果将命题“若α,则β”的条件和结论互换,就得到一个新命题“若β,则α”,这两个命题之间具有互连关系,其中一个叫作原命题时,则另一个命题就叫作这个原命题的逆命题.当“如果α,则β”为真命题时,它的逆命题“如果β,则α”不一定是真命题.例如:(i)“如果2×3=6,那么6÷3=2”是真命题.它的逆命题“如果6÷3=2,那么2×3=6”也是真命题.(ii)“若a=0并且b=0,则ab=0”是真命题,但它的逆命题“若ab=0,则a=0并且b=0”就不是真命题.(iii)“如果∠1,∠2是对顶角,那么∠1=∠2”是真命题,但它的逆命题“∠1=∠2,那么∠1,∠2是对顶角”就是假命题.(2)证明我们要说明“若α,则β”是真命题时,以什么方式来推证呢?最常用的基本格式就是推出关系的传递性,即:如果那么例如,(i)若∠1和∠2是对顶角,①对顶角相等,②则∠1=∠2.③(ii) 张三是人,①凡人必有死,②所以张三必有死.③上述推理格式叫作三段论式,推理中的①,②是两个前提条件,①叫小前提,②叫大前提,③是由①,②推出的结论.实际上,三段论式和推出关系的传递性是一致的.例如“对顶角相等”的证明过程,可以像下面这样来理解.已知:∠1是∠2的对顶角(图2-98),求证:∠1=∠2.证从上述证明过程可知,要证明“若α,则β”,我们先设法找出一应用已经被确认的正确命题和已知条件作根据,经过推演,导出某一命题成立,这种方法就叫作演绎推理法(简称演绎法).演绎法是证明数学问题的重要方法.=a2+b2+c2(a+b-c)2=a2+b2+c2.例2某校数学竞赛,A,B,C,D,E,F,G,H八位同学获得了前八名,老师叫他们猜一下谁是第一名.A说:“或者F,或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A说的不对.”F说:“我不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师说八个人中有三人猜对了,那么试问第一名是谁?分解与解由已知条件可知:A与H同真假,E与F同真假,B与D必定一真一假.(i)如果A与H猜对了,那么D与G也都猜对了.这样就有四人猜对,不合题意,因此,A与H 必定都猜错了.(ii)如果E与F猜对了,即F与H都不是第一名,这时若B猜对了,那么D就猜错了,C也猜错了,G猜对了,这样,就有E,F,B,G四人猜对,也与题意不符.因此B猜的不对,D猜对了,这时已有E,F,D三人猜对,所以G,C都必定猜错了,所以C是第一名.练习十七1.已知A={1,2,3,4,5},B={1,3,5,7},C={2,3,5,8} ,写出集合:(1)A∩B∩C; (2)A∪B∪C;(3)A∩(B∪C);(4)A∪(B∩C).3.有某种产品100个,通过两种检查,第一种检查合格品有90个,第二种检查合格品有78个,两种检查都合格的有72个.试问这100个产品中,通过两种检查都不合格的产品有多少个?(1)a>0□│a│>0;(2)a=0且b=0□a2+b2=0;(3)(x-a)(x-b)=0□x=a或x=b;(4)如果α>1,β>2,γ>3,那么,α□γ,β□α,β□γ.5.写出下列命题的逆命题,并指出其真假.(1)若a=b,则(a-b)2 =0;(2)若a=b,则a2-b2=0;(3)若a≠b,则a2+b2>2ab;6.已知3(a2+b2+c2)=(a+b+c)2,求证:a=b=c.初中数学竞赛专题培训第十五讲相似三角形(一)两个形状相同的图形称为相似图形,最基本的相似图形是相似三角形.对应角相等、对应边成比例的三角形,叫作相似三角形.相似比为1的两个相似三角形是全等三角形.因此,三角形全等是相似的特殊情况,而三角形相似是三角形全等的发展,两者在判定方法及性质方面有许多类似之处.因此,在研究三角形相似问题时,我们应该注意借鉴全等三角形的有关定理及方法.当然,我们又必须同时注意它们之间的区别,这里,要特别注意的是比例线段在研究相似图形中的作用.关于相似三角形问题的研究,我们拟分两讲来讲述.本讲着重探讨相似三角形与比例线段的有关计算与证明问题;下一讲深入研究相似三角形的进一步应用.例1 如图2-64所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.分析由于BC是△ABC与△DBC的公共边,且AB∥EF∥CD,利用平行线分三角形成相似三角形的定理,可求EF.解在△ABC中,因为EF∥AB,所以同样,在△DBC中有①+②得设EF=x厘米,又已知AB=6厘米,CD=9厘米,代入③得说明由证明过程我们发现,本题可以有以下一般结论:“如本题请同学自己证明.例2如图2-65所示.ABCD的对角线交于O,OE交BC于E,交AB的延长线于F.若AB=a,BC=b,BF=c,求BE.分析本题所给出的已知长的线段AB,BC,BF位置分散,应设法利用平行四边形中的等量关系,通过辅助线将长度已知的线段“集中”到一个可解的图形中来,为此,过O作OG∥BC,交AB 于G,构造出△FEB∽△FOG,进而求解.解过O作OG∥BC,交AB于G.显然,OG是△ABC的中位线,所以在△FOG中,由于GO∥EB,所以例3如图2-66所示.在△ABC中,∠BAC=120°,AD 平分分析因为AD平分∠BAC(=120°),所以∠BAD= ∠EAD=60°.若引DE∥AB,交AC于E,则△ADE为正三角形,从而AE=DE=AD,利用△CED ∽△CAB,可实现求证的目标.证过D引DE∥AB,交AC于E.因为AD是∠BAC的平分线,∠BAC=120°,所以∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以△ADE是正三角形,所以EA=ED=AD.①由于DE∥AB,所以△CED∽△CAB,所以由①,②得从而例4如图2-67所示.ABCD中,AC与BD 交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:分析与例2类似,求证中诸线段的位置过于“分散”,因此,应利用平行四边形的性质,通过添加辅助线使各线段“集中”到一个三角形中来求证.证延长CB与EG,其延长线交于H,如虚线所示,构造平行四边形AIHB.在△EIH中,由于DF∥IH,所以在△OED与△OBH中,∠DOE=∠BOH,∠OED=∠OHB,OD=OB,所以△OED≌△OBH(AAS).从而DE=BH=AI,例5(梅内劳斯定理) 一条直线与三角形ABC 的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求分析设法引辅助线(平行线)将求证中所述诸线段“集中”到同一直线上进行求证.证过B引BG∥EF,交AC于G.由平行线截线段成比例性质知说明本题也可过C引CG∥EF交AB延长线于G,将求证中所述诸线段“集中”到边AB所在直线上进行求证.例6 如图2-69所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.分析由于图中平行线段甚多,因而产生诸多相似三角形及平行四边形.利用相似三角形对应边成比例的性质及平行四边形对边相等的性质,首先得到一个一般关系:进而求d.因为FG∥BC,HI∥CA,ED∥AB,易知,四边形AIPE,BDPF,CGPH均是平行四边形.△BHI∽△AFG∽△ABC,从而将②代入①左端得因为DE=PE+PD=AI+FB,④AF=AI+FI,⑤BI=IF+FB.⑥由④,⑤,⑥知,③的分子为DE+AF+BI=2×(AI+IF+FB)=2AB.从而即下面计算d.因为DE=FG=HI=d,AB=510,BC=450,CA=425,代入①得解得d=306.练习十五1.如图2-70所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.2.已知P 为ABCD边BC上任意一点,DP 交AB的延长线于Q3.如图 2-72所示.梯形 ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.4.P为△ABC内一点,过P点作DE,FG,IH 分别平行于AB,BC,CA(如图2-73所示).求证:5.如图 2-74所示.在梯形 ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=CH=HI=HJ,求DC∶AB.6.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:不少于2.初中数学竞赛专题培训第十六讲相似三角形(二)上一讲主要讲述了相似三角形与比例线段之间的关系的计算与证明,本讲主要讲述相似三角形的判定与性质的应用.例1 如图2-76所示.△ABC中,AD是∠BAC的平分线.求证:AB∶AC=BD∶DC.分析设法通过添辅助线构造相似三角形,这里应注意利用角平分线产生等角的条件.证过B引BE∥AC,且与AD的延长线交于E.因为AD平分∠BAC,所以∠1=∠2.又因为BE∥AC,所以∠2=∠3.从而∠1=∠3,AB=BE.显然△BDE∽△CDA,所以 BE∶AC=BD∶DC,所以 AB∶AC=BD∶DC.说明这个例题在解决相似三角形有关问题中,常起重要作用,可当作一个定理使用.类似的还有一个关于三角形外角分三角形的边成比例的命题,这个命题将在练习中出现,请同学们自己试证.在构造相似三角形的方法中,利用平行线的性质(如内错角相等、同位角相等),将等角“转移”到合适的位置,形成相似三角形是一种常用的方法.例2如图 2-77所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.分析利用角平分线分三角形中线段成比例的性质,构造三角形,设法证明△MEF∽△MAB,从而EF∥AB.证过B引BG∥AC交AE的延长线于G,交AM的延长线于H.因为AE是∠BAC的平分线,所以∠BAE=∠CAE.因为BG∥AC,所以∠CAE=∠G,∠BAE=∠G,所以 BA=BG.又BD⊥AG,所以△ABG是等腰三角形,所以∠ABF=∠HBF,从而AB∶BH=AF∶FH.又M是BC边的中点,且BH∥AC,易知ABHC是平行四边形,从而BH=AC,所以 AB∶AC=AF∶FH.因为AE是△ABC中∠BAC的平分线,所以AB∶AC=BE∶EC,所以 AF∶FH=BE∶EC,即(AM+MF)∶(AM-MF)=(BM+ME)∶(BM-ME)(这是因为ABHC是平行四边形,所以AM=MH及BM=MC.).由合分比定理,上式变为AM∶MB=FM∶ME.在△MEF与△MAB中,∠EMF=∠AMB,所以△MEF∽△MAB(两个三角形两条边对应成比例,并且夹角相等,那么这两个三角形相似.).所以∠ABM=∠FEM,所以 EF∥AB.例3 如图2-78所示.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.即可,为此若能设法利用长度分别为AB,BC,CA及l=AB+AC这4条线段,构造一对相似三角形,问题可能解决.注意到,原△ABC中,已含上述4条线段中的三条,因此,不妨以原三角形ABC为基础添加辅助线,构造一个三角形,使它与△ABC相似,期望能解决问题.证延长AB至D,使BD=AC(此时,AD=AB+AC),又延长BC至E,使AE=AC,连结ED.下面证明,△ADE∽△ABC.设∠A=α,∠B=2α,∠C=4α,则∠A+∠B+∠C=7α=180°.由作图知,∠ACB是等腰三角形ACE的外角,所以∠ACE=180°-4α=3α,所以∠CAE=180°-3α-3α=7α-6α=α.从而∠EAB=2α=∠EBA,AE=BE.又由作图AE=AC,AE=BD,所以 BE=BD,△BDE是等腰三角形,所以∠D=∠BED=α=∠CAB,所以△ABC∽△DAE,所以例4 如图2-79所示.P,Q分别是正方形ABCD 的边AB, BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.分析要证QH⊥DH,只要证明∠BHQ=∠CHD.由于△PBC是直角三角形,且BH⊥PC,熟知∠PBH=∠PCB,从而∠HBQ=∠HCD,因而△BHQ与△DHC 应该相似.证在Rt△PBC中,因为BH⊥PC,所以∠PBC=∠PHB=90°,从而∠PBH=∠PCB.显然,Rt△PBC∽Rt△BHC,所以由已知,BP=BQ,BC=DC,所以因为∠ABC=∠BCD=90°,所以∠HBQ=∠HCD,所以△HBQ∽△HCD,∠BHQ=∠DHC,∠BHQ+∠QHC=∠DHC+∠QHC.又因为∠BHQ+∠QHC=90°,所以∠QHD=∠QHC+DHC=90°,即 DH⊥HQ.例5如图2-80所示.P,Q分别是Rt△ABC两直角边AB,AC上两点,M为斜边BC的中点,且PM⊥QM.求证:PB2+QC2=PM2+QM2.分析与证明若作MD⊥AB于D,ME⊥AC于E,并连接PQ,则PM2+QM2=PQ2=AP2+AQ2.于是求证式等价于PB2+QC2=PA2+QA2,①等价于PB2-PA2=QA2-QC2.②因为M是BC中点,且MD∥AC,ME∥AB,所以D,E分别是AB,AC的中点,即有AD=BD,AE=CE,②等价于(AD+PD)2-(AD-PD)2=(AE+EQ)2-(AE-EQ)2,③③等价于AD·PD=AE·EQ.④因为ADME是矩形,所以AD=ME,AE=MD,故④等价于ME·PD=MD·EQ.⑤为此,只要证明△MPD∽△MEQ即可.下面我们来证明这一点.事实上,这两个三角形都是直角三角形,因此,只要再证明有一对锐角相等即可.由于ADME为矩形,所以∠DME=90°=∠PMQ(已知).⑥在⑥的两边都减去一个公共角∠PME,所得差角相等,即∠PMD=∠QME.⑦由⑥,⑦,所以△MPD∽△MEQ.由此⑤成立,自⑤逆上,步步均可逆推,从而①成立,则原命题获证.例6如图2-81所示.△ABC中,E,D是BC边上的两个三等分点,AF=2CF,BF=12厘米.求:FM,MN,BN的长.解取AF的中点G,连接DF,EG.由平行线等分线段定理的逆定理知DF∥EG∥BA,所以△CFD∽△CAB,△MFD∽△MBA.所以MB=3MF,从而BF=4FM=12,所以FM=3(厘米).又在△BDF中,E是BD的中点,且EH∥DF,所以因为EH∥AB,所以△NEH∽△NAB,从而显然,H是BF的中点,所以故所求的三条线段长分别为练习十六1.如图2-82所示.在△ABC中,AD是∠BAC的外角∠CAE的平分线.求证:AB∶AC=BD∶DC.2.如图2-83所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.3.如图2-84所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA·PC.提示:设法证明△PAB∽△PBC.)4.如图2-85所示.D是等腰直角三角形ABC的直角边BC的中点,E在斜边AB上,且AE∶EB=2∶1.求证:CE⊥AD.5.如图2-86所示.Rt△ABC中,∠A=90°,AD ⊥BC于D,P为AD的中点,延长BP交AC于E,过E作EF⊥BC于F.求证:EF2=AE·EC.6.在△ABC中,E,F是BC边上的两个三等分点,BM是AC边上的中线,AE,AF分别与BM交于D,G.求:BD∶DG∶GM.初中数学竞赛专题培训第十八讲归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n 层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测Sn-Sn-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n -S1=2+3+4+…+n,因为S1=2,所以下面对Sn -Sn-1=n,即Sn=Sn-1+n的正确性略作说明.因为Sn-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在Sn-1上,所以有Sn=Sn-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a 2-a1=1,a 3-a2=2,a 4-a3=3,a 5-a4=4,……a n-1-an-2=n-2,a n -an-1=n-1.n个式子相加注意请读者说明an=an-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果 b=n(n是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n 个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c <n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n 的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有x3<x2+x+2.①设x=10,则有x3=1000,x2+x+2=112,所以x3>x2+x+2.②设x=100,则有x3>x2+x+2.观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样(1)当x=2时,x3=x2+x+2;(2)当0<x<2时,因为x-2<0,x2+x+2>0,所以 (x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以 x3<x2+x+2.(3)当x>2时,因为x-2>0,x2+x+2>0,所以 (x-2)(x2+x+2)>0,即x3-(x2+x+2)>0,所以 x3>x2+x+2.综合归纳(1),(2),(3),就得到本题的解答.分析先由特例入手,注意到例7已知E,F,G,H各点分别在四边形ABCD 的AB,BC,CD,DA边上(如图2—101).(2)当上述条件中比值为3,4,…,n时(n为自然数),那S么S四边形EFGH 与S四边形ABCD之比是多少?G引GM∥AC交DA于M点.由平行截割定理易知(2)设当k=3,4时,用类似于(1)的推理方法将所得结论与(1)的结论列成表18.5.观察表18.5中p,q的值与对应k值的变化关系,不难发现:当k=n(自然数)时有以上推测是完全正确的,证明留给读者.练习十八1.试证明例7中:2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?然后做出证明.)4.求适合x5=656356768的整数x.(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.=。
【中考数学夺分大模块复习权威课件】-第4模块《几何基础、三角形与全等、相似及解直角三角形》名师大串讲
第14讲 三角形与全等三角形 第15讲 等腰三角形 第16讲 直角三角形 第17讲 图形的相似 第18讲 锐角三角函数
第13讲
几何初步、相交线与 平行线
┃考点自主梳理与热身反馈 ┃
考点1 点和线
1.下列说法错误的是 ( D ) A.平面内过一点有且只有一条直线与已知直线垂直 B.两点之间的所有连线中,线段最短 C.经过两点有且只有一条直线 D.经过一点,有且只有一条直线
第13讲┃ 几何初步、相交线与平行线
考点2
角
1.点 P 在∠MAN 内部,现在四个等式:①∠PAM=∠ NAP; 1 1 ②∠PAN= ∠ MAN;③∠MAP= ∠MAN;④∠MAN= 2 2 2∠ MAP,其中能表示 AP 是角平分线的等式有 ( D ) A. 1 个 B. 2 个 C. 3 个 D.4 个
第13讲┃ 几何初步、相交线与平行线
变式题 如图 13- 7,直线 AB, CD 相交于点 O, OE 平分∠ AOD,若∠ BOD= 100°,则∠ AOE= ________ 40° .
第13讲┃ 几何初步、相交线与平行线
考点3 相交线与对顶角 1. 如图 13- 1,已知直线 AB,CD 相交于点 O,OA 平分 ∠ EOC,∠ EOC= 110°,则∠BOD 的度数是 ( D ) A.25° B.35° C. 45° D. 55°
第13讲┃ 几何初步、相交线与平行线
2.如图 13- 2,直线 AB,CD 相交于点 O,OE⊥ AB, 48° 垂足为 O,如果∠ EOD= 42°,则∠ AOC= _____.
第13讲┃ 几何初步、相交线与平行线
50 2.若∠ α= 40°,则∠ α 的余角是________ °,∠α 的补 140 角是 ________ °.
人教版数学九年级下册第27章《相似》课堂教学设计
人教版数学九年级下册第27章《相似》课堂教学设计一. 教材分析人教版数学九年级下册第27章《相似》主要介绍了相似图形的性质和判定。
本章内容是学生学习几何知识的重要环节,为后续学习函数、解析几何等知识点奠定基础。
本章内容涉及的概念和性质较多,学生需要通过实例理解和掌握相似图形的相关知识。
二. 学情分析九年级的学生已具备一定的几何知识基础,能理解并运用平行、相交、三角形、四边形等基本图形的性质。
但学生在学习过程中,对抽象概念的理解和运用仍有困难,需要通过具体实例和动手操作来加深理解。
此外,学生对数学语言的表达和逻辑推理能力有待提高。
三. 教学目标1.理解相似图形的概念,掌握相似图形的性质。
2.学会判定两个图形是否相似,并能运用相似性质解决实际问题。
3.培养学生的逻辑推理能力和数学语言表达能力。
四. 教学重难点1.相似图形的概念和性质。
2.判定两个图形相似的方法。
3.相似图形在实际问题中的应用。
五. 教学方法1.采用直观演示法,通过实物模型和几何画板软件展示相似图形的性质和判定。
2.运用案例分析法,让学生通过分析具体实例,理解和掌握相似图形的性质。
3.采用分组合作法,让学生在小组内讨论和探究相似图形的问题,培养学生的团队协作能力。
4.运用问答法,引导学生积极思考,提高学生的数学思维能力。
六. 教学准备1.准备相应的教案和教学课件。
2.准备实物模型和几何画板软件。
3.准备相关案例分析和练习题。
七. 教学过程1.导入(5分钟)通过展示实物模型和几何画板软件,引导学生观察和分析,提出问题:“这些图形有什么共同特点?”让学生思考和讨论,引出相似图形的概念。
2.呈现(10分钟)讲解相似图形的定义和性质,通过实例和几何画板软件展示相似图形的判定方法。
引导学生理解和掌握相似图形的性质。
3.操练(10分钟)让学生分组讨论,分析给定的图形,判断它们是否相似。
每组选取一个代表进行回答,教师点评并给予指导。
4.巩固(10分钟)让学生运用相似图形的性质解决实际问题,如计算图形面积、比例问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DE∥BC K字型
∠B=∠ADE 旋转型
AB∥CD 双垂直型
DE⊥BD,AC⊥ BC,BE⊥AB
∠B=∠D, ∠BAC=∠DAE
AC⊥BC, CD⊥AB
第17讲┃ 图形的相似
变式题 如图 17-6,在△ ABC 中,D 是 AB 边上一 点,连接 CD,要使△ ADC 与△ ABC 相似,应添加的条 AD AC ∠ACD=∠B(∠ADC=∠ACB或 AC =AB) 件是 _______________________________________. (只 需写出一个条件即可 )
第17讲┃ 图形的相似
[解析] 由图中两个三角形相似,根据“相似三角 形的对应线段成比例”可列方程求解. 设树的高度为x m,由两个三角形相似可得 1.6 AC 0.8 1 = = = x AC+CB 0.8+3.2 5, 解得x=8,即树的高度为8 m,故答案为A.
第17讲┃ 图形的相似
[中考点金] 解此类问题的关键是从实际问题抽象出相 似三角形模型,借助相似三角形的性质解决问 题.
第17讲┃ 图形的相似
变式题 如图17-10,要测量池塘两端A,B的距 离,可先取一个可以直接到达A和B的点C,连接AC并 1 延长到D,使CD= CA, 2 连接BC并延长到E,使 1 CE= CB,连接ED, 2 如果量出DE的长为25米, 50 那么池塘宽AB为________ 米. 图17-10
第17讲
图形的相似
┃考点自主梳理与热身反馈 ┃ 考点1 成比例线段
( D )
1.下列各组中的四条线段成比例的是 A.1 cm,2 cm,20 cm,30 cm B.1 cm,2 cm,3 cm,4 cm C.4 cm,2 cm,1 cm,3 cm D.5 cm,10 cm,10 cm,20 cm
第17讲┃ 图形的相似
考点3 相似三角形的性质 1.已知△A′B′C′∽△ABC,若△A′B′C′和△ABC的相似比 为3∶4,则△A′B′C′和△ABC的面积之比为 ( D ) A.4∶3 B.3∶4 C.16∶9 D.9∶16
第17讲┃ 图形的相似
2.如图 17- 4 所示,△ ABC 中, DE∥ BC, AD= 5, BD= 10, AE= 3,则 CE 的值为 ( B ) A. 9 B. 6 C. 3 D. 4
第17讲┃ 图形的相似
[归纳总结] 相似 多边形 1.定义:对应点的连线相交于一点的两个________ 叫位似图形,这点叫作________ 中心,这时的相似比又 位似 称为位似比. 2.性质:(1)位似图形上任意一对对应点到位似中心的距离 相似比(位似比) ; 之比等于____________________ (2)在平面直角坐标系中,如果位似变换是以原点为位似 中心,相似比为k,那么位似图形对应点的坐标的比等于 k或-k.
第17讲┃ 图形的相似
[中考点金 ] 判断两个三角形是否相似,从两个角度去考 虑,一是看对应边是否成比例,二是看对应角是 否相等.
第17讲┃ 图形的相似
变式题 如图17-8,在平行四边形ABCD中,E是 AB的中点,CE和BD交于点O,设△OCD的面积为m, △OEB的面积为 5,则下列结论中正确的是 A.m=5 C.m=3 5 B.m=4 5 D.m=10 ( B )
图17-8
第17讲┃ 图形的相似
探究三 相似三角形的应用
例 3 如图17-9,夏季的一天,身高为1.6 m的小玲想 测量一下屋前大树的高度,她 沿着树影BA由B向A走去,当 走到C点时,她的影子顶端正好 与树的影子顶端重合,测得BC =3.2 m,CA=0.8 m,于是就得 出树的高度为 ( A ) A.8 m B.6.4 m C.4.8 m D.10 m 图17-9
图 17- 4
第17讲┃ 图形的相似
[归纳总结] 1.相似三角形的性质: 相等 ,对应边___________ 成比例 ; (1)相似三角形的对应角_______ (2)相似三角形对应高的比、对应中线的比、对应角平分 相似比 ;(3)相似三角形面积 线的比和周长的比都等于________ 相似比的平方 . 的比等于________________ 2.相似多边形的性质: 相等 成比例 ,对应边的比等于 对应角__________ ,对应边________ 相似比 ,周长的比等于__________ 相似比 ,面积的比等于 __________ 相似比的平方 . ______________
( D )
第17讲┃ 图形的相似
AO 2 3.[2013· 西双版纳] 如图17-11,AB∥CD,OD= ,则 3 △AOB的周长与△DOC的周长比是 ( D ) 2 3 4 2 A. B. C. D. 5 2 9 3
图17-11
第17讲┃ 图形的相似
4.
[2013· 温州] 如图17-12,在△ABC中,点D,E分别 AD 3 在边AB,AC上,DE∥BC,已知AE=6,DB= ,则 4 EC的长是 ( B ) A.4.5 B.8 C.10.5 D.14
图17-15
第17讲┃ 图形的相似
10.[2013· 枣庄]如图17-16,已知矩形ABCD中,AB= 1,在BC上取一点E,沿AE将△ABE向上折叠,使 B点落在AD上的F点.若四边形EFDC与矩形ABCD 5+1 . 相似,则AD=________ 2
第17讲┃ 图形的相似
┃考题自主训练与名师预测┃
1.下列各组线段(单位:cm)中,成比例线段的是 A.1,2,3,4 B.1,2,2,4 C.3,5,9,13 D.1,2,2,3 a-b b 5 2.已知a= ,则 的值是 13 a+b 2 A. 3 3 B. 2 9 C. 4 4 D. 9
(B )
考点2 相似三角形的判定 1. 已知如图 17- 1(1), (2)中各有两个三角形,其边长和角的 度数已在图上标注,图 (2)中 AB, CD 交于 O 点,对于各图 中的两个三角形而言,下列说法正确的是 ( A )
A.都相似 C.只有(1)相似
图 17- 1 B.都不相似 D.只有 (2)相似
图17-12
第17讲┃ 图形的相似
5.已知线段AB=10 cm,点C是线段AB的黄金分割点(AC >BC),则AC的长为 ( C ) A.(5 5-10) cm C.(5 5-5) cm B.(15-5 5) cm D.(10-2 5) cm
第17讲┃ 图形的相似
6.[2013· 孝感] 在平面直角坐标系中,已知点E(-4,2), 1 F(-2,-2),以原点O为位似中心,相似比为 ,把 2 △EFO缩小,则点E的对应点E′的坐标是 ( D) A.(-2,1) B.(-8,4) C.(-8,4)或(8,-4) D.(-2,1)或(2,-1)
A. 5∶ 8
B.3∶ 8
图 17- 5 C. 3∶ 5 D. 2∶5 第17讲┃ 图形的相似
[解析] ∵AD∶DB=3∶5, ∴BD∶AB=5∶8. ∵DE∥BC, ∴CE∶AC=BD∶AB=5∶8. ∵EF∥AB, ∴CF∶CB=CE∶AC=5∶8. 故选A.
第17讲┃ 图形的相似
[中考点金] 常见的相似形模型如下:
第17讲┃ 图形的相似
2.有一多边形草坪,在市政建设设计图纸上的面积 为300 cm2,其中一条边的长度为5 cm.经测量,这 条边的实际长度为15 m,则这块草坪的实际面积 是 ( C ) A.100 m2 B.270 m2 C.2700 m2 D.90000 m2
第17讲┃ 图形的相似
[归纳总结] 1.成比例线段: 在四条线段中,如果其中两条线段的比________ 等于 另 外两条线段的比,那么这四条线段叫作成比例线段. 2.比例线段的基本性质: a c ad=bc ;当b=c时,b2=ad,那么b是a, 若b=d,则________ d的比例中项. 3.线段的黄金分割: 点C把线段AB分成两条线段AC和BC(AC>BC),如果 5-1 AC BC AC是线段AB和BC的比例中项,且AB=AC= 2 黄金分割点 . ≈0.618,则C点叫作线段AB的____________ 第17讲┃ 图形的相似
第17讲┃ Leabharlann 形的相似考点3 相似三角形的性质 1.下列说法正确的是 ( C ) A.位似图形中每组对应点所在的直线必互相平行 B.两位似图形的面积比等于位似比 C.位似多边形中对应对角线之比等于位似比 D.位似图形的周长之比等于位似比的平方 2.位似图形上某一对对应顶点到位似中心的距离分别为 1 5 cm和15 cm,则它们的相似比为________ . 3
A.1条
图17-13 B.2条 C.3条
D.4条
第17讲┃ 图形的相似
8.若△ABC与△A1B1C1是位似图形,且顶点都在格点 (9,0) . 上,则位似中心的坐标是________
图 17-14
[解析] 连接任意两对对应点,连线的交点即为位 似中心.
第17讲┃ 图形的相似
9.[2013· 济宁] 如图17-15,放映幻灯片时,通过光源, 把幻灯片上的图形放大到屏幕上.若光源到幻灯片的 距离为20 cm,到屏幕的距离为60 cm,且幻灯片中图 18 形的高度为6 cm,则屏幕上图形的高度为_______cm.
第17讲┃ 图形的相似
2.如图 17-2,小正方形的边长均为 1,则下列图中的三角 形 (阴影部分 )与△ABC 相似的是 ( A )
图 17-2
图 17-3
第17讲┃ 图形的相似
[归纳总结]
1.如果一个三角形的两角分别与另一个三角形的两角对应 ________ 相等 ,那么这两个三角形相似. 2.如果一个三角形的两条边与另一个三角形的两条边对应 相等 _________ ,那么这两个三角形相似. 成比例 ,且夹角_________ 3.如果一个三角形的三条边和另一个三角形的三条边对应 成比例 ,那么这两个三角形相似. _________