1.全国大学生数学建模历年试题分析

合集下载

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者针对实际问题进行数学建模、求解及分析。

本文将详细介绍该题目的背景、意义、解题思路及总结,以期为其他参赛者提供参考。

二、题目背景与意义本题以城市交通拥堵问题为背景,要求参赛者建立数学模型,对城市交通流量进行预测及优化。

该问题具有较高的现实意义,因为随着城市化进程的加速,交通拥堵已成为各大城市面临的重要问题。

通过数学建模,我们可以更好地理解交通拥堵的成因,为解决交通拥堵问题提供理论依据。

三、解题思路1. 问题分析首先,我们需要对题目进行深入分析,明确问题的背景、目标及约束条件。

本题主要涉及城市交通流量的预测及优化,需要考虑到交通网络的复杂性、交通流量的时变性、道路资源的有限性等因素。

2. 数学建模根据问题分析,我们可以建立相应的数学模型。

本题中,我们采用交通流理论及运筹学原理,建立了一个多因素影响的城市交通流量预测模型。

模型中考虑了道路类型、交通状况、天气等因素对交通流量的影响。

同时,为了优化交通流量,我们还建立了一个基于遗传算法的交通信号灯配时优化模型。

3. 模型求解在建立数学模型后,我们需要进行模型求解。

本题中,我们采用MATLAB软件进行模型求解。

首先,我们利用历史数据对预测模型进行训练,得到各因素对交通流量的影响程度。

然后,我们根据实时交通数据及天气数据,利用预测模型对未来一段时间内的交通流量进行预测。

最后,我们利用遗传算法对交通信号灯配时进行优化,以达到缓解交通拥堵的目的。

四、解题方法与技巧在解题过程中,我们需要掌握一些方法和技巧。

首先,我们要对题目进行深入分析,明确问题的本质及需求。

其次,我们要建立合理的数学模型,考虑到各种因素的影响。

在求解过程中,我们需要选择合适的算法及软件工具,以提高求解效率及准确性。

此外,我们还需要注重模型的验证与优化,确保模型的可靠性和实用性。

历年数学建模简单评价

历年数学建模简单评价

1992年A 题施肥效果分析该题应用回归方法建立模型,而后用统计方法分析施肥效果。

可以反映当时农业生产的需要,有一定的使用价值,题目个别地方描述不是很清晰,在农业领域符合历史发展的趋势,仍是余味未尽的研究课题。

1992年B 题实验数据分解该题要求参赛者给出模型测定, 给定分子量的某一蛋白质的氨基酸组成, 这是一个组合问题。

是离散数学在理论上和实用上的典型事例。

符合当时生命科学研究的热点话题,具有较深的研究意义。

1993年A 题非线性交调的频率设计该题是一道关于非线性交调的频率设计问题, 其工程背景广泛存在于通信系统中例如, 人造卫星通信中的频率配置问题就与本题有关众所周知, 人造卫星转发器的能源大多依赖于太阳能, 因而功率是非常有限的, 而行波管放大器的输人输出关系便是非线性的, 倘若要求工作在线性区域内则会使本来功率就非常有限的放大器的输出信号更加微弱因此, 为了获得最大的输出功率就要克服工作在非线性区域内带来的许多问题通过该题可以解决处理日常噪音对我们的干扰,具有很好的使用价值。

1993年B 题足球队排名次199年正好中国足球在世界杯外围赛中再次失利。

该题反映当时的热点需求,有很强的实际背景,一旦给出成功的模型,将有很强的使用价值,也可以用于其它社会领域,这是一个相当开放的题目,它没有事先给出标准答案和最优方案,是一个研究型和探索性较强的题目。

能够给参赛者留下足够想象的空间。

该题没有传统的方法可循,题目显得粗糙、不成熟。

所提供的数据也不完全合理。

人工斧凿的痕迹很多。

1994年A 题逢山开路该题讨论的是在山区修建公路的路线选择问题,构思保留了工程实际背景的一些基本特征,涉及到地貌、路线、环境等自然条件以及费用系数,这些在实际工程设计上必须注意的重要艺术我们在解决本题时也应考虑有关实际因素,对建立合理的数学模型提供了重要的依据条件,也会使设计的解题方法比较可行和有效。

针对问题,可用局部优化的原理处理,并根据这个原理提出了对山区具体情形设置控制点的方法。

全国大学生数学建模竞赛CD题剖析

全国大学生数学建模竞赛CD题剖析

醒目的位置给出单独的公式 ▲结论尽量图表化
要善于归纳整理,可以直观地看出解决问题的结论
Thanks!
全国一等奖获奖率11.5%,全国二等奖获奖率10.6%
3、有关数学建模竞赛组织工作感悟 ★机遇偏爱有准备的头脑
医学院校数学历来不受重视,数学建模竞赛是医学院 校数学学科发展的一个契机! 数学建模活动的宗旨让高深的数学走向应用。特别关注 该项活动对医学研究所产生的影响和推动! 从素质教育和应用教育的角度,即时向领导作出有感 染力的汇报,力争该项活动得到领导的支持!
多关注社会热点问题 多阅读和消往年优秀论文
2、建模方法未必高深
年份 C题 D题 03 微分方程 随机过程 初等数学 04 微分方程 层次分析 0-1规划 05 插值与拟 合 初等数学 06 初等数学 初等数学 07 经济初等数学 (费效比) 优化理论 08 初等数学 层次分析 模糊数学 回归分析
★谋事在人,成事在天
要搞好数学建模竞赛工作,要培育好的环境 ▲要尽可能地获得支持 让不了解数学建模的人知道它,让不支持数学建模 的人认可它 ▲要注意相关工作的协调 定期召开队干部协调会、数学建模动员会、邀请医学 知名专家出席数学建模答辩会,让更多的人参与到这
项活动中来
▲要调动指导教师和学生参赛积极性 从待遇和补贴上尽可能争取好的政策
二、C、D题把握之我见
1、题目与时事联系紧密
年份 C题 D题 03 04 05 06 07 手机“套餐” 优惠几何 体能测试时间 安排 08 地面搜索 NBA赛程的 分析与评价 SARS的 饮酒驾 传播 车 抢渡长 江 公务员 招聘 雨量预报方 易拉罐形状和尺 法的评价 寸的最优设计 DVD在线 租赁 煤矿瓦斯和煤尘 的监测与控制
参加数学建模活动的学生人数占全校招生总人数 的30%以上

数学建模真题分析2006

数学建模真题分析2006

yi 0 x i i , i 1, 2,..., n 设 E i 0, D i 2 且 1 2, n 相互独立 ...,

Q Q ( 0 , 1 ) y i 0 1 xi
i 1 2 i i 1
e 0 1 e e
越接近于0,说明线性回归方程(1)越显著。
回归方程的显著性检验
在实际工作中,实现我们并不能断定y与x之间 有线性关系,式(1)只是一种假设。当然这个假设 不是没有根据,我们可以通过专业知识或散点图做 粗略判断。但在求出回归方程之后,还须对这种线 性回归方程同实际观测数据拟合的效果进行检验。
y=[698 872 988 807 738 1025 1316 1539 1561
1765 1762 1960 1902 2013 2446 2736 2825];
X=[ones(size(x')),x'] [c,cint,r,rint,stats]=regress(y',X,0.05) rcoplot(r,rint)
回归分析起源于生物学研究,是由英国生物学家兼统计学家高尔登(Francis Galton 1822-1911)在19世纪末叶研究遗传学特性时首先提出来的。
高尔登在1889年发表的著作《自然的遗传》中,提出了回归分析方法以后, 很快就应用到经济领域中来,而且这一名词也一直为生物学和统计学所沿用 。
引例:钢材消费量与国民收入的关系
全国大学生数学建模竞赛 ——2006年B题详解
预备知识
回归分析与多项式拟合 线性规划 数据包络模型(DEA)
2006年B题三个问题的解答
一、预备知识——回归分析
数学建模的基本方法

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛(CUMCM)是衡量各高校数学类学科学生学习与实践能力的标志性竞赛之一。

其中,B题以真实问题的复杂性吸引了广大参赛选手的关注。

本文将对B题的具体题目内容、解题过程、常见方法和误区进行分析,并结合实例对竞赛结果进行总结,以期为其他参赛同学提供一定的参考。

二、题目分析B题通常关注某一实际领域的复杂问题,涉及多个因素的综合考量。

其要求参赛者通过建立数学模型,解决实际问题。

具体问题包括某个地区的旅游经济预测和资源合理配置。

针对此问题,首先需要对旅游业的各项数据进行详细分析,然后构建适当的数学模型,并使用合适的数学工具和软件进行计算和模拟。

三、解题过程1. 数据收集与分析:收集该地区的历史旅游数据,包括游客数量、消费水平、旅游景点分布等。

同时,分析该地区的经济、文化、交通等影响旅游业的因素。

2. 模型构建:根据收集的数据和实际情况,选择合适的数学模型进行建模。

常见的模型包括时间序列预测模型(如ARIMA 模型)、多元回归模型等。

3. 模型求解与验证:利用数学软件(如MATLAB、SPSS等)对模型进行求解,并对模型的预测结果进行验证。

验证方法包括与历史数据进行对比、进行敏感性分析等。

4. 资源合理配置:根据预测结果和实际情况,制定合理的资源分配方案,如旅游景点的开发策略、交通设施的优化配置等。

四、常见方法与误区1. 常见方法:在建模过程中,应选择合适的数学模型和方法。

对于时间序列预测问题,常用的有ARIMA模型、指数平滑法等;对于多元回归问题,则需要考虑各因素之间的相互关系。

同时,还应充分利用计算机技术进行数据分析和模拟。

2. 误区提示:在建模过程中,要避免陷入一些常见的误区。

例如,过分追求模型的复杂性和精确度而忽视模型的实用性和可解释性;忽视数据的预处理和清洗工作;忽略模型的验证和修正等。

五、实例分析以某次B题竞赛的优秀解决方案为例,详细分析其解题过程和关键点。

全国大学生数学建模竞赛D题解析

全国大学生数学建模竞赛D题解析
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
竞赛名称:全国大学生数学建模竞 赛
竞赛目的:培养大学生数学建模能 力提高解决实际问题的能力
添加标题
添加标题
竞赛级别:国家级
添加标题
添加标题
竞赛影响:促进大学生数学建模技 术的发展选拔优秀人才
竞赛起始于XXXX年 每年举办一次 参赛对象为全国大学生 竞赛目的是提高大学生数学建模能力和科技创新能力
组建合适的团队分工明确
制定详细的计划合理安排时间
充分准备所需的知识和技能
准备阶段:研究 题目收集资料建 立模型
实施阶段:编程 实现模拟实验优 化模型
总结阶段:撰写 论文整理思路提 炼经验
反思阶段:总结 得失分析原因改 进策略
赛题分析:对竞赛题目进行深入剖析明确解题思路和要点 经验教训:总结竞赛过程中遇到的问题和不足提出改进措施 团队协作:评估团队成员在竞赛中的表现和贡献提出优化建议 未来规划:根据竞赛经验和教训制定个人和团队未来的学习和发展计划
模型验证:通过对比实际数据和模型预测结果对模型的准确性和可靠性进行评估和改进
数据清洗:去除异常值、缺失值和重复值 数据筛选:根据需求筛选有效数据 数据转换:对数据进行必要的转换以适应分析需求 数据可视化:通过图表、图像等形式直观展示数据
确定问题类型和目 标函数
确定算法的输入和 输出
设计算法的流程图 和伪代码
培养团队协作精神 提升大学生数学应用能力
促进学科交叉融合
为国家和社会培养创新型人 才
PRT THREE
题目背景:全国大学生数学建模竞赛D题 题目要求:分析D题所涉及的数学建模方法和技巧 题目内容:对D题进行解析包括问题分析、模型建立、求解过程等 题目难度:对D题的难度进行评估并给出解题建议

1国赛历年题目分析(范文)

1国赛历年题目分析(范文)

1国赛历年题目分析(范文)第一篇:1国赛历年题目分析(范文)数学建模全国大赛历年题目分析数学建模竞赛的规模越来越大,水平越来越高,纵览20年的本科组题目(专科组),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。

CUMCM历年赛题的简析 1.CUMCM 的历年赛题浏览:1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)2000年:(A)DNA 序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(D)球队的赛程安排问题(清华大学:姜启源)2003年:(A)SARS 的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华大学:谢金星等)(C)雨量预报方法的评价问题(复旦:谭永基)2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)“乘公交,看奥运”问题(吉大:方沛辰,国防科大:吴孟达)(C)“手机套餐”优惠几何问题(信息工程大学:韩中庚)(D)体能测试时间的安排问题(首都师大:刘雨林)2008年(A)高等教育收费问题(B)数码星级定位问题2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排2010年(A)地下储油罐的变位分析与罐容表标定(B)定量地评价上海世博会的影响力2011年(A)城市表层土壤重金属污染(B)交巡警服务平台的设臵与调度2001年夏令营三个题:(A)三峡工程高坡开挖优化设计(三峡大学:李建林等)(B)城市交通拥阻的分析与治理(北京理工大学:叶其孝)(C)乳房癌的诊断问题(复旦大学:谭永基)2006年夏令营三个题:(A)教材出版业的市场调查、评估和预测方法问题(北工大:孟大志)(B)铁路大提速下的京沪线列车调度问题(信息工程大学:韩中庚)(C)旅游需求的预测预报问题(北京理工:叶其孝)2011夏令营三个题目A题:垃圾分类处理与清运方案设计B题:水资源短缺风险综合评价 C题:测井曲线自动分层问题 2012夏令营题目A题:深圳人口与医疗需求预测B题:手机用户精准识别C题:3D仿真机房建模 D题:打孔机生产效能的提高历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题98B灾情巡视的最佳路线99A自动化车床管理99B钻井布局00A DNA序列分类00B钢管订购和运输01A血管三维重建01B 公交车调度问题02A车灯线光源的优化02B彩票问题03A SARS的传播03B 露天矿生产的车辆安排04A奥运会临时超市网点设计04B电力市场的输电阻塞管理05A长江水质的评价和预测05B DVD在线租赁多目标优化、非线性规划图论、组合优化随机优化、计算机模拟0-1规划、图论模式识别、Fisher判别、人工神经网络组合优化、运输问题曲线拟合、曲面重建多目标规划非线性规划单目标决策微分方程、差分方程整数规划、运输问题统计分析、数据处理、优化数据拟合、优化预测评价、数据处理随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化 06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化 07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分析、回归分析09A 制动器试验台的控制方法分析微分、差分09B眼科病床的合理安排排队论、决策优化、随机模拟 10 A 地下储油罐的变位分析与罐容表标定数值方法、工程方法或几何方法近似处理方法 10 B 定量地评价上海世博会的影响力数据收集处理、统计分析 11 A 城市表层土壤重金属污染微分方程、偏微分 11 B交巡警服务平台的设置与调度多目标规划、图论、优化2、从问题的实际意义分析从实际意义分析大体上可分为:工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等七个大类。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是具有广泛影响力的学术竞赛活动,旨在培养大学生的创新能力、实践能力和团队协作精神。

本文将针对2016年竞赛中的B题进行详细的解题分析与总结,以期为参赛者提供有益的参考。

二、题目概述B题主要涉及城市空气质量预测问题。

题目要求参赛者根据历史数据,建立数学模型预测未来一段时间内某城市的空气质量指数(AQI)。

此题重点考察参赛者的数据处理能力、模型构建能力以及预测精度。

三、解题分析1. 数据收集与预处理首先,我们需要收集该城市的历史空气质量数据,包括但不限于PM2.5、PM10、SO2、NO2等污染物的浓度数据,以及气象数据(如温度、湿度、风速等)。

对收集到的数据进行清洗,去除异常值和缺失值,并进行归一化处理,以便进行后续分析。

2. 模型构建根据数据的特性,我们选择时间序列分析方法进行建模。

具体而言,可以采用自回归积分滑动平均模型(ARIMA)或其变体如SARIMA等。

这些模型能够较好地捕捉时间序列数据的变化规律,并预测未来趋势。

在建模过程中,我们需要通过交叉验证等方法确定模型的参数。

3. 模型验证与优化建立初步模型后,我们需要用验证集对模型进行验证,计算预测值与实际值之间的误差。

根据误差情况,对模型进行优化,如调整参数、引入其他影响因素等。

同时,我们还可以尝试使用其他模型进行对比,如神经网络、支持向量机等,以找到最优的预测模型。

四、模型应用与结果分析经过优化后的模型可以用于预测未来一段时间内该城市的空气质量指数。

我们可以通过绘制预测曲线、计算预测值的置信区间等方式对预测结果进行分析。

同时,我们还可以根据预测结果提出相应的空气质量改善措施和建议。

五、总结与展望通过对2016年全国大学生数学建模竞赛B题的分析与求解,我们掌握了空气质量预测的基本方法和技巧。

在未来的学习和工作中,我们可以将所学知识应用到更广泛的领域,如气候变化预测、经济预测等。

数学建模例题及解析

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

1.全国大学生数学建模历年试题分析报告

1.全国大学生数学建模历年试题分析报告

1992-20XX全国大学生本科数学建模试题分析:此分析主要针对相关问题的主要解法分类,首先我们来看历年试题的相关解法:赛题解法92A题施肥效果分析回归分析数据拟合92B题实验数据分解离散模型、组合最优化93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 乘公交,看奥运多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B大学学费问题数据收集和处理、统计分析、回归分析09A制动器试验台的控制方法分析微元分析法09B 眼科病床的合理安排层次分析法整数规划动态规划10A储油罐的变位识别与罐容表标定非线性规划多元拟合再在其中穿插一些其他运筹知识,如:排队论,运输问题等,以及其他离散数学,组合数学等相关知识,但是我们知道,对于同样的问题,不同的人可能会采用完全不同的解法,我们以上的总结只是一些较主流的,对该问题使用最多的方法,并且以上的分类很明显他们之间并不是完全独立的,比如规划问题,运输问题等等都属于广义的优化,同样,数据拟合处理、计算机模拟、层次分析、时间序列分析等都是对数据的分析处理,也就是他们之间并没有完全的分明的界限,我们这边以一定的标准将其细分,只是为了更具体的,更详细的了解近年来数模试题的一种趋势,总的来说:赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

数学建模1例题解析

数学建模1例题解析

小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。

目前,银行的利率是0.6%/月。

他们采用等额还款的方式(即每月的还款额相同)偿还贷款。

(1)在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?(2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?(3)如果在第6年初,银行的贷款利率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?(4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。

但条件是:(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2;(ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。

试分析,小王夫妇是否要请这家借贷公司帮助还款。

解答:(1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即。

利用式子(元),即每个月还款1574.70元,共还款(元),共计付利息。

(2)贷款5年(即5*12=60个月)后的欠款额为,利用公式:,所以,(元)(3)元,即第六年初,贷款利率,所以余下的15年,每个月还款额为:(元)(4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的,付款的时间缩短,但是前17年的付款总额不变。

帮忙提前三年还清需要资金数:。

对于条件(ii)佣金数:分析:因为预付佣金20000元,按照银行存款利率/月,17年的存款本息为即在第17年需要给付借贷公司的钱少于给付银行的钱。

所以建议请这家借贷公司帮助还款。

按照Newton冷却定律,温度为T的物体在温度为的环境中冷却的速度与温差成正比。

用此定律建立相应的微分方程模型。

凌晨某地发生一起凶杀案,警方于晨6时到达案发现场,测得尸温26℃,室温10℃,晨8时又测得尸温18℃。

历年全国数学建模试题及解法

历年全国数学建模试题及解法

一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是衡量我国高等院校学生数学应用能力和创新意识的重要比赛。

在众多题型中,B题因其对实际问题的深刻解析与数学知识结合,往往能引发广泛关注。

本文将针对2016年B题进行详细的解题分析与总结,以期为今后的学习和研究提供参考。

二、题目概述B题主要围绕某大型零售商的库存管理问题展开,要求参赛者根据历史销售数据和库存数据,建立数学模型,优化库存策略。

问题涵盖了数学建模、统计分析以及实际应用的多个方面。

三、解题分析(一)数据准备与分析首先,对给定的历史销售和库存数据进行清洗与整理,以得到一个清晰的、可以用于分析的数据集。

在处理数据的过程中,要注意对数据的完整性和准确性的校验,以确保模型建立的准确性。

(二)模型建立根据数据的特性,选择合适的数学模型进行建模。

对于库存管理问题,常用的模型包括预测模型、优化模型等。

在建立模型时,要充分考虑数据的时效性、商品之间的关联性以及库存成本等因素。

(三)模型求解与验证使用数学软件或编程语言对模型进行求解,并利用实际数据进行验证。

在求解过程中,要注意模型的复杂度与求解效率的平衡,同时要确保模型的准确性。

在验证阶段,可以通过对比模型的预测结果与实际结果,来评估模型的性能。

(四)策略制定与优化根据模型的求解结果,制定相应的库存管理策略。

同时,要考虑到策略的灵活性和可操作性。

在策略实施后,要定期对策略进行评估和优化,以适应市场变化和需求变化。

四、解题总结(一)关键点把握在解决B题时,关键在于对数据的准确理解和处理、选择合适的数学模型以及模型的求解与验证。

同时,要充分考虑到实际应用的场景和需求,确保模型的实用性和可操作性。

(二)团队协作的重要性数学建模竞赛不仅是对个人能力的考验,更是对团队协作能力的检验。

在解题过程中,团队成员要充分发挥各自的专业优势,相互协作、共同探讨,才能取得好的成绩。

(三)创新意识的体现在解决实际问题时,要注重创新意识的体现。

全国大学生数学建模竞赛的历年真题

全国大学生数学建模竞赛的历年真题

全国大学生数学建模竞赛的历年赛题(1992年—2011年)1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)(D)钻井布局问题2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)(D)公交车调度问题2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(C)车灯线光源的计算问题(D)球队的赛程安排问题(清华:姜启源)2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(C)SARS的传播问题(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华:谢金星等)(C)雨量预报方法的评价问题(复旦:谭永基)(D)DVD在线租赁问题2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年: (A)中国人口增长预测问题(B) 乘公交,看奥运问题(C) 手机“套餐”优惠几何问题(D) 体能测试时间安排问题2008年:(A) 数码相机定位问题(B) 高等教育学费标准探讨问题(C) 地面搜索问题(D) NBA赛程的分析与评价问题2009年:(A) 制动器试验台的控制方法分析问题(B) 眼科病床的合理安排问题(C) 卫星和飞船的跟踪测控问题(D) 会议筹备问题2010年:(A) 储油罐的变位识别与罐容表标定问题(B) 2010年上海世博会影响力的定量评估问题(C) 输油管的布置问题(D) 对学生宿舍设计方案的评价问题2011年:(A) 城市表层土壤重金属污染分析问题(B) 交巡警服务平台的设置与调度问题(C) 企业退休职工养老金制度的改革问题(D) 天然肠衣搭配问题问题。

数学建模历年国赛c题

数学建模历年国赛c题

数学建模历年国赛c题一、引言数学建模是一门综合性较强的学科,旨在通过数学模型解决实际问题。

历年来,国内外的各类数学建模竞赛都备受青睐,其中国赛C题更是备受关注。

本文将对数学建模历年国赛C题进行回顾与分析,并总结其中的一些经验和技巧。

二、数学建模历年国赛C题回顾1. 20XX年国赛C题:XXX在这一年的国赛C题中,我们需要构建一个数学模型来解决XXX问题。

通过分析问题背景、观察问题特征,并引入一些适当的假设,我们得到了一个完整的数学模型。

接下来,我们采用了XXX方法对模型进行求解,并得到了满意的结果。

该年的国赛C题要求我们充分利用已有的数学知识,并将其应用到实际问题中,通过数学模型的建立与求解,取得了良好的效果。

2. 20XX年国赛C题:XXX本年度的国赛C题涉及到XXX,我们需要利用已有的数据和信息,构建一个合适的数学模型,解决该问题。

通过对问题进行细致的分析和推导,我们提出了一个创新的数学模型,该模型能够考虑到XXX的特点,并在求解时给出准确的结果。

在解决的过程中,我们还结合了XXX的方法,进一步提高了模型的精确度和可靠性。

3. 20XX年国赛C题:XXX这一年的国赛C题要求我们应用数学建模方法解决XXX问题。

我们通过对问题的深入分析,提出了一个合理的数学模型,并利用数值计算方法对模型进行求解。

在求解过程中,我们遇到了XXX困难,但通过反复推敲和不断调整,我们最终找到了合适的解决方案。

该年的国赛C题提示了数学建模过程中的难点和挑战,使我们对数学建模有了更深入的了解和认识。

三、数学建模C题的经验与技巧1. 深入理解问题:在解决数学建模C题时,我们首先要对问题进行深入的理解。

这包括对问题背景、要求和约束条件等方面进行详细分析,确保我们对问题的理解准确无误。

2. 合理建立数学模型:在建模过程中,我们需要根据问题的特点和要求,选择合适的数学方法和模型来描述问题。

在建模过程中,要充分利用已有的数学知识,同时也要灵活运用创新的思维方式,提出新颖的数学模型。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者分析某地区农产品流通系统的问题,建立相应的数学模型并解决实际管理决策问题。

本文旨在深入探讨此题目的解题思路、方法和总结,以供参考。

二、题目背景及问题分析本题主要涉及农产品流通系统的管理与优化问题。

背景中提供了详细的农产品销售和物流数据,要求我们通过建立数学模型,分析现有问题并提出解决方案。

问题主要涉及以下几个方面:1. 农产品流通系统的现状分析;2. 农产品销售和物流过程中的瓶颈与问题;3. 优化农产品流通系统的策略与方法。

三、解题思路与方法针对上述问题,我们首先进行了系统的分析,然后提出了以下解题思路与方法:1. 现状分析:通过收集和分析农产品销售和物流数据,了解现有系统的运作情况,找出瓶颈和问题。

2. 建立数学模型:根据问题特点,选择合适的数学模型进行建模。

在本题中,我们选择了网络流模型、线性规划模型等。

3. 问题诊断:运用建立的数学模型对问题进行诊断,找出关键因素和影响程度。

4. 优化策略:根据诊断结果,提出优化策略和方法,包括改进物流网络、优化价格策略等。

5. 实施与评估:将优化策略付诸实施,并定期进行评估,根据评估结果进行调整和优化。

四、具体实施步骤1. 数据收集与整理:收集农产品销售和物流数据,进行整理和清洗。

2. 建立数学模型:根据问题特点,选择合适的数学模型进行建模。

在本题中,我们建立了网络流模型和线性规划模型。

3. 问题诊断与瓶颈分析:运用建立的数学模型对问题进行诊断,找出关键因素和瓶颈。

通过分析数据,我们发现物流网络中的某些环节存在瓶颈,导致农产品流通效率低下。

4. 提出优化策略:针对诊断结果,我们提出了一系列优化策略和方法。

包括改进物流网络结构、优化价格策略、引入先进的仓储和运输技术等。

5. 实施与评估:将优化策略付诸实施,并定期进行评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1992-2010年全国大学生本科数学建模试题分析:
此分析主要针对相关问题的主要解法分类,首先我们来看历年试题的相关解法:
赛题解法
92A题施肥效果分析回归分析数据拟合
92B题实验数据分解离散模型、组合最优化
93A非线性交调的频率设计拟合、规划
93B足球队排名图论、层次分析、整数规划
94A逢山开路图论、插值、动态规划
94B锁具装箱问题图论、组合数学
95A飞行管理问题非线性规划、线性规划
95B天车与冶炼炉的作业调度动态规划、排队论、图论
96A最优捕鱼策略微分方程、优化
96B节水洗衣机非线性规划
97A零件的参数设计非线性规划
97B截断切割的最优排列随机模拟、图论
98A一类投资组合问题多目标优化、非线性规划
98B灾情巡视的最佳路线图论、组合优化
99A自动化车床管理随机优化、计算机模拟
99B钻井布局0-1规划、图论
00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题
01A血管三维重建曲线拟合、曲面重建
01B 公交车调度问题多目标规划
02A车灯线光源的优化非线性规划
02B彩票问题单目标决策
03A SARS的传播微分方程、差分方程
03B 露天矿生产的车辆安排整数规划、运输问题
04A奥运会临时超市网点设计统计分析、数据处理、优化
04B电力市场的输电阻塞管理数据拟合、优化
05A长江水质的评价和预测预测评价、数据处理
05B DVD在线租赁随机规划、整数规划
06A出版社书号问题整数规划、数据处理、优化
06B Hiv病毒问题线性规划、回归分析
07A 人口问题微分方程、数据处理、优化
07B 乘公交,看奥运多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化
08B大学学费问题数据收集和处理、统计分析、回归分析09A 制动器试验台的控制方法分析微元分析法
09B 眼科病床的合理安排层次分析法整数规划动态规划
10A 储油罐的变位识别与罐容表标定非线性规划多元拟合
10B 2010年上海世博会影响力的定量评估数据收集和处理,层次分析法时间序列分析
解法规划问题图论差微分
方程
数据拟合模
拟处理
优化数据分
析理论
其它(排
队,运
输,离
散)
相关赛题93A,93B,
94A,95A,
95B,96B,
97A,98A,
99B,01B,
02A,03B
06A,06B,
07B,09B,
10A
93B,
94A,
94B,
95B,
97B,
98B,
99B,07B
96A,
03A,
07A,
08A,
09A
92A ,93A,
97B,99A,
01A,04A,
04B,05A,
06A,07A,
08B,10A
10B
92B,96A,
98A,98B,
99A,00B,
02B,04A,
04B,06A,
07A,08A
93B,
04A,
04A,
09A,
09B,
10B
92B,
94A,
94B,
95B,
00A,
00B


17 8 5 13 12 6 6
从以上分析可以看出:历年试题主要以规划优化问题,数据的处理,计算机拟合模拟为主,再在其中穿插一些其他运筹知识,如:排队论,运输问题等,以及其他离散数学,组合数学等相关知识,但是我们知道,对于同样的问题,不同的人可能会采用完全不同的解法,我们以上的总结只是一些较主流的,对该问题使用最多的方法,并且以上的分类很明显他们之间并不是完全独立的,比如规划问题,运输问题等等都属于广义的优化,同样,数据拟合处理、计算机模拟、层次分析、时间序列分析等都是对数据的分析处理,也就是他们之间并没有完全的分明的界限,我们这边以一定的标准将其细分,只是为了更具体的,更详细的了解近年来数模试题的一种趋势,总的来说:
赛题发展的特点:
1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

问题的数据读取需要计算机技术,如00A(大数据),01A(图象数据,图象处理的方法获得),04A(数据库数据,数据库方法,统计软件包)。

计算机模拟和以算法形式给出最终结果。

2. 赛题的开放性增大解法的多样性,一道赛题可用多种解法。

开放性还表现在对模型假设和对数据处理上。

3. 试题向大规模数据处理方向发展
4. 求解算法和各类现代算法的融合,
5.更关注于当年的实事问题eg:04A奥运会临时超市网点设计,07B 乘公交,看奥运,10B 2010年上海世博会影响力的定量评估等;。

相关文档
最新文档