☆经典分段函数专题
微专题20 分段函数问题(解析版)
微专题20 分段函数问题【题型归纳目录】 题型一:函数三要素的应用 题型二:函数性质与零点的应用 题型三:分段函数的复合题型四:特殊分段函数的表示与应用 【典型例题】题型一:函数三要素的应用例1.已知函数223,0()2,0x x x f x x x x ⎧+=⎨-<⎩,若f (a )()2f a f --(1),则a 的取值范围是( )A .[0,8]B .[8,)+∞C .(-∞,8]D .[8-,8]【解析】解:f (1)4=,f ∴(a )()8f a --,当0a =时,满足条件;0a >时,223[()2]6a a a a +--+-,整理得:8a , (0a ∴∈,8]0a <时,222[()3]8a a a a ----,整理得:8a , (,0)a ∴∈-∞综上可得:(a ∈-∞,8] 故选:C .例2.已知函数22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩,若()f a f -+(a )2f (1),则a 的取值范围是( ) A .(-∞,1][1,)+∞ B .[0,1] C .[1-,0] D .[1-,1]【解析】解:22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩, ()f x ∴为偶函数,()f a f -+(a )2f (1), 2f ∴(a )2f (1), f ∴(a )f (1),当0x 时,函数()f x 为增函数, ||1a ∴,11a ∴-,故选:D .例3.设函数22,0,(),0.x x x f x x x ⎧+<=⎨-⎩若(f f (a ))2,则实数a 的取值范围是( )A .[2-,)+∞B .(-∞,2]-C .(-∞2]D .(2)+∞【解析】解:()y f x =的图象如图所示,(f f (a ))2,f ∴(a )2-,由函数图象可知2a .故选:C .变式1.当函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值时,(x = ) A 6B .26C 66 D .266【解析】解:当1x 时,2()0f x x =; 当1x >时,66()626266f x x x x x=+--=, 当且仅当6x x=,即6x 时等号成立. 2660<,∴函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值为266, 对应的x 6. 故选:A .变式2.已知函数()1f x x =-+,0x <,()1f x x =-0x ,则不等式(1)(1)1x x f x +++的解集( )A .{|21}x x-B .{|12}x x +C .{|12}x x <+D .{|12}x x >【解析】解:当10x +<即1x <-时,不等式(1)(1)1x x f x +++同解于 (1)[(1)1]1x x x ++-++即21x -此时1x <-当10x +即1x -时,不等式(1)(1)1x x f x +++同解于 2210x x +-解得1221x --此时121x--总之,不等式的解集为{|21}x x -故选:A .变式3.已知23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则((1))f g -= .【解析】解:根据题意,23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则(1)(1)g f f -=-=-(1)(13)2=--=, 则((1))f g f -=(2)431=-=-, 故答案为:1.变式4.若函数3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,则f (9)= ,[g f (3)]= ,1[()]9f f = .【解析】解:3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,f ∴(9)3log 92==,[g f (3)3](log 3)g g ==(1)211==, 311[()](log )(2)99f f f f f ==-=(1)3log 10==.故答案为:2;1;0变式5.已知函数10()1x x f x x x -+<⎧=⎨-⎩,则不等式(1)(1)1x x f x +++的解集是 . 【解析】解:由题意22&,1(1)(1)2&,1x x x x f x x x x ⎧-<-+++=⎨+-⎩当0x <时,有21x -恒成立,故得0x < 当0x 时,221x x +,解得2121x-,故得021x-综上得不等式(1)(1)1x x f x +++的解集是(21]-∞- 故答案为(-∞21].变式6.设2,||1(),||1x x f x x x ⎧=⎨<⎩,()g x 是二次函数,若[()]f g x 的值域是[0,)+∞,则()g x 的值域是 .【解析】解:在坐标系中作出函数()21111x x x f x x x ⎧-=⎨-<<⎩或的图象,观察图象可知,当纵坐标在[0,)+∞上时,横坐标在(-∞,1][0-,)+∞上变化, ()f x 的值域是(1,)-+∞,而(())f g x 的值域是[0,)+∞, ()g x 是二次函数()g x ∴的值域是[0,)+∞.故答案为:[0,)+∞. 题型二:函数性质与零点的应用例4.已知函数7(13)10,7(),7x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是()A .11(,)32B .1(3,6]11C .12[,)23D .16(,]211【解析】解:若()f x 是定义域(,)-∞+∞上的单调递减函数, 则满足77011307(13)101a a a a a -<<⎧⎪-<⎨⎪-+=⎩,即0113611a a a ⎧⎪<<⎪⎪>⎨⎪⎪⎪⎩,即16311a <,故选:B .例5.已知函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是() A .15(,)38B .15(,]38C .1(,1)3D .16(,]311【解析】解:函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩,()f x 是定义域(,)-∞+∞上的单调递减函数,则满足13001681a a a -<⎧⎪<<⎨⎪-⎩,解得1538a <,故选:B .例6.函数21,0()(1),0axax x f x a e x ⎧+=⎨-<⎩在R 上单调,则a 的取值范围为( ) A .(1,)+∞ B .(1,2] C .(,2)-∞ D .(,0)-∞【解析】解:()f x 在R 上单调; ①若()f x 在R 上单调递增,则: 200101(1)a a a a e >⎧⎪>⎨⎪+-⎩; 12a ∴<;②若()f x 在R 上单调递减,则: 01a a <⎧⎨>⎩; a ∴∈∅;a ∴的取值范围为(1,2].故选:B .变式7.已知221,0()(1),0x x x f x f x x ⎧--+<=⎨-⎩,则()y f x x =-的零点有( )A .1个B .2个C .3个D .4个【解析】解:当0x 时,()(1)f x f x =-,()f x ∴在0x 的图象相当于在[1-,0)的图象重复出现是周期函数, [1x ∈-,0)时,22()21(1)2f x x x x =--+=-++对称轴为1x =-,顶点坐标为(1,2)-. 画出函数()y f x =与y x =的图象如图:则()y f x x =-的零点有2个. 故选:B .变式8.已知定义在R +上的函数33103()13949log x x f x log x x x x ⎧-<⎪=-<⎨⎪>⎩,设a ,b ,c 为三个互不相同的实数,满足,f(a )f =(b )f =(c ),则abc 的取值范围为 . 【解析】解:作出()f x 的图象如图: 当9x >时,由()40f x x ==,得16x =, 若a ,b ,c 互不相等,不妨设a b c <<, 因为f (a )f =(b )f =(c ),所以由图象可知039a b <<<<,916c <<, 由f (a )f =(b ),得331log log 1a b -=-, 即33log log 2a b +=,即3log ()2ab =, 则9ab =,所以9abc c =, 因为916c <<, 所以819144c <<, 即81144abc <<,所以abc 的取值范围是(81,144). 故答案为:(81,144).变式9.已知函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩,设a ,b ,c 是三个互不相同的实数,满足f (a )f =(b )f=(c ),则abc 的取值范围为 .【解析】解:作出函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩的图象如图,不妨设a b c <<,则3423c <<+由f (a )f =(b ),得33|log ||log |a b =,即33log log a b -=, 3log ()0ab ∴=,则1ab =,abc ∴的取值范围为(3,423)+.故答案为:(3,423)+.变式10.已知()f x 在R 上是奇函数,且当0x <时,2()f x x x =+,求函数()f x 的解析式. 【解析】解:当0x >时,0x -<, 0x <时,2()f x x x =+,22()()()f x x x x x ∴-=-+-=-, 又()f x 为奇函数,22()()()f x f x x x x x ∴=--=--=-+,∴当0x >时,2()f x x x =-+,又(0)0f =符合上式,综上得,22,0(),0x x x f x x x x ⎧-<=⎨-+⎩.变式11.已知函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,若()h t h >(2),求实数t 的取值范围.【解析】解:函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,当4x >时,()42h x x =-递减,且()4h x <-,当04x <时,2()4x h x =-递减,且()[4h x ∈-,0),且0x >,()h x 连续,且为减函数, ()h t h >(2),可得(||)h t h >(2), 即为||2t <,且0t ≠, 解得22t -<<,且0t ≠,则t 的取值范围是(2-,0)(0⋃,2). 题型三:分段函数的复合例7.设函数,0(),0x e x f x lnx x ⎧=⎨>⎩,若对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,则正实数m 的最小值是( ) A .12B .1C .32D .2【解析】解:由已知条件知:2220ma m a +>,∴若0x ,则()0x f x e =>,(())0x f f x lne x ∴==,∴这种情况不存在,若01x <,则()0f x lnx =,(())1lnx f f x e x ∴==,1x >时,()0f x lnx =>,(())()f f x ln lnx R =∈,∴只有(())1f f x >,即2221ma m a +>时,对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,(1,)a ∈+∞,221m m ∴+,即2210m m +-,0m >,∴解得12m, ∴正实数m 的最小值是12. 故选:A .例8.已知函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,2()2g x x x =-,若关于x 的方程[()]f g x k =有四个不相等的实根,则实数(k ∈ ) A .1(2,1)B .1(4,1)C .(0,1)D .(1,1)-【解析】解:对于函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,当1x 时,()f x 单调递减且1()1f x -<; 当1x <时,()f x 单调递增且0()1f x <<; 故实数k 一定在区间(0,1)之间, 若2()()g x k g x -=;则可化为22()21g x x x k=-=+; 显然有两个不同的根,若()12g x k -=,则22()21log g x x x k =-=+; 故△2444log 0k =++>; 即14k >; 综上所述,实数1(,1)4k ∈;故选:B .例9.已知函数1|(1)|,1()21,1x ln x x f x x -->⎧=⎨+⎩,则方程3(())2[()]04f f x f x -+=的实根个数为( )A .3B .4C .5D .6【解析】解:设()f x t =,可得 3()2()04f t t -+=,分别作出()y f x =和322y x =+的图象, 可得它们有两个交点,即方程3()2()04f t t -+=有两根,一根为10t =,另一个根为2(1,2)t ∈, 由()0f x =,可得2x =; 由2()f x t =,可得x 有3个解,综上可得方程3(())2[()]04f f x f x -+=的实根个数为4.故选:B .变式12.(多选题)已知函数21,0()log ,0kx x f x x x +⎧=⎨>⎩下列是关于函数[()]1y f f x =+的零点的判断,其中正确的是( )A .在(1,0)-内一定有零点B .在(0,1)内一定有零点C .当0k >时,有4个零点D .当0k <时,有1个零点【解析】解:令[()]10f f x +=得,[()]1f f x =-,令()t f x =,则()1f t =-, ①当0k >时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,20t <,由1()f x t =可知,此时有两个解,由2()f x t =可知,此时有两个解,共4个解,即[()]1y f f x =+有4个零点; ②当0k <时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,由1()f x t =可知,此时有1个解,共1个解,即[()]1y f f x =+有1个零点; 综上,选项BCD 正确. 故选:BCD .变式13.(多选题)设函数||,0()(1),0x lnx x f x e x x >⎧=⎨+⎩,若函数()()g x f x b =-有三个零点,则实数b 可取的值可能是( ) A .0B .13C .12D .1【解析】解:函数()()g x f x b =-有三个零点,则函数()()0g x f x b =-=,即()f x b =有三个根, 当0x 时,()(1)x f x e x =+,则()(1)(2)x x x f x e x e e x '=++=+, 由()0f x '<得20x +<,即2x <-,此时()f x 为减函数, 由()0f x '>得20x +>,即20x -<<,此时()f x 为增函数, 即当2x =-时,()f x 取得极小值21(2)f e -=-, 作出()f x 的图象如图: 要使()f x b =有三个根, 则01b <, 故选:BCD .变式14.(多选题)已知定义域为R 的奇函数()f x 满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是()A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,但有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-E .对任意实数k ,方程()2f x kx -=都有解 【解析】解:因为该函数为奇函数, 所以,222,(2)2322,(20)()0,(0)22,(02)2,(2)23x x x x x f x x x x x x x ⎧<-⎪+⎪----<⎪⎪==⎨⎪-+<⎪⎪>⎪-⎩,该函数图象如下:对于A ;如图所示直线与该函数图象有7个交点,故A 正确; 对于B ;当1211x x -<<<时,函数不是减函数,故B 错误;对于C ;直线1y =,与函数图象交于(1,1),5(2,1,),故当()f x 的最小值为1时,[1a ∈,5]2,故C 正确;对于D ;3()2f x =时,若使得其与()f x m =的所有零点之和为0,则32m =-,或317m =-,故D 错误; 对于E ;当2k =-时,函数()f x 与2y kx =+没有交点.故E 错误. 故选:AC .变式15.(多选题)已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【解析】解:函数()f x 是奇函数,∴若2x <-,则2x ->,则2()()23f x f x x -==---,则2()23f x x =+,2x <-. 若20x -<,则02x <-,则2()22()f x x x f x -=++=-, 即2()22f x x x =---,20x -<, 当0x =,则(0)0f =. 作出函数()f x 的图象如图:对于A ,联立222y kxy x x =⎧⎨=-+⎩,得2(2)20x k x -++=, △22(2)844k k k =+-=+-,存在1k <,使得△0>,∴存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根,故A 正确;对于B ,当1211x x -<<<时,函数()f x 不是单调函数,则12()()f x f x >不成立,故B 不正确; 对于C ,当52x =时,52()152232f ==⨯-,则当(0x ∈,]a 时,()f x 的最小值为1,则[1a ∈,5]2,故C 正确;对于D ,函数()f x 是奇函数,若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, ∴函数3()2f x =的根与()f x m =根关于原点对称, 则32m =-,但0x >时,方程3()2f x =有3个根, 设分别为1x ,2x ,3x ,且12302x x x <<<<, 则有23232x =-,得136x =,即3136x =, 122x x +=,则三个根之和为1325266+=, 若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, 则()f x m =的根为256-,此时25263()2561682()36m f =-==-=-⨯-+,故D 错误, 故选:AC .变式16.已知函数2,0,()1,0,x k x f x x x -+<⎧=⎨-⎩其中0k .①若2k =,则()f x 的最小值为 ;②关于x 的函数(())y f f x =有两个不同零点,则实数k 的取值范围是 . 【解析】解:①若2k =,则22,0()1,0x x f x x x -+<⎧=⎨-⎩,作函数()f x 的图象如下图所示,显然,当0x =时,函数()f x 取得最小值,且最小值为(0)1f =-. ②令()m f x =,显然()0f m =有唯一解1m =,由题意,()1f x =有两个不同的零点,由图观察可知,1k <, 又0k ,则实数k 的取值范围为01k <. 故答案为:1-;[0,1). 题型四:特殊分段函数的表示与应用例10.对a ,b R ∈,记{max a ,()}()a ab b b a b ⎧=⎨<⎩,则函数(){|1|f x max x =+,2}()x x R ∈的最小值是( )A 35- B 35+ C 15+D 15-【解析】解:当2|1|x x +,即21x x +或21x x +-, 15152x-+时, (){|1|f x max x ∴=+,2}|1|1x x x =+=+,函数()f x 单调递减,1535()(min f x f --==, 当15x -<(){|1|f x max x =+,22}x x =,函数()f x 单调递减,1535()(min f x f --=, 当15x +2()f x x =,函数()f x 单调递增,1535()(min f x f ++== 综上所述:35()min f x -= 故选:A .例11.已知符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,()()()g x f kx f x =-,其中1k >,则下列结果正确的是( )A .(())()sgn g x sgn x =B .(())()sgn gx sgn x =-C .(())(())sgn g x sgn f x =D .(())(())sgn g x sgn f x =-【解析】解:符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,11()()()()()33kx x g x f kx f x ∴=-=-,其中1k >,11(())[()()]33kx x sgn g x sgn ∴=-,当0x >时,kx x >,11()()033kx x -<,11(())[()()]133kx x sgn g x sgn =-=-,()1sgn x =;当0x =时,0kx x ==,11()()033kx x -=,(())0sgn g x =,()0sgn x =;当0x <时,kx x <,11()()033kx x ->,11(())[()()]133kx x sgn g x sgn =-=,()1sgn x =-.(())()sgn g x sgn x ∴=-.故选:B .例12.定义全集U 的子集A 的特征函数1,()0,A x Af x x A ∈⎧=⎨∉⎩对于任意的集合A 、B U ⊂,下列说法错误的是()A .若AB ⊆,则()()A B f x f x ,对于任意的x U ∈成立 B .()()()A B A Bf x f x f x =+,对于任意的x U ∈成立 C .()()()A B ABf x f x f x =,对于任意的x U ∈成立D .若UA B =,则()()1A B f x f x +=,对于任意的x U ∈成立【解析】解:对于A ,因为A B ⊆,若x A ∈,则x B ∈, 因为1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 1,()0,B U x Bf x x B∈⎧=⎨∈⎩,而UA 中可能有B 中的元素, 但UB 中不可能有A 中的元素,所以()()A B f x f x ,即对于任意的x U ∈,都有()()A B f x f x 成立, 故选项A 正确; 对于B ,因为1,()0,()ABU x A Bf x x A B ⎧∈⎪=⎨∈⎪⎩, 当某个元素x 在A 中且在B 中, 由于它在AB 中,故()1ABf x =,而()1A f x =且()1B f x =,可得()()()A B A Bf x f x f x ≠+,故选项B 错误; 对于C ,1,1,0,()0,()()ABU U U x A B x A Bf x A B x A B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩,1,1,1,()()0,0,0,()()A B U U U U x A x B x A Bf x f x x A x B x A B ⎧∈∈∈⎧⎧⎪⋅=⋅=⎨⎨⎨∈∈∈⎪⎩⎩⎩,故选项C 正确;对于D ,因为1,()0,U U A x Af x x A ∈⎧=⎨∈⎩,结合1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 所以()1()B A f x f x =-, 即()()1A B f x f x +=, 故选项D 正确. 故选:B .变式17.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x C A ∈⎧=⎨∈⎩,这里UA 表示集合A 在全集U 中的补集,已A U ⊆,B U ⊆,给出以下结论中不正确的是( ) A .若A B ⊆,则对于任意x U ∈,都有()()A B f x f x B .对于任意x U ∈,都有()1()U C A A f x f x =-C .对于任意x U ∈,都有()()()A B A Bf x f x f x =D .对于任意x U ∈,都有()()()A B A Bf x f x f x =【解析】解:由题意,可得对于A ,因为A B ⊆,可得x A ∈则x B ∈,1,()0,A U x A f x x C A ∈⎧=⎨∈⎩,1,()0,B U x Bf x x C B ∈⎧=⎨∈⎩,而UA 中可能有B 的元素,但UB 中不可能有A 的元素()()A B f x f x ∴,即对于任意x U ∈,都有()()A B f x f x 故A 正确; 对于B ,因为1,0,U U C A x C Af x A ∈⎧=⎨∈⎩,结合()A f x 的表达式,可得1()U C A A f f x =-,故B 正确; 对于C ,1,1,()0,()0,()()A BU U U x A B x A Bf x x C A B x C A C B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩1,1,()()0,0,A B U U x Ax Bf x f x x C Ax C B ∈∈⎧⎧==⎨⎨∈∈⎩⎩, 故C 正确; 对于D ,1,()0,()ABU x A B f x x C AB ⎧∈⎪=⎨∈⎪⎩当某个元素x 在A 中但不在B 中,由于它在A B 中,故()1ABf x =,而()1A f x =且()0B f x =,可得()()()A B A Bf x f x f x ≠由此可得D 不正确. 故选:D .变式18.对a ,b R ∈,记,(,),a a bmax a b b a b ⎧=⎨<⎩,函数()(|1|f x max x =+,|2|)()x x R -∈的最小值是 .【解析】解:由题意得, ()(|1|f x max x =+,|2|)x - 11,212,2x x x x ⎧+⎪⎪=⎨⎪-<⎪⎩,故当12x =时,()f x 有最小值13()22f =, 故答案为:32. 变式19.对a ,b R ∈,记{max a ,,},a a b b b a b⎧=⎨<⎩,函数(){|1|f x max x =+,||}()x m x R -∈的最小值是32,则实数m 的值是 .【解析】解:函数(){|1|f x max x =+,||}x m - |1|,|1|||||,|1|||x x x m x m x x m ++-⎧=⎨-+<-⎩, 由()f x 的解析式可得,11()()22m m f x f x --+=-, 即有()f x 的对称轴为12m x -=, 则113()||222m m f -+==, 解得2m =或4-, 故答案为:2或4-.变式20.设函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,其中[]x 表示不超过x 的最大整数,如[ 1.2]2-=-,[1.2]1=,[1]1=,若直线10(0)x ky k -+=>与函数()y f x =的图象恰好有两个不同的交点,则k 的取值范围是 . 【解析】解:画出函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩和函数1()x g x k+=的图象, 若直线1(0)ky x k =+>与函数()y f x = 的图象恰有两个不同的交点, 结合图象可得:1PA PC k k k<, 112(1)3PA k ==--,111(1)2PC k ==--,故11132k <,求得23k <, 故答案为:23k <.【过关测试】 一、单选题1.(2022·辽宁·铁岭市清河高级中学高一阶段练习)若函数()22,14,1x t x f x tx x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则t的最大值为( ) A .32B .53C .74D .95【答案】B【解析】当1x ≤-时,2()2f x x t =-+为增函数,所以当1x >-时,()4f x tx =+也为增函数,所以0124t t t >⎧⎨-+≤-+⎩,解得503t <≤.故t 的最大值为53, 故选:B.2.(2022·云南师大附中高一期中)已知函数()()e e,1ln 21,1xx f x x x ⎧-<⎪=⎨-≥⎪⎩,若关于x 的不等式()()21f ax f ax <+的解集为R ,则实数a 的取值范围为( )A .()()2,11,4--⋃-B .()()1,22,4-C .[)1,2-D .[)0,4【答案】D【解析】当1x <时,()e e x f x =-在(),1-∞上单调递增且()()e e 10xf x f =-<=;当1x ≥时,()()ln 21f x x =-在[)1,+∞上单调递增且()()()ln 2110f x x f =-≥=; 所以()f x 在R 上单调递增,又由()()21f ax f ax <+,则有21ax ax <+,由题,可知210ax ax -+>的解集为R ,当0a =时,20010x x ⋅-⋅+>恒成立,符合题意;当0a ≠时,则有2Δ40a a a >⎧⎨=-<⎩, 解不等式组,得04a <<;综上可得,当[)0,4a ∈时,210ax ax -+>的解集为R . 故选:D.3.(2022·山东省青岛第五十八中学高一期中)已知函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减,则实数a 的取值范围为( ). A .()0,3B .1,32⎡⎫⎪⎢⎣⎭C .2,33⎡⎫⎪⎢⎣⎭D .2,33⎛⎫ ⎪⎝⎭【答案】C【解析】因为函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减, ∴3<0>011221+1a a a a a -≤-≥-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得233a ≤<, 即a 的取值范围是2,33⎡⎫⎪⎢⎣⎭,故选:C.4.(2022·山东省青岛第五十八中学高一期中)已知数学符号{}max ,a b 表示取a 和b 中最大的数,若对任意R x ∈,函数()231max 3,,4322f x x x x x ⎧⎫=-++-+⎨⎬⎩⎭,则()f x 的最小值为( )A .5B .4C .3D .2【答案】D【解析】在同一直角坐标系中,画出函数2123313,,4322y x y x y x x =-+=+=-+的图象,根据{}max ,a b 的定义,可得()f x 的图象(实线部分),由()f x 的图象可知,当=1x 时,()f x 最小,且最小值()12f =, 故选:D5.(2022·山西太原·高一阶段练习)设()()2,0=1+++4,>0x a x f x x a x x-≤⎧⎪⎨⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为( ) A .[]0,3 B .()0,3 C .(]0,3 D .[)0,3【答案】A【解析】当0x >时,由基本不等式可得()114246f x x a x a a x x=+++≥⋅+=+, 当且仅当=1x 时,等号成立;当0x ≤时,由于()()0f x f ≥,则0a ≥,由题意可得()()2min 06f x f a a ==≤+,即260a a --≤,解得23a -≤≤,故03a ≤≤.因此,实数a 的取值范围是[]0,3. 故选:A.6.(2022·福建·厦门双十中学高一阶段练习)已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是( )A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭【答案】C【解析】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,联立2=+2=y x y x -⎧⎨⎩,解得=2=2x y --⎧⎨⎩或=1=1x y ⎧⎨⎩,故12x =-,21x =,所以()2,2=+2,2<<1,>1x x h x x x x x ≤---⎧⎪⎨⎪⎩,又由()74h x >可知,其解集为()h x 的函数值比74大的那部图像的所在区间,结合图像易得,()74h x >的解集为{34<<x x x x 或}5>x x联立2=+27=4y x y -⎧⎪⎨⎪⎩,解得1=27=4x y -⎧⎪⎪⎨⎪⎪⎩或1=27=4x y ⎧⎪⎪⎨⎪⎪⎩,故312x =-,412x =,联立=7=4y x y ⎧⎪⎨⎪⎩,解得7=47=4x y ⎧⎪⎪⎨⎪⎪⎩,故574x =,所以()74h x >的解集为11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭.故选:C..7.(2022·浙江·高一阶段练习)设函数1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,则方程2(1)4x f x -=-的解为( )A .2x =-B .3x =-C .=2xD .=3x【答案】A【解析】因为1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,由2(1)4x f x -=-知,2-1>01=-4x x ⋅⎧⎨⎩,2-1=00=-4x x ⋅⎧⎨⎩,2-1<0(-1)=-4x x ⋅⎧⎨⎩, 解得2x =-. 故选:A .8.(2022·湖北黄石·高一期中)已知函数()f x x x =,若对任意[,1]x t t ∈+,不等式()24()f x t f x +≤恒成立,则实数t 的取值范围是( ) A .15[-- B .15-+ C .1515[---+ D .15[-+ 【答案】B【解析】()22,0,0x x f x x x x x ⎧≥⎪==⎨-<⎪⎩,因为2yx 在0x ≥上单调递增,2y x =-在0x <上单调递增,所以()f x x x =在R 上单调递增,因为)24(2)4(2x x x x x x f f ===,且()24()f x t f x +≤,所以()2(2)f x t f x +≤,所以22x t x +≤,即()222110x x t x t -+=-+-≤在[,1]x t t ∈+恒成立,所以()()22201210t t t t t t ⎧-+≤⎪⎨+-++≤⎪⎩即22010t t t t ⎧-≤⎪⎨+-≤⎪⎩,解得150t -+≤≤, 所以实数t 的取值范围是15-+, 故选:B9.(2022·江西·于都县新长征中学高一阶段练习)已知函数()21,=,2x c f x xx x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( ) A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【答案】A【解析】当=2x 时,()()221112422,244f f x x x x ⎛⎫=-==-=--≥- ⎪⎝⎭,()f x 值域为1,2,4⎡⎤-∴⎢⎥⎣⎦当x c <时,由()12f x x =-=,得12x =-,此时12c ≤-,由()22f x x x =-=,得220x x --=,得=2x 或=1x -,此时112c -≤≤-,综上112c -≤≤-,即实数c 的取值范围是11,2⎡⎤--⎢⎥⎣⎦,故选:A 二、多选题10.(2022·浙江省永嘉县碧莲中学高一期中)我们用符号min 示两个数中较小的数,若x ∈R ,(){}2min 2,f x x x =-,则()f x ( )A .最大值为1B .无最大值C .最小值为1-D .无最小值【答案】AD【解析】在同一平面直角坐标系中画出函数22y x =-,y x =的图象,如图:根据题意,图中实线部分即为函数()f x 的图象. 由22x x -=,解得12x =-,21x =,所以()222,2,212,1x x f x x x x x ⎧-≤-⎪=-<≤⎨⎪->⎩,∴当1x =时,()f x 取得最大值,且()max 1f x =,由图象可知()f x 无最小值, 故选:AD.11.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度可以是( )A .74B .72C .114D .1【答案】AD【解析】令23333x x x -+≤--+①,当3x ≥时,不等式可整理为2230x x --≤,解得13x -≤≤,故3x =符合要求, 当3x <时,不等式可整理为2430x x -+≤,解得13x ≤≤,故13x ≤<, 所以不等式①的解为13x ≤≤;由上可得,不等式23333x x x -+>--+的解为1x <或3x >, 所以()233,1333,13x x x f x x x x ⎧-+≤≤⎪=⎨--+⎪⎩或,令23334x x -+=,解得32x =,令27334x x -+=,解得52x =或12, 令3334x --+=,解得34x =或214,令7334x --+=,解得74x =或174,所以区间[],m n 的最小长度为1,最大长度为74.故选:AD.12.(2022·四川省宣汉中学高一阶段练习)设函数()y f x =的定义域为R ,对于任意给定的正数m ,定义函数(),()(),()m f x f x m f x m f x m ≥⎧=⎨<⎩,若函数()2211f x x x =-++,则下列结论正确的是( )A .()338f =B .()3f x 的值域为[]3,12C .()3f x 的单调递增区间为[]2,1-D .()31f x +的图像关于原点对称【答案】ABC【解析】由22113x x -++≥, 解得:24x -≤≤,故23211,24()3,42x x x f x x x ⎧-++-≤≤=⎨><-⎩或,A .23(3)323118f =-+⨯+=,本选项符合题意;B .当24x -≤≤时,2321112x x ≤-++≤; 当42x x -或><时,3()3f x =, 故值域为[3,12],本选项符合题意;C .当24x -≤≤时,23()211f x x x =-++,图像开口向下,对称轴为1x =, 故3()f x 在[]2,1-上单调递增,本选项符合题意;D .2312,33(1)3,33x x y f x x x ⎧-+-≤≤=+=⎨><-⎩或,故函数3(1)y f x =+为偶函数,本选项不符合题意.故选:ABC .13.(2022·福建·厦门双十中学高一阶段练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(LEJBrouwer ),简单的讲就是对于满足一定条件的图象不间断的函数()f x ,存在一个点0x ,使()00=f x x ,那么我们称该函数为“不动点”函数,0x 为函数的不动点,则下列说法正确的( )A .()1f x x x -=为“不动点”函数B .()253f x x x -=+的不动点为2±C .()221,1=2,>1x x f x x x ≤⎧-⎪⎨-⎪⎩为“不动点”函数D .若定义在R 上有且仅有一个不动点的函数()f x 满足()()()22f f x x x f x x x --+=+,则()2+1f x x x -= 【答案】ABC【解析】对于A ,令()f x =x ,得1x x x -=,解得2x =22f =⎝⎭(有一个满足足矣),所以()1f x x x-=为“不动点”函数,故A 说法正确;对于B ,令()f x =x 253x x x -+=253x +=,即259x +=,解得2x =±,即()22f =和()22f -=-,所以()253f x x x -=+的不动点为2±,故B 说法正确;对于C ,当1x ≤时,()221f x x -=,令()f x =x ,得221x x -=,解得12x =-或=1x ;当1x >时,()2f x x -=,令()f x =x ,得2x x -=,即2x x -=±,解得=1x (舍去); 综上:1122f ⎛⎫-=- ⎪⎝⎭和()11f =,所以()f x 为“不动点”函数,故C 说法正确;对于D ,不妨设该不动点为t ,则()f t t =,则由()()()22f f x x x f x x x --+=+得()()()22f f t t t f t t t --+=+,即()22++f t t t t t t --=,整理得()2222f t t t t --+=+,所以22t t -+也是()f x 的不动点,故22t t t -+=,解得=0t 或1t =-,即0,1都是()f x 的不动点,与题设矛盾,故D 说法错误. 故选:ABC 三、填空题14.(2022·广东·高一期中)已知函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义在R 上的增函数,则a 的取值范围是________. 【答案】)1,2⎡⎣【解析】由已知,函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义为在R 上的增函数, 则(2)y a x =-为单调递增函数,a y x =为单调递增函数,且(2)11a a -⨯≤,所以20021a a a ->⎧⎪>⎨⎪-≤⎩,解得12a ≤<,所以a 的取值范围是:)1,2⎡⎣. 故答案为:)1,2⎡⎣.15.(2022·山西·晋城市第一中学校高一阶段练习)若函数222,0(),0x ax x f x bx x x ⎧+≥=⎨+<⎩为奇函数,则a b +=__________. 【答案】1-【解析】利用奇函数的定义()()f x f x -=-,求.当0x <时,则0x ->,所以222()2()()f x x ax f x bx x bx x -=-=-=-+=--, 所以2b =-,1a =,即2,1b a =-= 故1a b +=-. 故答案为:1-.16.(2022·安徽淮南·高一阶段练习)若函数()()2,113,1ax x x f x a x a x ⎧-<⎪=⎨--≥⎪⎩满足对1x ∀,2x ∈R ,且12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】21,52⎡⎤⎢⎥⎣⎦【解析】根据题意,任意实数12x x ≠都有()()12120f x f x x x -<-成立,所以函数()f x 是R 上的减函数,则分段函数的每一段单调递减且在分界点处113a a a -≥--,所以0112130113a a a a a a ≥⎧⎪-⎪-≥⎪⎨⎪-<⎪-≥--⎪⎩,解得2152a ≤≤,所以实数a的取值范围是21,52⎡⎤⎢⎥⎣⎦.故答案为:21,52⎡⎤⎢⎥⎣⎦17.(2022·广东·深圳市高级中学高一期中)已知()22f x x x =-,()1g x x =+,令()()(){}max ,M x f x g x =,则()M x 的最小值是___________.513- 【解析】令221x x x -≥+,解得313x +≥313x -≤ 则()()(){}23133132,max ,313313x x x x M x f x g x x x ⎧+--≥⎪⎪==⎨-+⎪+<<⎪⎩,当313x +≥313x -≤()min 313513M x M --==⎝⎭, 313313x -+<<513- 513- 513- 四、解答题18.(2022·四川·宁南中学高一阶段练习)已知函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩.(1)求12f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;【解析】(1)函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩. 11115222f ⎛⎫∴=+= ⎪⎝⎭,11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)因为()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩且()2f a =,所以3+5=20a a ≤⎧⎨⎩,解得1a =-;或+5=20<<1a a ⎧⎨⎩,解得3a =-(舍去); 或2+8=2>1a a -⎧⎨⎩,解得=3a .综上:1a =-或=3a .19.(2022·浙江·玉环市玉城中学高一阶段练习)(1)已知函数()f x 是一次函数,且满足()()3+121=2+17f x f x x --,求()f x 的解析式;(2)已知函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩①求()2f ,()()1f f -②若()3f a =,求a 的值【解析】(1)设()=+,0f x kx b k ≠,则:()+1=++f x kx b k ,()1=+f x kx b k --,故()()3++2+=2+17kx b k kx b k x --,即++5=2+17kx b k x ,故=2k ,=7b .所以()27f x x =+(2)函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩,①()2=2?2=4f ,()()()()1=1+2=1=3f f f f --.②当1a ≤时,()=+2=3f a a ,解得=1a ,成立;当12a <<时,()2==3f a a ,解得3a =3a =-;当2a ≥时,()=2=3f a a ,解得3=2a (舍去). 故a 31. 20.(2022·辽宁·高一阶段练习)已知函数()22122f x x x a a =+++,()22122g x x x a a =-+-,R a ∈.设函数()()()()()()(),,f x f x g x M x g x g x f x ⎧≥⎪=⎨>⎪⎩. (1)若1a =,求()M x 的最小值;(2)若()M x 的最小值小于52,求a 的取值范围. 【解析】(1)由题意可得,当()()f x g x ≥时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+≥ ⎪⎝⎭,当()()f x g x <时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+< ⎪⎝⎭, 所以()()(),2,,2.f x x a M x g x x a ⎧≥-⎪=⎨<-⎪⎩当1a =时,()2213,2,211, 2.2x x x M x x x x ⎧++≥-⎪⎪=⎨⎪--<-⎪⎩作出()M x 的图象,如图1: 由图可知()M x 的最小值为()512f -=.(2)()222212,2,212,2,2x x a a x a M x x x a a x a ⎧+++≥-⎪⎪=⎨⎪-+-<-⎪⎩且()f x ,()g x 图象的对称轴分别为直线=1x -,1x =.①如图2,当21a -≤-,即12a ≥时,()M x 在(),1-∞-上随x 的增大而减小,在()1,-+∞上随x 的增大而增大,所以()()2min 1122M x f a a =-=+-,由215222a a +-<,解得31a -<<,故112a ≤<.②如图3,当121a -<-≤,即1122a -<≤时,()M x 在(),2a -∞-上随x 的增大而减小,在()2,a -+∞上随x 的增大而增大,所以()()2min 23M x f a a =-=,则2532a <,解得3030a <<1122a -<≤.③如图4,当21a ->,即12a <-时,()M x 在(),1-∞上随x 的增大而减小,在()1,+∞上随x 的增大而增大,所以()()2min 1122M x g a a ==--,由215222a a --<,解得13a -<<,故112a -<<-. 综上,a 的取值范围为()1,1-.21.(2022·全国·高一课时练习)定义域为R 的函数f (x )满足2(f x f x k k ∈Z)()=(+)及f (-x )=-f (x ),且当()0,1x ∈时2()41xx f x =+.(1)求()f x 在[1,1]-上的解析式;(2)求()f x 在[]21)1,2(k k k Z -+∈上的解析式;(3)求证:()f x 在区间()0,1上单调递减.【解析】(1)∵当(1,0)x ∈-时,(0,1)x , ∴22()()4141x xx x f x f x --=--=-=-++. 由题意,知(0)0f =,又()()11f f -=-,()()()1121f f f -=-+=, ∴()()110f f -==,∴()()()2,1,0412,0,1410,1,0,1xx xx x f x x x ⎧-∈-⎪+⎪⎪=∈⎨+⎪=-⎪⎪⎩,(2)当[21,21]x k k ∈-+时,2[1,1]x k -∈-, ∴()()()22222,21,2412()(2),2,21410,21,2,21x kx k x kx k x k k f x f x k x k k k Z x k k k ----⎧-∈-⎪+⎪⎪=-=∈+∈⎨+⎪=-+⎪⎪⎩(3)设任意的1x ,2(0,1)x ∈,且12x x <, ∵2211221212122(22)(21)()()4141(41)(4)x x x x x x x x x x f x f x ++---=-=+++,且21220x x ->,12210x x +->, ∴12()()f x f x >,即()f x 在区间()0,1上单调递减.。
分段函数知识点及例题解析
分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}. 评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0 ∴(((3)))f f f -=f (π)=π+1. 评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥, 求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ⎧<=<-<⎩, ≤≤,≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。
分段函数习题大全
分段函数习题大全1. 问题描述分段函数是数学中常见的一种函数类型,它在不同的区间内有不同的定义。
本文将提供一些分段函数的题,帮助读者更好地理解和掌握分段函数的概念和应用。
2. 题示例2.1 问题一已知函数 f(x) 在区间 (-∞, 1] 上定义如下:$$ f(x) = \begin{cases}x^2 & x \leq 0 \\2x+1 & x > 0\end{cases}$$求函数 f(x) 的定义域、值域以及所有的奇点。
2.2 问题二已知函数 g(x) 在区间[0, +∞) 上定义如下:$$ g(x) = \begin{cases}\frac{1}{x} & x \geq 1 \\x^2 - 1 & 0 \leq x < 1\end{cases}$$求函数 g(x) 的最值以及所有的零点。
3. 解答和说明3.1 问题一的解答根据函数 f(x) 的定义,我们可以得知:- 函数 f(x) 的定义域为 (-∞, +∞),因为 x 可以取任意实数。
- 函数 f(x) 的值域为$[0, +∞)$,因为当 x 小于等于 0 时,$f(x) = x^2$ 的值为非负实数,而当 x 大于 0 时,$f(x) = 2x+1$ 的值可大于等于 1。
- 函数 f(x) 的奇点即为在函数定义区间上不连续的点,对于本题中的分段函数 f(x),奇点为 x = 0。
3.2 问题二的解答根据函数 g(x) 的定义,我们可以得知:- 函数 g(x) 的定义域为[0, +∞),因为 x 可以取大于等于 0 的实数。
- 函数 g(x) 的最大值为 $+\infty$,当 x 趋近于 0 时,$g(x)$ 无上界,没有最小值。
- 函数 g(x) 的零点即为满足 $g(x) = 0$ 的 x 值,根据定义可求得 x = 1。
4. 小结本文提供了两个分段函数的题,旨在帮助读者更好地理解和掌握分段函数的概念和应用。
微专题18分段函数10种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题
微专题18 分段函数10种常考题型总结题型1 分段函数求函数值题型2 已知函数值求参数题型3 解分段函数不等式题型4 分段函数的图象题型5 分段函数的单调性题型6 分段函数的奇偶性题型7 分段函数的值域或最值题型8 分段函数与零点问题题型9 max/min 型分段函数题型10 新定义题一、分段函数1、分段函数的定义函数y x =与函数,0,0x x y x x ³ì=í-<î是同一函数,但在表达方式上有所区别,前者在定义域内有一个表达式,而后者的定义域被分成两部分,而在不同的部分有不同的解析式.在函数的定义域内,对于自变量x 在不同取值范围内,函数有着不同的对应关系,这样的函数通常叫作分段函数.2、对分段函数的理解(1)分段函数是一个函数而不是几个函数。
处理分段函数问题时,首先要确定自变量的取值属于哪一个范围,从而选择相应的对应关系;(2)分段函数的定义域是各段自变量取值范围的并集,各段定义域的交集是空集;(3)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.3、分段函数常见的几种类型(1)取整函数:()[]f x x =([]x 表示不大于x 的最大整数).(2)1,()(1)1,x x f x x -ì=-=íî为正奇数为非负偶数.(3)含绝对值符号的函数.如2,2()|2|(2),2x x f x x x x +³-ì=+=í-+<-î.(4)自定义函数.如21,1(),122,2x x f x x x x x x--£-ìï=--<£íï->î二、有关分段函数的求解问题1、分段函数的表达式因其特点可以分解成两个或两个以上的不同表达式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或线段,而分段函数的值域,也就是各部分的函数值集合的并集,最好的求解方法是“图象法”。
分段函数的几种常见题型及解法好
分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)x x x A f x x +-≤≤⎧=⎨+<≤⎩222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )ACD6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 得反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃.xxy。
分段函数的几种常见题型及解法
分段函数的几种常见题型及解法1.求分段函数的定义域和值域例:求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.1)设函数)(2)(2R x x x g ∈-=,⎩⎨⎧≥-<++=)()()(4)()(x g x xx g x g x x x g x f则)(x f 的值域是( )A.),1(]0,49[+∞⋃- B.),0[+∞ C.),49[+∞- D.),2(]0,49[+∞⋃-2.求分段函数的函数值。
例:(05年浙江)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求12[()]f f . 1)(2011陕西)设函数⎩⎨⎧≤>=0,100,lg )(x x x x f x ,则))2((-f f =2)(2010湖北)已知函数⎩⎨⎧≤>=0,20,log )(3x x x x f x ,则))91((f f =3)(2009辽宁)已知函数)(x f 满足:当4≥x 时,xx f )21()(=;当4<x 时,)1()(+=x f x f ,则)3log 2(2+f =4)已知⎩⎨⎧≤++>-=0,1)1(0),cos()(x x f x x x f π,则)43()34(f f +的值等于( )A.),(+∞-∞B.(0,43) C.),43(+∞ D.)43,0[5)若函数f(x)=⎩⎨⎧>≤+1,lg 1,12x x x x ,则))10((f f =( )A .101lgB .2C .1D .06)已知函数⎩⎨⎧>+-≤-=0,1)1(0),1(log )(2x x f x x x f ,则=)2010(f ( )A .2008B .2009C .2010D .20117)定义在R 上的函数)(x f 满足⎩⎨⎧>---≤-=0),2()1(0),1(log )(2x x f x f x x x f 则)2009(f 的值为( )A .-1B .0C .1D .23。
专题05分段函数(解析版)
专题05分段函数(解析版)分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数,它是一个函数,却又常常被学生误认为是几个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.由于它在理解和掌握函数的定义,函数的性质等知识的程度的考察上有较好的作用.分段函数情形复杂,综合性强,即能有效考查复杂函数的图象和性质,又能体现分类讨论,数形结合的数学思想方法.因此,分段函数倍受高考命题人的青睐,是历年高考中的热点题型之一.分段函数易错点易错点1:定义域与相应的解析式分不清,用错解析式来解决问题;易错点2:忽略分段点的特殊性,要明确分段点的性质;易错点3:混淆分段函数单调性与其他函数单调性判断的不同点;易错点4:不能正确做出分段函数的图像;在分段函数性质的考查中,若能画出其大致图像,定义域,值域,最值,单调性,奇偶性等问题就会迎刃而解, 方程,不等式等可用数形结合思想,等价转化思想,分类讨论思想及函数思想来解,使问题得到大大简化,效果明显.题组一1.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+= A .3 B .6 C .9 D .12【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f -===, 所以2(2)(log 12)f f -+=9.2.设2,0.()log ,0.x e x g x x x ⎧≤=⎨>⎩则1(())2g g =__________. 【解析】1211()log 1,(1),22g g e -==--=所以11(())2g g e=题组二3.若函数 则不等式的解集为____________. 【解析】∵,∴等价于001111333x x x x ≥⎧<⎧⎪⎪⎨⎨⎛⎫≥≥ ⎪⎪⎪⎩⎝⎭⎩或 解得3001x x -≤<≤≤或,综上[]-31x 的取值范围为,4.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是______.【解析】当1x <时,由12x e-≤得1ln 2x +≤,∴1x <;当1x ≥时, 由132x ≤得8x ≤,∴18x ≤≤,综上8x ≤.5.(2017新课标Ⅱ)设函数1,0,()2,0x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是________.【解析】当12x >时,不等式为12221x x -+>恒成立; 当102x <≤,不等式12112x x +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤; 1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩1|()|3f x ≥1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩1|()|3f x ≥综上,x 的取值范围为1(,)4-+∞.题组三 ★6.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩若则实数的取值范围是( ) A. B.C. D.【解析】由题意知()f x 在R 上为增函数,所以22,a a -> 21a -<<解得,故选C7.(2013新课标Ⅱ)已知函数=,若||≥,则的取值范围是( ) A . B . C .[-2,1] D .[-2,0]【解析】∵||=,∴由||≥得,且,由可得,则≥-2,排除A,B, 当=1时,易证对恒成立,故=1不适合,排除C,故选D .题组四8.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若a ,b ,c 均不相等,且()f a = ()f b =()f c ,则abc 的取值范围是2(2)(),f a f a ->a (,1)(2,)-∞-⋃+∞(1,2)-(2,1)-(,2)(1,)-∞-⋃+∞2(2)(),f a f a ->()f x 22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩()f x ax a (,0]-∞(,1]-∞()f x 22,0ln(1),0x x x x x ⎧-≤⎨+>⎩()f x ax 202x x x ax ≤⎧⎨-≥⎩0ln(1)x x ax >⎧⎨+≥⎩202x x x ax≤⎧⎨-≥⎩2a x ≥-a a ln(1)x x +<0x >aA .(1,10)B .(5,6)C .(10,12)D .(20,24)【解析】画出函数的图象, 如图所示,不妨设a b c << ,因为()()()f a f b f c == ,所以1ab = ,c 的取值范围是(10,12) ,所以abc 的取值范围是(10,12).()()()2,,-3+2=0f x f x f x π⎧-≤≤⎪⎨⎪=-⎩2xcos 1x 12x 1x 19.已知函数的实根的个数是___.,则关于x 的方程>,【解析】()()()()2-3+2=0=1=2f x f x f x f x 方等价于程或()()[]()1,1,>110,,f x f x x f π⎧-≤≤⎪-≤≤⎨-⎪-⎩=∈>2xcos 1x 121x 1x 1x 1函,当,时>数,, ()2=1cos 111,022f x x x x x 时,或所以或π=-===± ()2=212,3f x x x 时,所以-==±()()2-3+2=0f x f x 的实根个数为5个综上知方程x yO 11012。
分段函数的几种常见题型及解法
例1
设
f
(
x)
1
2x
x, ,
x0 x0
,
则 f [ f (2)] ( C )
A. 1 B. 1 C. 1 D. 3
4
2
2
例2 设函数 f (x)是定义在 R上的奇函
数,且
f
(
x)
log
g(
2(x x)
1)
, x0 , x0
则 g[ f (7)] ( )
A. 3 B. -3 C. 2 D. -2
【类型二】有关奇偶性
例3
判断函数
f
(
x)
x 2 x
x 2
x
, ,
x0 x0
的奇偶性?
思考: 你会选择怎样的方法来判断?
【类型三】有关单调性
例4
如果函数
f
(
x)
(2
ax
a)
x
1
, ,
x 1 x 1
在R上为增函数,那么 a 的取值范
围是 ___[_32__,__2_)__
温馨提示:函数的单调性是相对于某 个区间而言的,反应在图象上,体现 的是在这个区间上的一种整体趋势。
五、作业布置
设函数
f
(
x)
x2
4x
,
x4
,
log2 x , x 4
若函数 y f (x)在区间(a , a 1)
上单调递增, 则实数a 的取值
范围是 ___________来自谢谢观赏 再见祝同学们学习愉快!
① ②
③
三、课堂练习
已知函数
f
(x)
2x1
2
, x 1
考点04 分段函数(解析版)
考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。
(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。
分段函数小专题.
分段函数小专题一、概念1、分段函数的定义及内涵我们知道世界是不断变化发展的,因此作为描述这种变化的工具之一的函数也不可能一成不变,内部必然以一种变化的姿态来对应,这种姿态的一种表现形式就是分段函数。
何谓分段函数呢?就是一个单一函数解析式无法表达一个变化事物时,需要对该事物进行分析讨论,从而分段表达,这就是分段函数。
比如,在叙述一个数的绝对值意义时,就是按正数、负数和零来分开叙述的,写成函数,0()0,0,0x x f x x x x x >⎧⎪===⎨⎪-<⎩。
像这样的,若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[提醒]1、 分段函数虽然由几部分组成,但它表示的是一个函数.2、 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集2、分段函数的作图:画出所有段的函数图像,注意取舍(一手铅笔一手橡皮)。
比如作,0()0,0,0x x f x x x x x >⎧⎪===⎨⎪-<⎩的图像:⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x g 的图像:二、题型分类题型一、分段函数求值例1、【2015新课标2理5】设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=() A.3B.6C.9D.12【分析】此题关键是看2-和2log 12与1的大小关系,从而决定分别代入哪个解析式进行求值计算。
友情提示:对数恒等式1a og N a N =。
变式:(2014江西4)已知函数2,0()()2,0x xa x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ()1.4A 1.2B .1C .2D 例2、(2014安徽14)若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f . 【分析】此题注意题干中的关键词“周期”、“奇函数”,在做本题时注意通过这两条性质把不在[]2,0内的两个自变量的值变换到范围内。
☆经典分段函数专题
经典分段函数专题高考真题类型一:与周期有关 类型二:与单调性有关 类型三:奇偶性有关类型四:与零点和交点问题有关 类型五;与求导和函数性质有关 类型六:数形结合高考真题201011、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是_____。
【解析】考查分段函数的单调性。
2212(1)10x x x x ⎧->⎪⇒∈-⎨->⎪⎩201111、(分类方程求解)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=-2012 10.(方程组求解)设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 【解析】因为2T =,所以(1)(1)f f -=,求得20a b +=. 由13()()22f f =,2T =得11()()22f f =-,解得322a b +=-.联立20322a b a b +=⎧⎨+=-⎩,解得24a b =⎧⎨=-⎩所以310a b +=-.201311.(分区间二次不等式求解)已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .【答案】(﹣5,0) ∪(5,﹢∞)【解析】做出x x x f 4)(2-= (0>x )的图像,如下图所示。
分段函数的几种常见题型及解法好
分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数122[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求1[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 22(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 11y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )yxACD6.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.7.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为1(,]-∞-.8.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.9.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,xxy1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。
分段函数的例题及方法
分段函数的例题及方法
分段函数是指函数的定义域被划分成若干个子区间,在每个子区间上,函数的表达式可以不同。
下面给出一个分段函数的例题及解题方法。
例题:设函数f(x)如下定义:
当x≤0时,f(x)=x^2;
当0<x≤1时,f(x)=2x;
当x>1时,f(x)=3x-1。
解题方法:
首先确定函数的定义域,根据题目给出的条件,可以得知函数的定义域为实数集R。
然后根据定义域的范围,将整个实数轴分成几个子区间,根据题目给出的条件,确定每个子区间上的函数表达式。
1. 当x≤0时,使用第一个函数表达式:f(x)=x^2;
2. 当0<x≤1时,使用第二个函数表达式:f(x)=2x;
3. 当x>1时,使用第三个函数表达式:f(x)=3x-1。
综上所述,根据题目给出的条件和定义域的范围,可以得出函数f(x)的表达式为:
当x≤0时,f(x)=x^2;
当0<x≤1时,f(x)=2x;
当x>1时,f(x)=3x-1。
这就是该分段函数的表达式及解题方法。
分段函数知识点及常见题型总结精选全文完整版
可编辑修改精选全文完整版分段函数知识点及常见题型总结资料编号:20190726 一、分段函数的定义有些函数在其定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.关于分段函数:(1)分段函数的定义域是各段函数定义域的并集.注意各段函数定义域的交集为空集; (2)分段函数的值域是各段函数值域的并集;(3)分段函数包括几段,它的图象就有几条曲线组成.采用“分段作图”法画分段函数的图象:在同一平面直角坐标系中,依次画出各段函数的图象,这些函数的图象组合在一起就是分段函数的图象;(4)分段函数是一个函数,而不是几个函数;(5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各段解析式的后面标明相应的自变量的取值范围;(6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再选取相应的对应关系.二、几种常见的分段函数1.取整函数[]xy=([]x表示不大于x的最大整数).其图象如图(1)所示.图(1)取整函数的图象图(2)绝对值函数的图象2.绝对值函数 含有绝对值符号的函数.如函数()()⎩⎨⎧-<---≥+=+=22222x x x x x y ,其图象如图(2)所示,为一条折线.解决绝对值函数的问题时,先把绝对值函数化为对应的分段函数,然后分段解决. 3.自定义函数如函数()()()⎪⎩⎪⎨⎧>-≤<----≤--=2221211)(2x x x x x x x x f 为自定义的分段函数,其图象如图(3)所示.4.符号函数x y sgn =符号函数()()()⎪⎩⎪⎨⎧<-=>==010001sgn )(x x x x x f ,其图象如图(4)所示.符号函数的性质: x x x sgn =.图(3)图(4)符号函数的图象说明:函数的图象既可以是连续的曲线,也可以是直线、折线或离散的点. 三.分段函数的常见题型 1.求分段函数的函数值.求分段函数的函数值的方法是:先确定自变量的值属于哪一个区间段,然后代入该段的解析式求值.当出现))((a f f 的形式时,应从内到外依次求值.例1. 已知函数⎪⎩⎪⎨⎧≤+>-+=,2,2,2,21)(2x x x x x x f ,则))1((f f 的值为【 】 (A )21-(B )2 (C )4 (D )11 解:∵21<,∴()32112=+=f ,∴()3))1((f f f = ∵23>,∴()423133=-+=f ,∴4))1((=f f .【 C 】. 习题1. 已知函数⎩⎨⎧>-≤++=,0,3,0,34)(2x x x x x x f ,则=))5((f f 【 】(A )0 (B )2- (C )1- (D )1 2.已知分段函数的函数值,求自变量的值.方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.例2. 已知函数⎩⎨⎧<<--≤+=)21()1(2)(2x x x x x f ,若3)(=x f ,则=x _________.解:当1-≤x 时,32=+x ,解之得:1=x ,不符合题意,舍去;当21<<-x 时,32=x ,解之得:3±=x ,其中13-<-=x ,舍去,∴3=x 综上,3=x .习题2. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若5)(=x f ,则x 的值是【 】(A )2- (B )2或25-(C )2或2- (D )2或2-或25-习题3. 已知⎩⎨⎧≤+>=)0(1)0(2)(x x x x x f ,若0)1()(=+-f a f ,则实数a 的值等于_________.3.求分段函数自变量的取值范围在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.例3. 已知函数⎩⎨⎧<+-≥-=)1(32)1(23)(22x x x x x x f ,求使2)(<x f 成立的x 的取值范围. 解:由题意可得:⎩⎨⎧<-≥22312x x x 或⎩⎨⎧<+-<23212x x 解不等式组⎩⎨⎧<-≥22312x x x 得:1≤371+<x ;解不等式在⎩⎨⎧<+-<23212x x 得:22-<x 或122<<x ∴使2)(<x f 成立的x 的取值范围为⎭⎬⎫⎩⎨⎧⎩⎨⎧+<<-<3712222x x x 或.习题4. 已知()()⎩⎨⎧<≥=0001)(x x x f ,则不等式x x xf +)(≤2的解集为【 】(A )][1,0 (B )][2,0 (C )](1,∞- (D )](2,∞-习题5. 设函数()()⎩⎨⎧<+≥+-=06064)(2x x x x x x f ,则不等式)1()(f x f >的解集是____________.习题6. 函数()()()⎪⎩⎪⎨⎧≥<<-+-≤=434212)(x x x x x x x f ,若3)(-<a f ,则实数a 的取值范围是_________.例4. 已知0≠a ,函数()()⎩⎨⎧≥--<+=1212)(x a x x a x x f ,若()()a f a f +=-11,则a 的值为_________.解:当11<-a ,即0>a 时,11>+a∴()()a a a a f -=+-=-2121,()a a a a f 31211--=---=+ ∵()()a f a f +=-11 ∴a a 312--=-,解之得:023<-=a ,不符合题意,舍去; 当11>-a ,即0<a 时,11<+a()()a a a a f --=---=-1211,()()a a a a f 32121+=++=+∵()()a f a f +=-11图(5)∴a a 321+=--,解之得:43-=a ,符合题意. 综上,a 的值为43-. 习题7. 设()⎩⎨⎧≥-<<=)1(12)10()(x x x x x f ,若)1()(+=a f a f ,则=⎪⎭⎫⎝⎛a f 1_________.习题8. 设函数⎩⎨⎧<≥=)0()0()(2x x x x x f ,⎩⎨⎧>-≤=)2()2()(2x x x x x ϕ,则当0<x 时,=))((x f ϕ【 】(A )x - (B )2x - (C )x (D )2x习题9. 设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f =)(,则实数a 的值为【 】(A )1± (B )1- (C )2-或1- (D )1±或2- 4.求分段函数的定义域分段函数的定义域是各段函数定义域的并集.例5. 函数⎪⎩⎪⎨⎧≥+<<+≤≤=)2(12)21(1)10(2)(x x x x x x x f 的定义域是_________.解:由各段函数的定义域可知该分段函数的定义域为[]())[)[∞+=∞+,0,22,11,0 . 5.求分段函数的值域分段函数的值域是各段函数值域的并集.对于某些简单的分段函数,可画出其图象,由图象的最高点和最低点求值域(图象法). 例6. 设∈x R ,求函数x x y 312--=的值域.解:当x ≥1时,()2312--=--=x x x y ; 当0≤1<x 时,()25312+-=--=x x x y ;当0<x 时,()2312+=+-=x x x y .综上所述,⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y图(6)其图象如图(5)所示,由图象可知其值域为](2,∞-. 另解:由上面可知:⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y当x ≥1时,函数2--=x y 的值域为](3,-∞-; 当0≤1<x 时,函数25+-=x y 的值域为(]2,3-; 当0<x 时,函数2+=x y 的值域为)(2,∞-.∴函数x x y 312--=的值域为]( 3,-∞-(] 2,3-)(=∞-2,](2,∞-.例7. 若∈x R ,函数)(x f 是x y x y =-=,22这两个函数值中的较小者,则函数)(x f 的最大值为【 】(A )2 (B )1 (C )1- (D )无最大值 解:解不等式22x -≥x 得:2-≤x ≤1 ∴当2-≤x ≤1时,x x f =)(,其值域为[]1,2-; 解不等式x x <-22得:1>x 或2-<x∴当1>x 或2-<x 时,22)(x x f -=,其值域为()1,∞-综上所述,⎩⎨⎧-<>-≤≤-=)21(2)12()(2x x x x x x f 或 函数)(x f 的值域为[] 1,2-()](1,1,∞-=∞- ∴函数)(x f 在其值域内的最大值为1. 函数)(x f 的图象如图(6)所示.习题10. 若函数⎪⎩⎪⎨⎧<≤<≤<<=)2015(5)1510(4)100(2)(x x x x f ,则函数)(x f 的值域是【 】(A ){}5,4,2 (B )()5,2 (C )()4,2 (D )()5,4习题11. 函数⎪⎩⎪⎨⎧≥<<≤≤=)2(3)21(2)10(2)(2x x x x x f 的值域是【 】(A )R (B ))[∞+,0 (C )[]3,0 (D )[]{}32,0 习题12. 已知函数()2221)(≤<--+=x x x x f .(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.习题13. 已知函数⎪⎩⎪⎨⎧<-=>-=)0(21)0(2)0(3)(2x x x x x x f .(1)画出函数)(x f 的图象;(2)求))(1(2R a a f ∈+,))3((f f 的值; (3)当)(x f ≥2时,求x 的取值范围.图(7)。
高一上学期数学经典真题-分段函数与方程的解-计算起来有点复杂
高一上学期数学经典真题,分段函数与方程的解,计算起来有点复杂一、分段函数的概念分段函数是指定义域不同的函数组成的总函数,即在不同的定义域中采用不同的解析式。
其形式可以表示为:$$y=\begin{cases}f_{1}(x), & x\in D_{1}\\f_{2}(x), & x\in D_{2}\\\cdots & \\f_{n}(x), & x\in D_{n}\end{cases}$$其中 $f_{1}(x),f_{2}(x),\cdots,f_{n}(x)$ 分别是定义在$D_{1},D_{2},\cdots,D_{n}$ 上的函数。
例如以下分段函数:$$y=\begin{cases}1, & x < 0\\x^{2}, & 0 \leq x < 1\\\sqrt{x}, & x \geq 1\end{cases}$$二、分段函数的求值对于分段函数的求值,首先需要根据自变量 $x$ 所在的定义域,找出该自变量所对应的函数解析式。
然后将自变量代入该函数解析式中,得出函数值。
例如对于上述分段函数,在$x=-1$ 的时候,自变量$x$ 的值小于$0$,因此对应的函数解析式是$f_{1}(x)=1$。
将$x=-1$ 代入$f_{1}(x)$ 中,得到函数值 $y=1$。
三、分段函数的图像分段函数的图像通常由各段函数的图像组合而成。
因此,需要先画出各段函数的图像,再将它们组合起来。
四、分段函数的极值计算分段函数的极值时,需要先判断各段函数的极值,然后从中选取最大值或最小值。
对于上述分段函数,在 $x=0$ 和 $x=1$ 的时候,函数的极小值分别为$0$ 和 $0.5$;在 $x=0.5$ 的时候,函数的极大值为 $0.25$。
因此,该分段函数的极大值为 $0.25$。
五、方程的解法解分段函数组成的方程时,需要将方程分解为各段函数的方程,然后分别求解。
高中数学数学干货|经典分段函数专题
高中数学数学干货|经典分段函数专题在高中数学中,分段函数是一个非常重要且常见的概念。
它由多个线性函数组成,每个函数在不同的区间上定义。
在本文中,我们将深入探讨分段函数的相关知识,并介绍一些经典的分段函数题目和解法。
1. 什么是分段函数?分段函数是由若干段不同的线性函数组成的函数。
它通常采用以下的形式表示:\[f(x) = \begin{cases}f_1(x), & x \in D_1\\f_2(x), & x \in D_2\\\cdots\\f_n(x), & x \in D_n\end{cases}\]其中,$f_i(x)$表示第$i$段线性函数,$D_i$表示第$i$段函数的定义域。
2. 分段函数的分类根据不同的特性和形式,分段函数可以分为以下几种类型:2.1 分段常值函数分段常值函数是由多个常值函数组成的函数。
在不同的区间内,函数的取值是不同的常数。
例如,考虑以下分段函数:\[f(x) = \begin{cases}1, & x < 0\\ 2, & x \geq 0\end{cases}\]在$x < 0$的区间内,函数的取值为1;在$x \geq 0$的区间内,函数的取值为2。
2.2 分段线性函数分段线性函数是由多个线性函数组成的函数。
在不同的区间内,函数的斜率和截距可能是不同的。
例如,考虑以下分段函数:\[f(x) = \begin{cases}2x, & x < 0\\ x^2, & x \geq 0\end{cases}\]在$x < 0$的区间内,函数的斜率为2;在$x \geq 0$的区间内,函数的斜率为$x$。
3. 经典分段函数题目与解法接下来,我们将介绍一些经典的分段函数题目,并给出相应的解法。
3.1 题目一已知函数$f(x)$满足以下条件:\[f(x) = \begin{cases}x+1, & x < 1\\ 2x, & x \geq 1\end{cases}\]求解方程$f(x) = 3$的解。
必修1-分段函数--专题与解析
必修1 分段函数-----专题与解析一.选择题(共16小题)1.(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A.﹣4或﹣2 B.﹣4或2 C.﹣2或4 D.﹣2或2考点:分段函数的解析式求法及其图象的作法。
专题:计算题。
分析:分段函数分段处理,我们利用分类讨论的方法,分a≤0与a>0两种情况,根据各段上函数的解析式,分别构造关于a的方程,解方程即可求出满足条件的a值.解答:解:当a≤0时若f(a)=4,则﹣a=4,解得a=﹣4当a>0时若f(a)=4,则a2=4,解得a=2或a=﹣2(舍去)故实数a=﹣4或a=2故选B点评:本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.2.(2010•宁夏)已知函数若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)考点:分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质。
专题:作图题;数形结合。
分析:画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.解答:解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.点评:本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.3.若,则f(log23)=()A.﹣23 B.11 C.19 D.24考点:分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质。
分析: f(x)为分段函数,要求f(log23)的值,先判断log23的范围,代入x<4时的解析式,得到f (log23+1),继续进行直到自变量大于4,代入x≥4时的解析式求解.解答:解:∵1<log23<2,4<log23+3<5∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=故选D点评:本题考查分段函数求值、指数的运算法则、对数恒等式等难度一般.4.已知函数若,则实数a=()A.B.C.D.考点:分段函数的解析式求法及其图象的作法。
分段函数的几种常见题型及解法
函数的概念和性质
考点分段函数
分段函数是指自变量在两个或两个以上不同的范围内
, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数
; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集
. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用
, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了
一些思考, 解析如下:1.求分段函数的定义域和值域
例1.求函数1
222[1,0];
()(0,2);
3[2,
);x x f x x x x 的定义域、值域. 2.求分段函数的函数值
例2.已知函数2|1|2,(||1)
()1
,(||1)1x x f x x x 求1
2[()]f f .
3.求分段函数的最值
例3.求函数43(0)()3(01)5(1)x x
f x x x
x x
的最大值. 4.求分段函数的解析式
例4.在同一平面直角坐标系中
, 函数()y f x 和()y g x 的图象关于直线y x 对称, 现将()y g x 的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的
图象是由两条线段组成的折线(如图所示)
, 则函数()f x 的表达式为()222(1
0).()2(02)
x
x x A f x x 222(10)
.()2(02)
x x x B f x x 222(12)
.()1(24)
x x x C f x x 226(12)
.()3(24)x
x x
D f x x -12131o -2y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典分段函数专题高考真题类型一:与周期有关类型二:与单调性有关类型三:奇偶性有关类型四:与零点和交点问题有关类型五;与求导和函数性质有关类型六:数形结合高考真题201011x的围是_____。
201111、(分类方程求解)已知实数,函数,若a的值为________201210.2的值为 ▲ .201311.(分区间二次不等式求解)已定义的奇函数。
,的解集用区间表示为.【答案】(﹣5,0) ∪(5,﹢∞)【解析】的图像,如下图所示。
函数,利用奇函数图像关于原点对称做出x <0y =y =x 的上方,观察图像易得:解集为(﹣5,0) ∪(5,﹢∞)。
201413. (周期函数+R 上且周期为3的函数,时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值围是 ▲ . 【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.201513.(绝对值分类讨论+数形结合求根个数)已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为利用数形结合法将方程根的个数转化为对应函数零点个数,而函数零点个数的判断通常转化为两函数图像交点的个数.这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且要明确其变化速度快慢.201611.(方程求解)()f x 定义R 且周期为2的函数,在区[)1,1-(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 . 【答案】25-; 【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =, 则()()()325311155f a f f a ==-=-+=-+=-2017年14.设()f x 是定义在R 上且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1{n D x x n-==,*}n ∈N ,则方程()lg 0f x x -=的解的个数是 ▲ . 【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况,在此围,x ∈Q 且x D ∈时,设*,,,2q x p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2n x m n m m =∈≥N ,且,m n 互质, 因此10n mq p=,则10()n m q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 因此lg x 不可能与每个周期x D ∈对应的部分相等,只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分, 且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点, 因此方程()lg 0f x x -=的解的个数为8.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.类型一:与周期有关1.(拟周期分段函数)设函数⎪⎩⎪⎨⎧>-<--=,2),2(21;2|,1|1)(x x f x x x f 则方程01)(=-x xf 的根的个数有 个。
62.已知函数f (x )=⎩⎨⎧e x ,x ≤1,f (x -1),x >1,g (x )=kx +1,若方程f (x )-g (x )=0有两个不同的实根,则实数k 的取值围是________.画出函数f (x )的大致图象如下:则考虑临界情况,可知当函数g (x )=kx +1的图象过A (1,e),B (2,e)时直线斜率k 1=e -1,k 2=e -12,并且当k =1时,直线y =x +1与曲线y =e x 相切于点(0,1),则得到当函数f (x )与g (x )图象有两个交点时,实数k 的取值围是(e -12,1)∪(1,e -1].类型二:与单调性有关1.的取值围是 .2.已知函数f (x )=⎩⎨⎧ (a -3)x +5,x ≤1,2a x ,x >1是(-∞,+∞)上的减函数,那么a 的取值围是________. 解析 由题意,得⎩⎨⎧ a -3<0,a >0,a -3+5≥2a ,解得0<a ≤2.3.某驾驶员喝了m 升酒后,血液中的酒精含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎨⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1,《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不超过0.02毫克/毫升.此驾驶员至少要过______小时后才能开车.(不足1小时部分算1小时,结果精确到1小时)答案 4解析 因为0≤x ≤1,所以-2≤x -2≤-1, 所以5-2≤5x -2≤5-1,而5-2>0.02,又由x >1,得35·⎝ ⎛⎭⎪⎫13x ≤150,得⎝ ⎛⎭⎪⎫13x ≤130,所以x ≥4. 故至少要过4小时后才能开车. 4.5.类型三:奇偶性有关1.已知奇函数() ()y f x x R =∈在区间[0,3]上单调递减,在区间[3,)+∞上单调递增,且满足()04=-f ,则不等式()0<x xf 的解集是 .类型四:与零点和交点问题有关1.☆已知函数32sin ,1()925,1x x f x x x x a x <⎧=⎨-++⎩≥,若函数()f x 的图象与直线y x =有三 个不同的公共点,则实数a 的取值集合为 .}16,20{-- 变为零点问题处理最合理2.已知函数()221,0,0x x f x x x x ->⎧=⎨+≤⎩,若函数()()g x f x m =-有三个零点,则实数m 的取值围是__________.3.已知函数)0(0,ln 0,2)(≤⎩⎨⎧>-≤+=k x x x k kx x f ,若函数1))((-=x f f y 有3个零点,则实数k 的取值围是 .数形结合,先求出)(x f 的两个可能取值,再看其与两个函数图像的交点个数。
)0,231(-- 4.=则方程f (x )=ax 恰有两个不同实数根时,实数a 的取值围是 [,) . 解:∵方程f (x )=ax 恰有两个不同实数根,∴y=f (x )与y=ax 有2个交点,又∵a 表示直线y=ax 的斜率,∴y ′=, 设切点为(x 0,y 0),k=, ∴切线方程为y ﹣y 0=(x ﹣x 0), 而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值围是[,) 故答案为:[,).6.已知函数f (x )=⎩⎨⎧ ||log 4x ,0<x ≤4-12x +3,x >4,若a <b <c 且f ()a =f ()b =f ()c ,则(ab +1)c 的取值围是______.作出函数f (x )=⎩⎨⎧ ||log 4x ,0<x ≤4,-12x +3,x >4的图象,如图所示.∵a <b <c 时,f (a )=f (b )=f (c ),∴-log 4a =log 4b ,即log 4a +log 4b =0,则log 4ab =0, ∴14<a <1<b <4<c <6,且ab =1, ∴16=24<()ab +1c =2c <26=64, 即()ab +1c 的取值围是()16,64.7.(☆)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为______.当x >2时,g (x )=x -1,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=3-x ,f (x )=2-x ; 当x <0时,g (x )=3-x 2,f (x )=2+x .由于函数y =f (x )-g (x )的零点个数就是方程f (x )-g (x )=0的根的个数.当x >2时,方程f (x )-g (x )=0可化为x 2-5x +5=0,其根为x =5+52或x =5-52(舍去);当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =3-x ,无解;当x <0时,方程f (x )-g (x )=0可化为x 2+x -1=0,其根为x =-1-52或x =-1+52(舍去).所以函数y =f (x )-g (x )的零点个数为2.8.已知函数f (x )=⎩⎨⎧x +2,x >a ,x 2+5x +2,x ≤a ,若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值围是____________.押题依据 利用函数零点个数可以得到函数图象的交点个数,进而确定参数围,较好地体现了数形结合思想. 答案 [-1,2)解析 g (x )=f (x )-2x =⎩⎨⎧-x +2,x >a ,x 2+3x +2,x ≤a ,要使函数g (x )恰有三个不同的零点,只需g (x )=0恰有三个不同的实数根,所以⎩⎨⎧ x >a ,-x +2=0或⎩⎨⎧x ≤a ,x 2+3x +2=0,所以g (x )=0的三个不同的实数根为x =2(x >a ),x =-1(x ≤a ),x =-2(x ≤a ). 再借助数轴,可得-1≤a <2.9.若函数f (x )=x 2+2a |x |+4a 2-3的零点有且只有一个,则实数a =________.答案32解析 令|x |=t ,原函数的零点有且只有一个,即方程t 2+2at +4a 2-3=0只有一个0根或一个0根、一个负根,∴4a 2-3=0,解得a =32或-32,经检验,a =32满足题意.类型五;与求导和函数性质有关1.已知函数()312,02,0x x x f x x x ⎧-≤=⎨->⎩,当(],m x ∈-∞时,()f x 的取值围为[)16,-+∞,则实数m 的取值围是____________.【答案】[]2,8-类型六:数形结合1.若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值围是____________.方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,∵log 2a >12log a ,∴a >1.当a <0时,∵12log ()a ->log 2(-a ),∴0<-a <1,∴-1<a <0.2.(☆)已知函数f (x )=⎩⎨⎧x 2+(4a -3)x +3a ,x <0,log a(x +1)+1,x ≥0 (a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值围是____________.答案 ⎣⎢⎡⎦⎥⎤13,23∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫34解析 由y =log a (x +1)+1在[0,+∞)上递减,得0<a <1.又由f (x )在R 上单调递减,则⎩⎨⎧02+(4a -3)·0+3a ≥f (0)=1,3-4a2≥0,⇒13≤a ≤34. 如图所示,在同一坐标系中作出函数y =|f (x )|和y =2-x 的图象.由图象可知,在[0,+∞)上,|f (x )|=2-x 有且仅有一个解.故在(-∞,0)上,|f (x )|=2-x 同样有且仅有一个解.当3a >2,即a >23时,由x 2+(4a -3)x +3a =2-x (其中x <0),得x 2+(4a -2)x +3a -2=0(其中x <0),则Δ=(4a -2)2-4(3a -2)=0,解得a =34或a =1(舍去);当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件.综上所述,a ∈⎣⎢⎡⎦⎥⎤13,23∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫34.3.已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值围是________. 答案 (3,+∞)解析 如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3.4已知定义域为R 的函数f (x )=⎩⎨⎧1|x -1| (x ≠1),1 (x =1),若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实根x 1,x 2,x 3,则x 21+x 22+x 23=________.答案 5 怪异题解析 作出f (x )的图象,如图所示.由图象知,只有当f (x )=1时有3个不同的实根;∵关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实根x 1,x 2,x 3, ∴必有f (x )=1,从而x 1=1,x 2=2,x 3=0,故可得x 21+x 22+x 23=5.5.已知定义在R 上的函数f (x )满足:①图象关于(1,0)点对称;②f (-1+x )=f (-1-x );③当x ∈[-1,1]时,f (x )=⎩⎪⎨⎪⎧1-x 2,x ∈[-1,0],cos π2x ,x ∈(0,1],则函数y =f (x )-(12)|x |在区间[-3,3]上的零点的个数为________.解析 因为f (-1+x )=f (-1-x ),所以函数f (x )的图象关于直线x =-1对称,又函数f (x )的图象关于点(1,0)对称,如图所示,画出f (x )以及g (x )=(12)|x |在[-3,3]上的图象,由图可知,两函数图象的交点个数为5,所以函数y =f (x )-(12)|x |在区间[-3,3]上的零点的个数为5.6.(考验作图)已知函数f (x )=⎩⎨⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0,若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值围为______. 答案 (1,2)解析 分别作出函数y =f (x )与y =a |x |的图象,由图知,当a <0时,函数y =f (x )与y =a |x |无交点;当a=0时,函数y=f(x)与y=a|x|有三个交点,故a>0.当x>0,a≥2时,函数y=f(x)与y=a|x|有一个交点;当x>0,0<a<2时,函数y=f(x)与y=a|x|有两个交点;当x<0时,若y=-ax与y=-x2-5x-4(-4<x<-1)相切,则由Δ=0得a=1或a=9(舍).因此当x<0,a>1时,函数y=f(x)与y=a|x|有两个交点;当x<0,a=1时,函数y=f(x)与y=a|x|有三个交点;当x<0,0<a<1时,函数y=f(x)与y=a|x|有四个交点.所以当且仅当1<a<2时,函数y=f(x)与y=a|x|恰有4个零点.7.(☆)8.。