分段函数专题(含答案)

合集下载

微专题20 分段函数问题(解析版)

微专题20 分段函数问题(解析版)

微专题20 分段函数问题【题型归纳目录】 题型一:函数三要素的应用 题型二:函数性质与零点的应用 题型三:分段函数的复合题型四:特殊分段函数的表示与应用 【典型例题】题型一:函数三要素的应用例1.已知函数223,0()2,0x x x f x x x x ⎧+=⎨-<⎩,若f (a )()2f a f --(1),则a 的取值范围是( )A .[0,8]B .[8,)+∞C .(-∞,8]D .[8-,8]【解析】解:f (1)4=,f ∴(a )()8f a --,当0a =时,满足条件;0a >时,223[()2]6a a a a +--+-,整理得:8a , (0a ∴∈,8]0a <时,222[()3]8a a a a ----,整理得:8a , (,0)a ∴∈-∞综上可得:(a ∈-∞,8] 故选:C .例2.已知函数22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩,若()f a f -+(a )2f (1),则a 的取值范围是( ) A .(-∞,1][1,)+∞ B .[0,1] C .[1-,0] D .[1-,1]【解析】解:22,0(),0x x e x x f x e x x -⎧+=⎨+<⎩, ()f x ∴为偶函数,()f a f -+(a )2f (1), 2f ∴(a )2f (1), f ∴(a )f (1),当0x 时,函数()f x 为增函数, ||1a ∴,11a ∴-,故选:D .例3.设函数22,0,(),0.x x x f x x x ⎧+<=⎨-⎩若(f f (a ))2,则实数a 的取值范围是( )A .[2-,)+∞B .(-∞,2]-C .(-∞2]D .(2)+∞【解析】解:()y f x =的图象如图所示,(f f (a ))2,f ∴(a )2-,由函数图象可知2a .故选:C .变式1.当函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值时,(x = ) A 6B .26C 66 D .266【解析】解:当1x 时,2()0f x x =; 当1x >时,66()626266f x x x x x=+--=, 当且仅当6x x=,即6x 时等号成立. 2660<,∴函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩取得最小值为266, 对应的x 6. 故选:A .变式2.已知函数()1f x x =-+,0x <,()1f x x =-0x ,则不等式(1)(1)1x x f x +++的解集( )A .{|21}x x-B .{|12}x x +C .{|12}x x <+D .{|12}x x >【解析】解:当10x +<即1x <-时,不等式(1)(1)1x x f x +++同解于 (1)[(1)1]1x x x ++-++即21x -此时1x <-当10x +即1x -时,不等式(1)(1)1x x f x +++同解于 2210x x +-解得1221x --此时121x--总之,不等式的解集为{|21}x x -故选:A .变式3.已知23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则((1))f g -= .【解析】解:根据题意,23,0()(),0x x f x g x x ⎧->=⎨<⎩为奇函数,则(1)(1)g f f -=-=-(1)(13)2=--=, 则((1))f g f -=(2)431=-=-, 故答案为:1.变式4.若函数3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,则f (9)= ,[g f (3)]= ,1[()]9f f = .【解析】解:3,0()(3),0log x x f x f x x >⎧=⎨+⎩,2()g x x =,f ∴(9)3log 92==,[g f (3)3](log 3)g g ==(1)211==, 311[()](log )(2)99f f f f f ==-=(1)3log 10==.故答案为:2;1;0变式5.已知函数10()1x x f x x x -+<⎧=⎨-⎩,则不等式(1)(1)1x x f x +++的解集是 . 【解析】解:由题意22&,1(1)(1)2&,1x x x x f x x x x ⎧-<-+++=⎨+-⎩当0x <时,有21x -恒成立,故得0x < 当0x 时,221x x +,解得2121x-,故得021x-综上得不等式(1)(1)1x x f x +++的解集是(21]-∞- 故答案为(-∞21].变式6.设2,||1(),||1x x f x x x ⎧=⎨<⎩,()g x 是二次函数,若[()]f g x 的值域是[0,)+∞,则()g x 的值域是 .【解析】解:在坐标系中作出函数()21111x x x f x x x ⎧-=⎨-<<⎩或的图象,观察图象可知,当纵坐标在[0,)+∞上时,横坐标在(-∞,1][0-,)+∞上变化, ()f x 的值域是(1,)-+∞,而(())f g x 的值域是[0,)+∞, ()g x 是二次函数()g x ∴的值域是[0,)+∞.故答案为:[0,)+∞. 题型二:函数性质与零点的应用例4.已知函数7(13)10,7(),7x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是()A .11(,)32B .1(3,6]11C .12[,)23D .16(,]211【解析】解:若()f x 是定义域(,)-∞+∞上的单调递减函数, 则满足77011307(13)101a a a a a -<<⎧⎪-<⎨⎪-+=⎩,即0113611a a a ⎧⎪<<⎪⎪>⎨⎪⎪⎪⎩,即16311a <,故选:B .例5.已知函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩是定义域(,)-∞+∞上的单调递减函数,则实数a 的取值范围是() A .15(,)38B .15(,]38C .1(,1)3D .16(,]311【解析】解:函数6(13)10,6(),6x a x a x f x a x --+⎧=⎨>⎩,()f x 是定义域(,)-∞+∞上的单调递减函数,则满足13001681a a a -<⎧⎪<<⎨⎪-⎩,解得1538a <,故选:B .例6.函数21,0()(1),0axax x f x a e x ⎧+=⎨-<⎩在R 上单调,则a 的取值范围为( ) A .(1,)+∞ B .(1,2] C .(,2)-∞ D .(,0)-∞【解析】解:()f x 在R 上单调; ①若()f x 在R 上单调递增,则: 200101(1)a a a a e >⎧⎪>⎨⎪+-⎩; 12a ∴<;②若()f x 在R 上单调递减,则: 01a a <⎧⎨>⎩; a ∴∈∅;a ∴的取值范围为(1,2].故选:B .变式7.已知221,0()(1),0x x x f x f x x ⎧--+<=⎨-⎩,则()y f x x =-的零点有( )A .1个B .2个C .3个D .4个【解析】解:当0x 时,()(1)f x f x =-,()f x ∴在0x 的图象相当于在[1-,0)的图象重复出现是周期函数, [1x ∈-,0)时,22()21(1)2f x x x x =--+=-++对称轴为1x =-,顶点坐标为(1,2)-. 画出函数()y f x =与y x =的图象如图:则()y f x x =-的零点有2个. 故选:B .变式8.已知定义在R +上的函数33103()13949log x x f x log x x x x ⎧-<⎪=-<⎨⎪>⎩,设a ,b ,c 为三个互不相同的实数,满足,f(a )f =(b )f =(c ),则abc 的取值范围为 . 【解析】解:作出()f x 的图象如图: 当9x >时,由()40f x x ==,得16x =, 若a ,b ,c 互不相等,不妨设a b c <<, 因为f (a )f =(b )f =(c ),所以由图象可知039a b <<<<,916c <<, 由f (a )f =(b ),得331log log 1a b -=-, 即33log log 2a b +=,即3log ()2ab =, 则9ab =,所以9abc c =, 因为916c <<, 所以819144c <<, 即81144abc <<,所以abc 的取值范围是(81,144). 故答案为:(81,144).变式9.已知函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩,设a ,b ,c 是三个互不相同的实数,满足f (a )f =(b )f=(c ),则abc 的取值范围为 .【解析】解:作出函数3||,03()13,3log x x f x x x <⎧⎪=⎨+>⎪⎩的图象如图,不妨设a b c <<,则3423c <<+由f (a )f =(b ),得33|log ||log |a b =,即33log log a b -=, 3log ()0ab ∴=,则1ab =,abc ∴的取值范围为(3,423)+.故答案为:(3,423)+.变式10.已知()f x 在R 上是奇函数,且当0x <时,2()f x x x =+,求函数()f x 的解析式. 【解析】解:当0x >时,0x -<, 0x <时,2()f x x x =+,22()()()f x x x x x ∴-=-+-=-, 又()f x 为奇函数,22()()()f x f x x x x x ∴=--=--=-+,∴当0x >时,2()f x x x =-+,又(0)0f =符合上式,综上得,22,0(),0x x x f x x x x ⎧-<=⎨-+⎩.变式11.已知函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,若()h t h >(2),求实数t 的取值范围.【解析】解:函数()(0)h x x ≠为偶函数,且当0x >时,2,04()442,4x x h x x x ⎧-<⎪=⎨⎪->⎩,当4x >时,()42h x x =-递减,且()4h x <-,当04x <时,2()4x h x =-递减,且()[4h x ∈-,0),且0x >,()h x 连续,且为减函数, ()h t h >(2),可得(||)h t h >(2), 即为||2t <,且0t ≠, 解得22t -<<,且0t ≠,则t 的取值范围是(2-,0)(0⋃,2). 题型三:分段函数的复合例7.设函数,0(),0x e x f x lnx x ⎧=⎨>⎩,若对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,则正实数m 的最小值是( ) A .12B .1C .32D .2【解析】解:由已知条件知:2220ma m a +>,∴若0x ,则()0x f x e =>,(())0x f f x lne x ∴==,∴这种情况不存在,若01x <,则()0f x lnx =,(())1lnx f f x e x ∴==,1x >时,()0f x lnx =>,(())()f f x ln lnx R =∈,∴只有(())1f f x >,即2221ma m a +>时,对任意给定的(1,)a ∈+∞,都存在唯一的x R ∈,满足22(())2f f x ma m a =+,(1,)a ∈+∞,221m m ∴+,即2210m m +-,0m >,∴解得12m, ∴正实数m 的最小值是12. 故选:A .例8.已知函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,2()2g x x x =-,若关于x 的方程[()]f g x k =有四个不相等的实根,则实数(k ∈ ) A .1(2,1)B .1(4,1)C .(0,1)D .(1,1)-【解析】解:对于函数12,1()2,1x xx f x x x --⎧⎪=⎨⎪<⎩,当1x 时,()f x 单调递减且1()1f x -<; 当1x <时,()f x 单调递增且0()1f x <<; 故实数k 一定在区间(0,1)之间, 若2()()g x k g x -=;则可化为22()21g x x x k=-=+; 显然有两个不同的根,若()12g x k -=,则22()21log g x x x k =-=+; 故△2444log 0k =++>; 即14k >; 综上所述,实数1(,1)4k ∈;故选:B .例9.已知函数1|(1)|,1()21,1x ln x x f x x -->⎧=⎨+⎩,则方程3(())2[()]04f f x f x -+=的实根个数为( )A .3B .4C .5D .6【解析】解:设()f x t =,可得 3()2()04f t t -+=,分别作出()y f x =和322y x =+的图象, 可得它们有两个交点,即方程3()2()04f t t -+=有两根,一根为10t =,另一个根为2(1,2)t ∈, 由()0f x =,可得2x =; 由2()f x t =,可得x 有3个解,综上可得方程3(())2[()]04f f x f x -+=的实根个数为4.故选:B .变式12.(多选题)已知函数21,0()log ,0kx x f x x x +⎧=⎨>⎩下列是关于函数[()]1y f f x =+的零点的判断,其中正确的是( )A .在(1,0)-内一定有零点B .在(0,1)内一定有零点C .当0k >时,有4个零点D .当0k <时,有1个零点【解析】解:令[()]10f f x +=得,[()]1f f x =-,令()t f x =,则()1f t =-, ①当0k >时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,20t <,由1()f x t =可知,此时有两个解,由2()f x t =可知,此时有两个解,共4个解,即[()]1y f f x =+有4个零点; ②当0k <时,作出函数()f x 的草图如下,由图象可知,此时()1f t =-的解满足101t <<,由1()f x t =可知,此时有1个解,共1个解,即[()]1y f f x =+有1个零点; 综上,选项BCD 正确. 故选:BCD .变式13.(多选题)设函数||,0()(1),0x lnx x f x e x x >⎧=⎨+⎩,若函数()()g x f x b =-有三个零点,则实数b 可取的值可能是( ) A .0B .13C .12D .1【解析】解:函数()()g x f x b =-有三个零点,则函数()()0g x f x b =-=,即()f x b =有三个根, 当0x 时,()(1)x f x e x =+,则()(1)(2)x x x f x e x e e x '=++=+, 由()0f x '<得20x +<,即2x <-,此时()f x 为减函数, 由()0f x '>得20x +>,即20x -<<,此时()f x 为增函数, 即当2x =-时,()f x 取得极小值21(2)f e -=-, 作出()f x 的图象如图: 要使()f x b =有三个根, 则01b <, 故选:BCD .变式14.(多选题)已知定义域为R 的奇函数()f x 满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是()A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,但有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =-E .对任意实数k ,方程()2f x kx -=都有解 【解析】解:因为该函数为奇函数, 所以,222,(2)2322,(20)()0,(0)22,(02)2,(2)23x x x x x f x x x x x x x ⎧<-⎪+⎪----<⎪⎪==⎨⎪-+<⎪⎪>⎪-⎩,该函数图象如下:对于A ;如图所示直线与该函数图象有7个交点,故A 正确; 对于B ;当1211x x -<<<时,函数不是减函数,故B 错误;对于C ;直线1y =,与函数图象交于(1,1),5(2,1,),故当()f x 的最小值为1时,[1a ∈,5]2,故C 正确;对于D ;3()2f x =时,若使得其与()f x m =的所有零点之和为0,则32m =-,或317m =-,故D 错误; 对于E ;当2k =-时,函数()f x 与2y kx =+没有交点.故E 错误. 故选:AC .变式15.(多选题)已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0x ∈,]a 时,()f x 的最小值为1,则5[1,]2a ∈D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【解析】解:函数()f x 是奇函数,∴若2x <-,则2x ->,则2()()23f x f x x -==---,则2()23f x x =+,2x <-. 若20x -<,则02x <-,则2()22()f x x x f x -=++=-, 即2()22f x x x =---,20x -<, 当0x =,则(0)0f =. 作出函数()f x 的图象如图:对于A ,联立222y kxy x x =⎧⎨=-+⎩,得2(2)20x k x -++=, △22(2)844k k k =+-=+-,存在1k <,使得△0>,∴存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根,故A 正确;对于B ,当1211x x -<<<时,函数()f x 不是单调函数,则12()()f x f x >不成立,故B 不正确; 对于C ,当52x =时,52()152232f ==⨯-,则当(0x ∈,]a 时,()f x 的最小值为1,则[1a ∈,5]2,故C 正确;对于D ,函数()f x 是奇函数,若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, ∴函数3()2f x =的根与()f x m =根关于原点对称, 则32m =-,但0x >时,方程3()2f x =有3个根, 设分别为1x ,2x ,3x ,且12302x x x <<<<, 则有23232x =-,得136x =,即3136x =, 122x x +=,则三个根之和为1325266+=, 若关于x 的两个方程3()2f x =与()f x m =所有根的和为0, 则()f x m =的根为256-,此时25263()2561682()36m f =-==-=-⨯-+,故D 错误, 故选:AC .变式16.已知函数2,0,()1,0,x k x f x x x -+<⎧=⎨-⎩其中0k .①若2k =,则()f x 的最小值为 ;②关于x 的函数(())y f f x =有两个不同零点,则实数k 的取值范围是 . 【解析】解:①若2k =,则22,0()1,0x x f x x x -+<⎧=⎨-⎩,作函数()f x 的图象如下图所示,显然,当0x =时,函数()f x 取得最小值,且最小值为(0)1f =-. ②令()m f x =,显然()0f m =有唯一解1m =,由题意,()1f x =有两个不同的零点,由图观察可知,1k <, 又0k ,则实数k 的取值范围为01k <. 故答案为:1-;[0,1). 题型四:特殊分段函数的表示与应用例10.对a ,b R ∈,记{max a ,()}()a ab b b a b ⎧=⎨<⎩,则函数(){|1|f x max x =+,2}()x x R ∈的最小值是( )A 35- B 35+ C 15+D 15-【解析】解:当2|1|x x +,即21x x +或21x x +-, 15152x-+时, (){|1|f x max x ∴=+,2}|1|1x x x =+=+,函数()f x 单调递减,1535()(min f x f --==, 当15x -<(){|1|f x max x =+,22}x x =,函数()f x 单调递减,1535()(min f x f --=, 当15x +2()f x x =,函数()f x 单调递增,1535()(min f x f ++== 综上所述:35()min f x -= 故选:A .例11.已知符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,()()()g x f kx f x =-,其中1k >,则下列结果正确的是( )A .(())()sgn g x sgn x =B .(())()sgn gx sgn x =-C .(())(())sgn g x sgn f x =D .(())(())sgn g x sgn f x =-【解析】解:符号函数1,0()0,01,0x sgn x x x >⎧⎪==⎨⎪-<⎩,1()()3x f x =,11()()()()()33kx x g x f kx f x ∴=-=-,其中1k >,11(())[()()]33kx x sgn g x sgn ∴=-,当0x >时,kx x >,11()()033kx x -<,11(())[()()]133kx x sgn g x sgn =-=-,()1sgn x =;当0x =时,0kx x ==,11()()033kx x -=,(())0sgn g x =,()0sgn x =;当0x <时,kx x <,11()()033kx x ->,11(())[()()]133kx x sgn g x sgn =-=,()1sgn x =-.(())()sgn g x sgn x ∴=-.故选:B .例12.定义全集U 的子集A 的特征函数1,()0,A x Af x x A ∈⎧=⎨∉⎩对于任意的集合A 、B U ⊂,下列说法错误的是()A .若AB ⊆,则()()A B f x f x ,对于任意的x U ∈成立 B .()()()A B A Bf x f x f x =+,对于任意的x U ∈成立 C .()()()A B ABf x f x f x =,对于任意的x U ∈成立D .若UA B =,则()()1A B f x f x +=,对于任意的x U ∈成立【解析】解:对于A ,因为A B ⊆,若x A ∈,则x B ∈, 因为1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 1,()0,B U x Bf x x B∈⎧=⎨∈⎩,而UA 中可能有B 中的元素, 但UB 中不可能有A 中的元素,所以()()A B f x f x ,即对于任意的x U ∈,都有()()A B f x f x 成立, 故选项A 正确; 对于B ,因为1,()0,()ABU x A Bf x x A B ⎧∈⎪=⎨∈⎪⎩, 当某个元素x 在A 中且在B 中, 由于它在AB 中,故()1ABf x =,而()1A f x =且()1B f x =,可得()()()A B A Bf x f x f x ≠+,故选项B 错误; 对于C ,1,1,0,()0,()()ABU U U x A B x A Bf x A B x A B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩,1,1,1,()()0,0,0,()()A B U U U U x A x B x A Bf x f x x A x B x A B ⎧∈∈∈⎧⎧⎪⋅=⋅=⎨⎨⎨∈∈∈⎪⎩⎩⎩,故选项C 正确;对于D ,因为1,()0,U U A x Af x x A ∈⎧=⎨∈⎩,结合1,1,()0,0,A U x Ax A f x x A x A ∈∈⎧⎧==⎨⎨∈∉⎩⎩, 所以()1()B A f x f x =-, 即()()1A B f x f x +=, 故选项D 正确. 故选:B .变式17.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x C A ∈⎧=⎨∈⎩,这里UA 表示集合A 在全集U 中的补集,已A U ⊆,B U ⊆,给出以下结论中不正确的是( ) A .若A B ⊆,则对于任意x U ∈,都有()()A B f x f x B .对于任意x U ∈,都有()1()U C A A f x f x =-C .对于任意x U ∈,都有()()()A B A Bf x f x f x =D .对于任意x U ∈,都有()()()A B A Bf x f x f x =【解析】解:由题意,可得对于A ,因为A B ⊆,可得x A ∈则x B ∈,1,()0,A U x A f x x C A ∈⎧=⎨∈⎩,1,()0,B U x Bf x x C B ∈⎧=⎨∈⎩,而UA 中可能有B 的元素,但UB 中不可能有A 的元素()()A B f x f x ∴,即对于任意x U ∈,都有()()A B f x f x 故A 正确; 对于B ,因为1,0,U U C A x C Af x A ∈⎧=⎨∈⎩,结合()A f x 的表达式,可得1()U C A A f f x =-,故B 正确; 对于C ,1,1,()0,()0,()()A BU U U x A B x A Bf x x C A B x C A C B ⎧⎧∈∈⎪⎪==⎨⎨∈∈⎪⎪⎩⎩1,1,()()0,0,A B U U x Ax Bf x f x x C Ax C B ∈∈⎧⎧==⎨⎨∈∈⎩⎩, 故C 正确; 对于D ,1,()0,()ABU x A B f x x C AB ⎧∈⎪=⎨∈⎪⎩当某个元素x 在A 中但不在B 中,由于它在A B 中,故()1ABf x =,而()1A f x =且()0B f x =,可得()()()A B A Bf x f x f x ≠由此可得D 不正确. 故选:D .变式18.对a ,b R ∈,记,(,),a a bmax a b b a b ⎧=⎨<⎩,函数()(|1|f x max x =+,|2|)()x x R -∈的最小值是 .【解析】解:由题意得, ()(|1|f x max x =+,|2|)x - 11,212,2x x x x ⎧+⎪⎪=⎨⎪-<⎪⎩,故当12x =时,()f x 有最小值13()22f =, 故答案为:32. 变式19.对a ,b R ∈,记{max a ,,},a a b b b a b⎧=⎨<⎩,函数(){|1|f x max x =+,||}()x m x R -∈的最小值是32,则实数m 的值是 .【解析】解:函数(){|1|f x max x =+,||}x m - |1|,|1|||||,|1|||x x x m x m x x m ++-⎧=⎨-+<-⎩, 由()f x 的解析式可得,11()()22m m f x f x --+=-, 即有()f x 的对称轴为12m x -=, 则113()||222m m f -+==, 解得2m =或4-, 故答案为:2或4-.变式20.设函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,其中[]x 表示不超过x 的最大整数,如[ 1.2]2-=-,[1.2]1=,[1]1=,若直线10(0)x ky k -+=>与函数()y f x =的图象恰好有两个不同的交点,则k 的取值范围是 . 【解析】解:画出函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩和函数1()x g x k+=的图象, 若直线1(0)ky x k =+>与函数()y f x = 的图象恰有两个不同的交点, 结合图象可得:1PA PC k k k<, 112(1)3PA k ==--,111(1)2PC k ==--,故11132k <,求得23k <, 故答案为:23k <.【过关测试】 一、单选题1.(2022·辽宁·铁岭市清河高级中学高一阶段练习)若函数()22,14,1x t x f x tx x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则t的最大值为( ) A .32B .53C .74D .95【答案】B【解析】当1x ≤-时,2()2f x x t =-+为增函数,所以当1x >-时,()4f x tx =+也为增函数,所以0124t t t >⎧⎨-+≤-+⎩,解得503t <≤.故t 的最大值为53, 故选:B.2.(2022·云南师大附中高一期中)已知函数()()e e,1ln 21,1xx f x x x ⎧-<⎪=⎨-≥⎪⎩,若关于x 的不等式()()21f ax f ax <+的解集为R ,则实数a 的取值范围为( )A .()()2,11,4--⋃-B .()()1,22,4-C .[)1,2-D .[)0,4【答案】D【解析】当1x <时,()e e x f x =-在(),1-∞上单调递增且()()e e 10xf x f =-<=;当1x ≥时,()()ln 21f x x =-在[)1,+∞上单调递增且()()()ln 2110f x x f =-≥=; 所以()f x 在R 上单调递增,又由()()21f ax f ax <+,则有21ax ax <+,由题,可知210ax ax -+>的解集为R ,当0a =时,20010x x ⋅-⋅+>恒成立,符合题意;当0a ≠时,则有2Δ40a a a >⎧⎨=-<⎩, 解不等式组,得04a <<;综上可得,当[)0,4a ∈时,210ax ax -+>的解集为R . 故选:D.3.(2022·山东省青岛第五十八中学高一期中)已知函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减,则实数a 的取值范围为( ). A .()0,3B .1,32⎡⎫⎪⎢⎣⎭C .2,33⎡⎫⎪⎢⎣⎭D .2,33⎛⎫ ⎪⎝⎭【答案】C【解析】因为函数()()23++2,<1=+,1a x a x f x ax x x --≥⎧⎨⎩在(),-∞+∞上单调递减, ∴3<0>011221+1a a a a a -≤-≥-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得233a ≤<, 即a 的取值范围是2,33⎡⎫⎪⎢⎣⎭,故选:C.4.(2022·山东省青岛第五十八中学高一期中)已知数学符号{}max ,a b 表示取a 和b 中最大的数,若对任意R x ∈,函数()231max 3,,4322f x x x x x ⎧⎫=-++-+⎨⎬⎩⎭,则()f x 的最小值为( )A .5B .4C .3D .2【答案】D【解析】在同一直角坐标系中,画出函数2123313,,4322y x y x y x x =-+=+=-+的图象,根据{}max ,a b 的定义,可得()f x 的图象(实线部分),由()f x 的图象可知,当=1x 时,()f x 最小,且最小值()12f =, 故选:D5.(2022·山西太原·高一阶段练习)设()()2,0=1+++4,>0x a x f x x a x x-≤⎧⎪⎨⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为( ) A .[]0,3 B .()0,3 C .(]0,3 D .[)0,3【答案】A【解析】当0x >时,由基本不等式可得()114246f x x a x a a x x=+++≥⋅+=+, 当且仅当=1x 时,等号成立;当0x ≤时,由于()()0f x f ≥,则0a ≥,由题意可得()()2min 06f x f a a ==≤+,即260a a --≤,解得23a -≤≤,故03a ≤≤.因此,实数a 的取值范围是[]0,3. 故选:A.6.(2022·福建·厦门双十中学高一阶段练习)已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是( )A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭【答案】C【解析】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,联立2=+2=y x y x -⎧⎨⎩,解得=2=2x y --⎧⎨⎩或=1=1x y ⎧⎨⎩,故12x =-,21x =,所以()2,2=+2,2<<1,>1x x h x x x x x ≤---⎧⎪⎨⎪⎩,又由()74h x >可知,其解集为()h x 的函数值比74大的那部图像的所在区间,结合图像易得,()74h x >的解集为{34<<x x x x 或}5>x x联立2=+27=4y x y -⎧⎪⎨⎪⎩,解得1=27=4x y -⎧⎪⎪⎨⎪⎪⎩或1=27=4x y ⎧⎪⎪⎨⎪⎪⎩,故312x =-,412x =,联立=7=4y x y ⎧⎪⎨⎪⎩,解得7=47=4x y ⎧⎪⎪⎨⎪⎪⎩,故574x =,所以()74h x >的解集为11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭.故选:C..7.(2022·浙江·高一阶段练习)设函数1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,则方程2(1)4x f x -=-的解为( )A .2x =-B .3x =-C .=2xD .=3x【答案】A【解析】因为1,>0()=0,=0-1,<0x f x x x ⎧⎪⎨⎪⎩,由2(1)4x f x -=-知,2-1>01=-4x x ⋅⎧⎨⎩,2-1=00=-4x x ⋅⎧⎨⎩,2-1<0(-1)=-4x x ⋅⎧⎨⎩, 解得2x =-. 故选:A .8.(2022·湖北黄石·高一期中)已知函数()f x x x =,若对任意[,1]x t t ∈+,不等式()24()f x t f x +≤恒成立,则实数t 的取值范围是( ) A .15[-- B .15-+ C .1515[---+ D .15[-+ 【答案】B【解析】()22,0,0x x f x x x x x ⎧≥⎪==⎨-<⎪⎩,因为2yx 在0x ≥上单调递增,2y x =-在0x <上单调递增,所以()f x x x =在R 上单调递增,因为)24(2)4(2x x x x x x f f ===,且()24()f x t f x +≤,所以()2(2)f x t f x +≤,所以22x t x +≤,即()222110x x t x t -+=-+-≤在[,1]x t t ∈+恒成立,所以()()22201210t t t t t t ⎧-+≤⎪⎨+-++≤⎪⎩即22010t t t t ⎧-≤⎪⎨+-≤⎪⎩,解得150t -+≤≤, 所以实数t 的取值范围是15-+, 故选:B9.(2022·江西·于都县新长征中学高一阶段练习)已知函数()21,=,2x c f x xx x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( ) A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【答案】A【解析】当=2x 时,()()221112422,244f f x x x x ⎛⎫=-==-=--≥- ⎪⎝⎭,()f x 值域为1,2,4⎡⎤-∴⎢⎥⎣⎦当x c <时,由()12f x x =-=,得12x =-,此时12c ≤-,由()22f x x x =-=,得220x x --=,得=2x 或=1x -,此时112c -≤≤-,综上112c -≤≤-,即实数c 的取值范围是11,2⎡⎤--⎢⎥⎣⎦,故选:A 二、多选题10.(2022·浙江省永嘉县碧莲中学高一期中)我们用符号min 示两个数中较小的数,若x ∈R ,(){}2min 2,f x x x =-,则()f x ( )A .最大值为1B .无最大值C .最小值为1-D .无最小值【答案】AD【解析】在同一平面直角坐标系中画出函数22y x =-,y x =的图象,如图:根据题意,图中实线部分即为函数()f x 的图象. 由22x x -=,解得12x =-,21x =,所以()222,2,212,1x x f x x x x x ⎧-≤-⎪=-<≤⎨⎪->⎩,∴当1x =时,()f x 取得最大值,且()max 1f x =,由图象可知()f x 无最小值, 故选:AD.11.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度可以是( )A .74B .72C .114D .1【答案】AD【解析】令23333x x x -+≤--+①,当3x ≥时,不等式可整理为2230x x --≤,解得13x -≤≤,故3x =符合要求, 当3x <时,不等式可整理为2430x x -+≤,解得13x ≤≤,故13x ≤<, 所以不等式①的解为13x ≤≤;由上可得,不等式23333x x x -+>--+的解为1x <或3x >, 所以()233,1333,13x x x f x x x x ⎧-+≤≤⎪=⎨--+⎪⎩或,令23334x x -+=,解得32x =,令27334x x -+=,解得52x =或12, 令3334x --+=,解得34x =或214,令7334x --+=,解得74x =或174,所以区间[],m n 的最小长度为1,最大长度为74.故选:AD.12.(2022·四川省宣汉中学高一阶段练习)设函数()y f x =的定义域为R ,对于任意给定的正数m ,定义函数(),()(),()m f x f x m f x m f x m ≥⎧=⎨<⎩,若函数()2211f x x x =-++,则下列结论正确的是( )A .()338f =B .()3f x 的值域为[]3,12C .()3f x 的单调递增区间为[]2,1-D .()31f x +的图像关于原点对称【答案】ABC【解析】由22113x x -++≥, 解得:24x -≤≤,故23211,24()3,42x x x f x x x ⎧-++-≤≤=⎨><-⎩或,A .23(3)323118f =-+⨯+=,本选项符合题意;B .当24x -≤≤时,2321112x x ≤-++≤; 当42x x -或><时,3()3f x =, 故值域为[3,12],本选项符合题意;C .当24x -≤≤时,23()211f x x x =-++,图像开口向下,对称轴为1x =, 故3()f x 在[]2,1-上单调递增,本选项符合题意;D .2312,33(1)3,33x x y f x x x ⎧-+-≤≤=+=⎨><-⎩或,故函数3(1)y f x =+为偶函数,本选项不符合题意.故选:ABC .13.(2022·福建·厦门双十中学高一阶段练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(LEJBrouwer ),简单的讲就是对于满足一定条件的图象不间断的函数()f x ,存在一个点0x ,使()00=f x x ,那么我们称该函数为“不动点”函数,0x 为函数的不动点,则下列说法正确的( )A .()1f x x x -=为“不动点”函数B .()253f x x x -=+的不动点为2±C .()221,1=2,>1x x f x x x ≤⎧-⎪⎨-⎪⎩为“不动点”函数D .若定义在R 上有且仅有一个不动点的函数()f x 满足()()()22f f x x x f x x x --+=+,则()2+1f x x x -= 【答案】ABC【解析】对于A ,令()f x =x ,得1x x x -=,解得2x =22f =⎝⎭(有一个满足足矣),所以()1f x x x-=为“不动点”函数,故A 说法正确;对于B ,令()f x =x 253x x x -+=253x +=,即259x +=,解得2x =±,即()22f =和()22f -=-,所以()253f x x x -=+的不动点为2±,故B 说法正确;对于C ,当1x ≤时,()221f x x -=,令()f x =x ,得221x x -=,解得12x =-或=1x ;当1x >时,()2f x x -=,令()f x =x ,得2x x -=,即2x x -=±,解得=1x (舍去); 综上:1122f ⎛⎫-=- ⎪⎝⎭和()11f =,所以()f x 为“不动点”函数,故C 说法正确;对于D ,不妨设该不动点为t ,则()f t t =,则由()()()22f f x x x f x x x --+=+得()()()22f f t t t f t t t --+=+,即()22++f t t t t t t --=,整理得()2222f t t t t --+=+,所以22t t -+也是()f x 的不动点,故22t t t -+=,解得=0t 或1t =-,即0,1都是()f x 的不动点,与题设矛盾,故D 说法错误. 故选:ABC 三、填空题14.(2022·广东·高一期中)已知函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义在R 上的增函数,则a 的取值范围是________. 【答案】)1,2⎡⎣【解析】由已知,函数(2),1(),1aa x x f x x x -<⎧=⎨≥⎩是定义为在R 上的增函数, 则(2)y a x =-为单调递增函数,a y x =为单调递增函数,且(2)11a a -⨯≤,所以20021a a a ->⎧⎪>⎨⎪-≤⎩,解得12a ≤<,所以a 的取值范围是:)1,2⎡⎣. 故答案为:)1,2⎡⎣.15.(2022·山西·晋城市第一中学校高一阶段练习)若函数222,0(),0x ax x f x bx x x ⎧+≥=⎨+<⎩为奇函数,则a b +=__________. 【答案】1-【解析】利用奇函数的定义()()f x f x -=-,求.当0x <时,则0x ->,所以222()2()()f x x ax f x bx x bx x -=-=-=-+=--, 所以2b =-,1a =,即2,1b a =-= 故1a b +=-. 故答案为:1-.16.(2022·安徽淮南·高一阶段练习)若函数()()2,113,1ax x x f x a x a x ⎧-<⎪=⎨--≥⎪⎩满足对1x ∀,2x ∈R ,且12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】21,52⎡⎤⎢⎥⎣⎦【解析】根据题意,任意实数12x x ≠都有()()12120f x f x x x -<-成立,所以函数()f x 是R 上的减函数,则分段函数的每一段单调递减且在分界点处113a a a -≥--,所以0112130113a a a a a a ≥⎧⎪-⎪-≥⎪⎨⎪-<⎪-≥--⎪⎩,解得2152a ≤≤,所以实数a的取值范围是21,52⎡⎤⎢⎥⎣⎦.故答案为:21,52⎡⎤⎢⎥⎣⎦17.(2022·广东·深圳市高级中学高一期中)已知()22f x x x =-,()1g x x =+,令()()(){}max ,M x f x g x =,则()M x 的最小值是___________.513- 【解析】令221x x x -≥+,解得313x +≥313x -≤ 则()()(){}23133132,max ,313313x x x x M x f x g x x x ⎧+--≥⎪⎪==⎨-+⎪+<<⎪⎩,当313x +≥313x -≤()min 313513M x M --==⎝⎭, 313313x -+<<513- 513- 513- 四、解答题18.(2022·四川·宁南中学高一阶段练习)已知函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩.(1)求12f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;【解析】(1)函数()f x 的解析式()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩. 11115222f ⎛⎫∴=+= ⎪⎝⎭,11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)因为()3+5,0=+5,0<<12+8,>1x x f x x x x x ≤-⎧⎪⎨⎪⎩且()2f a =,所以3+5=20a a ≤⎧⎨⎩,解得1a =-;或+5=20<<1a a ⎧⎨⎩,解得3a =-(舍去); 或2+8=2>1a a -⎧⎨⎩,解得=3a .综上:1a =-或=3a .19.(2022·浙江·玉环市玉城中学高一阶段练习)(1)已知函数()f x 是一次函数,且满足()()3+121=2+17f x f x x --,求()f x 的解析式;(2)已知函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩①求()2f ,()()1f f -②若()3f a =,求a 的值【解析】(1)设()=+,0f x kx b k ≠,则:()+1=++f x kx b k ,()1=+f x kx b k --,故()()3++2+=2+17kx b k kx b k x --,即++5=2+17kx b k x ,故=2k ,=7b .所以()27f x x =+(2)函数()2+2,1=,1<<22,2x x f x x x x x ≤≥⎧⎪⎨⎪⎩,①()2=2?2=4f ,()()()()1=1+2=1=3f f f f --.②当1a ≤时,()=+2=3f a a ,解得=1a ,成立;当12a <<时,()2==3f a a ,解得3a =3a =-;当2a ≥时,()=2=3f a a ,解得3=2a (舍去). 故a 31. 20.(2022·辽宁·高一阶段练习)已知函数()22122f x x x a a =+++,()22122g x x x a a =-+-,R a ∈.设函数()()()()()()(),,f x f x g x M x g x g x f x ⎧≥⎪=⎨>⎪⎩. (1)若1a =,求()M x 的最小值;(2)若()M x 的最小值小于52,求a 的取值范围. 【解析】(1)由题意可得,当()()f x g x ≥时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+≥ ⎪⎝⎭,当()()f x g x <时,()()2222112224022f x g x x x a a x x a a x a ⎛⎫-=+++--+-=+< ⎪⎝⎭, 所以()()(),2,,2.f x x a M x g x x a ⎧≥-⎪=⎨<-⎪⎩当1a =时,()2213,2,211, 2.2x x x M x x x x ⎧++≥-⎪⎪=⎨⎪--<-⎪⎩作出()M x 的图象,如图1: 由图可知()M x 的最小值为()512f -=.(2)()222212,2,212,2,2x x a a x a M x x x a a x a ⎧+++≥-⎪⎪=⎨⎪-+-<-⎪⎩且()f x ,()g x 图象的对称轴分别为直线=1x -,1x =.①如图2,当21a -≤-,即12a ≥时,()M x 在(),1-∞-上随x 的增大而减小,在()1,-+∞上随x 的增大而增大,所以()()2min 1122M x f a a =-=+-,由215222a a +-<,解得31a -<<,故112a ≤<.②如图3,当121a -<-≤,即1122a -<≤时,()M x 在(),2a -∞-上随x 的增大而减小,在()2,a -+∞上随x 的增大而增大,所以()()2min 23M x f a a =-=,则2532a <,解得3030a <<1122a -<≤.③如图4,当21a ->,即12a <-时,()M x 在(),1-∞上随x 的增大而减小,在()1,+∞上随x 的增大而增大,所以()()2min 1122M x g a a ==--,由215222a a --<,解得13a -<<,故112a -<<-. 综上,a 的取值范围为()1,1-.21.(2022·全国·高一课时练习)定义域为R 的函数f (x )满足2(f x f x k k ∈Z)()=(+)及f (-x )=-f (x ),且当()0,1x ∈时2()41xx f x =+.(1)求()f x 在[1,1]-上的解析式;(2)求()f x 在[]21)1,2(k k k Z -+∈上的解析式;(3)求证:()f x 在区间()0,1上单调递减.【解析】(1)∵当(1,0)x ∈-时,(0,1)x , ∴22()()4141x xx x f x f x --=--=-=-++. 由题意,知(0)0f =,又()()11f f -=-,()()()1121f f f -=-+=, ∴()()110f f -==,∴()()()2,1,0412,0,1410,1,0,1xx xx x f x x x ⎧-∈-⎪+⎪⎪=∈⎨+⎪=-⎪⎪⎩,(2)当[21,21]x k k ∈-+时,2[1,1]x k -∈-, ∴()()()22222,21,2412()(2),2,21410,21,2,21x kx k x kx k x k k f x f x k x k k k Z x k k k ----⎧-∈-⎪+⎪⎪=-=∈+∈⎨+⎪=-+⎪⎪⎩(3)设任意的1x ,2(0,1)x ∈,且12x x <, ∵2211221212122(22)(21)()()4141(41)(4)x x x x x x x x x x f x f x ++---=-=+++,且21220x x ->,12210x x +->, ∴12()()f x f x >,即()f x 在区间()0,1上单调递减.。

2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题)经典题提分练习一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .54.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x ax a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( )A .3B .4C .5D .67.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x a x ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( ) A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)7,2,28⎫⋃+∞⎪⎪⎝⎭D.7,228⎛⎫⎡⎤⋃ ⎪⎢⎥ ⎪⎣⎦⎝⎭ 8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( )A .4B .5C .6D .7二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( )A .1B .74C .2D .313.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( )A .0B .14-C .13-D .15-18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________.20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0x x x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________.29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0xx x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.参考答案一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0- B .[)1,-+∞ C .(),0∞- D .(],1-∞【答案】A【答案解析】()()0()g x f x m f x m =+=⇔=-Q()g x ∴存在两个零点,等价于y m =-与()f x 的图象有两个交点,在同一直角坐标系中绘制两个函数的图象:由图可知,保证两函数图象有两个交点,满足01m <-≤,解得:[)1,0m ∈- 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减;当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π, 作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( ) A .1B .3C .4D .5【答案】D【答案解析】当0x >时,0x -<,()3f x x -=当0x <时,0x ->,()e xf x --=()()()3e ,00,0e 3,0x x x x g x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【答案解析】当0a ≤时,对任意的0x ≥,()()22212f x x a x a =-+++在[)0,∞+上至多2个零点,不合乎题意,所以,0a >.函数()22212y x a x a =-+++的对称轴为直线12x a =+,()()22214247a a a ∆=+-+=-. 所以,函数()f x 在1,2a a ⎡⎫+⎪⎢⎣⎭上单调递减,在1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,且()2f a a =-.①当470a ∆=-<时,即当704a <<时,则函数()f x 在[),a +∞上无零点, 所以,函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有5个零点,当0x a ≤<时,111222a x a -≤-+<,则()11222a x a πππ⎛⎫-≤-+< ⎪⎝⎭,由题意可得()5124a πππ-<-≤-,解得532a ≤<,此时a 不存在;②当Δ0=时,即当74a =时,函数()f x 在7,4⎡⎫+∞⎪⎢⎣⎭上只有一个零点, 当70,4x ⎡⎫∈⎪⎢⎣⎭时,()2cos 2f x x π=-,则7022x ππ≤<,则函数()f x 在70,4⎡⎫⎪⎢⎣⎭上只有3个零点,此时,函数()f x 在[)0,∞+上的零点个数为4,不合乎题意;③当()20Δ470f a a a ⎧=-≥⎨=->⎩时,即当724a <≤时,函数()f x 在[),a +∞上有2个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有3个零点,则()3122a πππ-<-≤-,解得322a ≤<,此时724a <<; ④当()20Δ470f a a a ⎧=-<⎨=->⎩时,即当2a >时,函数()f x 在[),a +∞上有1个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有4个零点,则()4123a πππ-<-≤-,解得522a ≤<,此时,522a <<.综上所述,实数a 的取值范围是75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:D.5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭【答案】B【答案解析】()()11,111,1x x x f x x x ⎧--≤⎪-=⎨->⎪⎩,故()()1,11111,1x x x f x x x ⎧-≤⎪-+=⎨-+>⎪⎩,则函数()()11g x f x ax =--+恰有2个零点等价于()11f x ax -+=有两个不同的解, 故()11,y f x y ax =-+=的图象有两个不同的交点,设()()()()1,01111,011,1x x x g x f x x x x x x ⎧⎪-≤≤⎪=-+=--<⎨⎪⎪-+>⎩又(),y g x y ax ==的图象如图所示,由图象可得两个函数的图象均过原点,若0a =,此时两个函数的图象有两个不同的交点, 当0a ≠时,考虑直线y ax =与()()201g x x x x =-≤≤的图象相切,则由2ax x x =-可得()2100a ∆=--=即1a =, 考虑直线y ax =与()11(1)g x x x=-+≥的图象相切,由11ax x =-+可得210ax x -+=,则140a ∆=-=即14a =.考虑直线y ax =与()2(0)g x x x x =-≤的图象相切,由2ax x x =-可得()2100a ∆=+-=即1a =-, 结合图象可得当114a <<或1a <-时,两个函数的图象有两个不同的交点, 综上,114a <<或1a <-或0a =, 故选:B.6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( ) A .3B .4C .5D .6【答案】B【答案解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e <<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞, 当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞, 所以,()g x 的零点等价于()f t 与=2y -交点横坐标t 对应的x 值,如下图示:由图知:()f t 与=2y -有两个交点,横坐标11t =-、201t <<: 当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个. 故选:B7.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x ax ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( )A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)72,8⎫⋃+∞⎪⎪⎝⎭D.7,28⎫⎡⎤⋃⎪⎢⎥⎪⎣⎦⎝⎭ 【答案】A【答案解析】①若2x =是一个零点,则需要2()43()f x x ax x a =-+> 只有一个零点, 即有2a ≥,且此时当x a >时,需要2430()x ax x a -+=>只 有一个实根, 而221612162120a ∆=-≥⨯-> ,解方程根得2x a =±,易得2a 2a <<<2a 即当2a ≥ 时, ()f x 恰有 2个零点,122,2x x a ==. ②若2x =不是函数的零点,则2x a =为函数的 2 个零点,于是22Δ161202a a a a ⎧<⎪=->⎨⎪<⎩ ,解得:1.2a << 综上:[)2,2a ∞⎛⎫∈⋃+ ⎪ ⎪⎝⎭.故选:A.8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<【答案】D【答案解析】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11e e f ⎛⎫=- ⎪⎝⎭,且10e x <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10ek -<<,故选:D .9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --【答案】B【答案解析】由题设,画出[0,)+∞上()f x 的大致图象,又()f x 为奇函数,可得()f x 的图象如下:()F x 的零点,即为方程()0f x a -=的根,即()f x 图像与直线y a =的交点.由图象知:()f x 与y a =有5个交点:若从左到右交点横坐标分别为12344,,,,x x x x x , 1、12,x x 关于3x =-对称,126x x +=-;2、30x <且满足方程()()()333f x a f x a f x a =⇒-=-⇒-=-即()132log 1x a -+=,解得:312a x =-;3、45,x x 关于3x =轴对称,则456x x +=;1234512∴++++=-a x x x x x 故选:B10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( ) A .4B .5C .6D .7【答案】A【答案解析】令(),()0t f x F x ==,则3()202f t t --=, 作出()y f x =的图象和直线32+2y x =,由图象可得有两个交点,设横坐标为12,t t ,∴120,(1,2)t t =∈.当1()f x t =时,有2x =,即有一解;当2()f x t =时,有三个解, ∴综上,()0F x =共有4个解,即有4个零点. 故选:A 二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【答案解析】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( ) A .1B .74C .2D .3【答案】BD【答案解析】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--≥-=⎨<⎩ , ∵函数()()y f x g x =-恰好有两个零点,∴方程()()0f x g x -=有两个解,即()(2)0f x f x b +--=有两个解, 即函数()(2)y f x f x =+-与y b =的图象有两个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩ ,作函数()(2)y f x f x =+-与y b =的图象如下, 当12x =-和52x =,即115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,当724b <≤时,有不止两个交点, 当2b >或74b =时,满足函数()(2)y f x f x =+-与y b =的图象有两个交点, 当74b <时,无交点, 综上,2b >或74b =时满足题意,故选:BD.13.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【答案解析】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对; 对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 【答案】AD【答案解析】()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确. 故选:AD .15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点【答案】AC【答案解析】当0a >时,令()f x t =,由()10f t +=,解得13t =或3t =或2t a=-. 作出函数()f x 的图象,如图1所示,易得()f x t =有4个不同的实数解, 即当0a >时,()g x 有4个零点.故A 正确,B 错误; 当a<0时,令()f x t =,所以()10f t +=,解得13t =或3t =或2t a=-(舍) 作出函数()f x 的图象,如图2所示,易得()f x t =有1个实数解, 即当a<0时,()g x 有1个零点.故C 正确,D 错误. 故选:AC.16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;【答案】ACD【答案解析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==-.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x -≤-=--=.故A 正确; 对于B :因为151111,,222222kf f f k ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以111?121511*********k k f f f k +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- .故B 错误; 对于C :由1()(2)2f x f x =-,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =--的定义域为()1,+∞.作出()y f x =和ln(1)y x =-的图象如图所示:当2x =时,sin2ln10y π=-=;当12x <<时,函数()y f x =与函数()ln 1y x =-的图象有一个交点;当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪->⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =-的图象有一个交点,所以函数()ln(1)y f x x =--有3个零点.故D 正确.故选:ACD17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD【答案解析】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解,当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >, ∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg 20.30103≈) 故选:BD18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16【答案】AD【答案解析】函数f (x )的零点即为方程f (x )=0的解.当m =1时,解方程f (x )=0,当x <2时,4x ﹣1=0,解得:x =0; 当x ≥2时,2021(x ﹣1)(x ﹣3)=0,解得:x =1或3,只取x =3. ∴函数有两个零点0或3.∴A 对;当m =2时,解方程f (x )=0,当x <2时,4x ﹣2=0,解得:x =12; 当x ≥2时,2021(x ﹣2)(x ﹣6)=0,解得:x =2或6. ∴函数有三个零点12或2或6.∴B 错;当m =15时,解方程f (x )=0,当x <2时,4x ﹣15=0,解得:x =log 415<2; 当x ≥2时,2021(x ﹣15)(x ﹣45)=0,解得:x =15或45. ∴函数有三个零点log 415或15或45.∴C 错;当m =16时,解方程f (x )=0,当x <2时,4x ﹣16=0,解得:x =2不成立; 当x ≥2时,2021(x ﹣16)(x ﹣48)=0,解得:x =16或48. ∴函数有两个零点16或48.∴D 对; 故选:AD .三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________. 【答案】50m -<<【答案解析】由答案解析式知:在[0,1]上()f x 为增函数且()[,5]f x m m ∈+, 在(1,)+∞上,0m ≠时()f x 为单调函数,0m =时()5f x =无零点, 故要使()f x 有两个不同的零点,即1x =两侧各有一个零点,所以在(1,)+∞上()f x 必递减且()(,5)f x m ∈-∞+,则050m m <⎧⎨+>⎩,可得50m -<<.故答案为:50m -<<20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.【答案】)⎡⎡⎣⎣【答案解析】令()t f x =,则()()g x f t =,由于函数()[()]g x f f x =在R 上有三个不同的零点,所以()()0g x f t ==必有两解,所以20a -≤<或2a ≥.当20a -≤<时,()f x 的图像如下图所示,由图可知,()y f t =必有两个零点122,0t t =-=,由于()2f x t =有两个解,所以()1f x t =有一个解,即242a -≤-,解得0a ≤<.当2a ≥时,()f x 的大致图像如下图所示,()y f t =必有两个零点342,2t t =-=,由于()3f x t =有两个解,所以()4f x t =有一个解,所以242a -<,解得2a ≤<综上所述,实数a 的取值范围是)⎡⎡⎣⎣ .故答案为:)⎡⎡⎣⎣21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【答案解析】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩, 因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点,,0y ax x =->与ln y x =必有2个交点, 设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______. 【答案】[]32,28--【答案解析】设(]4,8x ∈,则(]40,4x -∈,则[]6()(4)44(4)422x f x f x f x -=-+=-=-,设(]8,12x ∈,则(]80,4x -∈,则[][]()(4)44(4)4(8)4f x f x f x f x =-+=-=-+1016(8)1622x f x -=-=-,则(](](]2610220,4()4224,816228,12x x x x f x x x ---⎧-∈⎪⎪=-∈⎨⎪-∈⎪⎩,,,,则(3)(7)(11)0f f f ===,函数()f x 图象如下:由2()()()0g x f x t f x =+⋅=,可得()0f x =,或()f x t =-, 由()0f x =,可得3x =,或7x =,或11x =,则()f x t =-仅有一根,又(8)f =810162228--=,(12)f =1210162232--=, 则2832t ≤-≤,解之得3228t -≤≤-, 故答案为:3228t -≤≤-.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.【答案】12【答案解析】当0x ≥时,令()e 10xf x =-=,解得0x =,故()f x 在[)0+∞,上恰有1个零点,即方程20ax x a ++=有1个负根.当0a =时,解得0x =,显然不满足题意;当0a ≠时,因为方程20ax x a ++=有1个负根,所以2Δ140.a =-≥ 当2Δ140a =-=,即12a =±时,其中当12a =时,211022x x ++=,解得=1x -,符合题意;当12a =-时,211022x x -+-=,解得1x =,不符合题意; 当2140a ∆=->时,设方程20ax x a ++=有2个根1x ,2x ,因为1210x x =>,所以1x ,2x 同号, 即方程20ax x a ++=有2个负根或2个正根,不符合题意.综上,12a =.故答案为:0.5.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________. 【答案】12m <≤【答案解析】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标, 当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点, 所以实数m 的取值范围是:12m <≤. 故答案为:12m <≤25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.【答案】14322---,,, 【答案解析】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解.由方程②可得320t t -=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x ---=解得4x =-或2x =-;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x ---=,解得3x =-.综上,函数()h x 的零点为14322---,,,,共四个零点. 故答案为:14322---,,,. 26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____ 【答案】11(,)505504-【答案解析】由函数在[0,4)x ∈上的答案解析式作出如图所示图像,由(4)()f x f x a +=+知,函数()f x 是以4为周期,且每个周期上下平移|a |个单位的一个函数,若使[0,2021]x ∈时,存在R k ∈,方程()()g x f x k =+在[0,2021]x ∈上恰有2021个零点,等价于()f x k =-在[0,2021]x ∈上恰有2021个交点,如图所示,知在每个周期都有4个交点,即(1,2)k -∈时满足条件,且必须每个周期内均应使k -处在极大值和极小值之间,才能保证恰有2021个交点, 则当0a ≥时,需使最后一个完整周期[2016,2020)中的极小值(2018)2f <, 即(2018)(2)50415042f f a a =+=+<,解得1504a <,即1[0,504a ∈ 当a<0时,需使最后一个极大值(2021)1f >, 即(2021)(1)50525051f f a a =+=+>,解得1505a >-,即1(,0)505a ∈-, 综上所述,11(,505504a ∈-故答案为:11,505504⎛⎫- ⎪⎝⎭27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.【答案】10,4⎛⎫⎪⎝⎭【答案解析】当0x <时,令()0f x =可得:21k x =, 当0x >时,令()0f x =可得:21x k x-=,令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩, 若01x <<,()21x g x x -+=, ()320x g x x -'=<,()g x 为减函数, 若1x ≥,()21x g x x -=, ()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数, 若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<, 故答案为:10,4⎛⎫ ⎪⎝⎭. 28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________. 【答案】3(21)2n - 【答案解析】当312x ≤≤时,f (x )=8x ﹣8, 所以()218()82g x x =--,此时当32x =时,g (x )max =0; 当322x ≤<时,f (x )=16﹣8x ,所以g (x )=﹣8(x ﹣1)2+2<0; 由此可得1≤x ≤2时,g (x )max =0.下面考虑2n ﹣1≤x ≤2n 且n ≥2时,g (x )的最大值的情况. 当2n ﹣1≤x ≤3•2n ﹣2时,由函数f (x )的定义知()11112222n n x x f x f f --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 因为13122n x-≤≤, 所以()22251(2)82n n g x x --=--, 此时当x =3•2n ﹣2时,g (x )max =0;当3•2n ﹣2≤x ≤2n 时,同理可知,()12251(2)802n n g x x --=--+<.由此可得2n ﹣1≤x ≤2n 且n ≥2时,g (x )max =0. 综上可得:对于一切的n ∈N *,函数g (x )在区间[2n ﹣1,2n ]上有1个零点, 从而g (x )在区间[1,2n ]上有n 个零点,且这些零点为232n n x -=⋅,因此,所有这些零点的和为()3212n -. 故答案为()3212n -. 29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0x x x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________【答案】23a <≤.【答案解析】函数()f x 当0x >时是对勾函数,因为112x x x x -+=+≥=,当且仅当10x x x ⎧=⎪⎨⎪>⎩即1x =时,取最小值.所以函数最小值为2,且在(0,1)上为减函数,在(1,)+∞上为增函数.当0x ≤时,2x y -= 是减函数,且21x -≥,所以2x y -=-为增函数,且21x --≤-,所以函数()42x f x -=-为增函数,且()3f x ≤,函数图像如图所示.令32t x =-,函数(32)y f x a =--恰有三个不同的零点,可以看成函数()y f t a =-恰有三个不同的零点,函数()f t 的图像与直线y a =有三个交点.由图像可知23a <≤.30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.【答案】01m ≤<【答案解析】当0x ≥时,2'()121212(1)f x x x x x =-=-,在区间()0,1上,()()'0,f x f x <单调递减,在区间()1,+∞上,()()'0,f x f x >单调递增,故函数在1x =处取得极小值()11f =-,据此绘制函数()f x 的图像如图所示,结合函数图像和题意可知原问题等价于函数232y x x =-与函数y m =有两个交点,且交点的横坐标的范围分别位于区间(]1,0-和区间()0,1内,观察二次函数的图像可得m 的范围是01m ≤<.。

初二分段函数试题及答案

初二分段函数试题及答案

初二分段函数试题及答案一、选择题1. 下列哪个选项表示分段函数?A. y = x^2B. y = 3x + 1C. y = |x|D. y = x/x答案:C2. 若分段函数f(x)的定义为:\[f(x) = \begin{cases}x + 1 & \text{if } x < 0 \\x^2 & \text{if } x \geq 0\end{cases}\]则f(-1)的值为多少?A. 0B. 1C. 2D. -2答案:A二、填空题1. 函数y = \begin{cases}x - 3 & \text{if } x > 2 \\\end{cases} 在x = 2时的值为______。

答案:52. 给定分段函数g(x) = \begin{cases}x^2 - 4x + 3 & \text{if } x < 2 \\-x + 5 & \text{if } x \geq 2\end{cases},若g(3) = 2,则g(1)的值为______。

答案:0三、解答题1. 已知分段函数h(x) = \begin{cases}x^2 - 2x + 1 & \text{if } x \leq 1 \\x + 2 & \text{if } x > 1\end{cases},求h(0)和h(2)的值。

答案:h(0) = 1,h(2) = 42. 定义分段函数f(x) = \begin{cases}x + 3 & \text{if } x < 0 \\2x & \text{if } 0 \leq x \leq 2 \\x - 1 & \text{if } x > 2\end{cases},求f(-1)、f(1)和f(3)的值。

答案:f(-1) = 2,f(1) = 2,f(3) = 2四、综合题1. 函数p(x) = \begin{cases}x^3 & \text{if } x < 0 \\\end{cases},求p(-2)和p(4)的值,并讨论函数在x = 0处的连续性。

分段函数、解析式与图像含详解答案

分段函数、解析式与图像含详解答案

解析式、分段函数、函数图像作业题型一分段函数1.已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为2.设函数23,0()(2),0x x x f x f x x ⎧+≥=⎨+<⎩,则(3)f -=_____3.设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a =4.分段函数已知函数3,0,()4,0.x x f x x x -+≤⎧=⎨>⎩(1)画函数图像(2)求((1))f f -;(3)若0()2f x >,求0x 的取值范围.题型二解析式1.求下列函数的解析式(1)已知2()f x x x =+,求(1)f x -的解析式(2)若1)f x +=+()f x 的解析式(3)如果1f x ⎛⎫ ⎪⎝⎭=1x x-,则当x ≠0,1时,求()f x 的解析式(4)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式2.求下列函数的解析式(1)已知函数()f x 是一次函数,若()48f f x x =+⎡⎤⎣⎦,求()f x 的解析式;(2)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +-=,求()f x 的解析式(3)已知函数f (x )+2f (-x )=x 2+2x,求()f x 的解析式.(4)已知函数()f x 的定义域是一切非零实数,且满足13()24f x f x x ⎛⎫+=⎪⎝⎭.求()f x 的解析式.3.已知函数()21f x x =-,2,0,(){1,0,x x g x x ≥=-<求()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦的解析式.题型三函数图像1.画出函数2)(x x f =的图像,并用变换的方法画出以下函数的图像。

(1)2)(2+=x x f (2)2)1()(-=x x f (3)2)2()(2+-=x x f (4)32)(2+-=x x x f (5)542)(2-+=x x x f 2.画出下列函数函数的图像。

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x −的关系,要注意,x x −的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x −≤⎧=⎨−>⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如 ()221,31,3x x f x x x −≤⎧=⎨−>⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =−+,可转化为:()13,113,1x x f x x x −+≥⎧=⎨−+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

分段函数(含答案)

分段函数(含答案)

22、(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是140元,小张应得的工资总额是2800元,此时,小李种植水果10亩,小李应得的报酬是1500元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.考点:一次函数的应用.分析:(1)根据图象数据解答即可;(2)设z=kn+b(k≠0),然后利用待定系数法求一次函数解析式即可;(3)先求出20<m≤30时y与m的函数关系式,再分①10<m≤20时,10<m≤20;②20<m≤30时,0<n≤10两种情况,根据总费用等于两人的费用之和列式整理即可得解.解答:解:(1)由图可知,如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是(160+120)=140元,小张应得的工资总额是:140×20=2800元,此时,小李种植水果:30﹣20=10亩,小李应得的报酬是1500元;故答案为:140;2800;10;1500;(2)当10<n≤30时,设z=kn+b(k≠0),∵函数图象经过点(10,1500),(30,3900),∴,解得,所以,z=120n+300(10<n≤30);(3)当10<m≤30时,设y=km+b,∵函数图象经过点(10,160),(30,120),S ∕海里 13 0 5 8 150 t ∕小时343 ∴,解得, ∴y=﹣2m+180,∵m+n=30,∴n=30﹣m ,∴①当10<m ≤20时,10<m ≤20,w=m (﹣2m+180)+120n+300,=m (﹣2m+180)+120(30﹣m )+300,=﹣2m 2+60m+3900,②当20<m ≤30时,0<n ≤10,w=m (﹣2m+180)+150n ,=m (﹣2m+180)+150(30﹣m ),=﹣2m 2+30m+4500,所以,w 与m 之间的函数关系式为w=.点评: 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,(3)难点在于要分情况讨论并注意m 、n 的取值范围的对应关系,这也是本题最容易出错的地方.19、(2013凤阳县县直义教教研中心)(本小题满分10分)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?解:(1) 当0≤t ≤5时 s=30t ………………………………(1分) 当5<t ≤8时 s =150 …………………………………………… (2分)当8<t ≤13时 s =-30t +390 ………………………………………(3分)(2) 渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s =kt +b………………………………………………(4分)解得: k =45 b =-360∴s =45t -360 ………………………………………………(5分)解得 t =10 s =90渔船离黄岩岛距离为 150-90=60 (海里) ……………………………(6分)(3) S 渔=-30t +390S 渔政=45t -360分两种情况:① S 渔-S 渔政=30-30t +390-(45t -360)=30解得t =485(或9.6) -……………………………………………… (8分) ② S 渔政-S 渔=3045t -360-(-30t +390)=30解得 t =525(或10.4) ∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. (10)17、(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示: 每月用气量 单价(元/m 3)不超出75m 3的部分2.5 超出75m 3不超出125m 3的部分a 超出125m 3的部分a+0.25 (1)若甲用户3月份的用气量为60m 3,则应缴费 150 元;(2)若调价后每月支出的燃气费为y (元),每月的用气量为x (m 3),y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m 3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?B考点:一次函数的应用.分析:(1)根据单价×数量=总价就可以求出3月份应该缴纳的费用;(2)结合统计表的数据)根据单价×数量=总价的关系建立方程就可以求出a值,再从0≤x≤75,75<x≤125和x>125运用待定系数法分别表示出y与x的函数关系式即可;(3)设乙用户2月份用气xm3,则3月份用气(175﹣x)m3,分3种情况:x>125,175﹣x≤75时,75<x≤125,175﹣x≤75时,当75<x≤125,75<175﹣x≤125时分别建立方程求出其解就可以.解答:解:(1)由题意,得60×2.5=150(元);(2)由题意,得a=(325﹣75×2.5)÷(125﹣75),a=2.75,∴a+0.25=3,设OA的解析式为y1=k1x,则有2.5×75=75k1,∴k1=2.5,∴线段OA的解析式为y1=2.5x(0≤x≤75);设线段AB的解析式为y2=k2x+b,由图象,得,解得:,∴线段AB的解析式为:y2=2.75x﹣18.75(75<x≤125);(385﹣325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得,解得:,∴射线BC的解析式为y3=3x﹣50(x>125)(3)设乙用户2月份用气xm 3,则3月份用气(175﹣x )m3,当x >125,175﹣x ≤75时,3x ﹣50+2.5(175﹣x )=455,解得:x=135,175﹣135=40,符合题意;当75<x ≤125,175﹣x ≤75时,2.75x ﹣18.75+2.5(175﹣x )=455,解得:x=145,不符合题意,舍去;当75<x ≤125,75<175﹣x ≤125时,2.75x ﹣18.75+2.75(175﹣x )=455,此方程无解.∴乙用户2、3月份的用气量各是135m 3,40m 3.点评: 本题是一道一次函数的综合试题,考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,分段函数的运用,分类讨论思想在解实际问题的运用,解答时求出函数的解析式是关键.(2012湖北黄石,23,8分)某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a 元)⑴请写出每平方米售价y (元/米2)与楼层x (2≤x≤23,x 是正整数)之间的函数解析式. ⑵小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?⑶有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.【答案】(1)①当2≤x ≤8时,每平方米的售价应为:3000-(8-x )×20=20x +2840 (元/平方米)②当9≤x ≤23时,每平方米的售价应为:3000+(x -8)·40=40x +2680(元/平方米)∴{8)x (22840,20x 23)x (92680,40x ≤≤+≤≤+=y , x 为正整数(2)由(1)知:①当2≤x≤8时,小张首付款为(20x +2840)·120·30%=36(20x +2840)≤36(20·8+2840)=108000元<120000元∴2~8层可任选②当9≤x≤23时,小张首付款为(40x +2680)·120·30%=36(40x +2680)元36(40x +2680)≤120000,解得:x ≤3116349= ∵x 为正整数,∴9≤x ≤16综上得:小张用方案一可以购买二至十六层的任何一层.(3)若按方案二购买第十六层,则老王要实交房款为:y 1=(40·16+2680) ·120·92%-60a (元)若按老王的想法则要交房款为:y 2=(40·16+2680) ·120·91%(元)∵y1-y2=3984-60a∴当y1>y2即y1-y2>0时,解得0<a<66.4,此时老王想法正确;当y1≤y2即y1-y2≤0时,解得a≥66.4,此时老王想法不正确.。

第3章专题5 分段函数-【新教材】人教A版(2019)高中数学必修第一册常考题型专题练习

第3章专题5 分段函数-【新教材】人教A版(2019)高中数学必修第一册常考题型专题练习

分段函数考向一 分段函数的函数值1、已知f(x)={x 2+1,x ≥0−x +1,x <0,则f[f(−1)]的值为( ) A .5 B .2 C .-1 D .-2【答案】A 【解析】由f (x )={x 2+1,x ≥0−x +1,x <0, 可得f (−1)=1+1=2,f [f (−1)]=f (2)=4+1=5,故选A.2、设()()2010x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>,当12a =时,f (x )的最小值是_____;3、如图所示,函数f(x)的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则()13f f ⎛⎫ ⎪ ⎪⎝⎭的值等于________.【答案】24、已知函数y ={x 2+1,x ≤0−2x,x >0,若f(x)=10,则x=___________ 【答案】−3 【解析】因为函数f(x)={x 2+1,x ≤0−2x,x >0, 当x >0时,f (x )=−2x <0≠10,当x ≤0时,f (x )=x 2+1=10,可得x =3(舍去),或x =−3,故答案为−3.5、设函数()()20{ 2(0)x bx c x f x x ++≤=>若f (-2)=f (0),f (-1)=-3,则方程f (x )=x 的解集为________.【答案】{-2,2}【解析】当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,所以()2222{(1)3b c c b c --+=--+=-,解得2{ 2b c ==-.故()()2220{ 2(0)x x x f x x +-≤=> 当x ≤0时,由f (x )=x ,得x 2+2x -2=x ,解得x =-2或x =1(1>0,舍去).当x >0时,由f (x )=x ,得x =2.所以方程f (x )=x 的解集为{-2,2}.6、已知f (x )=2(1),-20,21,02,-1,2,f x x x x x x +<<⎧⎪+≤<⎨⎪≥⎩(1)若f (a )=4,且a>0,求实数a 的值;(2)求3-2f ⎛⎫ ⎪⎝⎭的值.(2)2.【解析】(1)若0<a<2,则f (a )=2a+1=4, 若a ≥2,则f (a )=a 2-1=4,7、已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2. (1)求f (-5),f (-3),f ⎝⎛⎭⎫f ⎝⎛⎭⎫-52的值;(2)若f(a)=3,求实数a的值.(2)当a≤-2时,a+1=3,即a=2>-2,不合题意,舍去.当-2<a<2时,a2+2a=3,即a2+2a-3=0.∴(a-1)(a+3)=0,解得a=1或a=-3.∵1∈(-2,2),-3∉(-2,2),∴a=1符合题意.当a≥2时,2a-1=3,即a=2符合题意.综上可得,当f(a)=3时,a=1或a=2.考向二分段函数的图像1、函数f(x)=|x-2|能用分段函数的形式表示吗?能否作出其图象?【解析】能.f(x)=⎩⎪⎨⎪⎧x-2,x≥2,2-x,x<2.函数f(x)的图象如图所示.2、已知函数f(x)=24,02,042,4x xx x xx x+≤⎧⎪-<≤⎨⎪-+>⎩(1)求f(f(f(5)))的值;(2)画出函数的图象.【答案】(1)-1(2)作图见解析【解析】(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.3、已知函数()22g x x x =-+,()()2g x f x x ⎧⎪=⎨⎪⎩00x x ≥<,请画出函数()f x 的图像。

分段函数(答案)

分段函数(答案)

分段函数1.已知f (x )=⎩⎪⎨⎪⎧3x +1, x ≥0,x 2, x <0,)则f (-2)=( ) A .2 B .-2 C .32+1 D .-32+1 答案:A 解析:∵-2<0,∴f (-2)=2.2.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,),则f ⎝⎛⎭⎫1f (2)的值为( ) A.1516 B .-2716 C.89D .18 答案:A 解析:f (2)=22+2-2=4,∴f ⎝⎛⎭⎫1f (2)=f ⎝⎛⎭⎫14=1-⎝⎛⎭⎫142=1516. 3.函数y =⎩⎪⎨⎪⎧x +3, x ≤1-x +5, x >1)的最大值为( ) A .3 B .4 C .5 D .6 答案:B 解析:由该函数的图象可知,当x =1时,y 的最大值为4.4.函数f (x )=⎩⎪⎨⎪⎧ 2,0<x <10,4,10≤x <15,5,15≤x <20,则函数的值域是( )A .[2,5]B .{2,4,5}C .(0,20)D .N 答案:B 解析:f (x )的值域为{2}∪{4}∪{5}={2,4,5}.5.函数f (x )=x +|x |x的图象是( )答案:A 解析:f (x )=⎩⎪⎨⎪⎧ x +1, x >0,x -1, x <0,)注意x ≠0. 6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x +3, x ≤0,3-x , x >0,)则f (f (5))=( )A .0B .-2C .-1D .1答案:C 解析:f (5)=3-5=-2.∴f (f (5))=f (-2)=(-2)2+4×(-2)+3=-1.7.设函数f (x )=⎩⎪⎨⎪⎧x -3,(x ≥10)f (x +5),(x <10),则f (5)=________. 答案:78.函数f (x )=⎩⎪⎨⎪⎧ x +2 (x ≤-1)x 2 (-1<x <2)2x (x ≥2),则f ⎝⎛⎭⎫-32=________,若f (a )<12,则实数a 的取值范围是__________.答案:.12 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫-22,22 9.已知f (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0),则不等式x +(x +2)f (x +2)≤5的解集是________. 答案:⎝⎛⎦⎤-∞,32 10.函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________. 答案:2解析:f (0)=2,∴f (f (0))=f (2)=4+2a =4a ,∴a =2.11.设函数f (x )=⎩⎨⎧ |x -1|-52,|x |≤1,11+x 2, |x |>1,),则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________. 答案:15 解析:f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-52=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (-2)=11+(-2)2=15. 12.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x ≤0,-2x , x >0,),若f (x )=10,则x =________. 答案:-3解析:当⎩⎪⎨⎪⎧ x ≤0x 2+1=10时,x =-3当⎩⎪⎨⎪⎧x >0-2x =10时,方程组无解,所以x =-3.13.设函数0()2,0x x f x x ≥=<⎪⎩,则((4))f f -= .答案:1414.已知函数232,1(),1x x f x x ax x +<⎧=⎨+≥⎩,若((0))4f f a =,则实数a = . 答案:215、已知函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a=.答案:3 4 -。

【高中数学专项突破】专题13 分段函数问题专题突破(含答案)

【高中数学专项突破】专题13 分段函数问题专题突破(含答案)

【高中数学专项突破】专题13 分段函数问题题组4 分段函数1.函数f(x)=的值域是()A.RB.(0,2)∪(2,+∞)C.(0,+∞)D.[0,2]∪[3,+∞)2.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.[0,+∞)B.[-,+∞)C.[-,0]∪(1,+∞)D.[-,0]∪(2,+∞)3.已知f(x)=则f(f(f(-2)))等于()A.πB.0C.2D.π+14.设f(x)=则f(f(0))等于()A.1B.0C.2D.-15.设函数f(x)=若f=4,则b等于()A.1B.C.D.6.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地前往B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是()A.x=60tB.x=60t+50C.x=D.x=7.已知函数f(x)=则f(x)-f(-x)>-1的解集为()A.(-∞,-1)∪(1,+∞)B.[-1,-)∪(0,1]C.(-∞,0)∪(1,+∞)D.[-1,-]∪(0,1)8.已知符号函数sgn x=则不等式(x+1)sgn x>2的解集是()A.(-3,1)B.(-∞,-3)∪(1,+∞)C.(1,+∞)D.(-∞,-3)9.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.410.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A.13立方米B.14立方米C.18立方米D.26立方米11.已知g(x)=ax+a,f(x)=对任意x1∈[-2,2],存在x2∈[-2,2],使g(x1)=f(x2)成立,则a的取值范围是()A.[-1,+∞)B.[-,1]C.(0,1]D.(-∞,1]12.定义在R上的函数f(x)满足f(1+x)=f(1-x),且x≥1时,f(x)=+1,则f(x)的解析式为________.13.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数f(x)的图象.14.已知函数f(x)=(1)求f,f,f(4.5),f;(2)若f(a)=6,求a的值.15.已知实数a≠0,函数f(x)=(1)若a=-3,求f(10),f(f(10))的值;(2)若f(1-a)=f(1+a),求a的值.16.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元;(2)求y与x之间的函数关系式.17.已知f(x)=(1)画出f(x)的图象;(2)若f(x)=,求x的值;(3)若f(x)≥,求x的取值范围.18.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P=商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=-t+40(1≤t≤30,t∈N).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天.19.某工厂生产一批产品,由历年市场行情得知,从2月1日起的300天内,产品的市场售价与上市时间的关系用如图(1)所示的一条折线表示;生产成本与上市时间的关系用如图(2)所示的抛物线表示.(1)写出图(1)表示的市场售价与时间的函数关系式P=f(t),写出图(2)表示的生产成本与时间的函数关系式Q=g(t);(2)认定市场售价减去生产成本为纯利益,则何时上市产品的纯收益最大?(注:市场售价和生产成本的单位:元/件,时间单位:天)20.已知函数f(x)=(1)试比较f(f(-3))与f(f(3))的大小;(2)画出函数的图象;(3)若f(x)=1,求x的值.专题13 分段函数问题题组4 分段函数1.函数f(x)=的值域是()A.RB.(0,2)∪(2,+∞)C.(0,+∞)D.[0,2]∪[3,+∞)【答案】D【解析】画出函数f(x)的图象如图所示,由图可知f(x)的值域为[0,2]∪[3,+∞).2.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.[0,+∞)B.[-,+∞)C.[-,0]∪(1,+∞)D.[-,0]∪(2,+∞)【答案】D【解析】由题意,可知f(x)=因此问题就等价于求二次函数在给定区间上的取值范围,∴若x∈(-∞,-1)∪(2,+∞),则f(x)∈(2,+∞),若x∈[-1,2],则f(x)∈[-,0],∴f(x)的值域为[-,0]∪(2,+∞).3.已知f(x)=则f(f(f(-2)))等于()A.πB.0C.2D.π+1【答案】D【解析】f(-2)=0,f(0)=π,f(π)=π+1.4.设f(x)=则f(f(0))等于()A.1B.0C.2D.-1【答案】C【解析】5.设函数f(x)=若f=4,则b等于()A.1B.C.D.【答案】D【解析】∵<1,∴f=3×-b=-b.若-b<1,即b>,则f=3-b=-4b<-≠4.若-b≥1,即b≤,则f=2=5-2b=4,b=.故选D.6.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地前往B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是()A.x=60tB.x=60t+50C.x=D.x=【答案】D【解析】由于在B地停留1小时期间,距离x不变,始终为150千米,故选D.7.已知函数f(x)=则f(x)-f(-x)>-1的解集为()A.(-∞,-1)∪(1,+∞)B.[-1,-)∪(0,1]C.(-∞,0)∪(1,+∞)D.[-1,-]∪(0,1)【答案】B【解析】①当-1≤x<0时,0<-x≤1,此时f(x)=-x-1,f(-x)=-(-x)+1=x+1,∴f(x)-f(-x)>-1化为-2x-2>-1,解得x<-,则-1≤x<-.②当0<x≤1时,-1≤-x<0,此时f(x)=-x+1,f(-x)=-(-x)-1=x-1,∴f(x)-f(-x)>-1化为-2x+2>-1,解得x<,则0<x≤1.故所求不等式的解集为[-1,-)∪(0,1].8.已知符号函数sgn x=则不等式(x+1)sgn x>2的解集是()A.(-3,1)B.(-∞,-3)∪(1,+∞)C.(1,+∞)D.(-∞,-3)【答案】B【解析】原不等式可化为或或(不成立,舍去),解得x>1或x<-3. 9.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.4【答案】C【解析】由f(-4)=f(0),f(-2)=-2可得⇒当x≤0时,f(x)=x⇔x2+3x+2=0⇔x1=-1,x2=-2,有两个解,当x>0时,f(x)=x显然有一个解x=2,故选C.10.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A.13立方米B.14立方米C.18立方米D.26立方米【答案】A【解析】该单位职工每月应缴水费y与实际用水量x满足的关系式为y=由y=16m,可知x>10.令2mx-10m=16m,解得x=13(立方米).11.已知g(x)=ax+a,f(x)=对任意x1∈[-2,2],存在x2∈[-2,2],使g(x1)=f(x2)成立,则a的取值范围是()A.[-1,+∞)B.[-,1]C.(0,1]D.(-∞,1]【答案】B【解析】由题意知函数g(x)在区间[-2,2]上的值域是函数f(x)在区间[-2,2]上的值域的子集;因为当x∈[0,2]时,-1≤x2-1≤3,当x∈[-2,0)时,-4≤-x2<0,所以函数f(x)的值域是[-1,3]∪[-4,0)=[-4,3],所以解得-≤a≤1.12.定义在R上的函数f(x)满足f(1+x)=f(1-x),且x≥1时,f(x)=+1,则f(x)的解析式为________.【答案】f(x)=【解析】设x<1,则2-x>1,且f(x)=f=f(1-(x-1))=f(2-x)=+1.∴f(x)=13.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数f(x)的图象.【答案】(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1.(2)f(x)的图象如下:14.已知函数f(x)=(1)求f,f,f(4.5),f;(2)若f(a)=6,求a的值.【答案】(1)∵-∈(-∞,-1),∴f=-2×=3.∵∈[-1,1],∴f=2.又2∈(1,+∞),∴f=f(2)=2×2=4.∵4.5∈(1,+∞),∴f(4.5)=2×4.5=9.(2)经观察可知a∉[-1,1],否则f(a)=2.若a∈(-∞,-1),令-2a=6,得a=-3,符合题意;若a∈(1,+∞),令2a=6,得a=3,符合题意.∴a的值为-3或3.15.已知实数a≠0,函数f(x)=(1)若a=-3,求f(10),f(f(10))的值;(2)若f(1-a)=f(1+a),求a的值.【答案】(1)若a=-3,则f(x)=所以f(10)=-4,f(f(10))=f(-4)=-11.(2)当a>0时,1-a<1,1+a>1,所以2(1-a)+a=-(1+a)-2a,解得a=-,不符合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a=2(1+a)+a,解得a=-,符合.综上可知,a=-.16.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元;(2)求y与x之间的函数关系式.【答案】(1)由题意可知当0<x≤100时,设函数的解析式y=kx,又因过点(100,40),得解析式为y =x,当月通话为50分钟时,0<50<100,所以应交话费y=×50=20元.(2)当x>100时,设y与x之间的函数关系式为y=kx+b,由图知x=100时,y=40;x=200时,y=60. 则有解得所以解析式为y=x+20,故所求函数关系式为y=17.已知f(x)=(1)画出f(x)的图象;(2)若f(x)=,求x的值;(3)若f(x)≥,求x的取值范围.【答案】(1)利用描点法,作出f(x)的图象,如图所示.(2)f(x)=等价于①或②解①得x=±,②解集为∅.∴当f(x)=时,x=±.(3)由于f=,结合此函数图象可知,使f(x)≥的x的取值范围是∪.18.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P=商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=-t+40(1≤t≤30,t∈N).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天.【答案】设日销售金额为y元,则y=P·Q,所以y=即y=当1≤t≤24,t∈N时,t=10,y max=900;当25≤t≤30,t∈N时,t=25,y max=1 125.所以该商品日销售金额的最大值为1 125元,且在30天中的第25天销售金额最大.19.某工厂生产一批产品,由历年市场行情得知,从2月1日起的300天内,产品的市场售价与上市时间的关系用如图(1)所示的一条折线表示;生产成本与上市时间的关系用如图(2)所示的抛物线表示.(1)写出图(1)表示的市场售价与时间的函数关系式P=f(t),写出图(2)表示的生产成本与时间的函数关系式Q=g(t);(2)认定市场售价减去生产成本为纯利益,则何时上市产品的纯收益最大?(注:市场售价和生产成本的单位:元/件,时间单位:天)【答案】(1)由图(1)可得f(t)=g(t)=(t-150)2+100(0≤t≤300).(2)设从2月1日起的第t天的纯收益为h(t),则h(t)=f(t)-g(t)==故h(x)在区间[0,200]上的最大值为h(50)=100,在区间(200,300]上的最大值为h(300)=87.5,由100>87.5可知,h(t)在[0,300]上的最大值为h(50)=100,这时t=50,即从2月1日起的第50天上市,产品的纯收益最大.20.已知函数f(x)=(1)试比较f(f(-3))与f(f(3))的大小;(2)画出函数的图象;(3)若f(x)=1,求x的值.【答案】(1)∵-3<1,∴f(-3)=-2×(-3)+1=7,∵7>1,∴f(f(-3))=f(7)=72-2×7=35,∵3>1,∴f(3)=32-2×3=3,∴f(f(3))=3,∴f(f(-3))>f(f(3)).(2)函数图象如图所示:(3)由f(x)=1的函数图象综合判断可知,当x∈(-∞,1)时,得f(x)=-2x+1=1,解得x=0;当x∈[1,+∞)时,得f(x)=x2-2x=1,解得x=1+或x=1-(舍去).综上可知x的值为0或1+.。

2023届高考数学专项(分段函数)题型归纳与练习(附答案)

2023届高考数学专项(分段函数)题型归纳与练习(附答案)

2023届高考数学专项(分段函数)题型归纳与练习【题型归纳】题型一 、分段函数的求值问题由于分段函数的答案解析式与对应的定义域有关,因此求值时要代入对应的答案解析式。

含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体答案解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2021∙江西南昌市∙高三期末(理))已知定义在R 上的奇函数满足,且当时,,其中a 为常数,则的值为( ) A .2B .C .D . 变式1、(辽宁省沈阳市2020‐2021学年高三联考)函数21,13()(4),3x x f x f x x --≤<⎧=⎨-≥⎩,则(9)f = ______. 变式2、(2021∙山东临沂市∙高三二模)已知奇函数,则( )A .B .C .7D .11变式3、(2020届浙江省杭州市建人高复高三4月模拟)对于给定正数k ,定义(),()(),()k f x f x kf x k f x k ≤⎧=⎨>⎩,设22()252f x ax ax a a =--++,对任意x ∈R 和任意(,0)a ∈-∞恒有()()k f x f x =,则( ) A .k 的最大值为2 B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1题型二、与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。

另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例2、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.变式1、(2021∙浙江高三期末)已知,则______;若,则______.变式2、(2021∙山东烟台市∙高三二模)已知函数是定义在区间上的偶函数,且当()f x ()(6)f x f x =-03x ≤<21),01()2(2),13a x x f x x x ++≤≤⎧⎪=⎨-<<⎪⎩(2019)(2020)(2021)f f f ++2-1212-()()31,0,0x x f x g x x ⎧-<⎪=⎨>⎪⎩()()12f g -+=11-7-(),201,0x x f x x x ⎧≥=⎨-+<⎩()2f =()2f α=α=()f x ()(),00,-∞+∞时,,则方程根的个数为( )A .3B .4C .5D .6变式3、(2021∙山东高三其他模拟)已知,,则方程的解的个数是( ) A .B .C .D .题型三、分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

分段函数-含答案

分段函数-含答案

分段函数-含答案(总5页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第2课时 分段函数 课时目标 了解分段函数的概念,会画分段函数的图象,并能解决相关问题.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值区间,有着不同的__________,这样的函数通常叫做分段函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应______________________.一、选择题 1.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6,f x +2x <6,则f (3)为( )A .2B .3C .4D .52.设函数f (x )=⎩⎪⎨⎪⎧ 1-x 2, x ≤1,x 2+x -2,x >1,则f [1f 2]的值为( ) B .-2716D .18 3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:每间房定价 100元 90元 80元 60元住房率 65% 75% 85% 95%要使每天的收入最高,每间房的定价应为( )A .100元B .90元C .80元D .60元4.已知函数y =⎩⎪⎨⎪⎧ x 2+1 x ≤0,-2x x >0,使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-525.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( )A .13立方米B .14立方米C .18立方米D .26立方米6.函数f (x )=⎩⎪⎨⎪⎧2x 2 0≤x ≤121<x <2x +1x ≥2的值域是( )A.R B.(0,+∞)C.(0,2)∪(2,+∞) D.[0,2]∪[3,+∞)题号123456答案二、填空题7.已知f(x)=⎩⎪⎨⎪⎧x-3 x≥9f[f x+4] x<9,则f(7)=____________________________________.8.设f(x)=⎩⎪⎨⎪⎧2x+2,-1≤x<0,-12x,0<x<2,3,x≥2,则f{f[f(-34)]}的值为________,f(x)的定义域是______________.9.已知函数f(x)的图象如右图所示,则f(x)的解析式是________.三、解答题10.已知f(x)=⎩⎪⎨⎪⎧x2-1≤x≤1,1x>1或x<-1,(1)画出f(x)的图象;(2)求f(x)的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.已知函数f (x )=1+|x |-x 2(-2<x ≤2). (1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.3.含有绝对值的函数解析式要化为分段函数处理.4.画分段函数的图像要逐段画出,求分段函数的值要按各段的区间范围代入自变量求值.第2课时 分段函数 知识梳理(1)对应法则 (2)并集 (3)分别作出每一段的图象作业设计1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.]2.A [f (2)=22+2-2=4,1f 2=14,f (14)=1-(14)2=1516.] 3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.]4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2,若-2x =5,则x =-52,与x >0矛盾,故选A.] 5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧ mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).] 6.D [画图象可得.]7.6解析 ∵7<9, ∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8).又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6.即f (7)=6.{x |x ≥-1且x ≠0}解析 ∵-1<-34<0, ∴f (-34)=2×(-34)+2=12.而0<12<2, ∴f (12)=-12×12=-14. ∵-1<-14<0,∴f (-14)=2×(-14)+2=32. 因此f {f [f (-34)]}=32. 函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎪⎨⎪⎧x +1, -1≤x <0,-x ,0≤x ≤1 解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧ -a +b =0,b =1.∴⎩⎪⎨⎪⎧ a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入, 则k =-1.10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ; 当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8; 当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x . 综上可知,f (x )=⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x 2=1-x . ∴f (x )=⎩⎪⎨⎪⎧1 0≤x ≤21-x -2<x <0. (2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).13.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12500. ∴d =12500v 2S .当d =S 2时,可解得v =25 2. ∴d =⎩⎪⎨⎪⎧ S 20≤v <25212500v 2S v ≥252.。

分段函数

分段函数

分段函数专题训练1.已知函数,g (x )=f (x )+x +a ,若g (x )存在2个零点,则a 的取值范围是( )⎩⎨⎧>≤=0,ln 0,)(x x x e x f x A.[-1,0) B. [0,+∞) C. [-1,+∞) D. [1,+∞)2.已知函数f (x )=(a >0,且a ≠1)在R 上单调递减,且关于x 的方程恰好有两个不相等的实数解,则a 的取值范围是( )2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩|()|2f x x =-(A )(0,] (B )[,] (C )[,]{}(D )[,){}2323341323 341323 343.已知函数设,若关于x 的不等式在R 上恒成立,则a 的取值范围是()23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩a ∈R ()||2x f x a ≥+(A ) (B )(C ) (D )47[,2]16-4739[,]1616-[-39[16-4.若函数,则f(f(10)= ( )⎩⎨⎧>≤+=1,lg 1,1)(2x x xx x f A.lg101 B.2 C.1 D.05.(05年浙江卷理)设f(x)=,则f[f()]=( )(A) (B) (C)- (D)6.已知函数f (x )=,且满足f (c )=4,则常数c =( )A .2B .﹣1C .﹣1或2D .1或27.函数 若是的最小值,则的范围( )⎪⎩⎪⎨⎧>++≤-=0,1,)()(2x a x x x a x x f )1(f )(x f a A.[-2,2] B. [-3, -2] C. (-∞, -2]∪[2,+ ∞) D. (-∞, -1]8.函数则的所有根的和为 ( ) ⎪⎩⎪⎨⎧>≤=-1,101|,lg |)(42x x x x f x 01)(=-x f A.1 B. C. 2 D. 101910219.已知函数 函数 ,其中,若方程 恰有4个不等的实根,则的取值范围是( ) ()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩()()2g x b f x =--b R ∈()()0f x g x -=b A. B. C. D.7,4⎛⎫+∞ ⎪⎝⎭7,4⎛⎫-∞ ⎪⎝⎭70,4⎛⎫⎪⎝⎭7,24⎛⎫ ⎪⎝⎭10.对于任意实数,定义:,若函数,,则函数的最小值为() ,a b ,(,),a a bF a b b a b ≥⎧=⎨<⎩2()f x x =()2g x x =+()((),())G x F f x g x =A .0 B .1 C .2 D .411.已知函数是R 上的增函数,则a 的取值范围是()251()1x ax x f x a x x ⎧---≤⎪=⎨>⎪⎩,,,,A .-3≤a <0B .-3≤a ≤-2C .a ≤-2D .a <012.设函数,则的表达式为( )1(121f x x +=+)(x f A . B . C . D .x x-+1111-+x xx x+-1112+x x13.已知x ∈R ,f (x )= ,则f ()等于( )⎩⎨⎧<+≥-6),2(6,5x x f x x 41A .B .1C .D .43452314.己知函数,若方程有三个不同的实数根,则实数的取值范围是( )()12log (1),131,1x x f x x x -<⎧⎪⎪=⎨⎪-≥⎪⎩()0fx a -=a A .(0,1) B .(0,2) C. (0,2] D .(0,+∞)15.设集合A= [0,),B= [,1],函数f (x )=若x 0∈A ,且f (f (x 0))∈A ,则x 0的取值范围是( ).21211221x x A x x B ⎧+∈⎪⎨⎪-∈⎩,(),,(A )(0,] (B )[0,] (C )(,] (D )(,) 41834121412116.设函数则满足f (f (a ))=2f (a )的a 的取值范围是( ). ()31,1,2,1,x x x f x x -<⎧=⎨≥⎩(A )[,1] (B )[,+∞) (C )[0,1] (D )[1,+∞)232317.设f (x )=,若f (f (1))=1,则a =( )⎪⎩⎪⎨⎧≤+>⎰a x dx x x x x 020,30,lg A .4 B .3 C .2 D .118.已知函数f (x )=,(e 为自然对数的底数),则f (e )= ,函数y =f (f (x ))﹣1的零点有 个.(用数字作答)⎩⎨⎧<≥+1,1,ln )1|(|x e x x x f 19.设函数,若|f (x )+f (x +l )﹣2|+|f (x )﹣f (x +l )≥2(l >0)对任意实数x 都成立,则l 的最小值为  . ⎪⎩⎪⎨⎧>-≤π=1||,11||,2cos 2)(2x x x x x f 20.已知函数, ,若,则 . 232,1(),1x x f x x ax x +<⎧=⎨+≥⎩(1)f -=((0))4f f a =a =21.设若满足,则的最大值为 . 1221,0,(),0,x x f x x x -⎧-≤⎪=⎨⎪>⎩x ()3f x ≥21log ()1x x +-22.已知函数,若存在,使得,则的取值范围为.()[)[]3,0,1,22,1,2x x x f x x ⎧+∈⎪=⎨⎪∈⎩12x x <12()()f x f x =12()x f x ⋅23.已知函数, ,若,则 .232,1(),1x x f x x ax x +<⎧=⎨+≥⎩(1)f -=((0))4f f a =a =24.已知函数其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. ()2,,24,,x x m f x x mx m x m ⎧≤⎪=⎨-+>⎪⎩25.已知函数⎪⎩⎪⎨⎧<-≥-=,2,1)21(,2,)2()(x x x a x f x 满足对任意的实数x 1≠x 2,都有<0成立,则实数a 的取值范围为______________. 2121)()(x x x f x f --26.已知函数f (x )=,把方程f (x )-x =0的根按从小到大顺序排成一个数列,则该数列的前n 项和S n =。

分段函数练习题及答案

分段函数练习题及答案

1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧ x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .163.函数y =x +|x |x 的图象为( )\4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( ),0或2 B .0,2C .0,0或2D .0,0或22.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )3.函数f (x )=⎩⎪⎨⎪⎧ 2x -x 20≤x ≤3x 2+6x -2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1], 4.已知f (x )=⎩⎪⎨⎪⎧ x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( )A .1B .1或32C .1,32或± 35.已知函数f (x )=⎩⎪⎨⎪⎧ 1, x 为有理数,0, x 为无理数, g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( ) A .0,1 B .0,0C .1,1D .1,06.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( ) A .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ - C .(-∞,-2)∪⎝⎛⎭⎫-12,1 ∪(1,+∞) 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.8.已知函数f (x )=⎩⎪⎨⎪⎧ x 2, x ≤0,f x -2, x >0,则f (4)=________. 9.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________. 10.已知f (x )=⎩⎨⎧ x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.11.某汽车以52千米/小时的速度从A 地到260千米远的B地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.)12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.】1:解析:选、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2:解析:选(5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24.3:解析:选=x +|x |x =⎩⎪⎨⎪⎧ x +1 x >0x -1 x <0,再作函数图象.4:解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)@1:答案:C2:解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =;当4<x ≤5时,y =;…当n -1<x ≤n 时,y =10+(n -3)×,故选C.3:解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4:解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.5:解析:选(x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.<6:解析:选(a )>1⇔⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧ -1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1 ⇔⎩⎪⎨⎪⎧ a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧ -1<a <1a >-12或⎩⎪⎨⎪⎧ a ≥10<a <12 ⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-12,1. 7:解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati 8:解析:f (4)=f (2)=f (0)=0. 答案:0《 9:解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧ x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧ x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32] 10:解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,&f (x )=1,所以f (x )的值域为[0,1].11:解:∵260÷52=5(小时),260÷65=4(小时), ∴s =⎩⎨⎧ 52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12:解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形,底角为45°,AB =2 2 cm ,所以BG =AG =DH =HC =2 cm.又BC =7 cm ,所以AD =GH =3 cm.①当点F 在BG 上时,即x ∈[0,2]时,y =12x 2;②当点F 在GH 上时,即x ∈(2,5]时,y =x +x -22×2=2x -2; ③当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF=12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合①②③,得函数解析式为y =⎩⎨⎧12x 2 x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.。

分段函数常见题型解法-含答案

分段函数常见题型解法-含答案

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。

分段函数的单调性(含答案)

分段函数的单调性(含答案)

分段函数的单调性一、单选题(共10道,每道10分)1.若是上的增函数,则实数的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分段函数的单调性2.已知函数在上单调递减,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性3.已知是上的单调递增函数,则实数a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分段函数的单调性4.若函数是上的减函数,则实数的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分段函数的单调性5.若函数在上单调递减,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性6.若函数在上单调递增,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性7.已知函数满足:对任意实数,当时,总有,那么实数a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分段函数的单调性8.已知函数,若,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性9.已知函数,若,则实数x的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分段函数的单调性10.已知,若不等式在上恒成立,则实数a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分段函数的单调性。

2020年中考复习——分段函数专题训练(三)(有答案)

2020年中考复习——分段函数专题训练(三)(有答案)

2020中考复习——分段函数专题训练(三)班级:___________姓名:___________ 得分:___________一、选择题1.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(ℎ),两车之间的距离为y(km)图中的折线表示y与x之间的函数关系,下列说法中错误的是()A. B点表示快车与慢车出发4小时两车相遇B. B−C−D段表示慢车先加速后减速最后到达甲地C. 快车的速度为200km/ℎD. 慢车的速度为100km/ℎ2.小明某天放学后,17时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A. 17时15分B. 17时14分C. 17时12分D. 17时11分3.华润万家在“元旦”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款多少元()A. 838B. 924C. 924或838D. 838或9104.如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为√2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A. B.C. D.5.甲、乙两名同学在一段2000m长的笔直公路上进行自行车比赛,开始时甲在起点,乙在甲的前方200m处,他们同时同向出发匀速前进,甲的速度是8m/s,乙的速度是6m/s,先到达终点者在终点处等待.设甲、乙两人之间的距离是y(m),比赛时间是x(s),整个过程中y与x之间的函数关系的图象大致是()A. B.C. D.6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.下图描述了他上学的情景,下列说法中错误的是()A. 到达学校时共用时间20分钟B. 自行车发生故障时离家距离为1000米C. 学校离家的距离为2000米D. 修车时间为15分钟7.在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A. 4.80B. 3.60C. 2.40D. 1.20二、填空题8.为了增强居民的节水意识,某市城区水价执行“阶梯式”计费,每月应交水费y(元)与用水量x(吨)之间的函数关系如图所示.若某用户5月份交水费18.05元,则该用户该月用水_________吨.9. 根据图中的程序,当输入x =3时,输出的结果y =____.10. 若函数y ={x 2+3(x ≤3),3x(x >3),则当函数值y =15时,自变量x 的值是________. 11. 为鼓励居民节约用电,某市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.该市一位同学家2015年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.如果该同学家4月份用电410千瓦时,那么电费为______ 元.12. 某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系____.13. 某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的进度均保持不变),储运部库存物资s(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是___________小时.14. 为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费______元.15. 小强粉刷他的卧室花了10小时,他完成的工作量的百分数记录如下:时间(时)12345完成的百分数(%)525355050时间(时)678910完成的百分数(%)65708095100(1)第6时时,他已完成工作量的________%.(2)小强在________时间内完成的工作量最大.(3)如果小强从上午8时开始工作,那么他在________时完成所有工作.三、解答题16.若函数y={x−2(x>2)x2+2(x≤2).(1)求当自变量x=√3时,函数y的值;(2)求当函数y=8时,自变量x的值.17.已知函数y={(x−2)2−3(x>0) (x+2)2−3(x≤0).(1)在下面的平面直角坐标系中画出该函数的图象.(2)使y=1成立的x的值有_______个.(3)使y=k成立的x的值恰好有4个,则k的取值范围为___________.(4)使y=k成立的x的值恰好有2个,则k的取值范围为___________.18.为扶持大学生自主创业,市政府提供了80万元的无息贷款,用于某大学生开办公司,生产并销售自主研发的一种电子产品,并约定用该公司的经营利润逐步偿还无息贷款,一盒子该产品的生产成本为每件40元;员工每人每月工资是2500元,公司每月支出其它费用15万元,该产品每月销售量y(万件)与销售单价x(元)之间的函数关系式如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元,该公司应安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月内还清无息贷款?19.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市对居民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示.图中x 表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按_____元收取;超过5吨的部分,每吨按_____元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?20.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶的时间为x(ℎ),两车之间的距离为s(km),y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.根据图中信息回答下列问题:(1)慢车的速度为________km/ℎ;快车的速度为________km/ℎ;(2)a=________,b=________;(3)求线段CD所表示的函数表达式,以及自变量x的取值范围;(4)当x为________h时,两车相距200km.21.某公司给出两种上宽带网的收费方式.收费方式月使用费/元上网计费A00.05元/minB30不超过25ℎ不另收费,超过25ℎ后0.05元/min 设月上网时间为xh,A,B两种收费金额分别为y 1,y 2,函数y 2的图象如图所示.(1)求函数y 1的解析式,并在图中画出函数的图象;(2)求函数y 2的解析式,并写出自变量x的取值范围;22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200−2x200−2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数表达式;(2)销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天的销售利润不低于4800元?23.一辆轿车匀速从A地开往B地,同时,一辆客车从B地出发,开往A地,途中,在C站停留了20分钟,然后以相同的速度继续开往A地.图1表示轿车离A地的距离S(单位:km)与时间t(单位:ℎ)之间的关系,图②表示客车离A地的距离S(单位:km)与时间t(单位:ℎ)之间的关系.观察图像,回答下列问题:(1)A、B两地相距_______km,轿车的速度为__________km/ℎ;(2)求出图②中线段AB的函数关系式;(3)图③表示两车之间的距离d(单位:km)与时间t(单位:ℎ)的部分函数图像:①点C的坐标为(_________,_________);②说明线段CD所表示的实际意义.答案和解析1.B解:A、B点表示快车与慢车出发4小时两车相遇;故本选项正确;B、B−C−D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=12004−120012=200(km/ℎ);故本选项正确;D、慢车的速度=120012=100(km/ℎ);故本选项正确;2.C解:前段的速度为(1.8−1.5)÷3=0.1,所以6分钟走了0.6km.后段有1.8−0.6=1.2km,速度为(1.2−0.8)÷(8−6)=0.2,所需时间1.2÷0.2=6.所以途中共用时6+6=12分钟,到家时间是17时12分.3.D解:由题意知付款480元,实际标价为480或480×108=600(元),付款520元,实际标价为520×108=650(元),如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130−800)×0.6=838(元).如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250−800)×0.6=910(元).4.A解:当0≤x≤1时,y=2√2x,当1<x≤2时,y=2√2,当2<x≤3时,y=−2√2x+6√2,∴函数图象是A,5.B解:当甲跑到终点时所用的时间为:2000÷8=250(秒),此时甲乙间的距离为:2000−200−6×250=300(米),乙到达终点时所用的时间为:(2000−200)÷6=300(秒),∴最高点坐标为(250,300).设y关于x的函数解析式为y=kx+b,当0≤x≤100时,有{b=200 100k+b=0,解得:{k=−2 b=200此时y=−2x+200;当100<x≤250时,有{100k+b=0 250k+b=300解得:{k=2 b=−200,此时y=2x−200;当250<x≤300时,有{250k+b=300 300k+b=0解得:{k=−6 b=1800,此时y=−6x+1800.∴y关于x的函数解析式为y={−2x+200(0≤x≤100) 2x−200(100<x≤250) −6x+1800(250<x≤300)∴整个过程中y与之间的函数图象是B.6.D7.D解:由题可得,当0<m≤20时,邮资y=1.20元,∴同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是1.20元,8.9解:当x ≥8时,设y =kx +b ,将点(8,15.2),(11,23.75)代入可得:{8k +b =15.211k +b =23.75, 解得:{k =2.85b =−7.6, 故y =2.85x −7.6,由题意得,2.85x −7.6=18.05,解得:x =9,即该用户该月用水9吨.9. 2解:当输入x =3时,因为x >1,10. −2√3或5解:当y =x 2+3=15,解得:x =−2√3或x =2√3(舍去);当y =3x =15,解得:x =5.11. 269解:设基本单价为a 元,提高单价为b 元,由题意,得{180a +(330−180)b =213180a +(240−180)b =150, 解得{a =0.6b =0.7. 180×0.6+(410−180)×0.7=269元,12. y ={25x(0≤x ≤20)20x +100(x >20)解:根据题意得:y ={25x(0≤x ≤20)25×20+0.8×25(x −20)(x >20),整理得:y={25x(0≤x≤20)20x+100(x>20);则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y={25x(0≤x≤20)20x+100(x>20);13.4.414.6解:由题意得:11:30−9:00=2.5小时,故第一个小时为1元,第二个小时为2元,第三个不足1小时按1小时计算应该交3元,故小明应付租车费为:1+2+3=6元,15.(1)65;(2)第2时;(3)18解:(1)6小时他完成工作量的百分数是65%;(2)由图表可知,在第二小时完成的百分数最大是20%,所以,在第二小时时间里工作量最大;(3)开始工作4~5小时工作量都是50%没有发生变化,∵早晨8时开始工作,∴8+10=18(时).16.解:(1)∵x=√3<2,∴当x=√3时,y=(√3)2+2=5;(2)①当x≤2时,x2+2=8,解得x=−√6;②当x>2时,x−2=8,解得:x=10.综上,当函数y=8时,自变量x=−√6或10.17.解:(1)函数图象如图所示:(2)3;(3)−3<k <1;(4)k >1或k =−3.18. 解:(1)当40≤x ≤60时,令y =kx +b ,则{40k +b =460k +b =2, 解得{k =−0.1b =8. 故y =−0.1x +8,同理,当60<x ≤80时,y =−0.05x +5.故y ={−0.1x +8(40≤x ≤60)−0.05x +5(60<x ≤80); (2)设公司可安排员工a 人,定价50元时,由5=(−0.1×50+8)(50−40)−15−0.25a ,得30−15−0.25a =5,解得a =40.所以公司可安排员工40人;(3)当40≤x ≤60时,利润w 1=(−0.1x +8)(x −40)−15−20=−0.1(x −60)2+5,则当x =60时,w 最大=5万元;当60<x ≤80时,w 2=(−0.05x +5)(x −40)−15−0.25×802∴x=70时,w最大=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.19.解:(1)1.6,2.4;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=85∴y=85x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得{5k+b=810k+b=20,解得k=125,b=−4,∴y=125x−4,∴y={85x(0≤x≤5) 125x−4(x>5)(3)∵5个人五月份的生活用水费是76元,∴平均每个人的生活用水费是765元,∵765>5,∴125x−4=765,解得,x=8.∴5×8=40(吨),答:该家庭这个月共用了40吨生活用水.解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;20.解:(1)60,100(2)3;158;(3)由图像可知,点C表示快车到达乙地,设线段CD 所在直线解析式为:s =kx +b (3≤x ≤5),把点C(3,180),D(5,300)代入,得{180=3k +b 300=5k +b ,解得{k =60b =0, ∴线段CD 所表示的函数表达式为s =60x(3≤x ≤5) (4)58或103.解:(1)(2)由S 与x 之间的函数的图象可知:当位于C 点时,两车之间的距离增加变缓, ∴由此可以得到a =3,∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为300km ,(2)∴b =300÷(100+60)=158; 故答案为(1)60,100(2)3,158;(4)①当两车相遇前相距200km ,辆车相距200km 的时间为x =(300−200)÷(100+60)=58ℎ ②当两车相遇后相距200km ,当x =3时,快车到达乙地此时相距180km ,两车相距200km 的时间为x =20÷60+3=103ℎ综上当x 为58ℎ或103ℎ时,辆车相距200km 。

2020年中考专题复习——分段函数专题训练(一)(解析版)

2020年中考专题复习——分段函数专题训练(一)(解析版)

2020中考复习——分段函数专题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示图象描述了他上学的情景,下列说法中错误的是().A. 修车时间为13minB. 自行车发生故障时离家距离为1000mC. 学校离家的距离为2000mD. 到达学校时共用时间20min2.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()A. B.C. D.3.小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.右图描述了他上学的情景,下列说法中正确的个数为()(1)学校离家的距离为2000米(2)到达学校时共用时间20分钟(3)修车时间为15分钟(4)自行车发生故障时离家距离为1000米A. 4个B. 3个C. 2个D. 1个.他估计步行不能准时到达,于是改4.一名考生步行前往考场,10分钟走了总路程的14乘出租车前往考场.这名考生的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A. 26分钟B. 24分钟C. 20分钟D. 16分钟5.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶路程随时间变化的图象如图所示,下列结论错误的是()A. 轮船的速度为20千米/时B. 快艇的速度为40千米/时C. 轮船出发3.9小时后与快艇相遇D. 快艇比轮船早到2小时6.下图①是某一数值转换流程图,图②是反映图①中y与x函数关系的图象:根据如上的流程图,若想输出y=9,则输入x的值为()A. 4B. 3或4C. 4或8D. 3或4或87. 定义新运算:则函数y =3@x 的图象大致是( )A. B.C. D.8. 已知函数y ={x 2−x (x ≥0)−x 2−x (x <0),当a ≤x ≤b 时,−14≤y ≤2,则b −a 的最大值为( )A. 52B. 52+√22C. 32D. 2二、填空题9. 根据图中的程序,当输入x =3时,输出的结果y =______.10. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法: ①兔子和乌龟同时从起点出发; ②“龟兔再次赛跑”的路程为1000米; ③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是______.(把你认为正确说法的序号都填上)11.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是.12.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),行驶的时间为x(ℎ),两车之间的距离为s(km),y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示,则当x=________时,两车相距60km.13.已知y1=x+1,y2=−2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最小值是______ .14.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物的总额,规定相应的优惠方法:①若不超过500元,则不给予优惠;②若超过500元,但不超过800元,则按购物总额给予8折优惠;③若超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元.若合并付款,则她们总共只需付款_______________元.15.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则小明这次行程的平均速度是______.三、解答题16.某星期天早晨,小华从家出发步行前往体育馆锻炼,途中在报亭看了一会儿报,如图所示是小华从家到体育馆这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)体育馆离小华家_______米,从出发到体育馆,小华共用了______分钟;(2)小华在报亭看报用了多少分钟?(3)小华看完报后到体育馆的平均速度是多少?17.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是______米,小红在商店停留了______分钟;(2)本次去舅舅家的行程中,小红一共行驶了______米;一共用了______分钟.18.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m,则应缴费______ 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?19.如图是小明的爸爸骑一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)小明的爸爸从出发到最后停止共经过了多少分钟?离家最远的距离是多少千米?(3)摩托车在哪一段时间内速度最快?最快速度是多少千米/小时?20.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分段函数专题一.选择题(共7小题)1.下列关于分段函数的描述正确的是()①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f(x)=|x|是一个分段函数;③f(x)=|x﹣2|不是分段函数;④分段函数的定义域都是R;⑤分段函数的值域都为R;⑥f(x)={x,x≥0−x,x<0,则f(1)=−1.A.①②⑥B.①④C.②D.③④⑤2.设f(x)={2e x−1,x<2log3(x2−1),x≥2,则f(f(2))的值为()A.0B.1C.2D.33.已知函数f(x)={|log x|,0<x≤10−12x+6,x>10,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)4.已知f(x)={x+2,x≤−1x2,−1<x<22x,x≥2,若f(x)=3,则x的值是()A.1 B.1或32C.1,32或±√3D.√35.函数f(x)={x2+bx+c,x≤02,x>0,若f(−4)=f(0),f(−2)=−2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.46.已知函数f(x)={(a−2)x−1,x≤1log a x,x>1,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为()A.(1,2)B.(2,3)C.(2,3]D.(2,+∞)7.已知函数f(x)={x2+1,x≤0−2x,x>0使函数值为5的x的值是()A.﹣2B.2或﹣C.2或﹣2D.2或﹣2或﹣二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 . 三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.12.已知函数f(x)={x+2,x≤−1x2,−1<x<22x,x≥2(1)在坐标系中作出函数的图象;(2)若f(a)=12,求a的取值集合.13.已知函数f(x)=2x−1,g(x)={x2,x≥0−1,x<0求f[g(x)]和g[f(x)]的解析式.14.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.分段函数专题答案一.选择题(共7小题)1.下列关于分段函数的描述正确的是( )①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f (x )=|x |是一个分段函数;③f (x )=|x ﹣2|不是分段函数;④分段函数的定义域都是R ;⑤分段函数的值域都为R ;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1. A .①②⑥ B .①④ C .② D .③④⑤【答案】①分段函数在每段定义域内都是一个独立的函数,但这几段组合在一起是一个函数,故错误;②f (x )=|x |={x,x ≥0−x,x <0是一个分段函数,正确; ③f (x )=|x −2|={x −2,x ≥22−x,x <2是一个分段函数,错误; ④分段函数的定义域不都是R ,错误;⑤分段函数的值域不都为R ,错误;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1,错误. 故正确的命题为:②,故选:C2.设f (x )={2e x−1,x <2log 3(x 2−1),x ≥2,则f(f (2))的值为( ) A .0 B .1 C .2 D .3【答案】f(f (2))=f [log 3(22−1)]=f (1)=2e 1−1=2,故选C .3.已知函数f (x )={|log x |,0<x ≤10−12x +6,x >10,若a,b,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)【答案】作出函数f (x )的图象如图,不妨设a <b <c ,则−log a =log b =−12c +6∈(0,1)ab =1,0<−12c +6<1则abc =c ∈(10,12).故选C .4.已知f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2,若f (x )=3,则x 的值是( )A .1B .1或 32C .1, 32或±√3D .√3【答案】该分段函数的三段各自的值域为(−∞,1],[0,4),[4,+∞),而3∈[0,4),故所求的字母x 只能位于第二段.∴f (x )=x 2=3,x =±√3,而﹣1<x <2,∴x =√3故选D .5.函数f (x )={x 2+bx +c,x ≤02,x >0,若f (−4)=f (0),f (−2)=−2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4【答案】由题知(−4)2+b (−4)+c =c,(−2)2+b (−2)+c =−2,解得b =4,c =2故f (x )={x 2+bx +c,x ≤02,x >0, 当x ≤0时,由f (x )=x 得x 2+4x +2=x ,解得x =−1,或x =−2,即x ≤0时,方程f (x )=x 有两个解.又当x >0时,有x =2适合,故方程f (x )=x 有三个解.故选C .6.已知函数f (x )={(a −2)x −1,x ≤1log a x ,x >1,若f (x )在(﹣∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)【答案】对数函数在x >1时是增函数,所以a >1,又f (x )=(a −2)x −1,x ≤1是增函数,∴a >2,并且x =1时(a −2)x −1≤0,即a −3≤0,所以2<a ≤3故选C7.已知函数f (x )={x 2+1,x ≤0−2x,x >0使函数值为5的x 的值是( ) A .﹣2 B .2或﹣ C .2或﹣2 D .2或﹣2或﹣【答案】由题意,当x ≤0时,f (x )=x 2+1=5,得x =±2,又x ≤0,所以x =﹣2; 当x >0时,f (x )=−2x =5,得x =−52,舍去.故选A二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .【答案】∵函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点, ∴a >0 且y =x 2+2x +1在(﹣2,0)上有2个零点,∴{ a >0a (−2)2+2(−2)+1>02<1a <0∆=4−4a >0, 解得34<a <1,故答案为:(34,1).9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 .【答案】因为:f (x )={x +4,x <0x −4,x >0, ∴f (−3)=−3+4=1 f [f (−3)]=f (1)=1−4=−3.故答案为:−3.三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.【答案】【(1)∵f (x )=−x 2+|x |={−x 2−x,x <0−x 2+x,x ≥0 ∴函数f (x )的图象如下图所示:(2)由(1)中函数图象可得:函数f (x )的单调递增区间为:(−∞,−12]和[0,12],函数f (x )的单调递减区间为:[−12,0]和[−12,+∞).(3)(2)由(1)中函数图象可得:函数f (x )的最大值为14.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.【答案】(1)当0<t≤1时,如图,设直线x=t与△OAB分别交于C、D两点,则|OC|=t,又CDOC =BCOE=√3,∴|CD|=√3t,∴f(t)=12|0C|∙|CD|=12∙t∙√3t=√32t2(2)当1<t≤2时,如图,设直线x=t与△OAB分别交于M、N两点,则|AN|=2−t,又MNAN =BEAE=√3,∴MN=√3(2−t)∴f(t)=12∙2∙√3−12|AN|∙|MN|=√3−√32(2−t)2=−√32t2+2√3t−√3(3)当t>2时,f(t)=√3综上所述f(t)={√32t2,0<t≤1−√32t2+2√3t−√3,1<t≤2√3,t>212.已知函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2(1)在坐标系中作出函数的图象;(2)若f (a )=12,求a 的取值集合.【答案】-(1)函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2的图象如下图所示:(2)当a ≤−1时,f (a )=a +2=12,可得:a =−32;当−1<a <2时,f (a )=a 2=12,可得a =±√22; 当a ≥2时,f (a )=2a =12 ,可得:a =14(舍去);综上所述,a 的取值构成集合为{−32,−√22} 13.已知函数f (x )=2x −1,g (x )={x 2,x ≥0−1,x <0求f[g (x )]和g[f (x )]的解析式. 【答案】当x ≥0时,g (x )=x 2,f [g (x )]=2x 2−1,当x <0时,g (x )=−1,f [g (x )]=−3,∴f [g (x )]={2x 2−1,x ≥0−3,x <0∵当2x−1≥0,即x≥12时,g[f(x)]=(2x−1)2,当2x−1<0,即x<12时,g[f(x)]=−1,∴g[f(x)]={(2x−1)2,x≥12−1,x<1214.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.【答案】(1)∵f(−4)=f(0),f(−2)=−1,∴16−4b+c=3,4−2b+c=−1,解得:b=4,c=3,∴f(x)={x2+4x+3,−4≤x<0−x+3,0≤x≤4,(2)函数的定义域为[−4,4],当x<0时,y=x2+4x+3=(x+2)2﹣1由x<0可得,y≥﹣1当x≥0时,y=−x+3≤3∴﹣1≤y≤3∴函数的值域为[−1,3].其图象如图所示15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.【答案】(1)函数f(x)的对称轴为x=a,①当a<−2时,∵函数f(x)在[−2,4]上单调递减,∴y=g(a)=f(−2)=−4a−1,②当﹣2≤a≤4时,y=g(a)=f(a)=a2+3,③当a>4时,∵函数f(x)在[−2,4]上单调递增,∴y=g(a)=f(4)=8a−13,综上有y=g(a)={−4a−1,a<−2a2+3,−2<a≤4 8a−13,a>4,(2)作出y=g(a)的草图如右,观察知当a=1时y=g(a)有最小值4.。

相关文档
最新文档