高一数学《函数的最值》教学设计
高一数学必修1 函数的最值
高一数学必修1 函数的最值【学习导航】知识网络学习要求1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域.自学评价1.函数最值的定义:一般地,设函数()y f x =的定义域为A .若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =;若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =;2.单调性与最值:设函数()y f x =的定义域为[],a b ,若()y f x =是增函数,则max y =()f a ,min y =()f b ;若()y f x =是减函数,则max y =()f b ,min y =()f a .【精典X 例】一.根据函数图像写单调区间和最值:例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.【解】 由图可以知道:当 1.5x =-时,该函数取得最小值2-;当3x =时,函数取得最大值为3;函数的单调递增区间有2个:( 1.5,3)-和(5,6);该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7)二.求函数最值:例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x=,[]1,3x ∈. 【解】(1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; (2)因为函数1()f x x =在[]1,3x ∈上是单调减函数,所以当3x =时函数1()f x x=取得最小值为13.听课随笔追踪训练一1.函数2()4(0)f x x mx m =-+>(,0]-∞上的最小值(A )()A 4 ()B 4-()C 与m 的取值有关 ()D 不存在0 ,最大值是32. 2. 函数()f x =的最小值3.求下列函数的最值:(1)4()1,{1,0,1,2}f x x x =+∈-;(2)()35,[3,6]f x x x =+∈ 析:值,所以求函数的最值的方法有时和求函数值域的方法是相仿的. 解(1)(1)(1)2f f =-=;(0)1f =;(2)17f = 所以当0x =时,min 1y =;当2x =时max 17y =; (2)函数()35f x x =+是一次函数,30>故()35f x x =+在区间[3,6]所以当3x =时,min 14y =; 当6x =时,max 23y =;【选修延伸】含参数问题的最值:例3:求2()2f x x ax =-,[0,4)x ∈值.【解】22()()f x x a a =--,称轴为x a =的抛物线.[]min ()(0)0f x f ==; ①若0a ≤,则()f x 在[0,4)[]2min ()()f x f a a ==-;②若04a <<,③若4a ≥,则()f x 在[0,4)()f x 的最小值不存在.点评:含参数问题的最值,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!思维点拔:一、利用单调性写函数的最值?我们可以利用函数的草图,如果函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递增的,在[,]b c 上是单调递减的,则该函数在区间[,]a c 上的最大值一定是在x b =处取得;同理,若函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递减的,在[,]b c 上是单调递增的,则该函数在区间[,]a c 上的最小值一定是在x b =处取得.追踪训练1.函数)1(11)(x x x f --=的最大值是( D)()A 54()B 45()C 43()D 34 2. y=x 2+12-x 的最小值为( C ) A.0B.43C.1D 不存在.3. 函数2()21(0)f x ax ax a =++>在区间[3,2]-上的最大值为4,则a =____38____. 4.函数23(0)()5(0)x x f x x x +<⎧=⎨-≥⎩的最大值为5. 5.已知二次函数2()21f x ax ax =++在[]3,2-上有最大值4,某某数a 的值.解:函数2()21f x ax ax =++的对称轴为1x =-,当0a >时,则当2x =时函数取最大值4,即814a +=即38a =; 当0a <时,则当1a =-时函数取得最大值4,即14a -=,即3a =-所以,38a =或3a =-。
高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word
四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。
提高学生概括、推理的能力。
通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。
得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。
课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习
、
课后提高学生的数学运算能力和逻辑推理能力。
通过练习。
高一数学必修一 教案 第2课时 函数的最大(小)值
第2课时 函数的最大(小)值学习目标 1.了解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值的方法.知识点一 函数的最大(小)值及其几何意义最值 条件几何意义最大值①对于∀x ∈I ,都有f (x )≤M ,②∃x 0∈I ,使得f (x 0)=M函数y =f (x )图象上最高点的纵坐标最小值①对于∀x ∈I ,都有f (x )≥M ,②∃x 0∈I ,使得f (x 0)=M函数y =f (x )图象上最低点的纵坐标思考 函数f (x )=x 2+1≥-1总成立,f (x )的最小值是-1吗? 答案 f (x )的最小值不是-1,因为f (x )取不到-1. 知识点二 求函数最值的常用方法1.图象法:作出y =f (x )的图象,观察最高点与最低点,最高(低)点的纵坐标即为函数的最大(小)值. 2.运用已学函数的值域. 3.运用函数的单调性:(1)若y =f (x )在区间[a ,b ]上是增函数,则y max =f (b ),y min =f (a ). (2)若y =f (x )在区间[a ,b ]上是减函数,则y max =f (a ),y min =f (b ). 4.分段函数的最大(小)值是指各段上的最大(小)值中最大(小)的那个. 预习小测 自我检验1.函数f (x )在[-2,2]上的图象如图所示,则此函数的最小值为________,最大值为________.答案 -1 22.函数y =-x +1在区间⎣⎢⎡⎦⎥⎤12,2上的最大值为________.答案 123.函数y =2x 2+2,x ∈R 的最小值是________. 答案 24.函数y =2x在[2,4]上的最大值与最小值之和等于________.答案 32一、图象法求函数的最值例1 已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x,x >1.求f (x )的最大值、最小值.解 作出函数f (x )的图象(如图).由图象可知,当x =±1时,f (x )取最大值为f (1)=f (-1)=1. 当x =0时,f (x )取最小值为f (0)=0, 故f (x )的最大值为1,最小值为0. 反思感悟 图象法求函数最值的一般步骤跟踪训练1 已知函数y =-|x -1|+2,画出函数的图象,确定函数的最值情况,并写出值域.解 y =-|x -1|+2=⎩⎪⎨⎪⎧3-x ,x ≥1,x +1,x <1,图象如图所示,由图象知,函数y =-|x -1|+2的最大值为2,没有最小值, 所以其值域为(-∞,2]. 二、利用函数的单调性求最值例2 已知函数f (x )=x -1x +2,x ∈[3,5]. (1)判断函数f (x )的单调性并证明; (2)求函数f (x )的最大值和最小值. 解 (1)f (x )是增函数,证明如下: 任取x 1,x 2∈[3,5]且x 1<x 2,f (x 1)-f (x 2)=x 1-1x 1+2-x 2-1x 2+2=3x 1-x 2x 1+2x 2+2,因为3≤x 1<x 2≤5,所以x 1-x 2<0,(x 1+2)(x 2+2)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )在[3,5]上为增函数. (2)由(1)知,f (x )在[3,5]上为增函数, 则f (x )max =f (5)=47,f (x )min =f (3)=25.反思感悟 (1)若函数y =f (x )在区间[a ,b ]上单调递增,则f (x )的最大值为f (b ),最小值为f (a ). (2)若函数y =f (x )在区间[a ,b ]上单调递减,则f (x )的最大值为f (a ),最小值为f (b ).(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势.跟踪训练2 已知函数f (x )=61-x+3(x ∈[2,4]),求函数f (x )的最大值和最小值. 解 设x 1,x 2是[2,4]上任意两个实数,且x 1<x 2, 所以f (x 1)-f (x 2)=61-x 1+3-⎝ ⎛⎭⎪⎫61-x 2+3=61-x 1-61-x 2=61-x 2-61-x 11-x 11-x 2=6x 1-x 21-x 11-x 2,因为2≤x 1<x 2≤4,所以x 1-x 2<0,1-x 1<0,1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在[2,4]上是增函数,所以f (x )max =f (4)=1,f (x )min =f (2)=-3.三、函数最值的实际应用例3 某产品生产厂家根据以往的销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足:R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x ,x ∈N ,0≤x ≤5,11,x ∈N ,x >5,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x , 所以f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,x ∈N ,0≤x ≤5,8.2-x ,x ∈N ,x >5.(2)当x >5时,因为函数f (x )单调递减, 所以f (x )<f (5)=3.2(万元),当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元),所以当工厂生产4百台产品时,可使盈利最大为3.6万元.反思感悟 (1)解实际应用题时要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.(2)实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.跟踪训练3 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?解 设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个,销量为500-10(x -50)=(1 000-10x )个,则y =(x -40)(1 000-10x )=-10(x -70)2+9 000≤9 000. 故当x =70时,y max =9 000.即售价为70元时,利润最大值为9 000元.二次函数最值分类讨论问题典例 已知函数f (x )=x 2-2x -3,若x ∈[t ,t +2],求函数f (x )的最小值. 解 ∵对称轴x =1,(1)当1≥t +2即t ≤-1时,f (x )在[t ,t +2]上为减函数, ∴f (x )min =f (t +2)=(t +2)2-2(t +2)-3=t 2+2t -3. (2)当t ≤1<t +2,即-1<t ≤1时,f (x )min =f (1)=-4.(3)当1<t ,即t >1时,f (x )在[t ,t +2]上为增函数,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最小值为g (t ),则有g (t )=⎩⎪⎨⎪⎧t 2+2t -3,t ≤-1,-4,-1<t ≤1,t 2-2t -3,t >1.[素养提升] 二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.利用二次函数图象,通过直观想象,进行分类讨论.1.函数f (x )=1x在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 考点 函数的最值及其几何意义题点 利用一次函数、分式函数单调性求最值 答案 A2.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1 D .以上都不对答案 B解析 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3], 所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B.3.已知函数f (x )=⎩⎪⎨⎪⎧x +7,-1≤x <1,2x +6,1≤x ≤2,则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对 考点 函数的最值及其几何意义 题点 分段函数最值答案 A4.已知函数f (x )=2x -3,当x ≥1时,恒有f (x )≥m 成立,则实数m 的取值范围是( ) A .RB .(-∞,-1]C .[-1,+∞)D .∅答案 B解析 因为f (x )=2x -3在x ∈[1,+∞)上为增函数, 所以f (x )min =-1,故满足f (x )≥-1. 又因为在x ≥1时,f (x )≥m 恒成立, 所以m ≤-1,故m ∈(-∞,-1]. 5.已知函数f (x )=⎩⎪⎨⎪⎧-x ,-1≤x ≤0,x 2,0<x ≤1,x ,1<x ≤2,则f (x )的最大值为________.考点 函数的最值及其几何意义 题点 由函数图象求最值 答案 2解析 f (x )的图象如图:则f (x )的最大值为f (2)=2.1.知识清单:函数的最大值、最小值定义.2.方法归纳:配方法、分类讨论法、数形结合法. 3.常见误区:(1)最值M 一定是一个函数值,是值域中的一个元素. (2)在利用单调性求最值时,勿忘求函数的定义域.1.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x答案 A解析 选项B ,C 在[1,4]上均为增函数,选项A ,D 在[1,4]上均为减函数,代入端点值,可知A 正确. 2.函数y =x -1x在[1,2]上的最大值为( )A .0 B.32 C .2 D .3答案 B解析 函数y =x 在[1,2]上是增函数,函数y =-1x在[1,2]上是增函数,所以函数y =x -1x在[1,2]上是增函数.当x =2时,y max =2-12=32.3.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2 D .0 答案 C解析 当a >0时,由题意得2a +1-(a +1)=2,即a =2;当a <0时,a +1-(2a +1)=2,所以a =-2.综上a =±2.4.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元 D .120.25万元答案 C解析 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,x ∈N , 公司获利为L =-x 2+21x +2(15-x ) =-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+30+1924,∴当x =9或10时,L 最大为120万元.5.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 答案 C解析 因为f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a ,所以函数f (x )图象的对称轴为x =2. 所以f (x )在[0,1]上单调递增. 又因为f (x )min =-2,所以f (0)=-2, 即a =-2.所以f (x )max =f (1)=-1+4-2=1.6.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________. 答案 f (-2) f (6)解析 作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )max =f (6). 7.函数y =3x +2(x ≠-2)在区间[0,5]上的最大值与最小值的和为________. 答案2714解析 因为函数y =3x +2在区间[0,5]上单调递减, 所以当x =0时,y max =32,当x =5时,y min =37.所以y max +y min =32+37=2714.8.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是________. 答案 (-∞,0)解析 令f (x )=-x 2+2x , 则f (x )=-x 2+2x =-(x -1)2+1. 又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0.9.已知函数f (x )=|x |(x +1),试画出函数f (x )的图象,并根据图象解决下列两个问题.(1)写出函数f (x )的单调区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-1,12上的最大值.解 f (x )=|x |(x +1)=⎩⎪⎨⎪⎧-x 2-x ,x ≤0,x 2+x ,x >0的图象如图所示.(1)f (x )在⎝⎛⎦⎥⎤-∞,-12和(0,+∞)上是增函数, 在⎣⎢⎡⎦⎥⎤-12,0上是减函数,因此f (x )的单调递增区间为⎝⎛⎦⎥⎤-∞,-12,(0,+∞); 单调递减区间为⎣⎢⎡⎦⎥⎤-12,0.(2)因为f ⎝ ⎛⎭⎪⎫-12=14,f ⎝ ⎛⎭⎪⎫12=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-1,12上的最大值为34.10.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:x 45 50 y2712(1)确定x 与y 的一个一次函数关系式y =f (x )(注明函数定义域);(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解 (1)因为f (x )是一次函数,设f (x )=ax +b (a ≠0),由表格得方程组⎩⎪⎨⎪⎧45a +b =27,50a +b =12,解得⎩⎪⎨⎪⎧a =-3,b =162,所以y =f (x )=-3x +162. 又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54]. (2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860=-3(x -42)2+432,x ∈[30,54].当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.11.若函数f (x )=k x在区间[2,4]上的最小值为5,则k 的值为( ) A .10 B .10或20 C .20 D .无法确定答案 C解析 当k =0时,不满足.当k >0时,y =f (x )=k x在[2,4]上是减函数, ∴f (x )min =f (4)=k4=5,∴k =20满足条件,k <0时,y =f (x )=kx 在[2,4]上是增函数,f (x )min =f (2)=k2=5,∴k =10,又∵k <0,∴k =10舍去, 综上有k =20.12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( ) A .[160,+∞) B .(-∞,40]C .(-∞,40]∪[160,+∞)D .(-∞,20]∪[80,+∞) 考点 函数的最值及其几何意义 题点 含参二次函数最值 答案 C解析 由于二次函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,因此函数f (x )=4x 2-kx -8在区间(5,20)上是单调函数.二次函数f (x )=4x 2-kx -8图象的对称轴方程为x =k 8,因此k8≤5或k8≥20,所以k ≤40或k ≥160.13.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是________.答案 {m |1≤m ≤2}解析 y =f (x )=(x -1)2+2,∵f (x )min =2,f (x )max =3,且f (1)=2,f (0)=f (2)=3,利用图象(图略)得1≤m ≤2.14.函数y =x +2x -1的最小值为________.答案 12解析 令t =2x -1,t ≥0,∴x =t 2+12, ∴y =t 2+12+t =12(t 2+2t +1)=12(t +1)2, ∵t ≥0,∴当t =0时,y min =12.15.已知f (x )=x ,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧ g x ,f x ≥g x ,f x ,f x <g x ,则F (x )的最值情况是( )A .最大值为3,最小值为-1B .最小值为-1,无最大值C .最大值为3,无最小值D .既无最大值,又无最小值答案 D解析 由f (x )≥g (x )得0≤x ≤3;由f (x )<g (x ),得x <0,或x >3, 所以F (x )=⎩⎪⎨⎪⎧ x 2-2x ,0≤x ≤3,x ,x <0或x >3.作出函数F (x )的图象(图略),可得F (x )无最大值,无最小值.16.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )是R 上的单调减函数;(2)求f (x )在[-3,3]上的最小值.(1)证明 设x 1,x 2是任意的两个实数,且x 1<x 2,则x 2-x 1>0,因为x >0时,f (x )<0,所以f (x 2-x 1)<0,又因为x 2=(x 2-x 1)+x 1,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1),所以f (x 2)-f (x 1)=f (x 2-x 1)<0,所以f (x 2)<f (x 1).所以f (x )是R 上的单调减函数.(2)解 由(1)可知f (x )在R 上是减函数,所以f (x )在[-3,3]上也是减函数,所以f (x )在[-3,3]上的最小值为f (3).而f (3)=f (1)+f (2)=3f (1)=3×⎝ ⎛⎭⎪⎫-23=-2. 所以函数f (x )在[-3,3]上的最小值是-2.。
高一数学上册《函数的基本性质》教案、教学设计
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
【秋季课程人教版高一数学】函数的最值问题-教案
适用学科 高中数学适用年级高一适用区域 人教版区域课时时长(分钟)2 课时知识点 教学目标单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 通过渗透数形结合的思想方法,掌握求函数最值的方法.教学重点 函数最大(小)值的定义和求法.教学难点 如何求一个具体函数的最值.【教学建议】 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则.鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学 生接触过的二次函数入手,这样能使学生容易找到最高点和最低点.但这只是感性上的认识, 要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概 念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力.【知识导图】教学过程一、导入【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状态。
导入的方法很多,仅举两种方法: ① 情境导入,比如讲一个和本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生建立知识网络。
提供一个教学设计供讲师参考:(1)由于某种原因,2008 年北京奥运会开幕式时间由原定的 7 月 25 日推迟到 8 月 8 日, 请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到 8 月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图 是北京市某年 8 月 8 日一天 24 小时内气温随时间变化的曲线图.问题:观察图形,能得到什么信息? 预案:(1)当天最高温度、最低温度是多少以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低. 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.从而引入 最大值、最小值的概念.二、知识讲解【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义:前提设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足①对于任意 x I ,都有 f (x) M ; ①对于任意 x I ,都有 f (x) M ;条件②存在 x0 I ,使得 f (x0 ) M②存在 x0 I ,使得 f (x0 ) M结论M 为最大值M 为最小值考点 2 函数的最大值函数图象上任意点 P 的坐标 (x, y) 的意义:横坐标 x 是自变量的取值,纵坐标 y 是自变 量为 x 时对应的函数值的大小.(1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值.(2)由于点 C x0, y0 是函数 y f (x) 图象上的最高点,则点 A 在点 C 的下方,即对定义域内任意 x ,都有 y y0 ,即 f (x) f (x0 ) ,也就是对函数 y f (x) 的定义域内任意 x , 均有 f (x) f (x0 ) 成立.(3)一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足: ①对于任意的 x I ,都有 f (x) M ; ②存在 x0 I ,使得 f (x0 ) M . 那么,称 M 是函数 y f (x) 的最.大.值... (4) f (x) M 反映了函数 y f (x) 的所有函数值不大于实数 M ;这个函数的特征是 图象有最高点,并且最高点的纵坐标是 M . (5)函数 y 2x 1,x (1, ) 没有最大值,因为函数 y 2x 1,x (1, ) 的图象没有最高点. (6)讨论函数的最大值,要坚持定义域优先的原则;函数图象上有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.考点 3 函数的最小值(1)函数最小值的定义是:一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足: ①对于任意的 x I ,都有 f (x) M ; ②存在 x0 I ,使得 f (x0 ) M . 那么,称 M 是函数 y f (x) 的最.小.值.。
3.2.1单调性与最大(小)值(第2课时)教学设计 - 高一数学 人教A版2019 必修第一册
《3.2.1单调性与最大(小)值》教学设计第2课时函数的最值教材内容:函数的最大、最小值与函数的单调性有着密切的关系。
通常要想求出函数的最大、最小值,首先要求出函数的单调性。
本节课是对函数的单调性内容的进一步深化,也是对值域这一函数性质的进一步学习。
同时,本节课所展现出的极限的数学思想对于接下来学习幂函数、函数的实际应用也有着不可替代的作用。
教学目标:1.理解函数的最大(最小)值及几何意义,培养学生数学抽象的核心素养;2.利用图象、单调性求最值,提升直观想象和数学运算的核心素养;3.会利用单调性解决比较大小、解不等式等问题,提升逻辑推理的核心素养。
教学重点与难点:1.重点:函数最值的定义;函数最值的求法。
2.难点:单调性求最值;讨论二次函数的最值问题.教学过程设计:(一)新知导入1. 创设情境,生成问题科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?【提示】气温从0时逐渐降底,6时气温达到最低,从6时到17时,气温逐渐升高,17时气温达到最高,从17时到24时,气温逐渐降低。
2.探索交流,解决问题【探究1】观察下列两个函数的图象,回答有关问题:【问题1】比较两个函数的图象,它们是否都有最高点?【提示】图①中函数y=−x2的图象上有一个最高点;图②中函数y=-x的图象上没有最高点.【问题2】通过观察图①你能发现什么?【提示】对任意x∈R,都有f(x)≤f(0),f(0)是最大值。
【探究2】观察下列两个函数的图象,回答有关问题.【问题3】比较两个函数的图象,它们是否都有最低点?【提示】图①中函数y=x2的图象有一个最低点.图②中函数y=x的图象没有最低点.【问题4】通过观察图①你能发现什么?【提示】对任意x∈R都有f(x)≥f(0),f(0)是最小值。
【设计意图】通过探究,引导学生直观感受函数的最大值是函数图象的最高点纵坐标,最小值是函数图象最低点的纵坐标,并尝试用数学语言表示函数的最值,提高学生用数形结合的思维方式思考并解决问题的能力。
高一数学函数教案
高一数学函数教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!高一数学函数教案高一数学函数教案(精选3篇)高一数学函数教案篇1第四课时(2.1.2.(2)教学目的:1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.2.培养观察分析、抽象概括能力和归纳总结能力;教学重点:值域的求法教学难点:二次函数在某一给定区间上的值域(最值)的求法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;定义域和对应法则一经确定,值域就随之确定。
高一数学函数的单调性与最值教案
高一数学——函数第三讲函数的单调性与最大(小)值【教学目标】:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性;(4)理解函数的最大(小)值及其几何意义。
【重点难点】:1.重点:函数的单调性、最大(小)值及其几何意义,2.难点:利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值。
【教学过程】:用具:一、知识导向或者情景引入1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:y y yy(1)随x的增大,y的值有什么变化?1 1 1(2)能否看出函数的最大、最小值?1-1 -11 x 1 x -1 1 x(3)函数图象是否具有某种对称性?-1 -1 -12、画出下列函数的图象,观察其变化规律:(1)f(x) = x -1 1 x -1y○从左至右图象上升还是下降______?1○在区间____________上,随着x的增2大,f(x)的值随着________.(2)f(x) =-2x+1 1○从左至右图象上升还是下降______?1-1 11 x x○在区间____________上,随着x的增2-1 大,f(x)的值随着________.(3)f(x) = x2 y○在区间____________上,f(x)的值随1着x的增大而________. 1○在区间____________上,f(x)的值随2 -1着x的增大而________.-1二、新课教学(一)函数单调性定义1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x ,x,当x <x时,都有f(x )<f(x ),1 2 1 2 1 2 那么就说f(x)在区间D 上是增函数(increas ing func t i on).思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;单调性 ○1 是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性。
高一数学:1《函数的最值》课件 公开课一等奖课件
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
函数图象上最高点的纵坐标叫什么名称?
思考2:设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何?
思考3:设函数 f ( x) 1 x ,则 f ( x) 2 成立吗? f ( x) 的最大值是2吗?为什么?
2
思考4:怎样定义函数 f ( x) 的最大值?用什么符号 表示?
一般地,设函数 y f ( x) 的定义域为I,如果存在 实数M满足: (1)对于任意的 x I , 都有 f ( x) M; (2)存在 x0 I,使得 f ( x0 ) M. 那么称M是函数 y f ( x) 的最大值,记作
f ( x)max M
思考5:函数的最大值是函数值域中的一个元 素吗?如果函数 f ( x) 的值域是(a,b),则函 数 f ( x) 存在最大值吗?
思考3:如果函数 f ( x)存在最大值,那么有几个?
思考4:如果函数 f ( x) 的最大值是b,最小值是a, 那么函数 f ( x) 的值域是[a,b]吗?
理论迁移
2 , x 2,6 ,求函数 f ( x) 例1已知函数 f x x 1 的最大值和最小值.
高一数学函数的值域与最值(教师版)
学科教师辅导讲义11222=,故225)4x x x +=+254x +=+显然这样的实数不存在,那么我们就不能使用不等式法来求解了例4、求函数2223(20)()23(03)x x x f x x x x ⎧+--<⎪=⎨--⎪⎩,≤ ≤≤的值域.分析:求分段函数的值域可作出它的图象,则其函数值的整体变化情况就一目了然了,从而可以快速地求出其值域.解:作图象如图所示.(1)(1)4f f -==-∵,(2)3f -=-,(3)0f =,(0)3f =-,∴函数的最大值、最小值分别为0和4-,即函数的值域为[40]-,. 变式练习1:求函数13y x x =-+-的值域.分析: 此题首先是如何去掉绝对值,将其做成一个分段函数.24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞⎧⎪=∈⎨⎪-∈+∞⎩在对应的区间内,画出此函数的图像, 如图1所示, 易得出函数的值域为),2[+∞. 变式练习2:求函数224548y x x x x =+++-+的值域。
解:原函数变形为222()(2)1(2)2f x x x =+++-+作一个长为4、宽为3的矩形ABCD ,再切割成 12个单位正方形。
设HK=x ,则EK=2x -,KF=2x +,AK=22(2)2x -+,KC=2(2)1x ++ 。
由三角形三边关系知,AK+KC ≥AC=5。
当A 、K 、C 三点共线时取等号。
∴原函数的知域为{y |y ≥5}。
变式练习3:求函数()225222++-++=x x x x x f 的最大值解:()225222++-++=x x x x x f =()()114122++-++x x=()()()()2222101201-++--++x x ,显然,求f(x)的最大值就是求点A(x,0)分别到B(-1,2),C(-1,1)的距离之差的最大值.如图1所示:()()22201-++x =|AB|,()()22101-++x =|AC|,且|BC|=1.显然f(x)=|AB|-|AC|≥|BC|=1当且仅当A,B,C 三点共线时取到等号,即当X=-1时()[]1max =∴x f . y yB 2 B 2C 1 C 1-1 O 1 x -1 O 1 x图1 图2图1y=-2x+4y=2x-4YX4O231时,x R ∈,函数的值域为[1,92212+++x x x 的值域先将此函数化成隐函数的形式得的一元二0)1≥-,解得略解:易知定义域为1,2⎛⎤-∞ ⎥⎝⎦,而12y x x =--在1,2⎛⎤-∞ ⎥⎝⎦上均为增函数,∴11112222y --=≤,故y ∈1,2⎛⎤-∞ ⎥⎝⎦13、求函数22y x x =-++的值域。
高一数学教案函数的最值5篇最新
高一数学教案函数的最值5篇最新使学生从形与数两方面理解函数的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象判断、证明函数的方法,今天小编在这里整理了一些高一数学教案函数的最值5篇最新,我们一起来看看吧!高一数学教案函数的最值1一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。
并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)
第2课时函数的最大值、最小值1.函数的最值(1)定义.前提函数f(x)的定义域为D,且x0∈D,对任意x∈D 条件都有f(x)≤f(x0)都有f(x)≥f(x0)结论最大值为f(x0),x0为最大值点最小值为f(x0),x0为最小值点最大值和最小值统称为最值,最大值点和最小值点统称为最值点①配方法:主要适用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围;②换元法:用换元法时一定要注意新变元的取值范围;③数形结合法:对于图像较容易画出的函数的最值问题,可借助图像直观求出;④利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.最值点是点吗?提示:不是,是实数值,是函数值取得最值时的自变量x 的值.2.直线的斜率(1)直线斜率的定义.平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),①当x 1≠x 2时,称y 2-y 1x 2-x 1 为直线的斜率,记作Δy Δx ; ②当x 1=x 2时,称直线的斜率不存在.(2)直线的斜率与函数单调性的关系①函数递增的充要条件是其图像上任意两点连线的斜率都大于0. ②函数递减的充要条件是其图像上任意两点连线的斜率都小于0.3.函数的平均变化率(1)平均变化率的定义:若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I ,且x 1≠x 2,记y 1=f (x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1 , 称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.(2)函数的平均变化率与函数的单调性y =f (x )在I 上是增函数⇔Δy Δx >0在I 上恒成立y =f (x )在I 上是减函数⇔Δy Δx <0在I 上恒成立函数图像上任意两点连线的斜率大于0时,函数图像从左向右的变化趋势是什么?提示:函数图像从左向右逐渐上升.1.辨析记忆(对的打“√”,错的打“×”).(1)任何函数都有最大值、最小值.( × )提示:如函数y =1x 既没有最大值,也没有最小值.(2)一个函数的最大值是唯一的,最值点也是唯一的.( × )提示:函数的最大值是唯一的,但最值点不唯一,可以有多个最值点.(3)直线不一定有斜率,过函数图像上任意两点的直线也不一定有斜率.( × )提示:过函数图像上任意两点的直线一定有斜率,因为根据函数的定义,一定有x 1≠x 2.2.过函数图像上两点A (-1,3),B (2,3)的斜率Δy Δx =________.【解析】Δy Δx =3-32+1=0. 答案:03.已知函数f (x )=x -1x +1,x ∈[1,3],则函数f (x )的最大值为________,最小值为________.【解析】f (x )=x -1x +1 =1-2x +1,x ∈[1,3], 因为f (x )在[1,3]上为增函数,所以f(x)max=f(3)=1=f(1)=0.2,f(x)min答案:120类型一利用函数的图像求最值(数学运算、直观想象)1.(2021·太原高一检测)如图是函数y=f(x),x∈[-4,3]的图像,则下列说法正确的是()A.f(x)在[-4,-1]上单调递减,在[-1,3]上单调递增B.f(x)在区间(-1,3)上的最大值为3,最小值为-2C.f(x)在[-4,1]上有最小值-2,有最大值3D.当直线y=t与y=f(x)的图像有三个交点时-1<t<2【解析】选C.A选项,由函数图像可得,f(x)在[-4,-1]上单调递减,在[-1,1]上单调递增,在[1,3]上单调递减,故A错;B选项,由图像可得,f(x)在区间(-1,3)上的最大值为f(1)=3,无最小值,故B错;C选项,由图像可得,f(x)在[-4,1]上有最小值f(-1)=-2,有最大值f(1)=3,故C正确;D选项,由图像可得,为使直线y=t与y=f(x)的图像有三个交点,只需-1≤t≤2,故D错.2.已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.则f (x )的最小值、最大值点分别为________,________.【解析】作出函数f (x )的图像(如图).由图像可知,当x =±1时,f (x )取最大值,最小值为0,故f (x )的最小值为0,最大值点为±1.答案:0 ±13.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5], (1)如图所示,在给定的直角坐标系内画出f (x )的图像.(2)由图像指出函数f (x )的最值点,求出最值.【解析】(1)由题意,当x ∈[-1,2]时,f (x )=-x 2+3,为二次函数的一部分;当x ∈(2,5]时,f (x )=x -3,为一次函数的一部分;所以,函数f (x )的图像如图所示:(2)由图像可知,最大值点为0,最大值为3;最小值点为2,最小值为-1.图像法求最值、最值点的步骤【补偿训练】 已知函数f(x)=⎩⎨⎧x 2-x (0≤x≤2),2x -1(x >2),求函数f(x)的最大值、最小值. 【解析】作出f(x)的图像如图:由图像可知,当x =2时,f(x)取最大值为2;当x =12 时,f(x)取最小值为-14 .所以f(x)的最大值为2,最小值为-14 .【拓展延伸】求二次函数最值的常见类型及解法求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,当开口方向或对称轴位置不确定时,还需要进行分类讨论.求二次函数f (x )=ax 2+bx +c (a >0)在区间[m ,n ]上的最值一般分为以下几种情况:(1)若对称轴x =-b 2a 在区间[m ,n ]内,则最小值为f ⎝ ⎛⎭⎪⎫-b 2a ,最大值为f (m ),f (n )中较大者(或区间端点m ,n 中与直线x =-b 2a 距离较远的一个对应的函数值为最大值).(2)若对称轴x =-b 2a <m ,则f (x )在区间[m ,n ]上是增函数,最大值为f (n ),最小值为f (m ).(3)若对称轴x =-b 2a >n ,则f (x )在区间[m ,n ]上是减函数,最大值为f (m ),最小值为f (n ).【拓展训练】1.定轴定区间上的最值问题【例1】已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值.(1)R .(2)[0,3].(3)[-1,1].【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图像法求解.【解析】f (x )=3x 2-12x +5=3(x -2)2-7.(1)当x ∈R 时,f (x )=3(x -2)2-7≥-7,当x =2时,等号成立.故函数f (x )的最小值为-7,无最大值.(2) 函数f (x )=3(x -2)2-7的图像如图所示,由图可知,在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5;在x =2时取得最小值,最小值为-7.(3)由图可知,函数f (x )在[-1,1]上是减函数,在x =-1时取得最大值,最大值为20;在x =1时取得最小值,最小值为-4.(1)函数y =ax 2+bx +c (a >0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是增函数,当x =-b 2a 时,函数取得最小值. (2)函数y =ax 2+bx +c (a <0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是减函数,当x =-b 2a 时,函数取得最大值. 2.动轴定区间上的最值问题【例2】已知函数f (x )=x 2-2ax +2,x ∈[-1,1],求函数f (x )的最小值.【思路导引】二次函数开口方向确定,对称轴不确定,需根据对称轴的不同情况分类讨论.可画出二次函数相关部分的简图,数形结合解决问题.【解析】f(x)=x2-2ax+2=(x-a)2+2-a2的图像开口向上,且对称轴为直线x=a.当a≥1时,函数图像如图(1)所示,函数f(x)在区间[-1,1]上是减函数,最小值为f(1)=3-2a;当-1<a<1时,函数图像如图(2)所示,函数f(x)在区间[-1,1]上是先减后增,最小值为f(a)=2-a2;当a≤-1时,函数图像如图(3)所示,函数f(x)在区间[-1,1]上是增函数,最小值为f(-1)=3+2a.3.定轴动区间上的最值问题【例3】已知函数f(x)=x2-2x+2,x∈[t,t+1],t∈R的最小值为g(t),试写出g(t)的函数表达式.【思路导引】二次函数的解析式是确定的,但定义域是变化的,需依据t的大小情况画出对应的简图(二次函数的一段),从而求解.【解析】f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,对称轴为x=1.当t +1<1,即t <0时,函数图像如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图像如图(2)所示,最小值为g (t )=f (1)=1;当t >1时,函数图像如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为g (t )=f (t )=t 2-2t +2.综上可得g (t )=⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.本题中给出的区间是变化的,从运动的观点来看,让区间从左向右沿x 轴正方向移动,分析移动到不同位置时对最值有什么影响.借助图形,可使问题的解决显得直观、清晰.类型二 函数的平均变化率与单调性、最值(数学运算、逻辑推理)【典例】已知函数f (x )=2x -3x +1. (1)判断函数f (x )在区间[0,+∞)上的单调性,并用平均变化率证明其结论.【思路导引】任取x1,x2∈[0,+∞)⇒Δf(x)Δx>0⇒函数单调递增【解析】f(x)在区间[0,+∞)上是增函数.证明如下:任取x1,x2∈[0,+∞),且x1≠x2,f(x2)-f(x1)=2x2-3x2+1-2x1-3x1+1=(2x2-3)(x1+1)(x1+1)(x2+1)-(2x1-3)(x2+1)(x1+1)(x2+1)=5(x2-x1)(x1+1)(x2+1).所以Δf(x)Δx=5(x2-x1)(x1+1)(x2+1)x2-x1=5(x1+1)(x2+1).因为x1,x2∈[0,+∞),所以(x1+1)(x2+1)>0,所以Δf(x)Δx>0,所以函数f(x)在区间[0,+∞)上是增函数.(2)求函数f(x)在区间[2,9]上的最大值与最小值.【思路导引】由第(1)问可知f(x)在[2,9]上是增函数⇒f(2)是最小值,f(9)是最大值【解析】由(1)知函数f(x)在区间[2,9]上是增函数,故函数f(x)在区间[2,9]上的最大值为f(9)=2×9-39+1=32,最小值为f(2)=2×2-32+1=13.利用函数的平均变化率证明单调性的步骤(1)任取x 1,x 2∈D ,且x 1≠x 2.(2)计算f (x 2)-f (x 1),Δf (x )Δx .(3)根据x 1,x 2的范围判断Δf (x )Δx 的符号,确定函数的单调性.已知函数f (x )=x +1x -2,x ∈[3,7]. (1)判断函数f (x )的单调性,并用平均变化率加以证明.【解析】函数f(x)在区间[3,7]内单调递减,证明如下: 在[3,7]上任意取两个数x 1和x 2,且x 1≠x 2,因为f(x 1)=x 1+1x 1-2 ,f(x 2)=x 2+1x 2-2, 所以f(x 2)-f(x 1)=x 2+1x 2-2 -x 1+1x 1-2 =3(x 1-x 2)(x 1-2)(x 2-2). 所以Δf (x )Δx =3(x 1-x 2)(x 1-2)(x 2-2)x 2-x 1 =-3(x 1-2)(x 2-2), 因为x 1,x 2∈[3,7],所以x 1-2>0,x 2-2>0,所以Δf (x )Δx <0,函数f(x)为[3,7]上的减函数.(2)求函数f (x )的最大值和最小值.【解析】由单调函数的定义可得f(x)max =f(3)=4,f(x)min =f(7)=85 .类型三 常见函数的最值问题(直观想象、数学运算)不含参数的最值问题【典例】函数f(x)=-2x 2+x +1在区间[-1,1]上最小值点为________,最大值为________.【思路导引】求出一元二次函数的对称轴,利用对称轴和区间的关系解题.【解析】函数f(x)=-2x 2+x +1的对称轴为x =-12×(-2) =14 ,函数的图像开口向下,所以函数的最小值点为-1,最大值为f ⎝ ⎛⎭⎪⎫14 =-2×116 +14 +1=98 .答案:-1 98含参数的最值问题【典例】设a 为实数,函数f(x)=x 2-|x -a|+1,x ∈R .(1)当a =0时,求f (x )在区间[0,2]上的最大值和最小值.【思路导引】代入a 的值,化简后求最值.【解析】当a =0,x ∈[0,2]时函数f (x )=x 2-x +1,因为f (x )的图像开口向上,对称轴为x =12 ,所以,当x =12 时f (x )值最小,最小值为34 ,当x =2时,f (x )值最大,最大值为3.(2)当0<a <12 时,求函数f (x )的最小值.【思路导引】讨论对称轴与区间的位置关系求最值.【解析】f (x )=⎩⎪⎨⎪⎧x 2-x +a +1,x ≥a ,x 2+x -a +1,x <a .①当x ≥a 时,f (x )=x 2-x +a +1=⎝ ⎛⎭⎪⎫x -12 2 +a +34 . 因为0<a <12 ,所以12 >a ,则f (x )在[a ,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫12 =34 +a ; ②当x <a 时,函数f (x )=x 2+x -a +1=⎝ ⎛⎭⎪⎫x +12 2 -a +34 .因为0<a <12 ,所以-12 <a ,则f (x )在(-∞,a )上的最小值为f ⎝ ⎛⎭⎪⎫-12 =34 -a .综上,f (x )的最小值为34 -a .将本例的函数改为f (x )=x 2-2ax +1,试求函数在区间[0,2]上的最值.【解析】函数的对称轴为x =a ,(1)当a <0时,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=1;当0≤a ≤2时,f (x )min =f (a )=-a 2+1;当a >2时,f (x )在区间[0,2]上是减函数,所以f (x )min =f (2)=5-4a ,所以f (x )min =⎩⎪⎨⎪⎧1,a <0,-a 2+1,0≤a ≤2,5-4a ,a >2.(2)当a ≤1时,f (x )max =f (2)=5-4a ;当a >1时,f (x )max =f (0)=1,所以f (x )max =⎩⎨⎧5-4a ,a ≤1,1,a >1.一元二次函数的最值(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值点,代入函数解析式求最值.(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x =m ,区间[a ,b ]为例,①最小值:f (x )min =⎩⎪⎨⎪⎧f (a ),m ≤a ,f (m ),a ≤m ≤b ,f (b ),m ≥b .②最大值:f (x )max =⎩⎨⎧f (a ),m ≥a+b 2,f (b ),m <a +b 2. 当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.(1)已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值.【解析】因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a 2 ,当a 2 ≤12 ,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2 >12 ,即a >1时,f (x )的最大值为f (0)=1.(2)已知函数f (x )=x 2-x +1,求f (x )在[t ,t +1](t ∈R )上的最小值.【解析】f (x )=x 2-x +1,其图像的对称轴为x =12 , ①当t ≥12 时,f (x )在[t ,t +1]上是增函数,所以f (x )min =f (t )=t 2-t +1; ②当t +1≤12 ,即t ≤-12 时,f (x )在[t ,t +1]上是减函数,所以f (x )min =f (t +1)=t 2+t +1;③当t <12 <t +1,即-12 <t <12 时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12 上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1 上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12 =34 .1.(2020·西安高一检测)函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 2【解析】选A.因为a >0,所以f (x )=9-ax 2开口向下,以y 轴为对称轴,所以f (x )=9-ax 2在[0,3]上单调递减,所以x =0时,f (x )最大值为9.2.函数f (x )=x +2x -1 ( )A .有最小值12 ,无最大值B .有最大值12 ,无最小值C .有最小值12 ,有最大值2D .无最大值,也无最小值 【解析】选A.f (x )=x +2x -1 的定义域为⎣⎢⎡⎭⎪⎫12,+∞ ,在定义域内单调递增,所以f (x )有最小值f ⎝ ⎛⎭⎪⎫12 =12 ,无最大值. 3.(2021·菏泽高一检测)设f (x )=x 2-2ax +a 2,x ∈[0,2],当a =-1时,f (x )的最小值是________,若f (0)是f (x )的最小值,则a 的取值范围为________.【解析】当a =-1时,f (x )=x 2+2x +1,开口向上,对称轴为x =-1, 所以函数f (x )=x 2+2x +1在(0,2)上单调递增,所以函数在x ∈[0,2]上的最小值f (x )min =f (0)=1.若f (0)是f (x )的最小值,说明对称轴x =a ≤0,则a ≤0,所以a 的取值范围为(-∞,0].答案:1 (-∞,0]【补偿训练】二次函数f (x )=12 x 2-2x +3在[0,m ]上有最大值3,最小值1,则实数m 的取值范围是________.【解析】因为f (x )=12 x 2-2x +3在[0,2]上单调递减,在[2,+∞)上单调递增.则当0<m <2时,⎩⎨⎧f (0)=3,f (m )=1, 此时无解;当2≤m ≤4时,x =2时有最小值1,x =0时有最大值3,此时条件成立; 当m >4时,最大值必大于f (4)=3,此时条件不成立.综上可知,实数m 的取值范围是[2,4].答案:[2,4]备选类型 函数最值的应用(数学建模)【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:厘米)满足关系式:C (x )=k 3x +5 (0≤x ≤10).若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式.(2)隔热层修建多厚时,总费用f (x )最小?并求其最小值.【思路导引】【解析】(1)由题意知C(0)=8,代入C(x)的关系式,得k =40,因此C(x)=403x +5 (0≤x≤10),而每厘米厚的隔热层建造成本为6万元, 所以隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+6x =8003x +5+6x(0≤x≤10). (2)令t =3x +5,由0≤x≤10,得5≤t≤35,从而有函数h(t)=800t +2t -10(5≤t≤35).令5≤t 1<t 2≤35,则h(t 1)-h(t 2)=(t 1-t 2)⎝ ⎛⎭⎪⎫2-800t 1t 2 , 当5≤t 1<t 2≤20时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)>0; 当20≤t 1<t 2≤35时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)<0. 所以h(t)=800t +2t -10(5≤t≤35)在区间[5,20]上单调递减,在区间[20,35]上单调递增,所以当t =20时,h(t)min =70,即当t =3x +5=20,x =5时,f(x)min =70.所以当隔热层修建5厘米厚时,总费用达到最小,为70万元.(1)通过换元,使函数式变得简单,易于研究其单调性.(2)以20为分界点将[5,35]分成两个单调区间,可结合对勾函数的单调性规律来理解.(2020·枣庄高一检测)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20 000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=⎩⎨⎧400x -12x 2,0<x ≤400,80 000,x>400,x 是“玉兔”的月产量(单位:件),总收益=成本+利润. (1)试将利润y 表示为月产量x 的函数.(2)当月产量为多少件时利润最大?最大利润是多少?【解析】(1)依题设,总成本为20 000+100x ,则y =⎩⎪⎨⎪⎧-12x 2+300x -20 000,0<x≤400,且x ∈N ,60 000-100x ,x >400,且x ∈N .(2)当0<x ≤400时,y =-12 (x -300)2+25 000,则当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,则y <60 000-100×400=20 000,所以当月产量为300件时,有最大利润25 000元.1.函数f (x )的图像如图,则其最大值、最小值点分别为( )A .f ⎝ ⎛⎭⎪⎫32 ,-32B .f (0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32 ,f (0) D .f (0),32 【解析】选D.观察函数图像,f (x )最大值、最小值点分别为f (0),32 .2.已知函数f (x )=x 2+2x +a (x ∈[0,2])有最小值-2,则f (x )的最大值为( )A .4B .6C .1D .2【解析】选B.f (x )=x 2+2x +a (x ∈[0,2])为增函数,所以最小值为f (0)=a =-2,最大值f (2)=8+a =6.3.(2021·大冶高一检测)若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(2,+∞)B .⎝⎛⎭⎪⎫-∞,12 ∪[2,+∞) C .(-∞,2] D .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 【解析】选D.因为函数y =2x -1在(-∞,1)和[2,5)上都是单调递减函数,当x <1时,y <0,x =2时,y =2,x =5时,y =12 ,所以函数的值域是(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 . 4.(教材练习改编)函数y =1x -3在区间[4,5]上的最小值为________. 【解析】作出图像可知y =1x -3在区间[4,5]上是减函数(图略),所以其最小值为15-3=12 . 答案:125.定义在R 上的函数f (x )对任意两个不等实数a ,b ,总有f (a )-f (b )a -b>0成立,且f (-3)=a ,f (-1)=b ,则f (x )在[-3,-1]上的最大值是________.【解析】由f (a )-f (b )a -b>0,得f (x )在R 上是增函数, 则f (x )在[-3,-1]上的最大值是f (-1)=b .答案:b6.已知函数f (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.(1)求a ,b 的值;(2)若不等式f (x )-kx ≤0在x ∈[2,3]上恒成立,求实数k 的取值范围.【解析】(1)因为f (x )=ax 2-2ax +1+b (a >0)的图像开口向上,且对称轴为x =1,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (x )min =f (2)=4a -4a +1+b =1f (x )max =f (3)=9a -6a +1+b =4. 所以a =1,b =0; (2)由(1)得f (x )=x 2-2x +1,所以不等式f (x )-kx ≤0,即x 2-(2+k )x +1≤0在x ∈[2,3]上恒成立, 令g (x )=x 2-(2+k )x +1,g (x )的图像开口朝上, 则要使g (x )≤0在x ∈[2,3]上恒成立,所以⎩⎨⎧g (2)=4-4-2k +1≤0g (3)=9-6-3k +1≤0,解得k ≥43 , 所以实数k 的取值范围为k ≥43 .。
函数的最值说课稿(获奖)
函数的最值说课稿(获奖)
作为数学老师,我经常接到学生关于函数最值的问题。
今天我
想分享一下我教授这个概念的方法。
首先,我们需要了解什么是函
数最值。
函数最值的概念
函数最值是指给定函数的最大值和最小值。
最大值是函数在定
义域内的最大输出值,而最小值则相反,是函数在定义域内的最小
输出值。
函数最值的求法
函数的最值可以使用各种方法求解,包括解析解法和图形解法。
其中,最常用的方法是导数法。
导数法
导数法是一种求函数最值的算法。
通过计算函数在定义域内的
导数,可以确定函数的最值点。
此外,通过判断导数的正负性,可
以判断函数的最值点是最大值还是最小值。
图形解法
图形解法是一种直观的方法,通过观察函数的图形,可以确定
函数的最值点。
对于连续函数,可以使用极值定理来判断最值点是
否在区间端点上。
函数最值的应用
函数最值在实际生活中具有广泛的应用。
例如,商家可以使用
函数最值来确定最大化利润的定价策略。
工程师可以使用函数最值
来确定最适合的材料使用比例和尺寸设计。
医生可以使用函数最值
来确定最适合的药物剂量和治疗方案。
总之,函数最值是数学中重要的概念,在实际应用中也具有广
泛的意义。
希望本文的内容可以帮助您更好地理解和应用函数最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1.2函数的最值
【内容与解析】
本节课要学的内容有函数的最值指的是函数值的最大值和最小值,理解它关键就是把握好最值的定义。
学生已经学过了函数的相关知识,本节课的内容函数的最值就是在此基础上的发展的。
由于它还与函数的单调性、值域等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。
教学的重点是最值的定义,所以解决重点的关键是通过大量实例,归纳出最值的定义。
【教学目标与解析】
1.教学目标
(1)理解函数最值的含义及其几何意义;
(2)初步掌握用定义及函数的单调性求最值的方法;
2.目标解析
(1)理解函数最值的含义及其几何意义指的是能叙述函数最大值、最小值的概念,理解函数的最大值与图像最高点纵坐标的对应,最小值与图像最低点纵坐标的对应;
(2)初步掌握用定义求最值的方法指的是能够利用定义证明或者求解一些简单函数的最值;【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是最值的定义难以归纳出来,产生这一问题的原因是:最值中的“最”不是“大于其它”或者“小于其它”,而是“不小于”与“不大于”。
要解决这一问题,就要在教学中通过具体函数的图像,让学生去说,其中关键是选例精当,引导到位。
【教学过程】
问题1:我们已经学习过函数的图像,并利用图像研究了函数的单调性,下面,请看几张幻灯片:
1.1 这些函数图像是否具备单调性?
1.2 请观察图像的特殊点,你有什么发现?
1.3 对于最高点和最低点,你有什么发现?
设计意图:通过以上问题,让学生通过函数图像,对最值有一个直观的认识。
问题2:图像仅仅是函数的表示法之一,对于一般的函数,不一定用图像来表达,那么,相应于刚才我们研究的结论,如何将其一般化?
2.1 图像的最高点、最低点可能有很多,对应到一般的函数,就对到什么?
2.2 图像的最高点、最低点也可能很多,也可能没有,在叙述中要注意什么?
2.3 最高点或最低点对应的函数值应在值域中,这点如何表达?
2.4 如果我们把最高点的纵坐标叫做相应函数的最大值,请你说出最大值的含义。
2.5 仿照最大值的含义,你能说出最小值的含义吗?
设计意图:通过这些问题,让学生理解最值的含义的发生、发展过程,并且自主归纳出函数最值的含义,实现有特殊到一般,由具体形象到一般概念的转化。
问题3:判断下列函数的最值,并说明理由:
(1),]3,1[,1)(∈+=x x x f
(2),)3,1(,1)(∈+=x x x f
(3),]4,2[,2)(2
∈-=x x x x f 设计意图:通过这些问题,让学生理解用定义的方法来处理最值问题,需要先对最值有一个判断,可能是猜测的,可能是有图像的最高点、最低点获得直观感受的,但,要对问题做出完整的解答,最终是必须要依据定义的;同时,通过这些问题,让学生进一步明确函数最值可能存在可能不存在,可能存在多个最值,最大值和最小值也有可能相等.
【课堂目标检测】
1,已知函数]3,1[,4)(∈+=x x
x x f (1) 判断上的单调性和在]3,2[]2,1[)(x f
(2) 根据的最值的单调性写出)()(x f x f
设计意图:通过这些问题,让学生理解利用函数的单调性来求函数的最值的一般方法,并复习前面学习过的函数的单调性。
【课堂小结】
1、最大值和最小值的含义;
2、利用定义来说明函数的最小值;
3、利用函数的单调性来求函数的最值。