高考数学知识点题型测试2
高考数学难点2充要条件的判定习题与答案

高考数学难点2充要条件的判定习题与答案●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.4.(★★★★)命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.三、解答题5.(★★★★★)设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n}、{b n}满足:,求证:数列{a n}成等差数列的充要条件是数列{b n}也是等差数列.7.(★★★★★)已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件.8.(★★★★★)p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f(±2)>0.即有(2)必要性:∴方程f(x)=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f(x)=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)=-(x|x+a|+b)=-f(x).∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=(-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.∴a2+b2=0是f(x)为奇函数的必要条件.答案:D2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.答案:A二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,答案:充要条件4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是、(注意p中a、b满足的前提是Δ=a2-4b≥0)。
高考数学热点必会题型第2讲 单调性、奇偶性、对称性和周期性解决函数问题(原卷版)

高考数学热点必会题型第2讲单调性、奇偶性、对称性和周期性解决函数问题——每天30分钟7天轻松掌握一、重点题型目录【题型】一、利用函数的奇偶性求参数值【题型】二、利用函数的奇偶性解抽象函数不等式 【题型】三、构造奇偶函数求函数值【题型】四、奇偶性和周期性综合解决函数问题 【题型】五、单调性和奇偶性综合解决函数问题 【题型】六、对称性和奇偶性综合解决函数问题 【题型】七、对称性、周期性和奇偶性综合解决函数问题 【题型】八、定义法判断证明函数的单调性 【题型】九、定义法判断证明函数的奇偶性 【题型】十、利用函数的周期性求函数值 二、题型讲解总结第一天学习及训练【题型】一、利用函数的奇偶性求参数值例1.(2022·江西·高三阶段练习(理))设函数()(0)a xf x a a x-=≠+,若()(1)1g x f x =-+是奇函数,则(2022)f =( ) A .20222021-B .20212023-C .20222021D .20212023例2.(2023·山西大同·高三阶段练习)已知2e ()e x xaf x +=满足()()0f x f x ,且()f x 在(,())b f b 处的切线方程为2y x =,则a b +=___________.例3.(2023·广东·高三学业考试)已知函数()()()3log 91xf x ax a =++∈R 为偶函数.(1)求a 的值;(2)当[)0,x ∈+∞时,不等式()0f x b -≥恒成立,求实数b 的取值范围. 【题型】二、利用函数的奇偶性解抽象函数不等式4.(2022·广东·高三阶段练习)已知()f x 是定义在R 上的偶函数,()f x 在[)0+∞,上是增函数,且()20f =,则不等式(3)0x f >的解集为( ) A .()()33,log 2log 2,-∞-⋃+∞ B .3(log 2,)+∞ C .3(,log 2)-∞-D .33(log 2,log 2)-例5.(2022·浙江·高三开学考试)已知()f x 是定义在{}0xx ≠∣上的奇函数,当210x x >>时,()()1212120x x f x f x x x ⎡⎤-+->⎣⎦恒成立,则( ) A .()y f x =在(),0∞-上单调递增 B .()12y f x x=-在()0,∞+上单调递减 C .()()1236f f +->D .()()1236f f -->第二天学习及训练【题型】三、构造奇偶函数求函数值例6.(2023·全国·高三专题练习)已知函数1()ln(4f x x x=++在[8-,8]上的最大值和最小值分别为M 、m ,则M m +=( )A .8B .6C .4D .2例7.(2022·河南·偃师市缑第四中学高三阶段练习(理))已知函数()3e e 3x xf x x -=-++ ,若()5f a =,则()f a -=( ) A .2B .1C .-2D .-5例8.(2022·甘肃·陇西县第二中学高三阶段练习(文))已知函数()()()22sin 11f x x x x x =--++,则()222log 6log 3f f ⎛⎫+= ⎪⎝⎭( )A .6B .4C .2D .3-【题型】四、奇偶性和周期性综合解决函数问题例9.(2022·河南·高三阶段练习(文))设函数()y f x =的定义域为R ,且满足()1y f x =+是偶函数,()()2f x f x -=--,当(]1,1x ∈-时,()21f x x =-+,则下列说法不正确的是( ) A .()20221f =-B .当[]9,11x ∈时,()f x 的取值范围为[]0,1C .()3y f x =+为奇函数D .方程()()lg 1f x x =+仅有5个不同实数解例10.(2022·河南安阳·高三阶段练习(理))已知函数()f x 的定义域为R ,()1f x -是偶函数,()2f x +是奇函数,则()2022f =( ) A .()1fB .()2fC .()3fD .()4f例11.(2023·全国·高三专题练习)已知定义域为R 的函数()f x 存在导函数()f x ',且满足()()()(),4f x f x f x f x -=-=-,则曲线()y f x =在点()()2022,2022f 处的切线方程可以是___________(写出一个即可)第三天学习及训练【题型】五、单调性和奇偶性综合解决函数问题例12.(2023·甘肃·模拟预测(理))设函数()()21ln 11f x x x =+-+,则使得()()21f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭例13.(2023·全国·模拟预测)若()()R,11x f x f x ∀∈+=-,当1x ≥时,2()4f x x x =-,则下列说法错误的是( ) A .函数()f x 为奇函数B .函数()f x 在()1,+∞上单调递增C .()min 4f x =-D .函数()f x 在(,1)-∞上单调递减例14.(2022·全国·高三专题练习)设ππ,,44x y ⎡⎤∈-⎢⎥⎣⎦,若333πcos()2024sin cos 0x x a y y y a ⎧++-=⎪⎨⎪++=⎩,则cos(2)x y +=______.【题型】六、对称性和奇偶性综合解决函数问题例15.(2023·全国·高三专题练习)设()f x 的定义域为R ,且满足()()()()3221,2f x f x f x f x -=-+-=,若()12f =,则()()()()1232022f f f f ++++=( ) A .2023B .2024C .3033D .3034例16.(2023·全国·高三专题练习)设函数()()11sin 1e e 4x xf x x x --=-+--+,则满足()()326f x f x +-<的x 的取值范围是( )A .()3,+∞B .()1,+∞C .(),3-∞D .(),1-∞例17.(2022·福建·宁德市高级中学高三阶段练习)设()f x 的定义域为R ,且满足()()3221f x f x -=-,()()2f x f x -+=,若()12f =,则()()()()1232023f f f f ++++=______.第四天学习及训练【题型】七、对称性、周期性和奇偶性综合解决函数问题例18.(2023·江苏南京·高三阶段练习)设*n ∈N ,函数()f x 是定义在R 上的奇函数,且()()22110f x f x -++=,()f x 在[]0,1单调递增,()11f =,则( )A .()11f -=B .()40nf =C .()211f n -=D .()211nf -=例19.(2023·全国·高三专题练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是( )A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-【题型】八、定义法判断证明函数的单调性例20.(2023·全国·高三专题练习)设函数()ln(2f x x x =+且233()1)23a a f a --<--,则a 的取值范围为( )A .()3,+∞B .)C .)+∞D .(()3,∞⋃+例21.(2023·全国·高三专题练习)已知函数()e e 2x xf x --=,则()A .()()22f x y f x =为偶函数 B .()()2y f x f x =-是增函数 C .()()sin 1y f x =-不是周期函数 D .()()1y f x f x =++的最小值为1例22.(2023·广东·高三学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =; ④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增. 则上述所有正确结论的编号是________第五天学习及训练【题型】九、定义法判断证明函数的奇偶性例23.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( ) A .1B .2C .3D .4例24.(2023·全国·高三专题练习)已知函数()cos f x x x =⋅,x ∈R ,则下列说法正确的是( ) A .()f x 是奇函数 B .()f x 是周期函数C .()f x 的图象在点(π,(π))f 处的切线方程为0x y +=D .()f x 在区间π(,π)2上是减函数例25.(2023·全国·高三专题练习)判断函数()f x x =+.【题型】十、利用函数的周期性求函数值例26.(2023·全国·高三专题练习)已知函数()y f x =为定义在R 上的奇函数,且()()2f x f x +=-,当[)1,0x ∈-时,()f x x =,则()2021f =( )A .2021B .1C .1-D .0例27.(2023·全国·高三专题练习)已知()f x 是定义域为R 的奇函数,满足(2)()f x f x -=,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( )A .2B .2022-C .0D .2022例28.(2023·全国·高三专题练习)已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x +-=,()()49g x f x --=,若y g x 的图象关于直线2x =对称,()24g =,则()221k f k ==∑( )A .47-B .48-C .23-D .24-例29.(2023·全国·高三专题练习)已知()f x 为偶函数,且()1f x +为奇函数,若()00f =,则( )A .()30f =B .()()35f f =C .()()31f x f x +=-D .()()211f x f x +++=例30.(2023·全国·高三专题练习)若函数()2,0,(1)(2),0,x x f x f x f x x -⎧≤=⎨--->⎩则()2023f =________.第六天学习及训练三、题型模拟演练 一、单选题1.(2022·全国·高三专题练习)函数11()f x x=,211()()f x x f x =+,…,11()()n n f x x f x +=+,…,则函数2018()f x 是( ) A .奇函数但不是偶函数 B .偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数2.(2022·全国·高三专题练习)已知函数()f x ,()g x 的定义域均为R ,若()12f x -为奇函数,()12g x +为偶函数,则( ) A .()()f x g x +的图象关于直线1x =对称 B .()()f x g x +的图象关于直线1x =对称 C .()()f x g x -的图象关于点()1,0对称 D .()()f x g x -的图象关于点()1,0对称3.(2022·海南昌茂花园学校高三阶段练习)已知函数()f x 是定义在R 上的偶函数,且在(],0-∞上是单调递增的,设()2log 4a f =,()1b f =-,23c f ⎛⎫=⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .c b a <<B .c b a >>C .b<c<aD .c a b >>4.(2022·陕西·咸阳市高新一中高一期中)定义在R 上的函数()f x 满足1(2)()f x f x +=-,且当(2,0)x ∈-时,2()(3)f x x x =-,则(103)f 等于( ) A .2B .12-C .2-D .45.(2022·陕西咸阳中学高三阶段练习(理))设奇函数 ()f x 在()0∞+,上单调递增,且(4)0f =,则不等式()()0f x f x x--<的解集是( )A .{04}x x <<∣B .{4xx <-∣或4}x > C .{4}xx >∣ D .{40xx -<<∣或04}x <<6.(2023·甘肃·模拟预测(理))设函数()()21ln 11f x x x =+-+,则使得()()21f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭7.(2022·江苏·句容碧桂园学校高三期中)设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当(]1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .()7f x +为奇函数C .()f x 在()6,8上是减函数D .方程()lg 0f x x +=仅有6个实数解二、多选题8.(2022·河北沧州·高三阶段练习)函数()()1||x f x x αα=∈-R 的大致图象可能是( ) A . B .C .D .三、填空题9.(2022·辽宁葫芦岛·高三阶段练习)定义在R 上的偶函数()f x 满足()()40f x f x +-=,写出()f x 的一个正周期:______.四、解答题10.(2022·河南·偃师市缑第四中学高三阶段练习(文))已知()f x 是定义在R 上的偶函数,且0x ≤时,12()=log (+1)f x x - .(1)求()0f ,()1f ;(2)若()11f a -<- ,求实数a 的取值范围.11.(2022·陕西·蒲城县蒲城中学高三阶段练习(理))已知函数()221x x a f x +=+是奇函数.(1)求a 的值;(2)已知()()2212f m f m -<-,求m 的取值范围.。
专题2 利用导数求切线知识点,例题及基础测试题(原卷版)-2021年高考数学导数中必考知识专练

专题2:利用导数求切线知识点,例题及基础测试题(原卷版)函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
于是相应的切线方程是:()()000y y f x x x '-=-。
题型三.用导数求曲线的切线注意两种情况:(1)曲线()y f x =在点()()00,P x f x 处切线:性质:()0k f x '=切线。
相应的切线方程是:()()000y y f x x x '-=-(2)曲线()y f x =过点()00,P x y 处切线:先设切点,切点为(,)Q a b ,则斜率k='()f a ,切点(,)Q a b 在曲线()y f x =上,切点(,)Q a b 在切线()()00y y f a x x '-=-上,切点(,)Q a b 坐标代入方程得关于a,b 的方程组,解方程组来确定切点,最后求斜率k='()f a ,确定切线方程。
题型1:在点的切线例1:已知()ln f x x x =,求函数()y f x =的图象在e x =处的切线方程.题型2:过点的切线例2:已知函数,过点作曲线的切线,求切线方程.一、单选题1.过原点作曲线ln y x =的切线,则切线的斜率为( )A .eB .1eC .1D .21e 2.函数()25x f x e x =-+的图像在点()()0,0f 处的切线方程是( )A .60x y +-=B .60x y --=C .60x y ++=D .60x y -+= 3.若曲线2y ax =在x a =处的切线与直线210x y --=平行,则a =( ) A .1- B .1 C .1-或1 D .12-或1 4.已知函数2()(1)sin f x a x a x =--是奇函数,则曲线()y f x =在点(0,0)处的切线斜率为( )A .2B .﹣2C .1D .﹣15.曲线()ln f x x =在点()1,0处的切线方程为( )A .10x y --=B .10x y -+=C .10x y +-=D .10x y ++= 6.曲线2y x x =+在点(1,2)P 处切线的斜率为( )A .1B .2C .3D .4 7.函数()2ln f x x x =-+的图像在点()()1,1f 处的切线方程为( ) A .10x y ++= B .10x y -+= C .210x y -+= D .210x y +-= 8.曲线y =sin x 在点(0,0)处的切线方程为( )A .y =2xB .y =xC .y =﹣2xD .y =﹣x 9.曲线()22x f x x x e =+-在点()()0,0f 处切线的斜率为( )A .2B .1C .-1D .-2 10.已知曲线234x y lnx =-的一条切线的斜率为12-,则切点的横坐标为( ) A .3 B .2 C .1 D .12 11.曲线sin cos y x x =+在4x π=处的切线的倾斜角的大小是( )A .0B .4πC .3πD .34π 12.已知曲线sin 2x e y x x a π⎛⎫=+⋅ ⎪⎝⎭在点1,1e a ⎛⎫+ ⎪⎝⎭处的切线方程为2y x b =+,则( ) A .a e =,1b =B .a e =-,1b =C .a e =,0b =D .a e =-,1b =-二、填空题 12.曲线()()()2211f x x x =-+在点(1,()1f )处的切线方程为______. 13.已知函数()321313f x x x x =---+,则在曲线()y f x =的所有切线中,斜率的最大值为______. 15.已知曲线()ln f x x x x =+在点()00,A x y 处的切线平行于直线319y x =+,则点A 的坐标为________.16.在平面直角坐标系xOy 中,曲线()3x y x ax e =+在点()0,0处的切线方程为30x y -=(e 是自然对数的底数),则实数a 的值是_____________.三、解答题17.已知P (﹣1,1),Q (2,4)是曲线y=x 2上的两点,求与直线PQ 平行且与曲线相切的切线方程.18.已知函数()(1)x f x x e ax =--的图像在0x =处的切线方程是0x y b ++=,求a ,b 的值;19.函数321y mx x =++在点()1,3m +处的切线为l .(1)若l 与直线3y x =平行,求实数m 的值;(2)若l 与直线12y x =-垂直,求实数m 的值.20.已知曲线 y = x 3 + x -2 在点 P 0 处的切线 1l 平行于直线4x -y -1=0,且点 P 0 在第三象限,⑴求P 0的坐标;⑵若直线 1l l ⊥ , 且 l 也过切点P 0 ,求直线l 的方程.21.已知函数()a f x x b x =++()0x ≠,其中, (1)若曲线()y f x =在点()()2,2P f 处的切线方程为31y x ,求函数()f x 的解析式 (2)讨论函数()f x 的单调性22.已知函数22()1f x nx x x=++ (Ⅰ)求函数()y f x =在点()()11f ,处的切线方程; (Ⅱ)求证:()0.f x >。
高考数学复习考点知识与题型专题讲解2---命题及其关系、充分条件与必要条件

高考数学复习考点知识与题型专题讲解命题及其关系、充分条件与必要条件考试要求1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p常用结论充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.①若p是q的充分条件,则A⊆B;②若p是q的充分不必要条件,则A B;③若p是q的必要不充分条件,则B A;④若p是q的充要条件,则A=B.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2-2x-3>0”是命题.(×)(2)“x>1”是“x>0”的充分不必要条件.(√)(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)(4)p是q的充分不必要条件等价于q是p的必要不充分条件.(√)教材改编题1.“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a>b时,若c2=0,则ac2=bc2,所以a>b⇏ac2>bc2,当ac2>bc2时,c2≠0,则a>b,所以ac2>bc2⇒a>b,即“a>b”是“ac2>bc2”的必要不充分条件.2.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等3.方程x2-ax+a-1=0有一正一负根的充要条件是________.答案a∈(-∞,1)解析依题意得a-1<0,∴a<1.题型一命题及其关系例1(1)(2022·玉林质检)下列四个命题为真命题的个数是()①命题“若x>1,则x2>1”的否命题;②命题“梯形不是平行四边形”的逆否命题;③命题“全等三角形面积相等”的否命题;④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题.A .1B .2C .3D .4答案B解析 ①命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,不正确,例如取x =-2.②命题“梯形不是平行四边形”是真命题,因此其逆否命题也是真命题.③命题“全等三角形面积相等”的否命题“不是全等三角形的面积不相等”是假命题. ④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题“若两条直线是异面直线,则这两条直线没有公共点”是真命题.综上可得真命题的个数为2.(2)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________________.答案f (x )=sin x ,x ∈[0,2](答案不唯一)解析设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.教师备选(2022·合肥模拟)设x ,y ∈R ,命题“若x 2+y 2>2,则x 2>1或y 2>1”的否命题是()A .若x 2+y 2≤2,则x 2≤1或y 2≤1B.若x2+y2>2,则x2≤1或y2≤1C.若x2+y2≤2,则x2≤1且y2≤1D.若x2+y2>2,则x2≤1且y2≤1答案C解析根据否命题的定义可得命题“若x2+y2>2,则x2>1或y2>1”的否命题是“若x2+y2≤2,则x2≤1且y2≤1”.思维升华判断命题真假的策略(1)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.跟踪训练1(1)(2022·安顺模拟)命题“若x,y都是奇数,则x+y是偶数”的逆否命题是() A.若x,y都是偶数,则x+y是奇数B.若x,y都不是奇数,则x+y不是偶数C.若x+y不是偶数,则x,y都不是奇数D.若x+y不是偶数,则x,y不都是奇数答案D解析命题“若x,y都是奇数,则x+y是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是奇数”.(2)命题p:若m≤a-2,则m<-1.若p的逆否命题为真命题,则a的取值范围是________.答案(-∞,1)解析依题意,命题p 的逆否命题为真命题,则命题p 为真命题,即“若m ≤a -2,则m <-1”为真命题,则a -2<-1,解得a <1.题型二 充分、必要条件的判定例2(1)已知p :⎝ ⎛⎭⎪⎫12x <1,q :log 2x <0,则p 是q 的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由⎝ ⎛⎭⎪⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞), 由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.(2)(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}单调递减,所以甲不是乙的充分条件.当数列{S n}单调递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在.所以甲是乙的必要条件.教师备选在△ABC中,“AB2+BC2=AC2”是“△ABC为直角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析在△ABC中,若AB2+BC2=AC2,则∠B=90°,即△ABC为直角三角形,若△ABC为直角三角形,推不出∠B=90°,所以AB2+BC2=AC2不一定成立,综上,“AB2+BC2=AC2”是“△ABC为直角三角形”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练2(1)“a>2,b>2”是“a+b>4,ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.(2)(2022·成都模拟)若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析因为a⊥b,所以a ·b =0,则(a +b )2=a 2+2a ·b +b 2=a 2+b 2,所以“a ⊥b ”是“(a +b )2=a 2+b 2”的充分条件;反之,由(a +b )2=a 2+b 2得a ·b =0,所以非零向量a ,b 垂直,“a ⊥b ”是“(a +b )2=a 2+b 2”的必要条件.故“a ⊥b ”是“(a +b )2=a 2+b 2”的充要条件.题型三 充分、必要条件的应用例3已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围.解由x 2-8x -20≤0,得-2≤x ≤10,∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件,即所求m 的取值范围是[0,3].延伸探究本例中,若把“x ∈A 是x ∈B 的必要条件”改为“x ∈A 是x ∈B 的充分不必要条件”,求m 的取值范围.解∵x ∈A 是x ∈B 的充分不必要条件,∴A B ,则⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,解得m ≥9,故m 的取值范围是[9,+∞). 教师备选(2022·泰安检测)已知p :x ≥a ,q :|x +2a |<3,且p 是q 的必要不充分条件,则实数a 的取值范围是()A .(-∞,-1]B .(-∞,-1)C .[1,+∞)D .(1,+∞)答案A解析因为q :|x +2a |<3,所以q :-2a -3<x <-2a +3,记A ={x |-2a -3<x <-2a +3},p :x ≥a ,记为B ={x |x ≥a }.因为p 是q 的必要不充分条件,所以A B ,所以a ≤-2a -3,解得a ≤-1.思维升华 求参数问题的解题策略(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练3(1)使2x ≥1成立的一个充分不必要条件是()A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案B解析由2x ≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若不等式(x -a )2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________. 答案[1,2]解析由(x -a )2<1得a -1<x <a +1,因为1<x <2是不等式(x -a )2<1成立的充分不必要条件,所以满足⎩⎪⎨⎪⎧a -1≤1,a +1≥2且等号不能同时取到,解得1≤a≤2.课时精练1.(2022·韩城模拟)设p:2<x<3,q:|x-2|<1,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式|x-2|<1得-1<x-2<1,解得1<x<3,因为{x|2<x<3}{x|1<x<3},因此p是q的充分不必要条件.2.(2022·马鞍山模拟)“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是() A.若x,y∈R,x,y全不为0,则x2+y2≠0B.若x,y∈R,x,y不全为0,则x2+y2=0C.若x,y∈R,x,y不全为0,则x2+y2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0答案C解析根据命题“若p,则q”的逆否命题为“若綈q,则綈p”,可以写出“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是“若x,y∈R,x,y 不全为0,则x2+y2≠0”.3.(2021·浙江)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析由a·c=b·c,得到(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.4.已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.5.(2022·太原模拟)下列四个命题:①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题;②“若ab=0,则a=0”的逆否命题;③“若ac=cb,则a=b”的逆命题;④“若a=b,则a2=b2”的否命题.其中是真命题的为()A.①④B.②③C.①③D.②④答案C解析①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题是“在△ABC中,若∠C>∠B,则AB>AC”,是真命题;②“若ab=0,则a=0”是假命题,所以其逆否命题也是假命题;③“若ac=cb,则a=b”的逆命题是“若a=b,则ac=cb”,是真命题;④“若a=b,则a2=b2”的否命题是“若a≠b,则a2≠b2”,是假命题.6.(2022·青岛模拟)“∀x>0,a≤x+4x+2”的充要条件是()A.a>2B.a≥2 C.a<2D.a≤2 答案D解析因为x>0,所以x+4x+2=x+2+4x+2-2≥2(x+2)×4x+2-2=2,当且仅当x +2=4x +2,即x =0时等号成立,因为x >0,所以x +4x +2>2, 所以“∀x >0,a ≤x +4x +2”的充要条件是a ≤2. 7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题是真命题,则m 的取值范围是()A .(1,2)B .[1,2)C .(1,2]D .[1,2]答案D解析命题的逆命题“若1<x <2,则m -1<x <m +1”成立,则⎩⎪⎨⎪⎧ m +1≥2,m -1≤1,得⎩⎪⎨⎪⎧m ≥1,m ≤2,得1≤m ≤2, 即实数m 的取值范围是[1,2].8.(2022·厦门模拟)已知命题p :x <2m +1,q :x 2-5x +6<0,且p 是q 的必要不充分条件,则实数m 的取值范围为()A .m >12B .m ≥12C .m >1D .m ≥1答案D解析∵命题p :x <2m +1,q :x 2-5x +6<0,即2<x <3,p 是q 的必要不充分条件,∴(2,3)(-∞,2m +1),∴2m +1≥3,解得m ≥1.实数m 的取值范围为m ≥1.9.(2022·延边模拟)若“方程ax 2-3x +2=0有两个不相等的实数根”是真命题,则a 的取值范围是________.答案a <98且a ≠0 解析由题意知⎩⎪⎨⎪⎧Δ=(-3)2-8a >0,a ≠0, 解得a <98且a ≠0. 10.(2022·衡阳模拟)使得“2x >4x ”成立的一个充分条件是________.答案x <-1(答案不唯一)解析由于4x =22x ,故2x >22x 等价于x >2x ,解得x <0,使得“2x >4x ”成立的一个充分条件只需为集合{x |x <0}的子集即可.11.直线y =kx +1与圆x 2+y 2=a 2(a >0)有公共点的充要条件是________.答案a ∈[1,+∞)解析直线y =kx +1过定点(0,1),依题意知点(0,1)在圆x2+y2=a2内部(包含边界),∴a2≥1.又a>0,∴a≥1.12.给出下列四个命题:①命题“在△ABC中,sin B>sin C是B>C的充要条件”;②“若数列{a n}是等比数列,则a22=a1a3”的否命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题;④命题“直线l与平面α垂直的充要条件是l与平面α内的两条直线垂直.”其中真命题是________.(填序号)答案①③解析对于①,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,①是真命题;②“若数列{a n}是等比数列,则a22=a1a3”的否命题是“若数列{a n}不是等比数列,则a22≠a1a3”,取a n=0,可知②是假命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题“若a与b的夹角为锐角,则a·b>0”为真命题;④直线l与平面α内的两条直线垂直是直线l与平面α垂直的必要不充分条件,④是假命题.13.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p 和q 中有且只有一个为真命题,则实数a 的取值范围是()A .0<a <1或a ≥2B .0<a <1或a >2C .1<a ≤2D .1≤a ≤2答案C解析若p 和q 中有且只有一个为真命题,则有p 真q 假或p 假q 真,当p 真q 假时,则⎩⎪⎨⎪⎧ -2-a <1<a ≤2,a >0,解得1<a ≤2;当p 假q 真时,则⎩⎪⎨⎪⎧1≤-2-a <2<a ,a >0,无解, 综上,1<a ≤2.14.若“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,则实数m 的取值范围为________. 答案m ≥5解析依题意有x 2-4x +3<0⇒1<x <3,x 2-mx +4<0⇒mx >x 2+4,∵1<x <3,∴m >x +4x ,设f (x )=x +4x (1<x <3),则函数f (x )在(1,2)上单调递减,在(2,3)上单调递增,∴f (1)=5,f (2)=4,f (3)=133,因此函数f (x )=x +4x (1<x <3)的值域为[4,5),∵“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,∴m ≥5.15.若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是()A .a >3B .a <3C .a >4D .a <4答案A解析若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案⎝⎛⎦⎥⎤0,255 解析画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d=222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255.。
2023-2024高考模拟压轴卷(二) 数学试卷(含答案解析)

2024年普通高等学校招生全国统一考试模拟试题数学(二)本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号码、考场号、座位号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点()06,P y 在焦点为F 的抛物线2:2(0)C y px p =>上,若152PF =,则p =( )A.3B.6C.9D.122.电影《孤注一郑》的上映引发了电信诈骗问题的热议,也加大了各个社区反电信诈骗的宣传力度.已知某社区共有居民480人,其中老年人200人,中年人200人,青少年80人,若按年龄进行分层随机抽样,共抽取36人作为代表,则中年人比青少年多( )A.6人B.9人C.12人D.18人3.已知0a b c >>>,则下列说法一定正确的是( )A.a b c >+ B.2a bc <C.2ac b >D.2ab bc b ac+>+4.已知向量()()2,3,1,2a b =-=- ,则a b + 在a b - 方向上的投影向量为( )A.816,1717⎛⎫-⎪⎝⎭ B.1220,1717⎛⎫- ⎪⎝⎭ C.1220,1717⎛⎫- ⎪⎝⎭ D.2020,1717⎛⎫- ⎪⎝⎭5.已知某正六棱柱的体积为()A.18+B.18+C.24+D.24+6.已知甲、乙两地之间的路线图如图所示,其可大致认为是()()cos 03πf x x x =……的图像.某日小明和小红分别从甲、乙两地同时出发沿着路线相向而行,当小明到达乙地时,小红也停止前行.若将小明行走轨迹的点记为(),a b ,小红行走轨迹的点记为(),c d ,且满足3π2ac +=,函数()2g a bd =-,则()g a 的一个单调递减区间为()A.4π0,3⎛⎫ ⎪⎝⎭ B.π5π,33⎛⎫ ⎪⎝⎭ C.4π8π,33⎛⎫⎪⎝⎭D.()2π,3π7.已知椭圆22:1(09,)9x y C m m m+=<<∈Z 的左、右焦点分别为12,F F ,点P 在C 上但不在坐标轴上,且12PF F 是等腰三角形,其中一个内角的余弦值为78,则m =( )A.4B.5C.6D.88.已知函数()()e eln e 1xmf x m x x=++-的定义域为()0,∞+,若()f x 存在零点,则m 的取值范围为()A.1,e∞⎡⎫+⎪⎢⎣⎭B.(]0,eC.10,e⎛⎤ ⎥⎝⎦D.[)e,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1232i,4i z z =+=-,则( )A.12z z +的虚部为-1B.1243z z -是纯虚数C.12z z 在复平面内所对应的点位于第一象限D.214iz z =+10.已知()7270127(43)13(13)(13)x a a x a x a x -=+-+-++- ,则( )A.4945a =B.77141ii a==-∑C.136024622a a a a +++=+D.613135722a a a a +++=-11.设()M x 是定义在*N 上的奇因函数,是指x 的最大奇因数,比如:()()33,63M M ==,()81M =,则( )A.对()()*,212k M k M k ∈-N …B.()()2M k M k =C.()()()1263931M M M +++= D.()126363M +++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}2450,{}A xx x B x x m =-->=>∣∣,若0m =,则()A B ⋂=R ð__________;若A B ⋃=R ,则m 的取值范围为__________.13.某校拟开设“生活中的数学”“音乐中的数学”“逻辑推理论”“彩票中的数学”和“数学建模”5门研究性学习课程,要求每位同学选择其中2门进行研修,记事件A 为甲、乙两人至多有1门相同,且甲必须选择“音乐中的数学”,则()P A =__________.14.定义:对于函数()f x 和数列{}n x ,若()()()10n n n n x x f x f x +-+=',则称数列{}n x 具有“()f x 函数性质”.已知二次函数()f x 图像的最低点为()0,4-,且()()121f x f x x +=++,若数列{}n x 具有“()f x 函数性质”,且首项为1的数列{}n a 满足()()ln 2ln 2n n n a x x =+--,记{}n a 的前n 项和为n S ,则数列52n n S ⎧⎫⎛⎫⋅-⎨⎬⎪⎝⎭⎩⎭的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)公众号《全元高考》,且()2tan tan tan b B a B A B =-+.已知函数()在 ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,其中c =(1)求C ;(2)求a 2+b 2的取值范围.16.(15分)ln x f x x a x ⎛⎫=-⎪⎝⎭.(1)讨论()f x 的最值;(2)若1a =,且()e x k xf x x-…,求k 的取值范围.17.(15分)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ⊥平面ACDE ,过点E 作EF ∥AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ⊥平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD,求AB 的值.18.(17分)某汽车销售公司为了提升公司的业绩,现将最近300个工作日每日的汽车销售情况进行统计,如图所示.(1)求a 的值以及该公司这300个工作日每日汽车销售量的平均数(同一组中的数据用该组区间的中点值作代表);(2)以频率估计概率,若在所有工作日中随机选择4天,记汽车销售量在区间[200,250)内的天数为X ,求X 的分布列及数学期望;公众号《全元高考》公众号《全元高考》(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:抽奖区有,A B 两个盒子,其中A 盒中放有9张金卡、1张银卡,B 盒中放有2张金卡、8张银卡,顾客在不知情的情况下随机选择其中一个盒子进行抽奖,直到抽到金卡则抽奖结束(每次抽出一张卡,然后放回原来的盒中,再进行下次抽奖,中途可更换盒子),卡片结果的排列对应相应的礼品.已知顾客小明每次抽奖选择两个盒子的概率相同,求小明在首次抽奖抽出银卡的条件下,第二次从另外一个盒子中抽奖抽出金卡的概率.19.(17分)已知双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为A ,直线1:2l y x =-与C 的一条渐近线平行,且与C 交于点B ,直线AB 的斜率为13.(1)求C 的方程;(2)已知直线()2:28l y x m m =+≠与C 交于,P Q 两点,问:是否存在满足EA EP EP EQ EA EQ ⋅=⋅=⋅ 的点()00,E x y ?若存在,求2200x y -的值;若不存在,请说明理由.数学(二)一、选择题1.A 【解析】由抛物线的定义可知15622p PF =+=,解得3p =.故选A 项.2.B 【解析】设中年人抽取x 人,青少年抽取y 人,由分层随机抽样可知20080,48036480x ==36y,解得15,6x y ==,故中年人比青少年多9人.故选B 项.3.D 【解析】当3,2,1a b c ===时,a b c =+,且2ac b <,故A ,C 项错误;因为0a b >>,0a c >>,所以2a bc >,故B 项错误;()()()20ab bc b ac b c a b +-+=-->,故D 项正确.故选D项.4.C 【解析】由题意得()()1,1,3,5a b a b +=--=- ,则a b + 在a b - 方向上的投影向量为2()()1220(),1717||a b a b a b a b +⋅-⎛⎫-=- ⎪-⎝⎭,故选C 项.5.D 【解析】设该正六棱柱的底面边长为a ,高为h ,其外接球的半径为R,易知34ππ3R =,则R ==①26h ⋅⋅=②,联立①②,因为h ∈Z ,解得1,4a h ==,所以正六棱柱的表面积212624S ah =⋅+=.故选D 项.6.A 【解析】依题意得cos ,cos cos 3πcos 22a a b a d c ⎛⎫===-=- ⎪⎝⎭,且03π,03π3π,2a a⎧⎪⎨-⎪⎩…………解得03πa ……,则()2cos 2cos2cos 2cos 1222a a a g a a =+=+-,令cos 2at =,则[]1,1t ∈-,因为2221y t t =+-在区间11,2⎛⎫-- ⎪⎝⎭内单调递减,在区间1,12⎛⎫- ⎪⎝⎭内单调递增,所以()g a 在区间4π8π0,,2π,33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭内单调递减.故选A 项.7.B 【解析】依题意得126PF PF +=,设12F F n =,不妨设点P 在第一象限,则112PF F F n ==,则26(06)PF n n =-<<,故222122(6)7cos 28n n n PF F n ∠+--==或()22221(6)7cos 268n n n PF F n n ∠+--==-,解得4n =或2411n =,又2,2n m m ⎛⎫∈+= ⎪⎝⎭Z 9,所以4,5n m ==.故选B 项.8.C 【解析】由题意得0m >,令()0f x =,则()ln ln ee ln e eln x mx x m x +++=+.令()e e x g x x =+,易知()g x 单调递增,所以()()ln ln g x m g x +=,即ln ln x m x +=,即ln ln m x x =-.令()ln h x x x =-,则()1xh x x'-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∞∈+时,()()0,h x h x '<单调递减,又()11h =-,当0x →时,()h x ∞→-,所以ln 1m -…,解得10em <….故选C 项.二、多选题9.BC 【解析】127i z z +=+的虚部为1,故A 项错误;124311i z z -=为纯虚数,故B 项正确;()()1232i 4i 145i z z =+-=+,其在复平面内所对应的点()14,5位于第一象限,故C项正确;24i 14i i iz -==--=,144z +=+,故D 项错误.故选BC 项.10.AC 【解析】依题意得()77(43)[313]x x -=+-,所以4347C 33527a =⨯=⨯=945,故A 项正确;令13x =,得03a =,令0x =,得7704i i a ==∑,所以777143i i a ==-∑,故B 项错误;令23x =,得7012345672a a a a a a a a =-+-+-+-①,又7012345674a a a a a a a a =+++++++②,由①+②可得77135024642222a a a a ++++==+,故C 项正确;同理,由②-①得136135722a a a a +++=-,故D 项错误.故选AC 项.11.ABD 【解析】由题意得()()2M k M k =,故B 项正确;()()()2,2121M k M k k M k k k =-=-……,故A 项正确;516312363632632+++++=⨯=⨯ ,所以()()123636363M M ++++== ,故D 项正确;()()()()1263[1M M M M +++=+ ()()][()()36324M M M M ++++++ ()][()6213631M M =+++++()()()1023121M M M ⎤⎡++=++⎦⎣ ()()][()()33124M M M M ++++++ ()108642030]222222M ==+++++=614136514-=-,故C 项错误.故选ABD 项.三、填空题12.()50,14x x ∞⎧⎫<--⎨⎬⎩⎭… 【解析】集合{1A xx =<-∣或54x ⎫>⎬⎭,所以R A =ð504B x x ⎧⎫=<⎨⎬⎩⎭….若A B ⋃=R ,结合数轴可知1m <-,故m 的取值范围为(,1)∞--.13.925【解析】若甲、乙两人的选课都不相同则共有1243C C 4312=⨯=种;若甲、乙两人的选课有1门相同,则共有2114432C C C 24+=种.故()225512249C C 25P A +==.14.-5112【解析】由题意知()24(0)f x ax a =->,又()()()12121f x f x a x x +-=+=+,所以1a =,则()24f x x =-.由题意得()()2ln 2ln 2ln2n n n n n x a x x x +=+--=-,由()()()10n n n n x x f x f x +-+=',得()()1n n n n f x x x f x +='-,即2214422n n n n n nx x x x x x +-+=-=,又()()2211222,222n n n n nnx x x x x x +++-+=-=,所以()()21212222n n n n x x x x ++++=--,则1122ln 2ln 22n n n nx x x x ++++=--,即12n n a a +=,故{}n a 是以1为首项,2为公比的等比数列,所以12,21n n n n a S -==-.令n n c S =.()552122n n n ⎛⎫⎛⎫-=-⋅- ⎪ ⎪⎝⎭⎝⎭,则()111822n n nc c n -+-=-⋅-,故当8n …时,1n n c c +<,当9n …时,1n n c c +>,故()9min 5112n c c ==-.四、解答题15.解:(1)因为()()tan tan πtan A B C C +=-=-,所以2tan tan tan b B a B C=+,由正弦定理得sin 2tan sin tan tan B BA B C==+()2sin cos 2sin cos sin cos cos sin sin B C B CB C B C B C ==++2sin cos sin B C A因为sin 0,sin 0A B ≠≠,所以2cos 1C =,则1cos 2C =,又()0,πC ∈,所以π3C =.(2)由余弦定理得223a b ab =+-,因为222a b ab +…,所以22222222,22a b a b a b ab a b +++-+-=…即226a b +….当且仅当a b ==.又223a b ab +=+,且0ab >,所以223a b +>.综上,22a b +的取值范围为(]3,6.16.解:(1)由题意得()f x 的定义域为()0,∞+,()11,ax f x a x x-=-='当()0,0,a x ∞∈+…时,()0f x '<,所以()f x 在区间()0,∞+内单调递减,无最值;当0a >时,令()0f x '=,得1x a=,当10,x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,x a ∞⎛⎫∈+⎪⎝⎭时,()()0,f x f x '>单调递增.故当1x a =时,()f x 取得最小值,且最小值为11ln f a a ⎛⎫=+ ⎪⎝⎭,无最大值.综上,当0a …时,()f x 无最值;当0a >时,()f x 的最小值为1ln a +,无最大值.(2)当1a =时,由()e x k xf x x -…,得e ln x k xx x x--…,整理得2e ln x k x x x x +-…,即2ln e x x x x xk +-….令()2ln e x x x x xh x +-=,则()h x '()()()2221ln 1e ln e e x xx x x x x x x +---+-=()()ln 1e x x x x --=,由(1)知,当1a =时,()ln f x x x =-的最小值为()110f =>,即ln 0x x ->恒成立,所以当()0,1x ∈时,()()0,h x h x '>单调递增;当()1,x ∞∈+时,()()0,h x h x '<单调递减.故当1x =时,()h x 取得最大值()21e h =,即2e k …,故k 的取值范围为2,e ∞⎡⎫+⎪⎢⎣⎭.17.(1)证明:连接CE 交AD 于点O ,连接GO .在菱形ACDE 中,CE AD ⊥,因为AB ⊥平面,ACDE CE ⊂平面ACDE ,所以CE AB ⊥,又,,AB AD A AB AD ⋂=⊂平面ABD ,所以CE ⊥平面ABD .因为,G O 分别为,BD AD 的中点,所以1,2GO AB GO =∥AB ,又1,2EF AB EF =∥AB ,所以GO EF ∥,所以四边形GOEF 为平行四边形,所以FG ∥EO ,所以FG ⊥平面ABD .(2)解:在菱形ACDE 中,因为AC AD =,所以ACD 和ADE 都是正三角形,取ED 的中点H ,连接AH ,则AH AC ⊥,又AB ⊥平面ACDE ,所以,AB AC AB AH ⊥⊥,即,,AB AC AH 两两垂直.以A 为坐标原点,,,AB AC AH 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设2(0)AB a a =>,则1(0,2,0),(2,0,0),(,,2C B a D F a G a ⎛- ⎝则()2,2,0,(0,1BC a CD =-=-,30,,2FG ⎛= ⎝ .设平面BCD 的法向量为(),,m x y z =,则220,0,m BC ax y m CD y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ 取1z =,则m ⎫=⎪⎪⎭.记直线FG 与平面BCD 所成角为θ,则||sin |cos ,|||||FG m FG m FG m θ⋅=〈〉===解得1a =,即AB 的值为2.18.解:(1)依题意得(0.0010.0020.00320.006)50 1.a ++++⨯=解得0.004a =.所求平均数为250.1750.15125⨯+⨯+⨯0.21750.32250.22750.05150+⨯+⨯+⨯=.(2)依题意得14,5X B ⎛⎫~ ⎪⎝⎭,则()4425605625P X ⎛⎫=== ⎪⎝⎭,()314142561C 55625P X ⎛⎫==⨯⨯= ⎪⎝⎭()222414962C ,55625P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()33414163C 55625P X ⎛⎫==⨯= ⎪⎝⎭()41145625P X ⎛⎫=== ⎪⎝⎭X 01234P 25662525662596625166251625故()14455E X =⨯=.(3)设“选到A 盒”为事件1A ,“选到B 盒”为事件2A ,,摸到金卡”为事件1B ,,摸到银卡”为事件2B ,因为12,B B 是对立事件,所以()119121*********P B =⨯+⨯=.()()2191.20P B P B =-=由题意得()()1212P A P A ==,所以()()()12122P A B P A B P B ==∣()()()2112111102,9920P B A P A P B ⨯==∣则()()2212819P A B P A B =-=∣∣.故所求的概率89123791091045P =⨯+⨯=.19.解:(1)易知C 的一条渐近线方程为y x =,则a b =.设(),2B t t -,又(),0,0A a a ->,直线AB 的斜率为13,所以213t t a -=+,解得62a t +=,则62,22a a B ++⎛⎫ ⎪⎝⎭,代入222x y a -=中,解得4a =.故C 的方程为2211616x y -=.(2)因为EA EP EP EQ ⋅=⋅ ,所以()0EP EA EQ ⋅-= ,即0EP QA ⋅=,所以PE AQ ⊥,同理可得,AE PQ EQ AP ⊥⊥.设()()1122,,,P x y Q x y ,联立221,16162.x y y x m ⎧-=⎪⎨⎪=+⎩整理得2234160x mx m +++=,由题意知()22Δ1612160m m =-+>,且8m ≠,解得m <-m >8m ≠,所以21212416,33m m x x x x ++=-=.过点A 与2l 垂直的直线的方程为122y x =--,设该直线与C 的右支交于另一点H ,联立221,161612,2x y y x ⎧-=⎪⎪⎨⎪=--⎪⎩整理得238800x x --=,解得203x =或4x =-(舍去).所以2016,33H ⎛⎫- ⎪⎝⎭.因为(1122016,33PH AQ x y x ⎛⎫⋅=---⋅+ ⎪⎝⎭)22121220801644333y x x x x y ⋅=+----(122121220801642333y y x x x x x =+---+()()1212)225(1m x m x m x x -++=--+()()()22128016164802)54233333m m x x m m m m +⎛⎫++--=-⨯-+⋅-+- ⎪⎝⎭222216580168801603333333m m m m m m m -=--+++--=所以PH AQ ⊥,同理可证QH AP ⊥.又AH PQ ⊥,所以H 与E 重合.因为H 在C 上,所以220016x y -=.故存在点E 满足EA EP EP EQ EA EQ ⋅=⋅=⋅ ,且220ij x y -的值为16.。
【2020最新】人教版最新高考文科数学复习试卷(2)及参考答案

教学资料范本【2020最新】人教版最新高考文科数学复习试卷(2)及参考答案编辑:__________________时间:__________________(附参考答案) 数 学(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数=534ii +- (A ) (B )1i -1i -+(C ) (D )1i +1i --【解析】复数,选C.i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435【答案】C(2)设变量x,y 满足约束条件,则目标函数z=3x-2y的最小值为⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由得,由图象可知当直线经过点时,直线的截距最大,而此时最小为,选 B.yx z 23-=223z x y -=223z x y -=)2,0(C 223zx y -=y x z 23-=423-=-=y x z 【答案】B(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环,第二次循环,第三次循环,第四次循环满足条件输出,选 C.2,2330==-=n S 3,83322==-+=n S 4,2633823==-+=n S 26=S 【答案】C(4) 已知,则a ,b ,c 的大小关系为120.2512,(),2log 22a b c -===(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解析】因为,所以,,所以,选 A.122.02.022)21(<==-b a b <<114log 2log 2log 25255<===c a b c <<【答案】A(5)设xR ,则“x>”是“2x2+x-1>0”的∈12 (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【解析】不等式的解集为或,所以“”是“”成立的充分不必要条件,选A.0122>-+x x 21>x 1-<x 21>x 0122>-+x x【答案】A(6)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) cos 2y x =,xR ∈(B ) xy 2log =,xR 且x ≠0∈(C ) 2x xe e y --=,xR ∈ (D )31y x =+,xR ∈【解析】函数为偶函数,且当时,函数为增函数,所以在上也为增函数,选B.x y 2log =0>x x x y 22log log ==)2,1( 【答案】B(7)将函数(其中>0)的图像向右平移个单位长度,所得图像经过点,则的最小值是()sin f x x ω=ω4π)0,43(πω(A ) (B )1 C ) (D )21353【解析】函数向右平移得到函数,因为此时函数过点,所以,即所以,所以的最小值为2,选 D.4π)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g )0,43(π0)443(sin =-ππω,2)443(πωπππωk ==-Z k k ∈=,2ωω 【答案】D(8)在△ABC 中, A=90°,AB=1,设点P ,Q 满足=,=(1-), R 。
高中数学二试题库及答案

高中数学二试题库及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = ax^2 + bx + c \)(\( a \neq 0 \))的图像与x轴有两个交点,则下列说法正确的是()。
A. \( a > 0 \)且\( b^2 - 4ac > 0 \)B. \( a < 0 \)且\( b^2 - 4ac > 0 \)C. \( a > 0 \)且\( b^2 - 4ac < 0 \)D. \( a < 0 \)且\( b^2 - 4ac < 0 \)2. 已知\( \sin \theta = \frac{3}{5} \),且\( \theta \)为锐角,则\( \cos \theta \)的值为()。
A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)3. 集合\( A = \{x | x^2 - 5x + 6 = 0\} \),\( B = \{x | x^2 - 5x + 6 < 0\} \),则\( A \cap B \)为()。
A. \( \{2, 3\} \)B. \( \{2\} \)C. \( \{3\} \)D. 空集4. 若\( \log_2 8 = 3 \),则\( \log_2 32 \)等于()。
A. 3B. 5C. 6D. 95. 函数\( y = \frac{1}{x} \)的图像关于()对称。
A. y轴B. x轴C. 原点D. 直线y = x6. 已知\( \tan \alpha = 2 \),求\( \sin \alpha \)的值()。
A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{\sqrt{3}} \)D. \( \frac{1}{\sqrt{3}} \)7. 函数\( f(x) = x^3 - 3x^2 + 4 \)的极大值点是()。
高考数学复习考点题型专题讲解2 中心对称轴对称和周期性

高考数学复习考点题型专题讲解 第2讲 中心对称、轴对称与周期性7类【题型一】中心对称性质1:几个复杂的奇函数【典例分析】 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是() A .(]0,e B .[]0,e C .(]0,1 D .[]0,1【答案】D 【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【详解】 ()1e e 21x x xf x -=+-+Q , ()()1111e e e e 121212121x x x xx x x x f x f x ----∴+-=+-+-+=++=+++ 令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x xx x x x xg x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e xx ≥当且仅当1e e xx=,即0x =时等号成立;ln 2ln 214222x x ≤++当且仅当122xx=,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g axg ax g ax ≥--=-,即2210axax -+≥对x ∀∈R 恒成立.当0a =时显然成立;当0a ≠时,需2440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.【变式演练】1.对于定义在D 上的函数()f x ,点(),A m n 是()f x 图像的一个对称中心的充要条件是:对任意x D ∈都有()()22f x f m x n +-=,判断函数()32234f x x x x =+++的对称中心______.【答案】270327⎛⎫- ⎪⎝⎭,【分析】根据点(),A m n 是()f x 图像的一个对称中心的充要条件,列出式子,即可得出结果.解:因为()32234f x x x x =+++,由于()32322222223323234x f x f x x x x x ⎛⎫⎛⎫⎛⎫+-⨯-=-⨯--⨯- ⎪ ⎪ ⎪⎝⎭+++++⎝⎭⎝⎭+701403422327272x +=⨯=⎛⎫-⨯- ⎪⎝⎭.即23m =-,7027n =.所以270327⎛⎫- ⎪⎝⎭,是()32234f x x x x =+++的一个对称中心.故答案为:270327⎛⎫- ⎪⎝⎭,.2.设函数())ln f x x =,若a ,b 满足不等式()()22220f a a f b b -+-≤,则当14a ≤≤时,2a b -的最大值为 A .1 B .10 C .5 D .8【答案】B 【详解】因为()))()ln ln0f x f x x x +-=+=,所以函数()f x 为奇函数,又因为()))0ln-lnx f x x x >==时为单调减函数,且(0)0f =所以()f x 为R 上减函数,因此()()()()()()2222222202222f a a f b b f a a f b b f a a f b b -+-≤⇔-≤--⇔-≤-+222222(1)(1){{2020a b a ba ab b a b a b a b ≥≤⇔-≥-+⇔-≥-⇔+-≥+-≤或,因为14a ≤≤,所以可行域为一个三角形ABC 及其内部,其中(1,1),(4,4),(4,2)A B C -,因此直线2z a b =-过点C 时取最大值10,选B.3..已知函数()ln 2e exf x x e x=-+-,若22018202020202020e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2019201920202e f a b ⎛⎫=+ ⎪⎝⎭,其中0b >,则12a a b +的最小值为A .34B .54C D 【答案】A 【分析】通过函数()f x 解析式可推得()()2f x f e x +-=,再利用倒序相加法求得2201820192020202020202020e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得到a b +的值,然后对a 分类讨论利用基本不等式求最值即可得出答案. 【详解】解:因为()ln 2e exf x x e x=-+-,所以()()()ln ()ln 22()e ex e e e xf x f e x x e x e x e e x -+-=-++--+---2()()lnln ln()ln 2ex e e x ex e e x e e x x e x x--=+=⋅==--, 令2201820192020202020202020e e e e S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 则2019220182019222019202020202020202020202020e e e e e e S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++=⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以2019S = 所以()201920192a b +=,所以2a b +=,其中0b >,则2a b =-. 当0a >时1||121212()112||2222a b a b a b a b a b a b -+⎛⎫+=+=+-=+⋅- ⎪⎝⎭15215511222224b a a b ⎛⎛⎫=++-≥+-= ⎪ ⎝⎭⎝ 当且仅当2,2b a a b =即24,33a b ==时等号成立;当0a <时1||1121212||222a a b a b a b a b a b ---+=+=+=++---112152()1122222b a a b a b a b --⎛⎫⎛⎫=+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝, 当且仅当2,2b a a b -=-即2,4a b =-=时等号成立;因为3544<,所以1||2||a a b +的最小值为34.故选:A.【题型二】中心对称性质2:与三角函数结合的中心对称【典例分析】已知函数sin 1y x =+与2x y x+=在[]a a -,(a Z ∈,且2017a >)上有m 个交点11()x y ,,22()x y ,,……,()m m x y ,,则1122()()()m m x y x y x y ++++++=A .0B .mC .2mD .2017【答案】B 【详解】由图可知交点成对出现,每对交点关于点(0,1)对称,横坐标和为0,纵坐标和为2,所以()()()1122m m x y x y x y ++++++=22mm ⨯=,选B.【变式演练】1.函数11()2sin[()]12f x x x π=+--在[3,5]x ∈-上的所有零点之和等于______. 【答案】8 【详解】分析:通过化简函数表达式,画出函数图像,分析图像根据各个对称点的关系求得零点的和. 详解:零点即()0f x =,所以112sin 12x x π⎡⎤⎛⎫=-- ⎪⎢⎥-⎝⎭⎣⎦ 即12cos 1x x π=-,画出函数图像如图所示函数零点即为函数图像的交点,由图可知共有8个交点 图像关于1x =对称,所以各个交点的横坐标的和为8点睛:本题考查了函数的综合应用,根据解析式画出函数图像,属于难题.2.若关于的函数的最大值为,最小值为,且,则实数的值为___________.【答案】 【解析】试题分析:由已知22222sin 2sin ()=t+tx x t x x xf x x t x t++++=++,而函数22sin x x y x t +=+为奇函数 又函数()f x 最大值为,最小值为,且,()242M t N t M N t t ∴-=--∴+==∴=考点:函数的奇偶性和最值【名师点睛】本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.解释要充分利用已知条件将函数变形为22sin ()=t+x x f x x t ++,则函数22sin x xy x t+=+为奇函数,而奇函数的最值互为相反数,可得()M t N t ∴-=--,则问题得解.3.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x x f f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为()A .()1-∞ B .(),1-∞-C .()1-D .()1,-+∞【答案】A 【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围. 【详解】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-, ∴()g x 为奇函数,又()2cos 0g x x '=+>,即()g x 为增函数,∵()()39334x x xf f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--,∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113xx +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈()1-∞.故选:A【题型三】轴对称【典例分析】 已知函数()()222212222x x x f x ea a ---=-+-有唯一零点,则负实数a =( ) A .2- B .12-C .1-D .12-或1- 【答案】A 【解析】函数()()222212222x x x f x ea a ---=-+-有有唯一零点,设1x t -=,则函数()()212222t t t f x e a a -=-+-有唯一零点,则()212222t t t e a a--+= 3e |t|-a (2t +2-t )=a 2,设()()1122222222tt t t t tg t e a g t e a g t ---=-+-=-+=(),()(),∴g t ()为偶函数,∵函数f t ()有唯一零点,∴yg t =()与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ∴-=,解得2a =-或1a =(舍去),故选A .【变式演练】1.已知函数()()()22241x x f x x x ee x --=--++在区间[]1,5-的值域为[],m M ,则m M +=( )A .2B .4C .6D .8【答案】C【详解】解:()()24x xy x e ex -=--+ 在[]3,3-上为奇函数,图象关于原点对称,()()()()()222222412423x x x x f x x x e e x x e e x ----⎡⎤=--++=---+-+⎣⎦是将上述函数图象向右平移2个单位,并向上平移3个单位得到,所以()f x 图象关于()2,3对称,则6m M +=,故选C .2.已知函数f (x )(x ∈R )满足f (x )=f (a-x ),若函数y=|x 2-ax-5|与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),且mi i 1x =∑=2m ,则a=( )A .1B .2C .3D .4【答案】D【详解】∵f (x )=f (a-x ),∴f (x )的图象关于直线x=2a对称,又y=|x 2-ax-5|的图象关于直线x=2a对称, 当m 为偶数时,两图象的交点两两关于直线x=2a 对称,∴x 1+x 2+x 3+…+x m =2m•a=2m,解得a=4.当m 奇数时,两图象的交点有m-1个两两关于直线x=2a 对称,另一个交点在对称轴x=2a上, ∴x 1+x 2+x 3+…+x m =a•-12m +2a=2m .解得a=4.故选:D .3.已知函数()()()22sin 122xf x x x x π=+-+,下面是关于此函数的有关命题,其中正确的有①函数()f x 是周期函数;②函数()f x 既有最大值又有最小值;③函数()f x 的定义域为R ,且其图象有对称轴;④对于任意的()1,0x ∈-,()0f x '<(()f x '是函数()f x 的导函数) A .②③ B .①③ C .②④ D .①②③【答案】A 【详解】函数()f x 定义域为R ,当x →+∞或x -∞←时,()0f x →,又0x =,1x =±,2x =±,3x =±,……时,()0f x =,且均为变号零点.又因为函数满足()()()()()()()()2222sin 1sin 1122111212x xf x f x x x x x x x ππ-===-⎡⎤⎡⎤+-+-+---+⎣⎦⎣⎦,所以函数()f x 关于直线12x =对称,函数图像如下图,故②③正确.【题型四】中心对称和轴对称构造出周期性【典例分析】已知函数 为定义域为 的偶函数,且满足,当 , 时, .若函数在区间 , 上的所有零点之和为__________.【答案】5【详解】∵足,∴ ,又因函数 为偶函数,∴,即 ,∴ ,令 ,,,即求 与交点横坐标之和.,作出图象:由图象可知有10个交点,并且关于 , 中心对称,∴其和为故答案为:5【变式演练】1.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .6【答案】A【分析】根据条件可得出()f x 的图象关于1x =对称,()f x 的周期为4,从而可考虑()f x 的一个周期,利用[]1,3-,根据()f x 在[)0,1上是减函数可得出()f x 在(]1,2上是增函数,()f x 在()1,0-上是减函数,在[)2,3上是增函数,然后根据()1f x =-在[)0,1上有实数根,可判断该实数根是唯一的,并可判断()1f x =-在一个周期[]1,3-内有两个实数根,并得这两实数根和为2,从而得出()1f x =-在区间[]1,11-这三个周期内上有6个实数根,和为30.【详解】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .2.已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为()A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【分析】由函数()f x 的图像关于原点对称,得出()00f =,再由()()30f x f x -+-=得出函数()f x 的最小正周期为6T =,由原函数与导函数具有相同的周期性可得函数'()f x 的最小正周期为6T =,由此可得选项.【详解】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .3.若函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,且1211x x -??时,2121[()()]()0f x f x x x -->,比较(2017)f ,(2018)f ,(2019)f 的大小为()A .(2017)(2018)(2019)f f f <<B .(2018)(2017)(2019)f f f <<C .(2018)(2019)(2017)f f f <<D .(2019)(2018)(2017)f f f <<【答案】D【分析】由题意可知,函数()y f x =的周期4T =,再由当1211x x -??时,2121[()()]()0f x f x x x -->可知函数()y f x =在[]1,1-上为增函数,然后计算比较即可.【详解】函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,∴()()f x f x -=-,(1)(1)-+=+f x f x ,∴()(4)f x f x =+,即函数()y f x =的周期4T =,1211x x -??时,210x x ->,2121[()()]()0f x f x x x -->,∴21()()0f x f x ->即21()()f x f x >,函数()y f x =在[]1,1-上为增函数, ∴(2017)(14504)(1)f f f =+⨯=,(2018)(24504)(2)(0)f f f f =+⨯==,(2019)(14505)(1)f f f =-+⨯=-,∴(2019)(2018)(2017)f f f <<.故选:D.【题型五】画图:放大镜【典例分析】设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“似周期函数”,非零常数T 为函数()y f x =的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”()y f x =的“似周期”为1-,那么它是周期为2的周期函数; ②函数()2x f x =是“似周期函数”;③如果函数()cos f x x ω=是“似周期函数”,那么“2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ”. 以上正确结论的个数是() A .0 B .1C .2D .3【答案】C【分析】根据题意,首先理解“似周期函数”的定义,逐一分析,从而可判断命题的真假. 【详解】解:①∵“似周期函数”()y f x =的“似周期”为1-, (1)()f x f x ∴-=-,(2)(1)()f x f x f x ∴-=--=,故()y f x =它是周期为2的周期函数,故①正确;②若函数()2x f x =是“似周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅, 即22x T x T +=⋅恒成立,故2T T =成立,但无解,故②错误;③若函数()cos f x x ω=是“似周期函数”,则存在非零常数T ,则()()f x T T f x +=⋅, 即[]cos ()cos x T T x ωω+=恒成立,故cos()cos x T T x ωωω+=恒成立, 即cos cos sin sin cos x T x T T x ωωωωω⋅-⋅=恒成立,故cos sin 0T T T ωω=⎧⎨=⎩,故2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ,故③正确.所以以上正确结论的个数是2.故选:C.【变式演练】1.已知函数()f x 满足当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0=>a f x x a 且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是() A .(625,)+∞ B .(4,64)C .(9,625)D .(9,64)【答案】C 【分析】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可. 【详解】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,如图所示,当01a <<时,对称后的图象不可能与()f x 在(,0]-∞的图象有3个交点; 当1a >时,要使函数()f x 关于原点对称后的图象与所作的图象有3个交点,则11log 321log 54a a a ⎧⎪>⎪⎪->-⎨⎪⎪-<-⎪⎩,解得9625a <<.故选:C.2.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有1()2f x ≥-,则m 的取值范围是()A .3,2⎛⎤-∞ ⎥⎝⎦B.10,4⎛-∞ ⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D.⎛-∞ ⎝⎦【答案】B 【分析】作出图示,求出当23x <≤时,函数的解析式,求出1()2f x =-成立的x 的值,运用数形结合的思想可得选项. 【详解】解:(0,1]x ∈时,()=(1)f x x x -,(+1)=2()f x f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令14(2)(3)2x x --=-,解得12x x ==所以要使对任意(,]x m ∈-∞,都有1()2f x ≥-,则m ≤,m ⎛∴∈-∞ ⎝⎦, 故选:B .3.定义在R 上函数q 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是()A .72B .92C .134D .154【答案】D 【分析】 计算()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,画出图像,计算()116f x =,解得154x =,得到答案. 【详解】根据题设可知,当[)1,2x ∈时,[)10,1x -∈,故()()()11112322f x f x x =-=--, 同理可得:在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤.作函数()y f x =的图象,如图所示.在7,42⎡⎫⎪⎢⎣⎭上,由()11127816f x x =⎡--⎤=⎣⎦,得154x =. 由图象可知当154x ≥时,()116f x ≤. 故选:D .【题型六】利用对称解决恒成立和存在型【典例分析】已知函数()lg(f x x =,且对于任意的(12]x ∈,,21()[]01(1)(6)x mf f x x x ++>---恒成立,则m 的取值范围为()A .()0-∞,B .(]0-∞,C .[4)+∞,D .(12)+∞,【答案】B 【分析】本题根据函数的解析式先判断函数的奇偶性与单调性,再运用单调性转化不等式,接着运用参变分离构建新函数,最后借导函数求函数在指定区间内的最大值即可解题.【详解】()f x 的定义域为R ,()))()f x x x f x -===-=-,∴()f x 为奇函数,又()f x 在(0,)+∞上单调递增, ∴221()[][]1(1)(6)(1)(6)x m m f f f x x x x x +>-=------,∴211(1)(6)x mx x x +>----, 又(1,2]x ∈,则10x ->,60x -<,∴(1)(1)(6)x x x m +--<-恒成立; 设32()(1)(1)(6)66g x x x x x x x =+--=--+, 则22()31213(2)13g x x x x =--=--',当12x <≤时()0g x '<,∴()g x 在(12],内单调递减,()g x 的最大值为从负数无限接近于0,max ()0g x <, ∴0m ≤-,0m ≤,故选:B.【提分秘籍】基本规律常见不等式恒成立转最值问题:(1)min ()()x D f x m f x m ∀∈>⇔>,; (2)max ()()x D f x m f x m ∃∈>⇔>,;(3)()min ()()()()0x D f x g x f x g x ∀∈>⇔->,; (4)()max ()()()()0x D f x g x f x g x ∃∈>⇔->,; (5)12121min 2max ,()()()()x D x M f x g x f x g x ∀∈∈>⇔>,; (6)12121max 2min ,()()()()x D x M f x g x f x g x ∃∈∈>⇔>,; (7)12121min 2min ,()()()()x D x M f x g x f x g x ∀∈∃∈>⇔>,;(8)12121max 2max ,()()()()x D x M f x g x f x g x ∃∈∀∈>⇔>,;【变式演练】1.已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x =-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦【答案】D 【分析】问题转化为函数()f x 的值域是()g x 值域的子集,分别求出()f x 和()g x 的值域,得到关于m 的不等式组,解出即可. 【详解】对任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =, 即()f x 在[]0,1上的值域是()g x 在[]1,2上的值域的子集,22111()1212121x x x xxm m m f x +++--===++++, 当1m <时,∴10m -<,∴()f x 在[]0,1上单调递增,()f x ∴的值域为12,23m m ++⎡⎤⎢⎥⎣⎦, 又()(1)g x m x =-在[]1,2上单调递减,()g x ∴的值域为:[]22,1m m --,[]12,22,123m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦,1222213m m m m +⎧≥-⎪⎪∴⎨+⎪≤-⎪⎩,方程无解 当1m >时,10m ->,∴()f x 在[]0,1上单调递减,()f x ∴的值域为21,32m m ++⎡⎤⎢⎥⎣⎦()g x 的值域为:[]1,22m m --,[]21,1,2232m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦1222213m m m m +⎧≤-⎪⎪∴⎨+⎪≥-⎪⎩,解得5532m ≤≤ 当1m =时,()1,()0f x g x ==,显然不满足题意.综上,实数m 的取值范围为55,32⎡⎤⎢⎥⎣⎦故选:D .2.已知()f x 是定义在R 上的函数,且()1f x +关于直线1x =-对称.当0x ≥时,()211422,022log ,2x x f x x x -+⎧⎪≤<=⎨⎪-≥⎩,若对任意的[],1x m m ∈+,不等式()()22f x f x m -≥+恒成立,则实数m 的取值范围是()A .1,04⎡⎫-⎪⎢⎣⎭B .1,12⎡⎤⎢⎥⎣⎦C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】D 【分析】结合复合函数的单调性,可知()f x 在[)0,+∞上单调递减,由()1f x +关于直线1x =-对称,可知()f x 为偶函数,从而可将题中不等式转化为22x x m -≤+,整理得223(82)40x m x m -++-≤对任意的[],1x m m ∈+恒成立,进而结合二次函数的性质,可求出m 的取值范围.【详解】当02x ≤<时,()21142x f x -+=,函数2114y x =-+在[)0,2上单调递减,且2x y =是R 上的增函数,根据复合函数的单调性可知,函数()f x 在[)0,2上单调递减,且()2121421f x -⨯+=>;当2x ≥时,()22log f x x =-,易知函数()f x 在[)2,+∞上单调递减,且()()22log 221f x f -==≤. ∴函数()f x 在[)0,+∞上单调递减.∵()1f x +关于直线1x =-对称,∴()f x 关于0x =对称,即()f x 为偶函数,∴不等式()()22f x f x m -≥+可化为()()22f x f x m -≥+,∴22x x m -≤+恒成立,即2222x x m -≤+,整理得223(82)40x m x m -++-≤,令()223(82)4g x x m x m =-++-,∴对任意的[],1x m m ∈+,()0g x ≤恒成立,∴2222()3(82)40(1)3(1)(82)(1)40g m m m m m g m m m m m ⎧=-++-≤⎨+=+-+++-≤⎩, 即840410m m -+≤⎧⎨--≤⎩,解得12m ≥.故选:D.3.已知2()sin ||sin ||f x x x ππ=-,()|ln |g x x =,若对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,则实数m 的取值范围是_________.【答案】⎡⎫+∞⎪⎢⎪⎣⎭【分析】先分析题意即()()12min min f x g x ≥,再利用单调性求解()f x 的最小值和()g x 的最小值,解不等式即得结果. 【详解】依题意,对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,只需()()12min min f x g x ≥. 21,36x ⎡⎤∀∈--⎢⎥⎣⎦时()sin sin sin y x x x πππ==-=-,2,36x πππ⎡⎤--⎢⎣∈⎥⎦,0y <,故当232,x πππ⎡⎤--⎢⎣∈⎥⎦,即212,3x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递增, 当2,6x πππ⎡-∈⎤-⎢⎥⎣⎦,即1261,x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递减.而函数2()f x x x=-,显然在(),0x ∈-∞单调递减. 故根据复合函数单调性可知,2()sin ||sin ||f x x x ππ=-在212,3x ⎡⎤∈--⎢⎥⎣⎦单调递减,在1261,x ⎡⎤∈--⎢⎥⎣⎦上单调递增,故min 122()sin 11221sin 2f x f ππ⎛⎫=-=-=-= ⎪⎝⎭.对于12,x e e -⎡⎤∈⎣⎦,()|ln |g x x =,当1,1x e -⎡⎤∈⎣⎦时ln 0x ≤,故()ln g x x =-是单调递减的,当(21,x e ⎤∈⎦时ln 0x >,故()ln g x x =是单调递增的,故min ()(1)|ln1|g x g ===.故依题意知,1≥,即m ≥.所以实数m 的取值范围是⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:⎡⎫+∞⎪⎢⎪⎣⎭.【题型七】函数整数问题【典例分析】定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x <解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D.【变式演练】1.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为A .15B .16C .17D .18【答案】D 【详解】定义在R 上的奇函数()f x 满足()()22f x f x +=-,得2222f x f x f x f x ++=--=-=-()()()(),即4?f x f x +=-()(),则44[]f x f x f x f x f x +=-+=--=∴()()()().()的周期为8.函数f x ()的图形如下:比如,当不同整数i x 分别为-1,1,2,5,7…时,b a -取最小值,141420f f f -=-==(),(),(),,至少需要二又四分一个周期,则b-a 的最小值为18,故选D2.已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式在[150,150]-上有且只有150个整数解,则实数t 的取值范围是()A .12(0,)e - B .1322(,3)e e --C .312(3,2)e e --D .112(,2)e e --【答案】B 【分析】利用导函数讨论当[0,3]x ∈时的单调性,结合对称性周期性数形结合求解. 【详解】当[0,3]x ∈时,2()xf x xe -=,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(]2,3x ∈时,()0f x ¢<,当[)0,2x ∈时,()0f x ¢>, 所以函数()f x 在(]2,3x ∈单调递减,在[)0,2x ∈单调递增, ()32(0)0,330f f e-=>=,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-, 所以()(3)(3)3f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322(,3)t e e --∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学知识点题型测试2【高考考情解读】 高考对本讲知识的考查主要是以下两种形式:1.以选择题、填空题的形式考查,主要利用等差、等比数列的通项公式、前n 项和公式及其性质解决与项、和有关的计算问题,属于基础题;2.以解答题的形式考查,主要是等差、等比数列的定义、通项公式、前n 项和公式及其性质等知识交汇综合命题,考查用数列知识分析问题、解决问题的能力,属低、中档题.1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2.等差数列和等比数列S n =n a 1+a n2=na 1+n n -12d(1)q ≠1,S n =a 11-q n 1-q =a 1-a n q1-q(2)q =1,S n =na 1考点一 与等差数列有关的问题例1 在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(1)若a 1>0,当S n 取得最大值时,求n 的值; (2)若a 1=-46,记b n =S n -a nn,求b n 的最小值. 解 (1)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d =-223a 1.∴S n =na 1+n n -12×⎝ ⎛⎭⎪⎫-223a 1=-123a 1n 2+2423a 1n=-123a 1(n -12)2+14423a 1.∵a 1>0,∴当n =12时,S n 取得最大值. (2)由(1)及a 1=-46,得d =-223×(-46)=4,∴a n =-46+(n -1)×4=4n -50,S n =-46n +n n -12×4=2n 2-48n .∴b n =S n -a n n =2n 2-52n +50n=2n +50n-52≥22n ×50n-52=-32,当且仅当2n =50n,即n =5时,等号成立.故b n 的最小值为-32.(1)在等差数列问题中其最基本的量是首项和公差,只要根据已知条件求出这两个量,其他问题就可随之而解,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用.(2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a n m -n(m ,n ∈N *); ④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和).(3)数列{a n }是等差数列的充要条件是其前n 项和公式S n =f (n )是n 的二次函数或一次函数且不含常数项,即S n =An 2+Bn (A 2+B 2≠0).(1)(2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错.误.的是( ) A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列(2)(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6 答案 (1)C (2)C解析 (1)利用函数思想,通过讨论S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n 的单调性判断.设{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n .由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,则d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确. (2)a m =2,a m +1=3,故d =1, 因为S m =0,故ma 1+m m -12d =0,故a 1=-m -12,因为a m +a m +1=5, 故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5.考点二 与等比数列有关的问题例2 (1)(2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( )A .7B .5C .-5D .-7(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________. 答案 (1)D (2)32解析 (1)利用等比数列的性质求解.由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.(2)利用等比数列的通项公式及前n 项和公式求解.S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得,3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0, 解得q =32(q =-1不合题意,舍去).(1)证明数列是等比数列的两个方法:①利用定义:a n +1a n(n ∈N *)是常数,②利用等比中项a 2n =a n -1a n +1(n ≥2,n ∈N *).(2)等比数列中的五个量:a 1,a n ,q ,n ,S n 可以“知三求二”. (3){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m qn -m;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (4)等比数列前n 项和公式S n =⎩⎪⎨⎪⎧na 1q =1,a 11-q n 1-q=a 1-a n q1-q q ≠1.①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)(2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________. 答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1. (2)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.①求数列{a n }的通项公式;②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 ①设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q 1+q +q 2=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.②由①有S n =3[1--2n]1--2=1-(-2)n .假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n≤-2 012. 当n 为偶数时,(-2)n>0.上式不成立; 当n 为奇数时,(-2)n =-2n≤-2 012, 即2n≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 考点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n 9-n2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-12m]1-12=8[1-(12)m],∵(12)m随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n 9-n2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可. 已知数列{a n }满足a 1=3,a n +1-3a n =3n(n ∈N *),数列{b n }满足b n =3-na n . (1)求证:数列{b n }是等差数列;(2)设S n =a 13+a 24+a 35+…+a n n +2,求满足不等式1128<S n S 2n <14的所有正整数n 的值.(1)证明 由b n =3-na n 得a n =3nb n , 则a n +1=3n +1b n +1.代入a n +1-3a n =3n中,得3n +1b n +1-3n +1b n =3n ,即得b n +1-b n =13.所以数列{b n }是等差数列.(2)解 因为数列{b n }是首项为b 1=3-1a 1=1, 公差为13的等差数列,则b n =1+13(n -1)=n +23,则a n =3nb n =(n +2)×3n -1,从而有a nn +2=3n -1,故S n =a 13+a 24+a 35+…+a nn +2=1+3+32+…+3n -1=1-3n 1-3=3n-12,则S n S 2n =3n -132n -1=13n +1, 由1128<S n S 2n <14,得1128<13n +1<14, 即3<3n<127,得1<n ≤4.故满足不等式1128<S n S 2n <14的所有正整数n 的值为2,3,4.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 3.等差、等比数列的单调性(1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列.(2)等比数列的单调性当⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S n n}仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公差为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为。