二次函数与方程

合集下载

二次函数与二次方程的关系

二次函数与二次方程的关系

二次函数与二次方程的关系在数学中,二次函数和二次方程是密不可分的概念。

二次函数可以用来描述二次方程的图像特征,而二次方程则是用来求解二次函数的根的工具。

本文将解析二次函数与二次方程之间的关系。

一、二次函数的定义与性质二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数且a≠ 0。

二次函数的图像是一个开口向上或向下的抛物线。

其中,参数a决定了抛物线的开口方向和形状,正值使得抛物线开口向上,负值则使得抛物线开口向下;参数b决定了抛物线的位置,正值使得抛物线右移,负值则使得抛物线左移;参数c决定了抛物线与y轴的交点位置。

二、二次方程的定义与性质二次方程是形如ax^2 + bx + c = 0的一元二次方程,其中a、b、c为常数且a ≠ 0。

解二次方程的根就是使方程等于0的x值。

根据求根公式,可以得到二次方程的解:x = (-b ± √(b^2 - 4ac)) / 2a其中,±代表两个不同的解,即方程可能有两个解、一个解或无解。

根据判别式Δ = b^2 - 4ac的正负与零的关系,可以进一步判断二次方程的解的情况。

当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程无实数根,但可以有复数根。

三、二次函数与二次方程的关系1. 根与零点对于二次函数y = ax^2 + bx + c,其根就是使得函数值等于0的x值,也就是二次方程ax^2 + bx + c = 0的解。

反之,二次方程的解也可以作为二次函数的零点,即对应的x值。

2. 抛物线与图像二次函数的图像是一个抛物线,而二次方程的解决定了抛物线与x轴的交点,也就是抛物线的顶点或者零点。

具体而言:- 当二次方程有两个实数根时,抛物线与x轴有两个交点,分别对应于方程的两个解;- 当二次方程有两个相等的实数根时,抛物线与x轴有一个交点,即抛物线在该点处切线与x轴重合;- 当二次方程无实数根时,抛物线与x轴没有交点,抛物线位于x轴上方或下方。

二次函数与方程

二次函数与方程

二次函数与方程二次函数是指形如y=ax²+bx+c的函数,其中a、b、c是常数且a≠0。

而二次方程是指形如ax²+bx+c=0的方程,其中a、b、c也是常数且a≠0。

二次函数的图像通常呈现出抛物线的形状,开口的方向取决于a的正负,a>0时抛物线开口向上,a<0时抛物线开口向下。

而二次函数的图像与方程的解之间存在密切的关系。

解二次方程的一种常见方法是使用求根公式。

对于一般的二次方程ax²+bx+c=0,其中a≠0,它的根可以用以下公式表示:x = (-b ± √(b²-4ac))/(2a)这个公式中的±表示两个解,一个取加号,一个取减号。

根据二次方程的判别式Δ=b²-4ac的值,可以确定方程的解的情况:1. 当Δ>0时,方程有两个不相等的实根;2. 当Δ=0时,方程有且仅有一个实根;3. 当Δ<0时,方程无实根,但有两个共轭复根。

通过求根公式,我们可以求得二次方程的解。

而这些解可以帮助我们进一步了解二次函数的性质。

与二次函数相关的一些重要概念包括顶点、轴对称和对称轴。

顶点是抛物线的最高点或最低点,它的横坐标为-x轴的对称轴。

对于二次函数y=ax²+bx+c,它的顶点的横坐标可以通过以下公式计算:x = -b/(2a)轴对称是指抛物线关于对称轴对称。

对于二次函数y=ax²+bx+c,它的对称轴的方程可以表示为x=-b/(2a)。

通过对二次函数的顶点和对称轴的求解,我们可以更好地理解二次函数的图像和性质。

二次函数的图像还与a的大小有关。

当a的绝对值越大时,抛物线的开口越窄,图像越陡峭;当a的绝对值越小时,抛物线的开口越宽,图像越平缓。

除了图像和方程之间的关系,二次函数和方程还在实际中有广泛的应用。

在物理学中,二次函数可以用来描述自由落体运动的轨迹、抛体运动的轨迹等。

在经济学中,二次函数可以用来建立成本函数、收益函数等。

中考热点-- 二次函数与方程、不等式,求参数范围(原卷版)

中考热点-- 二次函数与方程、不等式,求参数范围(原卷版)

中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0.点P在此抛物线上,其横坐标为m.,点B0,3(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.7(2023·浙江杭州·统考二模)已知函数y1=x2-m+2x+2m+3,y2=nx+k-2n(m,n,k为常数且n≠0).(1)若y1的图象经过点A-1,3,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当-1≤x≤2时,总有y1≤y2,求m+n的取值范围.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0.和一次函数y2=ax+b a≠0(1)二次函数y1的图象过1,0点,求二次函数的表达式;,2,2(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x=-2和x=4时,二次函数y=ax2+bx-2(a,b是常数,a≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x轴有且只有一个交点,求a,b的值.(3)记(2)中的抛物线为y1,将抛物线y1向上平移2个单位得到抛物线y2,当-2≤x≤m时,抛物线y2的最大值与最小值之差为8,求m的值.10(2023·浙江丽水·统考二模)二次函数y=x2+bx+c的图象与x轴交于点A x1,0且x1≠,B x2,0x2.(1)当x1=2,且b+c=-6时,①求b,c的值②当t≤x≤t+2时,二次函数y=x2+bx+c的最小值为2t,求t的值;(2)若x1=3x2,求证:3b-c≤3.211(2023·浙江杭州·统考二模)二次函数y=ax2+bx-1(a,b为常数,a≠0)的图像经过点A1,2.(1)求该二次函数图像的对称轴(结果用含a的代数式示)(2)若该函数图像经过点B3,2;①求函数的表达式,并求该函数的最值.②设M x1,y1,N x2,y2是该二次函数图像上两点,其中x1,x2是实数.若x1-x2=1,求证:y1+y2≤11 212(2023·浙江杭州·统考一模)二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点.(1)当a=1,b=2时,求m的值.(2)当0<a<2,c=2时,①求证:m>1.②点C x1,y1,D x2,y2在该抛物线上,且x1>x2,x1+x2<2,试比较y1与y2的大小.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m在抛物线y=x2-2tx+1上,试比较m,n的大小;,N t+3,n(3)P x1,y1是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2, ,Q x2,y2求t的取值范围;(4)P t+1,y1是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值. ,Q2t-4,y214(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).20(2023·浙江·校联考三模)已知点x1,y1,x2,y2为二次函数y=-x2图象上的两点(不为顶点),则以下判断正确的是()A.若x1>x2,则y1>y2B.若x1<x2,则y1<y2C.若:x1x2<x22,则y1>y2 D.若x1x2>x22,则y1<y221(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y222(2023·浙江杭州·统考二模)点P m,n在二次函数y=ax2-2ax a≠0的图象上,针对n的不同取值,存在点P的个数不同,甲乙两位同学分别得到如下结论:甲:若P的个数为1,则n=-a;乙:若P的个数为2,则n≥-a则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误23(2023·浙江宁波·校考二模)已知点A x1,y1,B x2,y2在抛物线y=-(x-4)2+m(m是常数)上.若x1<4<x2,x1+x2>8,则下列大小比较正确的是()A.y1>y2>mB.y2>y1>mC.m>y1>y2D.m>y2>y124(2023·统考二模)已知二次函数y=x2+bx+c过点A x1,y1,B x1+t,y2,C x1+2t,y3三点.记m=y2-y1,n=y3-y2,下列命题正确的是()A.若n-m>2,则t<-1B.若n-m<2,则t>-1C.若t>1,则n-m>2D.若t<1,则n-m<225(2023·浙江杭州·统考二模)已知y关于x的二次函数y=2mx2+1-mx-1-m,下列结论中正确的序号是()①当m=-1时,函数图象的顶点坐标为12,12 ;②当m≠0时,函数图象总过定点:③当m>0时,函数图象在x轴上截得的线段的长度大于3 2;④若函数图象上任取不同的两点P1x1,y1、P2x2,y2,则当m<0时,函数在x>14时一定能使y2-y1x2-x1<0成立.A.①②③B.①③④C.②③④D.①②④26(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3a ≠0 上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.2<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥427(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3(a ≠0)上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.1<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥428(2023·浙江宁波·校考一模)已知二次函数y =ax 2+bx +c 的图象经过点A x 1,y 1 ,B 1-m ,n ,C x 2,y 2 ,D m +3,n ,若x 1-2 >x 2-2 ,则下列表达式正确的是()A.y 1>y 2B.y 1<y 2C.a y 1-y 2 >0D.a y 1-y 2 <029(2022·浙江宁波·校考三模)如图,二次函数y =ax 2+bx +c a <0 与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有()①abc <0;②4ac -b 24a>0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为-2<x <-1.A.1个B.3个C.4个D.5个。

二次函数与方程专题复习

二次函数与方程专题复习

二次函数与方程方程思想是指在解决问题时,通过等量关系将已知与未知联系起来,建立方程或方程组,然后运用方程的知识使问题得以解决的方法;函数描述了自然界中量与量之间的依存关系,函数思想的实质是剔除问题的非本质特征,用联系和变化的观点研究问题.转化为函数关系去解决.方程与函数联系密切,我们可以用方程思想解决函数问题,也可以用函数思想讨论方程问题,在确定函数解析式中的待定系数、函数图象与坐标轴的交点、函数图象的交点等问题时,借助函数图象能获得直观简捷的解答.(一)用函数观点看方程【例1】已知关于x 的二次函数()12221--+=x x m y 和()1222++++=m mx x m y 的图象都经过x 轴上的点(n ,0). (1)求m 的值; (2)将二次函数()12221--+=x x m y 的图象先沿x 轴翻折,再向下平移3个单位,得到一个新的二次函数3y 的图象.①求3y 的解析式;②在所给的坐标系中画出2y 和3y 的大致图象,并结合函数的图象回答:当x 取何值时,23y y >?〖练1〗函数()1122+++=x k kx y (k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一坐标系中,用描点法画出这两个函数的图象;(2)根据所画图象,猜想出:对任意实数k ,函数的图象都具有的特征,并给予证明; (3)对任意负实数k ,当m x <时,y 随x 的增大而增大,试求m(二)二次函数与判别式【例2.1】已知抛物线1C 的解析式为223412++=x x y ,抛物线与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于C .(1)求点A 、B 、C 的坐标;(2)将抛物线1C 平移得到抛物线2C ,且2C 经过1C 上一点P (2,m ),2C 交y 轴于Q ,当PQ 与y 轴相交所成的锐角为45°时,求2C 的解析式;(3)将抛物线1C 沿直线BC 平移,与射线AC 仅有一个公共点,求抛物线顶点横坐标的取值范围.【例2.2】抛物线c bx x y ++=21412与y 轴相交于点B ,其顶点A 在直线x y 43=上运动.(1)当b =2时,求点B 的坐标;(2)已知△CDE 的三个顶点的坐标分别为C (-5,2)、D (-3,2)、E (-5,6),当抛物线c bx x y ++=21412对称轴左侧的部分与△CDE 的三边一共有两个公共点时,求b 的取值范围.【练2.1】如图,已知抛物线243y x x =-+-的顶点为M ,直线29y x =--与y 轴交于点C ,与直线MO 交于点D .现将抛物线的顶点在直线OD 上平移,平移后的抛物线与射线CD 只有一个公共点,求它的顶点横坐标的值或取值范围.【练2.2】给定直线l :kx y =,抛物线C :12++=bx ax y .(1)当1=b 时,l 与C 相交于A 、B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移12+k 个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任意一点,过P 作PQ ∥y 轴且与直线2=y 交于Q ,求证:OP =PQ .(三)根与系数关系的应用距离公式的应用【例3.1】某校数学兴趣小组在研究二次函数及其图象问题时,发现了三个重要结论: ①抛物线()0322≠++=a x ax y ,当实数a 变化时,它的顶点都在某条直线l 上; ②抛物线32++=bx x y ,当实数b 变化时,它的顶点都在某条抛物线f 上;③如图1,二次函数()02>++=a c bx ax y 的图象与x 轴的两个交点为A (1x ,0),B (2x ,0),顶点为C ,若△ABC 为直角三角形,则m ac b =-42. (1)求直线l 的解析式;(2)求抛物线f 的解析式及m 的值;(3)如图2,将直线l 沿y 向下平移k 个单位得到直线2l ,抛物线f 沿直线l 平移得到抛物线2f ,若直线2l 与抛物线2f 的两个交点P 、Q 间的距离不小于25,求k图1【拓展】已知二次函数c bx ax y ++=2和一次函数bx y -=,其中实数a 、b 、c 满足c b a >>,0=++c b a . (1)求证:这两个函数的图象交于不同的两点;(2)设这两个函数的图象交于A 、B 两点,作AA 1⊥x 轴于A 1,BB 1⊥x 轴于B 1,求线段A 1 B 1的取值范围.〖练3〗已知直线321-=x y 分别交x 轴于A ,交y 轴于B ,抛物线b x x y C ++=4:21的顶点D 在直线AB 上. (1)求抛物线1C 的解析式;(2)将抛物线1C 的顶点沿射线DA 的方向平移得到抛物线2C ,抛物线2C 交y 轴于C ,顶点为E ,若CE ⊥AB ,求抛物线2C 的解析式;(3)将直线AB 沿y 轴正方向平移t (0>t )个单位得到直线l ,抛物线1C 的顶点在直线AB 上平移得抛物线3C ,直线l 和抛物线3C 交于P 、Q ,当t5焦点弦问题【例4.1】如图,在平面直角坐标系中,一次函数m x y +=45的图象与x 轴交于A (-1,0),与y 轴交于C .以直线2=x 为对称轴的抛物线()0:21≠++=a c bx ax y C 经过A 、C 两点,并与x 轴正半轴交于B .(1)求m 的值及抛物线1C 的函数解析式;(2)设点D (0,1225),若F 是抛物线1C 的对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线1C 于M (1x ,1y ),N (2x ,2y )两点,试探究NFMF 11+是否为定值?请说明理由.〖练4.2〗如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知AO =8,AD =10. (1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O 、F ,且直线366-=x y 是该抛物线的切线,求抛物线的解析式; (3)直线()4353--=x k y 与(2)中的抛物线交于P 、Q 两点,点B 的坐标分别为(3,435-),求证:OBPB 11+为定值.x解析几何方法应用【例5.1】如图,直角坐标系中,已知点A (2,4),B (5,0),动点P 从B 点出发沿BO 向终点O 运动,动点Q 从A 点出发沿AB 向终点B 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x s . (1)Q 点的坐标为 ;(用含x 的代数式表示) (2)当x 为何值时,△APQ 是一个以AP 为腰的等腰三角形?(3)记PQ 的中点为G ,请你探求点G 随P 、Q【例5.2】如图,在矩形ABCD 中,AB =8,AD =6,点P 、Q 分别是AB 边和CD 边上的动点,点P 从点A 向点B 运动,点Q 从点C向点D 运动,且保持AP =CQ .设AP =x . (1)当PQ ∥AD 时,求x 的值;(2)当线段PQ 的垂直平分线与BC 边相交时,求x 的取值范围;(3)当线段PQ 的垂直平分线与BC 边相交时,设交点为E ,连接EP 、EQ ,设△EPQ 的面积为S,求S 关于x 的函数关系式,并写出S 的取值范围.〖练5〗如图1,A 、B 、C 、D 为矩形的四个顶点,AD =4cm ,AB =dcm .动点E 、F 分别从点D 、B 出发,点E 以1cm /s 的速度沿边DA 向点A 移动,点F 以1cm /s 的速度沿边BC 向点C 移动,点F 移动到点C 时,两点同时停止移动.以EF 为边作正方形EFGH ,点F 出发xs 时,正方形EFGH 的面积为yc m 2.已知y 与x 的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题: (1)自变量x 的取值范围是 ;(2)d = ,m = ,n = ;(3)F 出发多少秒时,正方形EFGH 的面积为16 c m 2?xAEAGD x。

第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)

第22章《二次函数》讲义 第8讲  二次函数与方程(有答案)

第3讲 二次函数与方程、不等式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.(1)、a+b+c 的符号:由x=1时抛物线上的点的位置确定:点在x 轴上方,则a+b+c 。

点在x 轴下方,则a+b+c 。

点在x 轴上,则a+b+c 。

(2)、a-b+c 的符号:由x=-1时抛物线上的点的位置确定:点在x 轴上方,则a -b+c 。

点在x 轴下方,则a -b+c 。

点在x 轴上,则a -b+c 。

(3)、2a±b 的符号: 由对称轴与X=1或X=-1的位置相比较的情况决定. (4)、b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0; 1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.1、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①、当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②、当0∆=时,图象与x 轴只有一个交点;③、当0∆<时,图象与x 轴没有交点.(1)当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;(2)当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母考点1、待定系数法求二次函数解析式例1、已知点A(2,3)在函数y=ax2-x+1的图象上,则a等于()A.-1 B.1 C.2 D.-2例2、若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为()A.m=2 B.m=±2 C.m=D.m=±例3、已知抛物线顶点为(1,3),且与y轴交点的纵坐标为-1,则此抛物线解析式是.例4、已抛物线过点A(-1,0)和B(3,0),与y轴交于点C,且BC=,则这条抛物线的解析式为.例5、二次函数y=2x2+bx+c的图象经过点(2,3),且顶点在直线y=3x-2上,则二次函数的关系式为:.例6、已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.例7、已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.1、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=-x2-4x-3 B.y=-x2-4x+3 C.y=x2-4x-3 D.y=-x2+4x-32、已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为( C )A.y=x2-4x-5 B.y=-x2+4x-5 C.y=x2+4x-5 D.y=-x2-4x-53、已知二次函数y=x2+bx+c的图象过A(c,0),对称轴为直线x=3,则此二次函数解析式为.4、抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.5、已知y与x2+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(a,12)在函数图象上,求a的值.6、如图,抛物线y=2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.考点2、函数与方程例1、如果抛物线y=x2+(k-1)x+4与x轴有且只有一个交点,那么正数k的值是()A.3 B.4 C.5 D.6例2、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m的结论正确的是()A.m的最大值为2 B.m的最小值为-2C.m是负数D.m是非负数例3、设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>8例4、已知抛物线y=x2-2ax+a+2的顶点在x轴上,则方程的实数根的积为.☆例5、已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.1、抛物线y=x2-2x-3与坐标轴的交点个数为()A.0个B.1个C.2个D.3个2、如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是()A.b=0 B.S△ABE=c2 C.ac=-1 D.a+c=03、二次函数y=ax2+bx+c的图象与x轴相交于(-1,0)和(5,0)两点,则该抛物线的对称轴是.4、已知抛物线y=x2+kx+4-k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.5、已知关于x的函数y=ax2+x+1(a为常数)(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.考点3、二次函数与不等式(组)例1、如图,是二次函数和一次函数y2=mx+n的图象,观察图象,写出y1>y2时x的取值范围是()A.-2<x<1 B.x<-2或x>1 C.x>-2 D.x<1例2、若函数y=mx2+mx+m-2的值恒为负数,则m取值范围是()例3、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:①当x 时,函数值随着x的增大而减小;②关于x的一元二次不等式ax2=bx+c>0的解是.例4、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于 A(-2,4)、B(8,2)两点,则能使关于x的不等式ax2+(b-k)x+c-m>0成立的x的取值范围是.例5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.1、抛物线y=ax2+bx+c(a>0)和直线y=mx+n(m≠0)相交于两点P(-1,2),Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、已知:二次函数y=x2-4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.A.1 B.2 C.3 D.43、直线y=-3x+2与抛物线y=x24、已知函数y=x2-2x-3的图象,根据图象回答下列问题.(1)当x取何值时y=0.(2)方程x2-2x-3=0的解是什么?(3)当x取何值时,y<0?当x取何值时,y>0?(4)不等式x2-2x-3<0的解集是什么?5、如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.1、一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()A.y=-2(x-1)2+3 B.y=-(2x+1)2+3C.y=-2(x+1)2+3 D.y=-(2x-1)2+32、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是1,-1,给出下列结论:①a+b+c=0;②b=0;③a=1.c=-1.其中正确的是()A.①②B.①③C.②③D.①②③3、已知:二次函数y=x2-4x-a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为-8③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1 B.2 C.3 D.44、二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的关系式为,5、如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1.若抛物线与x轴一个交点为A(3,0),则由图象可知,不等式ax2+bx+c≥0的解集是:.6、若关于x的方程3x2+5x+11m=0的一个根大于2,另一根小于2,则m的取值范围是.7、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是.8、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是.9、如图,抛物线y=ax2+bx+c经过A(-4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(-4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.10、已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.11、如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求直线AB的解析式;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)结合(1)(2)及图象,直接写出使一次函数的值大于二次函数的值的x的取值范围.1、若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<bC.x1<a<b<x2 D.a<x1<b<x22、已知直线与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,求:(1)点C的坐标;(2)图象经过A、B、C三点的二次函数的解析式.3、在直角坐标平面内,二次函数图象的经过A(-1,0)、B(3,0),且过点C(0,3).(1)求该二次函数的解析式;(2)若P是该抛物线上一点,且△ABC与△ABP面积相同,求P的坐标.1、抛物线y=x2-mx+m-2与x轴交点的情况是()A.无交点B.一个交点C.两个交点D.无法确定2、已知函数y=ax2+bx+z的图象如图所示,那么函数解析式为()A.y=-x2+2x+3 B.y=x2-2x-3 C.y=-x2-2x+3 D.y=-x2-2x-33、如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为()A.-1<x<3 B.x<-1或x>3C.1<x<9 D.x<1或x>9(2)(3)4、已知二次函数y=2x2-(4k+1)x+2k2-1的图象与x轴交于两个不同的点,则关于x的一元二次方程2x2-(4k+1)x+2k2-1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定5、已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G6、已知抛物线y=(m-1)x2+x+1与x轴有交点,则m范围是.7、已知二次函数的图象关于直线x=3对称,最大值是0,在y轴上的截距是-1,这个二次函数解析式为.8、如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0④ax2+bx+c=0的两根分别为-3和1;⑤8a+c>0.其中正确的命题是.9、如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)观察图象,当x取何值时,y<0?y=0?y>0?10、已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:(1)求出函数的解析式;(2)写出抛物线的对称轴方程和顶点坐标?(3)当x取何值时y随x的增大而减小?(4)方程ax2+bx+c=0的解是什么?(5)不等式ax2+bx+c>0的解集是什么?11、如图,抛物线y=-x2+3x-n经过点C(0,4),与x轴交于两点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值.12、如图,△AOB是边长为2的等边三角形,过点A的直线y=点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.参考答案第8讲二次函数与方程、不等式考点1、待定系数法求二次函数解析式例1、B例2、D例3、例4、例5、例6、例7、1、D2、C3、4、5、6、考点2、函数与方程例1、C例2、A例3、D例4、例5、解:(1)证明:分两种情况讨论.①当m=0时,方程为x-2=0,∴x=2,方程有实数根;②当m≠0,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1=(m+1)2∴不论m为何实数,△≥0成立,∴方程恒有实数根;综合①、②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.令y=0,则mx2-(3m-1)x+2m-2=0∴抛物线y=mx2-(3m-1)x+2m-2不论m为任何不为0的实数时恒过定点(2,0).∵|x1-x2|=2,∴|2-x2|=2,当m=1时,y=x2-2x,把(2,0)代入,左边=右边,m=1符合题意,∴抛物线解析式为y=x2-2x答:抛物线解析式为y=x2-2x;1、D2、D3、4、5、考点3、二次函数与不等式(组)例1、B例2、C例3、例4、例5、1、C2、A3、4、5、1、C2、A3、B4、5、6、7、8、9、10、11、1、C2、3、1、C2、A3、B4、B5、C6、7、8、9、10、11、12、31。

二次函数与方程的关系

二次函数与方程的关系

二次函数与方程的关系二次函数和二次方程是数学中常见的概念,它们之间存在着密切的关系。

本文将从定义、图像、性质以及解析式等角度,探讨二次函数与方程之间的关系。

一、二次函数的定义二次函数是指一个自变量为x的函数,其一般形式为f(x)=ax^2+bx+c,其中a、b、c是实数且a≠0。

其中x是自变量,f(x)是因变量。

二次函数的图像为抛物线。

二、二次方程的定义二次方程是指形式为ax^2+bx+c=0的方程,其中a、b、c是实数且a≠0。

其中x是未知数。

三、二次函数的图像二次函数的图像是抛物线,其开口的方向由二次项系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(xv, yv),其中xv=-b/2a,yv=f(xv)。

四、二次方程的解对于二次方程ax^2+bx+c=0,可以通过求解得到其根的解。

根的个数和判别式Δ有关,Δ=b^2-4ac。

1. 当Δ>0时,方程有两个不相等的实根。

根的公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。

2. 当Δ=0时,方程有两个相等的实根。

根的公式为x=-b/2a。

3. 当Δ<0时,方程没有实根,有两个共轭复根。

根的公式为x1=(-b+i√|Δ|)/2a,x2=(-b-i√|Δ|)/2a。

五、二次函数与二次方程的联系1. 抛物线的顶点坐标:二次函数的解析式中,顶点的横坐标xv=-b/2a对应着二次方程的根的公式中x1和x2的值。

2. 方程的解与函数的零点:二次方程的实根对应着二次函数与x轴(y=0)的交点,也就是函数的零点。

可以通过求解方程获得函数的零点。

3. 方程求解问题:通过建立二次方程解题可以推导出二次函数的性质和特点,例如最值点、单调性等。

六、结论通过上述分析可以看出,二次函数和方程之间存在着密切的关联。

二次函数的图像为抛物线,方程的解对应着函数的零点。

掌握了二次函数和方程的关系,可以更好地理解和应用二次函数和方程在实际问题中的应用。

二次函数的零点和方程

二次函数的零点和方程

二次函数的零点和方程二次函数是一种常见的数学函数,具有形式为 y = ax^2 + bx + c 的方程。

在二次函数中,我们可以通过确定该函数的零点和解方程来更好地理解和分析其性质。

以下是关于二次函数的零点和方程的一些重要信息。

零点二次函数的零点是指函数图像与 x 轴相交的点,即 y 值为零的点。

它们对应于方程 y = 0 的解。

在二次函数中,零点的个数和位置与二次函数的系数相关。

如果二次函数的判别式(b^2 - 4ac)大于零,那么函数图像与x 轴相交于两个不同的点,即函数有两个不同的零点。

如果判别式等于零,函数图像与 x 轴相交于一个点,即函数有一个重复的零点。

如果判别式小于零,函数图像与 x 轴不相交,即函数没有实数解,也就是没有零点。

解方程为了确定二次函数的零点,我们需要解方程 y = ax^2 + bx + c = 0。

解二次方程的常用方法有配方法、求根公式和完全平方式。

配方法配方法是一种将二次方程转化为完全平方式的方法。

它通过将方程两边用二次项系数的一半平方的形式进行配方,以消除线性项。

然后,我们可以通过解完全平方式的方程来找到二次函数的零点。

求根公式求根公式,也称为二次方程的根公式,可以用来求解任意二次方程(判别式不为负)的零点。

求根公式是通过将二次方程标准形式中的系数代入到公式中,得到零点的表达式。

零点的求根公式为:x = (-b ± √(b^2 - 4ac))/(2a),其中 ±表示两个解。

完全平方式完全平方式是一种通过将二次方程转化为完全平方式的方法来求解零点的方法。

它通过完全平方式将二次方程转化为完全平方式的形式,然后我们可以通过求这个完全平方式的根来找到二次函数的零点。

总结二次函数的零点和解方程是我们理解和分析二次函数性质的重要步骤。

通过判别式和解方程的不同方法,我们可以确定二次函数的零点个数和位置,并进一步研究二次函数的图像。

这些概念和方法在数学中具有广泛的应用和重要性。

二次函数与二元一次方程、不等式的解的对应关系

二次函数与二元一次方程、不等式的解的对应关系

二次函数与二元一次方程、不等式的解的对应关系二次函数与二元一次方程、不等式的解的对应关系在数学领域中,二次函数与二元一次方程、不等式的解之间存在着密切的对应关系。

本文将从简单到复杂的角度,全面评估这一主题,并据此撰写一篇有价值的文章,以便读者更深入地理解这一关系。

一、二次函数的基本形式我们首先来了解二次函数的基本形式。

二次函数通常具有以下标准形式:f(x) = ax^2 + bx + c。

其中,a、b、c分别代表二次项系数、一次项系数和常数项。

1. 二次函数图像的特点二次函数的图像是一个抛物线,其开口方向由二次项系数a的正负决定。

当a > 0时,图像开口向上;当a < 0时,图像开口向下。

二次函数的顶点坐标为:(-b/2a, f(-b/2a))。

2. 二次函数的零点二次函数的零点即为方程f(x) = 0的解,也就是函数图像与x轴的交点。

要求出二次函数的零点,可以使用求根公式或配方法,进而得到对应的解。

二、二元一次方程、不等式的基本形式接下来,我们将了解二元一次方程和不等式的基本形式,以及它们与二次函数解之间的联系。

1. 二元一次方程的一般形式二元一次方程一般可表示为:ax + by = c。

在解二元一次方程时,通常采用代入、相消、加减消元法等方法,最终得到方程的解。

2. 二元一次不等式的一般形式二元一次不等式的一般形式为:ax + by > c或ax + by < c。

解二元一次不等式时,同样可以通过代入法等方式,最终得到不等式的解集合。

三、二次函数与二元一次方程、不等式解的对应关系了解了二次函数和二元一次方程、不等式的基本形式后,接下来我们来探讨它们之间的对应关系。

1. 二次函数的解与二元一次方程的关系对于二次函数f(x) = ax^2 + bx + c,其解即为方程f(x) = 0的解。

而方程f(x) = 0可以化为ax^2 + bx + c = 0的形式,与一元二次方程的形式一致。

二次函数与二次方程的根与系数的关系

二次函数与二次方程的根与系数的关系

二次函数与二次方程的根与系数的关系二次函数和二次方程是高中数学中重要的概念,它们之间存在着紧密的联系。

本文将探讨二次函数与二次方程的根与系数的相互关系。

1. 二次函数的定义及一般形式二次函数是指形如 f(x) = ax² + bx + c 的函数,其中 a、b、c 是实数,且a ≠ 0。

在二次函数中,x 是自变量,f(x) 是因变量。

二次函数的图像通常是一个抛物线。

2. 二次方程的定义及一般形式二次方程是指形如 ax² + bx + c = 0 的方程,其中 a、b、c 是实数,且a ≠ 0。

在二次方程中,x 是未知数。

求解二次方程的根可以通过因式分解、配方法或求根公式等方法得到。

3. 二次函数的根与系数的关系对于二次函数 f(x) = ax² + bx + c,可以推导出以下关系:3.1 零点等于根二次函数的零点即为函数的根,也就是函数图像与 x 轴相交的点。

根据二次函数的定义,当 f(x) = 0 时,求解该方程可以得到二次函数的根。

如果二次函数有两个不同的实根,那么方程必有两个不同的解。

如果二次函数有一个重根(两个根相等),那么方程也有一个重解。

3.2 判别式与根的关系对于二次方程 ax² + bx + c = 0,判别式 D = b² - 4ac 可以用来判断方程的根的性质。

当判别式 D > 0 时,方程有两个不同实根;当 D = 0 时,方程有一个重实根;当 D < 0 时,方程没有实根,有两个虚根。

3.3 根与系数的关系根与系数之间存在着一一对应的关系。

对于一般形式的二次方程ax² + bx + c = 0,根据求根公式可得:根 x₁ = (-b + √D) / (2a)根 x₂ = (-b - √D) / (2a)可以发现,根与系数 a、b、c 之间存在着明确的线性关系。

根的值受到系数的影响,不同的系数会导致不同的根的取值。

二次函数与方程的判别式

二次函数与方程的判别式

二次函数与方程的判别式二次函数与二次方程是数学中常见的概念,二次函数是指具有形式为$y=ax^2+bx+c$的函数,其中$a、b、c$为实数且$a\neq0$;而二次方程则是指具有形式为$ax^2+bx+c=0$的方程,其中$a、b、c$为实数且$a\neq0$。

在研究二次函数与二次方程的性质时,判别式是一个十分重要的工具,它可以帮助我们判断方程的根的性质以及函数的图像特点。

1. 二次方程的判别式对于二次方程$ax^2+bx+c=0$,它的判别式可以表示为$\Delta=b^2-4ac$。

根据判别式$\Delta$的值,可以得到以下结论:a. 当$\Delta>0$时,方程有两个不相等的实根。

此时,方程的图像与$x$轴交于两个不同的点。

b. 当$\Delta=0$时,方程有两个相等的实根。

此时,方程的图像与$x$轴相切于一个点,该点的纵坐标为$0$。

c. 当$\Delta<0$时,方程无实根。

此时,方程的图像与$x$轴无交点,图像在坐标系中完全位于$x$轴的上方或下方。

2. 二次函数的判别式对于二次函数$y=ax^2+bx+c$,它的判别式可以表示为$\Delta=b^2-4ac$。

根据判别式$\Delta$的值,可以得到以下结论:a. 当$\Delta>0$时,函数的图像开口向上,函数的最低点为顶点,函数的值域为$(\frac{\Delta}{4a}, +\infty)$。

b. 当$\Delta=0$时,函数的图像开口向上,函数的最低点为顶点,函数的值域为$[0, +\infty)$。

c. 当$\Delta<0$时,函数的图像开口向下,函数的最高点为顶点,函数的值域为$(-\infty, \frac{\Delta}{4a})$。

通过判别式,我们可以很方便地判断二次方程的根的性质以及二次函数的图像特点。

在实际问题中,判别式也为我们提供了重要的信息,例如在求解二次方程时,可以根据判别式的值来确定是否有实根;在制定二次函数的图像时,可以根据判别式的值来确定图像的开口方向及最值点的位置。

二次函数与二次方程二次不等式的关系

二次函数与二次方程二次不等式的关系

二次函数与二次方程、二次不等式的关系一、知识要点知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数y=ax2+bx+c(a丰0)的函数值y=0时,就是一元二次方程,当沪0时,就是二次不等式。

知识点2、二次函数的图象与 x轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。

研究二次函2 . . 2数y=ax + bx + c图象与x轴交点问题从而就转化为研究一元二次方程ax + bx + c=0的根的变式训练:1、函数y=ax2— bx + c的图象过(一1, 0),贝U b c c a a b的值是___________________ 2、已知二次函数 y=x2 + mx + m— 2 •求证:无论 m取何实数,抛物线总与 x轴有两个交点.3 .已知二次函数 y=x2— 2kx + k2 + k— 2 •(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?5 .已知抛物线 y=mx2 +( 3 — 2m) x + m — 2 ( m^O)与x轴有两个不同的交点.(1 )求m的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴对称的点P'的坐标,并过P'、Q、P三点,画岀抛物线草图.2例2、(本题满分12分)二次函数y ax bx 6(a 0)的图像交y轴于C点,交x轴于A,B△ =b2— 4ac △ > 0 △ =0△ < 0二次函数y=ax2+bx+c(a > 0)的图像一元二次方程ax2+bx+c=0(a > 0)的根无实数根一元二次不等式ax2+bx+c> 0(a > 0)的解集x < x1或x > x2(% < x2)x为全体实数一元二次不等ax2+bx+c< 0(a > 0)的解集x1<x < x2(x1< x2)无解无解问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。

二次函数和二次方程

二次函数和二次方程
y Nhomakorabeay
y
-1
2x
01 x
2
1x
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
一般的,一元二次方程ax2+bx+c=0(a≠0)的 根就是二次函数y=ax2+bx+c (a≠0)的 值为 _0_时_自__变__量__x_的值;
也就是函数_y_=_a_x_2+__bx_+__c的图象与_x_轴交点 的_横__坐标.
②方程 x2 2x 1 0与函数 y x2 2x 1 ③方程 x 22x 3 0与函数 y x2 2x 3
y
y
y
-1
3x
01 x
2
1x
二次函数解析式常用的三种格式:
①一般式:y ax2 bx c (a,b,c为常数,a )0
②顶点式:y a(x h)2 k (a,h,k为常数,a )0
③交点式:y a(x x1)(x x2 )(a,x1,x2为常数,a 0)
(3)试比较 f (4) f (1), f (0) f (2) 与0的大小关系.
讨论:二次函数y=f(x),若f(m)f(n)<0, 且m<n,那么一定能说明在区间[m,n] 内一定有零点吗?
思考:若x0是二次函数y=f(x)的零点, 且m<x0<n,那么f(m)f(n)<0一定成立吗?
②在区间[2,4]上有零点_X_=_3_,f (2) f (4)<__ 0。
例2:如图是一个二次函数 y f (x) 的图象. (1)写出这个二次函数的零点.

二次函数与二次方程的关系分析

二次函数与二次方程的关系分析

二次函数与二次方程的关系分析二次函数和二次方程是高中数学中重要的概念,它们之间存在着密切的关系。

本文将从不同角度分析二次函数和二次方程的关系。

一、二次函数与二次方程的定义首先,我们来了解二次函数和二次方程的定义。

二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a不等于0。

二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c为常数,且a不等于0。

二、二次函数与二次方程的图像关系二次函数的图像是一条抛物线,而二次方程的解则是抛物线与x轴的交点。

具体来说,二次函数f(x) = ax^2 + bx + c的图像在平面直角坐标系中呈现出开口朝上或开口朝下的抛物线形状。

而对应的二次方程ax^2 + bx + c = 0的解则是抛物线与x轴的交点,也就是方程的根。

如果二次方程有两个不相等的实数根,则抛物线与x轴有两个交点;如果二次方程有一个重根,则抛物线与x轴有一个切点;如果二次方程没有实数根,则抛物线与x轴没有交点。

三、二次函数与二次方程的性质关系二次函数和二次方程之间还存在着一些性质关系。

首先,二次函数的导数是一次函数,即f'(x) = 2ax + b。

而对应的二次方程的判别式D = b^2 - 4ac可以通过导数的性质来解释。

当二次函数的导数大于0时,函数在该点上升;当导数小于0时,函数在该点下降;当导数等于0时,函数取得极值。

而判别式D大于0时,二次方程有两个不相等的实数根;当D小于0时,二次方程没有实数根;当D等于0时,二次方程有一个重根。

另外,二次函数的对称轴是一个直线,它通过抛物线的顶点。

对应的二次方程的对称轴可以通过顶点的横坐标来确定。

对称轴的方程为x = -b/2a。

通过对称轴的性质,我们可以快速求得二次函数的顶点坐标和二次方程的解。

四、二次函数与二次方程的应用关系二次函数和二次方程在实际问题中有着广泛的应用。

例如,抛物线的形状可以用来描述物体的抛射轨迹,二次函数可以用来建立物体的运动模型。

二次函数的图象与方程

二次函数的图象与方程
单击此处添加标题
交点性质:当a>0时,一个交点在原点,另一个在x轴正半轴;当a<0时, 一个交点在原点,另一个在x轴负半轴
单击此处添加标题
交点坐标:当a>0时,交点坐标为(0,0)和(√(-b/a),0);当a<0时,交点坐 标为(0,0)和(-√(-b/a),0)
单击此处添加标题
交点与方程的关系:二次函数与x轴的交点即为方程的根
二次函数与三角 形、四边形等几 何知识的关系: 通过二次函数的 图象,可以研究 三角形、四边形 等几何图形的性
质和特点。
THANK YOU
汇报人:XX
二次方程的解法
二次方程的解的概念
二次方程的标准 形式:ax^2 + bx + c = 0
判别式:Δ = b^2 - 4ac
根的性质:当Δ > 0时,方程有 两个不相等的实 根;当Δ = 0时, 方程有两个相等 的实根;当Δ < 0时,方程无实 根。
解的公式:当Δ ≥ 0时,解为x = [-b ± sqrt(Δ)] / (2a)
二次函数的表达式
二次函数的一般形式 为y=ax^2+bx+c, 其中a、b、c为常数 且a≠0
a的符号决定了抛物 线的开口方向,当 a>0时,抛物线开 口向上;当a<0时, 抛物线开口向下
b和c决定了抛物线 的位置,b和c的值 越大,抛物线越偏离 y轴和x轴
二次函数的顶点坐标 为(-b/2a, cb^2/4a)
二次函数的图象与方程
汇报人:XX
单击输入目录标题 二次函数的基本概念 二次函数的图象 二次方程的解法 二次函数的实际应用 二次函数与其他数学知识的联系
添加章节标题
二次函数的基本概念

二次函数的曲线和方程

二次函数的曲线和方程

二次函数的曲线和方程二次函数是数学中一个重要的概念,在数学和科学领域中有很广泛的应用。

它的曲线形状独特,方程形式简洁明了。

本文将从曲线的形状和方程的解析等方面进行分析和讨论。

一、曲线的形状二次函数的曲线通常呈现出一个开口向上或者开口向下的抛物线形状。

开口的方向取决于二次函数中二次项的系数的正负性。

当二次项系数大于0时,抛物线开口向上;当二次项系数小于0时,抛物线开口向下。

二、方程形式二次函数的标准方程形式为 f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

其中,a决定了抛物线的形状,b决定了抛物线的位置,c决定了抛物线的纵向平移。

三、顶点和对称轴二次函数的曲线都有一个特殊的点,称为顶点。

顶点的横坐标为 -b/2a,纵坐标为 f(-b/2a) = -Δ/4a,其中Δ = b^2 - 4ac为判别式。

对于开口向上的抛物线,顶点是曲线的最低点,对应着最小值;对于开口向下的抛物线,顶点是曲线的最高点,对应着最大值。

同时,二次函数的对称轴是通过顶点的一条线,方程为 x = -b/2a。

四、零点和方程的解析零点就是使得二次函数等于0的x值。

求解二次函数的零点可以通过因式分解、配方法、求根公式等方法进行。

当判别式Δ大于0时,函数有两个不同的实数根;当Δ等于0时,函数有两个相等的实数根;当Δ小于0时,函数没有实数根,但可能有复数根。

五、对称性二次函数具有轴对称性,即以对称轴为中心,对于对称轴上任意点(x, y),也存在对称点(x', y')。

其中,x' = 2p - x,y' = y,p为对称轴的x坐标。

六、平移变换利用平移变换,可以将二次函数的曲线在坐标系中进行上下平移、左右平移。

上下平移即在二次函数的方程中将c的值进行更改,左右平移即在二次函数的方程中将b的值进行更改。

平移后,曲线的形状和顶点位置保持不变,只是位置发生变化。

总结:通过以上对二次函数曲线和方程的讨论,我们可以得出以下结论:二次函数的曲线呈现出独特的抛物线形状,方程的形式简单清晰;二次函数的曲线有顶点和对称轴,顶点确定了曲线的最值,对称轴确定了曲线的位置;二次函数的方程可以通过求解零点来解析函数的根;二次函数具有轴对称性;平移变换可以改变二次函数的位置。

二次函数与方程(组)或不等式知识讲解

二次函数与方程(组)或不等式知识讲解

二次函数与方程(组)或不等式知识讲

知识讲解
(1)最大值或最小值的求法
第一步确定a的符号:a&gt;0有最小值,a&lt;0有最大值;第二步求顶点,顶点的纵坐标即为对应的最大值或最小值。

(2)y轴与抛物线y=ax^2+bx+c的交点为(0,c)。

(3)与y轴平行的直线x=h与抛物线y=ax^2+bx+c有且只有一个交点(h,ah^2+bh+c)。

(4)抛物线与x轴的交点。

二次函数y=ax^2+bx+c的图像与x轴的两个交点的横坐标x1,x2是对应的一元二次方程ax^2+bx+c=0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点△&gt;0抛物线与x轴相交。

②有一个交点(顶点在x轴上)△=0抛物线与x轴相切;
③没有交点△&lt;0抛物线与x轴相离。

(5)平行于x轴的直线与抛物线的交点。

同(4)一样可能有0个交点,1个交点,2个交点.当
有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax^2+bx+c=k的两个实数根。

(6)一次函数y=kx+n(k≠0)的图像L与二次函数y=ax^2+bx+c(a≠0)的图像G的交点,由方程组y=kx+n和y=ax^2+bx+c的解的数目确定:①当方程组有两组不同的解时L与G有两个交点;②方程组只有一组解时L与G只有一个交点;③方程组无解时L与G没有交点.
(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x轴的交点,&#8226;再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分。

二次函数的零点与方程

二次函数的零点与方程

二次函数的零点与方程二次函数是数学中重要的一类函数,其表达式一般可以写成f(x) =ax^2 + bx + c的形式,其中a、b和c是常数。

二次函数的零点指的是使得函数值等于零的x值,也就是方程f(x)= 0的解。

如何求二次函数的零点呢?我们可以通过以下的步骤来完成。

首先,我们需要将二次函数转化为标准形式,也就是把f(x) = ax^2+ bx + c写成f(x) = a(x - h)^2 + k的形式。

这个过程叫做完成平方。

通过平移坐标轴,我们可以将二次函数的顶点移到坐标原点,这样计算起来更加简便。

完成平方的步骤如下:1. 将二次函数写成f(x) = a(x^2 + \frac{b}{a}x) + c的形式2. 将方程中的x项配方,也就是找到一个常数p使得x^2 +\frac{b}{a}x + p^2 = (x + p)^2的形式3. 将p^2乘以a后加到方程中,并将剩余项移到右边,得到f(x) =a(x + p)^2 + \frac{b^2}{4a} - ap^2 + c的形式4. 将右边的常数合并,得到f(x) = a(x + p)^2 + \frac{b^2 - 4ac}{4a},这就是标准形式完成平方后,我们可以很容易地得到二次函数的顶点坐标,顶点的x坐标就是-h,y坐标就是k。

而顶点坐标又是关于零点对称的,也就是说,如果(x1, y1)是顶点的坐标,那么(-x1, y1)也是顶点的坐标。

然后,我们可以用求根公式来求二次函数的零点。

根据求根公式,二次函数的零点是x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}。

因为平方根中的部分称为判别式,判别式等于零时,二次函数只有一个零点,判别式大于零时,二次函数有两个不相等的零点,判别式小于零时,二次函数没有实数解。

通过上述步骤,我们可以求解出任何一个二次函数的零点和标准形式。

二次函数的零点有重要的几何和实际意义,它们是函数图像与x 轴的交点,也可以用来解决实际问题,比如求解抛物线的飞行轨迹、物体的运动轨迹等。

二次函数与二次方程的根与系数关系

二次函数与二次方程的根与系数关系

二次函数与二次方程的根与系数关系二次函数和二次方程是数学中的重要概念,它们之间存在着密切的根与系数关系。

本文将详细介绍二次函数与二次方程的定义、性质以及它们之间的根与系数的关联。

一、二次函数的定义和性质二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b和c都是实数且a不等于零。

二次函数的图像是一个拱形的曲线,称为抛物线。

其中,a决定了抛物线的开口方向和拱的程度,b决定了抛物线在x轴上的平移方向和程度,c决定了抛物线在y轴上的平移方向和程度。

二、二次方程的定义和性质二次方程是一个等于零的二次多项式,它的标准形式为ax^2 + bx +c = 0。

其中a、b和c是实数且a不等于零。

二次方程的解称为方程的根,可以分为实数根和复数根。

二次方程的根与系数之间存在着紧密的关系。

三、二次函数与二次方程的根与系数关系1. 根与系数的关系对于二次函数f(x) = ax^2 + bx + c来说,它的根可以通过求解对应的二次方程ax^2 + bx + c = 0得到。

即二次函数的x轴交点就是二次方程的根,它们具有一一对应的关系。

2. 倒数与系数的关系二次函数的导数是一个一次函数,表示为f'(x) = 2ax + b。

二次函数的导数可以用来研究二次函数的增减性和极值点。

从导数的表达式可以看出,导数的斜率2a与二次函数的系数a相关,具有一定的倍数关系。

3. 零点与系数的关系二次函数的零点是函数等于零的x值,即f(x) = 0。

对应的二次方程ax^2 + bx + c = 0的根也就是二次函数的零点。

根据二次函数的定义可知,零点即为二次函数和x轴的交点。

因此,零点与二次函数的系数a、b、c之间存在着密切的关系,可以通过求解二次方程得到二次函数的零点。

四、根与系数的具体计算方法通过求解二次方程可以得到二次函数的根,进而分析二次函数的性质。

求解二次方程可以使用公式法和配方法。

1. 公式法当二次方程ax^2 + bx + c = 0的系数a、b、c已知时,可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)来求解二次方程的根。

二次函数与参数方程讲义

二次函数与参数方程讲义

二次函数与参数方程讲义一、二次函数的定义及性质二次函数是指具有形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。

二次函数的图像在直角坐标系中呈现出一个抛物线的形状。

下面介绍一些二次函数的性质:1.顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a)),其中b 为二次项系数,a为一次项系数,f(x)为二次函数表达式。

2.对称轴:二次函数的对称轴是与顶点垂直且通过顶点的线,对称轴的方程为x=-b/2a。

3.开口方向:若a>0,则二次函数的图像开口向上;若a<0,则二次函数的图像开口向下。

4. 判别式:二次函数的判别式Δ = b^2 - 4ac可以判断二次函数的图像与x轴的交点个数和位置。

若Δ > 0,则有两个不同的实数根,图像与x轴有两个交点;若Δ = 0,则有一个实数根,图像与x轴有一个交点;若Δ < 0,则没有实数根,图像与x轴没有交点。

5.奇偶性:二次函数关于对称轴对称。

二、参数方程的定义及性质参数方程是指通过引入一个或多个参数,将自变量和因变量用参数的函数表示的一种函数形式。

下面介绍一些常见的参数方程:1.平面曲线的参数方程:平面曲线的参数方程通常是将平面坐标x和y分别表示为参数t的函数,即x=f(t)和y=g(t)。

2.长度参数方程:对于曲线上的一点P(x,y),如果已知P到曲线的起点O的距离s与曲线上的弧长l之间存在函数关系s=h(l),则有x=f(l),y=g(l)。

3.动点参数方程:描述动点在平面上的运动轨迹时,可以使用动点坐标作为参数的函数,即x=f(t),y=g(t)。

4.极坐标参数方程:极坐标系下,曲线的参数方程与平面直角坐标系类似,但是将x和y表示为极坐标r和θ的函数,即r=f(θ),θ=g(θ)。

参数方程的优点是可以描述曲线上每一点的位置及其运动轨迹,而不仅仅是曲线的整体特征。

三、二次函数和参数方程的关系对于二次函数,可以将其表示为参数方程的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档