第八章函数有答案
(完整版)多元函数微分法及其应用习题及答案
1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
离散数学-第八章函数
例8.5 对于以下各题给定的A,B和f,判断是否构成函 数f:A→B。如果是,说明 f:A→B是否为单射,满 射,双射的,并根据要求进行计算。 (1) A={1,2,3,4,5}, B={6,7,8,9,10}, f={<1,8>,<3,9>,<4,10>,<2,6>,<5,9>} 能构成函数f:A→B,但f:A→B既不是单射也不是 满射的。 (2) A,B同(1),f={<1,7>,<2,6>,<4,5>,<1,9>,<5,10>}
令f:A→B,使得f()=f0,f({1})=f1,f({2})=f2,f({3})=f3, f({1,2})=f4,f({1,3})=f5,f({2,3})=f6,f({1,2,3})=f7
(2) A=[0,1],B=[1/4,1/2]
令f:[0,1]→[1/4,1/2],f(x)=(x+1)/4. (3) A=Z,B=N 将Z中元素以下列顺序排列并与N中元素对应:
例8.1 设 F1={<x1,y1>,<x2,y2>,<x3,y2>} F2={<x1,y1>,<x1,y2>} 判断它们是否为函数。 解:F1是函数,F2不是函数。
因为对应于x1存在y1和y2满足x1F2y1和x1F2y2, 与函数定义矛盾。
F 是函数(映射) 对于x1,x2∈A, 如果x1=x2 ,一定有f(x1)=f(x2)。即, 如果对于x1,x2∈A有f(x1) ≠f(x2),则一定有x1≠x2
函数是集合,可以用集合相等来定义函数的相等
定义8.2 设F,G为函数,则 F=G F G∧G F 由以上定义可知,如果两个函数F和G相等,一 定满足下面两个条件: 1.domF=domG 2. x∈domF=domG都有F(x)=G(x)
高等数学下册第八章课后习题解答
习题8−11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y −1)2≥1}∩{(x , y )|x 2+(y −2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y −1)2=1}∪{(x , y )|x 2+(y −2)2=4}.2. 已知函数yx xy y x y x f tan ),(22−+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅−+= ),(tan 2222y x f t y x xy y x t =⎟⎠⎞⎜⎝⎛−+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x −y , xy ).解 f (x +y , x −y , xy )=(x +y )xy +(xy )(x +y )+(x −y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2−2x +1);高等数学下册第八章习题解答解 要使函数有意义, 必须y 2−2x +1>0,故函数的定义域为D ={(x , y )|y 2−2x +1>0}.(2)yx y x z −++=11; 解 要使函数有意义, 必须x +y >0, x −y >0,故函数的定义域为D ={(x , y )|x +y >0, x −y >0}.(3)y x z −=;解 要使函数有意义, 必须y ≥0,0≥−y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z −−+−=; 解 要使函数有意义, 必须y −x >0, x ≥0, 1−x 2−y 2>0,故函数的定义域为D ={(x , y )| y −x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u −+++−−−=(R >r >0); 解 要使函数有意义, 必须R 2−x 2−y 2−z 2≥0且x 2+y 2+z 2−r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +−→; 解110011lim 22)1,0(),(=+−=+−→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy y x 42lim)0,0(),(+−→; 解 xy y x 42lim)0,0(),(+−→)42()42)(42(lim )0,0(),(+++++−=→xy xy xy xy y x 41)42(1lim)0,0(),(−=++−=→xy y x . (4)11lim )0,0(),(−+→xy xy y x ; 解 11lim )0,0(),(−+→xy xy y x )11)(11()11(lim )0,0(),(−+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++−→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++−=++− 01sin lim cos 1lim 00==−=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x −+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==−+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(−=−=−+→=→y y y x y x y x y x . 因此, 极限y x y x y x −+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x −+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1lim )(lim 44022222 )0,0(),(==−+→=→x x y x y x y x x xy y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=−+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x −+→不存在. 8. 函数xy x y z 2222−+=在何处间断? 解 因为当y 2−2x =0时, 函数无意义,所以在y 2−2x =0处, 函数x y x y z 2222−+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤−+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x −x 0|<δ时, 有|f (x )−f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x −x 0|<δ, 从而 |F (x , y )−F (x 0, y 0)|=|f (x )−f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8−21. 求下列函数的偏导数:(1) z =x 3y −y 3x ;解 323y y x xz −=∂∂, 233xy x y z −=∂∂. (2)uvv u s 22+=; 解 21)(u v v u v v u u u s −=+∂∂=∂∂, 21)(v u u u v v u v v s −=+∂∂=∂∂. (3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理)ln(21xy y y z =∂∂. (4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅−⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y −= 根据对称性可知)]2sin()[cos(xy xy x yz −=∂∂. (5)yx z tan ln =; 解 y x y y y x yxx z 2csc 21sec tan 12=⋅⋅=∂∂, y x y x y x y x yx y z 2csc 2sec tan 1222−=−⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(−−+=⋅+=∂∂y y xy y y xy y xz , ]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xy xy xy y ++++=. (7)z yx u =;解 )1(−=∂∂z y x zy x u , x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂, x x zy z y x x z u z y z y ln )(ln 22⋅−=−=∂∂. (8) u =arctan(x −y )z ;解 z z y x y x z x u 21)(1)(−+−=∂∂−, z z y x y x z y u 21)(1)(−+−−=∂∂−, z z y x y x y x z u 2)(1)ln()(−+−−=∂∂. 2. 设gl T π2=, 试证0=∂∂+∂∂g T g l T l . 解 因为l g l T ⋅⋅=∂∂1π, g g g l gT 121(223⋅−=⋅−⋅=∂∂−ππ, 所以 0=⋅−⋅=∂∂+∂∂gl g l g T g l T l ππ. 3. 设)11(y x e z +−=, 求证z yz y x z x 222=∂∂+∂∂. 解 因为211(1xe x z y x ⋅=∂∂+−, 2)11(1y e y z y x ⋅=∂∂+−, 所以 z e e y z y x z x y x y x 2)11()11(22=+=∂∂+∂∂+−+− 4. 设yx y x y x f arcsin )1(),(−+=, 求. )1 ,(x f x解 因为x x x x f =−+=1arcsin )11()1 ,(, 所以1)1 ,()1 ,(==x f dxd x f x . 5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 242x x x z ==∂∂, αtan 1)5,4,2(==∂∂xz , 故4πα=. 6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4−4x 2y 2;解 2384xy x x z −=∂∂, 2222812y x xz −=∂∂; y x y y z 2384−=∂∂, 2222812x y yz −=∂∂; xy y x y yy x z 16)84(232−=−∂∂=∂∂∂. (2)x y z arctan=; 解 22222)(11y x y x y xy x z +−=−⋅+=∂∂, 22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy y z +=⋅+=∂∂, 22222)(2y x xy y z +−=∂∂; 22222222222222)()(2)()(y x x y y x y y x y x y y y x z +−=+−+−=+−∂∂=∂∂∂. (3) z =y x .解 y y x z x ln =∂∂, y y xzx 222ln =∂∂; 1−=∂∂x xy y z , 222)1(−−=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂−−y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, −1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x ,f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0,所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2,f yz (0, −1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyy x xy x z , x xy y x z 122==∂∂, 023∂∂∂yx z , y xy x y x z 12==∂∂∂, 2231y y x z −=∂∂∂. 9. 验证:(1)满足nx e y tkn sin 2−=22xy k t y ∂∂=∂∂; 证明 因为nx e kn kn nx e ty t kn t kn sin )(sin 2222⋅−=−⋅⋅=∂∂−−, nx ne x y t kn cos 2−=∂∂, nx e n xy t kn sin 2222−−=∂∂, nx e kn xy k t kn sin 222−−=∂∂, 所以22x y k t y ∂∂=∂∂. (2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂.证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r x r −=∂∂−=∂∂, 由对称性知32222ry r y r −=∂∂, 32222r z r z r −=∂∂, 因此 322322322222222rz r r y r r x r z r y r x r −+−+−=∂∂+∂∂+∂∂ r r r r r z y x r 23)(332232222=−=++−=.习题8−31. 求下列函数的全微分:(1)yx xy z +=; 解 dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=. (2)x ye z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=. (3) 22yx y z +=; 解 因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−, 2/3222222222)(y x x y x y x y y y x z +=++⋅−+=∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=. (4)u =x yz .解 因为1−⋅=∂∂yz x yz x u , x zx y u yz ln =∂∂, x yx zu yz ln =∂∂, 所以xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=− 2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分.解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x x z, 3221=∂∂==y x y z,所以 dy dx dz y x 323121⋅+===. 3. 求函数xy z =当x =2, y =1, Δx =0.1, Δy =−0.2时的全增量和全微分. 解 因为x y x x y y z −Δ+Δ+=Δ, y x x xy dz Δ+Δ−=12, 所以, 当x =2, y =1, Δx =0.1, Δy =−0.2时,119.0211.02)2.0(1−=−+−+=Δz , 125.0)2.0(211.041−=−+×−=dz . 4. 求函数z =e xy 当x =1, y =1, Δx =0.15, Δy =0.1时的全微分.解 因为y xe x ye y yz x x z dz xy xy Δ+Δ=Δ∂∂+Δ∂∂= 所以, 当x =1, y =1, Δx =0.15, Δy =0.1时,e e e dz 25.01.015.0=⋅+⋅=*5. 计算33)97.1()102(+的近似值.解 设33y x z +=, 由于y y z x x z y x y y x x Δ∂∂+Δ∂∂++≈Δ++Δ+3333)()(332233233y x y y x x y x +Δ+Δ++=, 所以取x =1, y =2, Δx =0.02, Δy =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6. 计算(1.97)1.05的近似值(ln2=0.693).解 设z =x y , 由于y yz x x z x x x y y y Δ∂∂+Δ∂∂+≈Δ+Δ+)(y x x x yx x y y y Δ+Δ+=−ln 1, 所以取x =2, y =1, Δx =−0.03, Δy =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z Δ+Δ+=Δ+Δ=≈Δ, 当x =6, y =8, Δx =0.05, Δy =−0.1时,05.0)1.0805.0686122−=⋅−⋅+≈Δz . 这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h ,ΔV ≈dV =2πRh ΔR +πR 2Δh ,当R =4, h =20, ΔR =Δh =0.1时,ΔV ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差.解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z Δ⋅∂∂+Δ⋅∂∂≤≈Δ|)|||(122y y x x yx Δ+Δ+=. 令x =7, y =24, |Δx |≤0.1, |Δy |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm . *10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=. zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈Δ. 令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则 55.2718021278631.0232631.023278=×××+××+××≈πδs , 82.21273sin 786321=⋅⋅⋅=πS , %29.182.212755.27==S s δ, 所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55 m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和. 证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u Δ+Δ≤Δ+Δ=Δ∂∂+Δ∂∂=≈Δ. 所以两数之和的绝对误差|Δu |等于它们各自的绝对误差|Δx |与|Δy |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和.证明 设u =xy , yx v =, 则Δu ≈du =ydx +xdy , 2y xdy ydx dv v −=≈Δ, 由此可得相对误差;ydy x dx xy xdy ydx u du u u +=+=≈Δy y x x y dy x dx Δ+Δ=+≤; y dy x dx yx y xdy ydx v dv v v −=⋅−==Δ2y y x x y dy x dx Δ+Δ=+≤.习题8−41. 设z =u 2−v 2, 而u =x +y , v =x −y , 求x z ∂∂, yz ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x , yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(−1)=2(u −v )=4y . 2. 设z =u 2ln v , 而yx u =, v =3x −2y , 求x z ∂∂, y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x −+−=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ )2()(ln 222−+−⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x −−−−=. 3. 设z =e x −2y , 而x =sin t , y =t 3, 求dtdz . 解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅−⋅+=−− .)6(cos )6(cos 22sin 223t t e t t e t t y x −=−=−− 4. 设z =arcsin(x − y ), 而x +3t , y =4t 3, 求dtdz . 解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x −−−+⋅−−= 232)43(1)41(3t t t −−−=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz . 解 dx dy y z x z dx dz ⋅∂∂+∂∂=xx x e x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+−=a z y e u ax , 而y =a sin x , z =cos x , 求dx du . 解 dxdz dz u dx dy y u x u dx du ⋅∂+⋅∂∂+∂∂= )sin (1cos 11)(222x a e x a a e a z y ae ax ax ax −⋅+−⋅+++−= )sin cos cos sin (122x x a x a x a a e ax ++−+=x e ax sin =. 7. 设y x z arctan =, 而x =u +v , y =u −v , 验证22v u v uv z u z +−=∂∂+∂∂. 证明 )()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂ )()(111)(11222y x y x y y x −⋅++⋅+=)1()()(111)(11222−⋅−⋅++⋅++y x yx y y x 22222v u v u y x y +−=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1) u =f (x 2−y 2, e xy );解 将两个中间变量按顺序编为1, 2号,2122212)()(f ye f x xe f x y x f x u xy xy ′+′=∂∂⋅′+∂−∂⋅′=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy ′+′−=∂∂⋅′+∂−∂⋅′=∂∂. (2) ,(zy y x f u =; 解 1211)()(f yz y x f y x x f x u ′=∂∂⋅′+∂∂⋅′=∂∂, )()(21z y y f y x y f y u ∂∂⋅′+∂∂′=∂∂2121f z f yx′+′−=,)()(21z y z f z x z f z u ∂∂⋅′+∂∂′=∂∂22f z y ′−=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅′+⋅′+⋅′=∂∂3211321f yz f y f ′+′+′=, 3232f xz f x xz f x f yu ′+′=⋅′+⋅′=∂∂, 33f xy xy f zu ′=⋅′=∂∂. 9. 设z =xy +xF (u ), 而xy u =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅)([])()([yu u F x x y x u u F x u F y x ∂∂′+⋅+∂∂′++= )]([)]()([u F x y u F xy u F y x ′+⋅+′−+= =xy +xF (u )+xy =z +xy .10. 设)(22y x f y z −=, 其中f (u )为可导函数, 验证211y zy z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222′−=⋅′⋅−=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()(′−+=−⋅′⋅−=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+′+′−=∂∂⋅+∂∂⋅211y z zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22xz ∂∂, y x z ∂∂∂2, 22y z ∂∂. 解 令u =x 2+y 2, 则z =f (u ),f x xu u f x z ′=∂∂′=∂∂2)(, f y y u u f y z ′=∂∂′=∂∂2)(, f x f x u f x f xz ′′+′=∂∂⋅′′+′=∂∂2224222,f xy yu f x y x z ′′=∂∂⋅′′=∂∂∂422, f y f y u f y f y z ′′+′=∂∂⋅′′+′=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).u f y vf y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0, vf u f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数.)()()(22u f x y uf y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂ 222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=, )(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yv v u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u f y uf xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(, )()()()(22v f y u f y x vf u f x y y z y y z ∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ yv v f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vf x u v f v u f x u f x2222222v f v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =; 解 令u =x , yx v =, 则z =f (u , v ). v f y u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1, vf y xdy dv v f y z ∂∂⋅−=⋅∂∂=∂∂2. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xv v f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂= 22222212v f y v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=, 1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= yv v f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅−∂∂⋅∂∂∂=22211 221v f y x v f y v u f y x ∂∂⋅−∂∂⋅−∂∂∂⋅−= ()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅−∂∂⋅−∂∂=∂∂∂∂=∂∂22423222322vf y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅−∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1′⋅y 2+f 2′⋅2xy =y 2f 1′+2xyf 2′,z y =f 1′⋅2xy +f 2′⋅x 2=2xyf 1′+x 2f 2′;z xx =y 2[f 11′′⋅y 2+f 12′′⋅2xy ]+2yf 2′′+2xy [f 21′′⋅y 2+f 22′′⋅2xy ] =y 4f 11′′+2xy 3f 12′′+2yf 2′′+2xy 3f 21′′+4x 2y 2 f 22′′=y 4f 11′′+4xy 3f 12′′+2yf 2′′+4x 2y 2 f 22′′,z xy =2y f 1′+y 2[f 11′′⋅2xy +f 12′′⋅x 2]+2xf 2′+2xy [f 21′′⋅2xy +f 22′′⋅x 2] =2y f 1′+2xy 3f 11′′+x 2y 2 f 12′′+2xf 2′+4x 2y 2f 21′′+2x 3yf 22′′ =2y f 1′+2xy 3f 11′′+5x 2y 2 f 12′′+2xf 2′+2x 3yf 22′′,z yy =2xf 1′+2xy [f 11′′⋅2xy +f 12′′⋅x 2]+x 2[f 21′′⋅2xy +f 22′′⋅x 2] =2xf 1′+4x 2y 2f 11′′+2x 3y f 12′′+2x 3yf 21′′+x 4f 22′′=2xf 1′+4x 2y 2f 11′′+4x 3y f 12′′+x 4f 22′′.(4) z =f (sin x , cos y , e x +y ).解 z x =f 1′⋅cos x + f 3′⋅e x +y =cos x f 1′+e x +y f 3′,z y =f 2′⋅(−sin y )+ f 3′⋅e x +y =−sin y f 2′+e x +y f 3′,z xx =−sin x f 1′+cos x ⋅(f 11′′⋅cos x + f 13′′⋅e x +y )+e x +y f 3′+e x +y (f 31′′⋅cos x + f 33′′⋅e x +y ) =−sin x f 1′+cos 2x f 11′′+e x +y cos x f 13′′+e x +y f 3′+e x +y cos x f 31′′+e 2(x +y ) f 33′′ =−sin x f 1′+cos 2x f 11′′+2e x +y cos x f 13′′+e x +y f 3′+e 2(x +y ) f 33′′, z xy =cos x [f 12′′⋅(−sin y )+ f 13′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−sin y cos x f 12′′+e x +y cos x f 13′+e x +y f 3′−e x +y sin y f 32′+e 2(x +y )f 33′ =−sin y cos x f 12′′+e x +y cos x f 13′′+e x +y f 3′−e x +y sin y f 32′′+e 2(x +y )f 33′′, z yy =−cos y f 2′−sin y [f 22′′⋅(−sin y )+ f 23′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−cos y f 2′+sin 2y f 22′′−e x +y sin y f 23′′+e x +y f 3′−e x +y sin y f 32′′+ f 33′′⋅e 2(x +y ) =−cos y f 2′+sin 2y f 22′′−2e x +y sin y f 23′′+e x +y f 3′+f 33′′⋅e 2(x +y ).13. 设u =f (x , y )的所有二阶偏导数连续, 而3t s x −=, 3t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321y u x u t yy u t x x u t u ∂∂⋅+∂∂⋅−=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂−+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(2yu x u s s u s s u ∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ (23)(212222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= 2321(23)2321(212222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(2yu x u t t u t t u∂∂⋅+∂∂⋅−∂∂=∂∂∂∂=∂∂ )(21)(232222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂−= )2123(21)2123(232222y u x y u y x u x u ∂∂⋅+∂∂∂⋅−+∂∂∂⋅+∂∂⋅−−=22222412343y uy x u x u ∂∂⋅+∂∂∂⋅−∂∂⋅=,所以 22222222y u x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8−51. 设sin y +e x −xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x −xy 2, 则F x =e x −y 2, F y =cos y −2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222−−=−−−=−=.2. 设x y y x arctan ln 22=+, 求dxdy. 解 令xyy x y x F arctan ln ),(22−+=, 则22222222)()(11221y x y x xy x y y x x y x F x ++=−⋅+−+⋅+=,22222221)(11221yx x y x xy y x y y x F y +−=⋅+−+⋅+=,yx y x F F dx dyy x −+=−=. 3. 设022=−++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(−++=, 则 xyz yz F x −=1, xyzxz F y −=2, xyz xyF z −=1,xy xyz xyz yz F F x z z x −−=−=∂∂, xy xyz xyz xz F F y zz y −−=−=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及yz ∂∂, 解 令yz z x z y x F ln ),,(−=, 则z F x 1=, y yzyz F y 1)(12=−⋅−=, 2211z z x y y z z x F z +−=⋅−−=,所以 z x z F F x z z x +=−=∂∂, )(2z x y z F F y z z y +=−=∂∂.5. 设2sin(x +2y −3z )=x +2y −3z , 证明1=∂∂+∂∂yz x z证明 设F (x , y , z )=2sin(x +2y −3z )−x −2y +3z , 则 F x =2cos(x +2y −3z )−1,F y =2cos(x +2y −3z )⋅2−2=2F x , F z =2cos(x +2y −3z )⋅(−3)+3=−3F x ,313=−−=−=∂∂x x z x F F F F x z , 3232=−−=−=∂∂x x z y F F F F y z ,于是 13231=+=−−=∂∂+∂∂z z z x F FF F yz x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1−=∂∂⋅∂∂⋅∂∂xz z yy x .解 因为x y F F y x −=∂∂, y z F F zy −=∂∂, z x F F x z−=∂∂,所以 1()()(−=−⋅−⋅−=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F xz z yy x .7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx −az , cy −bz )=0 所确定的函数z =f (x , y )满足c yz b x z a =∂∂+∂∂.证明 因为v u uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,所以 c b a c b b a c a y z b x z a v u vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z−xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z −xyz , 则F x =−yz , F z =e z −xy , xye yzF F x z z x −=−=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z −−∂∂−−∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y z z z −−−−+=32232)(22xy e e z y z xy ze y z zz −−−=. 9. 设z 3−3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3−3xyz −a 3, 则xy z yz xy z yz F F x z z x −=−−−=−=∂∂22333, xyz xz xy z xz F F y z z y −=−−−=−=∂∂22333, )()(22xyz yzy x z y y x z −∂∂=∂∂∂∂=∂∂∂222)()2())((xy z x y z z yz xy z yz y z −−∂∂−−∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz y z −−−−−⋅−+=322224)()2(xy z y x xyz z z −−−=.10. 求由下列方程组所确定的函数的导数或偏导数:(1)设, 求⎩⎨⎧=+++=203222222z y x y x z dx dy , dx dz; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧−=+−=−xdx dz z dxdy y xdx dz dx dy y 3222.解方程组得)13(2)16(++−=∂∂z y z x x y , 13+=z x dx dz.(2)设, 求⎩⎨⎧=++=++10222z y x z y x dz dx ,dz dy ;解 视x =x (z ), y =y (z ), 方程两边对z 求导得⎪⎩⎪⎨⎧=++=++022201z dz dy y dzdx x dz dy dz dx , 即⎪⎩⎪⎨⎧−=+−=+zdz dy y dz dx x dz dy dz dx 2221.解方程组得y x z y z x −−=∂∂, yx xz z y −−=∂∂. (3)设, 其中f , g 具有一阶连续偏导数, 求⎩⎨⎧−=+=),(),(2y v x u g v y v ux f u x u ∂∂,x v ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅′+−∂∂⋅′=∂∂∂∂⋅′+∂∂+⋅′=∂∂x v yv g x u g x v x v f x u x u f x u 21212)1()( , 即⎪⎩⎪⎨⎧′=∂∂⋅⋅−′+∂∂′′′−=∂∂⋅′+∂∂−′121121)12()1(g x v g yv x u g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ′′−−′−′′′−−′′−=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ′′−−′−′−′+′′=∂∂.(4)设, 求⎩⎨⎧−=+=v u e y v u e x u u cos sin x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得, 即, ⎩⎨⎧+−=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin ⎩⎨⎧=+−=++dy vdv u du v e dxvdv u du v e u u sin )cos (cos )sin (从中解出du , dv 得dy v v e v dxv v e v du u u 1)cos (sin cos 1)cos (sin sin +−−++−=, v v e u e v dx v v e u e v dv u uu u ]1)cos (sin [sin ]1)cos (sin [cos +−+++−−=,从而1)cos (sin sin +−=∂∂v v e v x u u , 1)cos (sin cos +−−=∂∂v v e vy u u ,]1)cos (sin [cos +−−=∂∂v v e u e v x v u , ]1)cos (sin [sin +−+=∂∂v v e u e v y v u.11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂−∂∂⋅∂∂=. 证明 由方程组可确定两个一元隐函数, 方⎩⎨⎧==0),,(),(t y x F t x f y ⎩⎨⎧==)()(x t t x y y 程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dxdt t f x f dx dy ,移项得⎪⎩⎪⎨⎧∂∂−=∂∂+⋅∂∂∂∂=⋅∂∂−x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂−=y F t f t F tF y F t fD 的条件下 yF t f t F x Ft f t F x f t Fx F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂−∂∂⋅∂∂=∂∂∂∂−∂∂−∂∂⋅=1.习题8−61. 求曲线x =t −sin t , y =1−cos t , 2sin 4t z =在点)22 ,1 ,12 (−π处的切线及法平面方程.解 x ′(t )=1−cos t , y ′(t )=sin t , 2cos 2)(t t z =′. 因为点)22 ,1 ,12 (−π所对应的参数为2 π=t , 故在点)22 ,1 ,12 (−π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(−π处, 切线方程为22211121−=−=−+z y x π, 法平面方程为0)22(2)1(1)12(1=−+−⋅++−⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=′, 21)(t t y −=′, z ′(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(−=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为21124121−=−−=−z y x , 即8142121−=−−=−z y x ; 法平面方程为0)1(2)2()21(41=−+−−−z y x , 即2x −8y +16z −1=0.3. 求曲线y 2=2mx , z 2=m −x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m −x 的两边 对x 求导, 得m dx dyy22=, 12−=dxdz z , 所以y m dx dy=, z dx dz 21−=.曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m −=T , 所求的切线方程为000211z z z y m y y x x −−=−=−, 法平面方程为0)(21)()(00000=−−−+−z z z y y y m x x . 4. 求曲线在点(1, 1, 1)处的切线及法平面方程.⎩⎨⎧=−+−=−++0453203222z y x x z y x 解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+−=−++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=−+−=+2533222dxdz dx dy x dx dz z dx dy y .解此方程组得z y z x dx dy 61015410−−−−=, z y y x dx dz 610946−−−+=. 因为169)1,1,1(=dx dy, 161)1,1,1(−=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111−−=−=−z y x , 即1191161−−=−=−z y x ; 法平面方程为0)1(161)1(169)1(=−−−+−z y x , 即16x +9y −z −24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4. 解 已知平面的法线向量为n =(1, 2, 1).因为x ′=1, y ′=2t , z ′=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =−1, 31−=t . 于是所求点的坐标为(−1, 1, −1)和)271 ,91 ,31(−−. 6. 求曲面e z −z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z −z +xy −3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z −1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x −2)+2(y −1)+0⋅(z −0)=0, 即x +2y −4=0,法线方程为02112−=−=−z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2−1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x −x 0)+by 0(y −y 0)+cz 0(z −z 0)=0,即 , 202020000cz by ax z cz y by x ax ++=++法线方程为00000cz z z by y y ax x x −=−=−.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x −y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2−1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, −1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =−=, 即z x 21=, z y 41−=, 代入椭球面方程得1)4(2)2(222=+−+z z z , 解得1122±=z , 则1122±=x , 11221∓=y . 所以切点坐标为)1122,11221,112(±±∓. 所求切平面方程为0)1122(2)11221()112(=±+−±z y x ∓, 即 2112±=+−z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2−16, 则点(−1, −2, 3)处的法向量为n 2=(F x , F y , F z )|(−1, −2, 3)=(6x , 2y , 2z )|(−1, −2, 3)=(−6, −4, 6).点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F −++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=−+−+−z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8−71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)cos ,(cos 23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy ′=4, 解得yy 2=′. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y ′(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +−=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222−+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a xF F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22b a b y a x b a −=−=n , 单位内法向量为)cos ,(cos ,(2222βα=+−+−=b a a b a b n e . 又因为a a x x zb a b a 222,2(2)2,2(−=−=∂∂, bb y y z b a b a 222,2(2)2,2(−=−=∂∂, 所以 222222222cos cos b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3−xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(−=−=∂∂yz y x u, 0)2()2,1,1()2,1,1(=−=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=−=∂∂xy z z u , 所以 5211122021)1(cos cos cos =⋅+⋅+⋅−=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9−5, 4−1, 14−2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u, 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u, 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2−1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111cos cos cos z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x −2y −6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).。
《C程序设计》(第三版)第8章 函数(嵌套及递归调用)
递归算法必须有结束递归条件,否则会产生死机现象! 递归算法必须有结束递归条件,否则会产生死机现象!
11
2.递归函数的执行过程
【例】编一递归函数求n!。 编一递归函数求 。
思路:以求 的阶乘为例 的阶乘为例: 思路:以求4的阶乘为例 4!=4*3!,3!=3*2!,2!=2*1!,1!=1,0!=1。 , , , , 。 递归结束条件: 递归结束条件:当n=1或n=0时,n!=1。 或 时 。 递归公式: 递归公式:
2
(4)函数fun的功能是计算x2-2x+6,主函数中将调用fun函数计算: (4)函数 函数fun的功能是计算 2x+6,主函数中将调用fun函数计算 的功能是计算x 函数计算: y1=(x+8)2-2(x+8)+6 y2=sin2x-2sinx+6 请填空。 请填空。 #include<math.h> fun(double x) double ; main() { double x,y1,y2; scanf(“%lf”,&x); x+8 y1=fun( ); sin(x) ); y2=fun( printf(“y1=%lf,y2=%lf\ printf(“y1=%lf,y2=%lf\n”,y1,y2); } double fun(double x) { return (x*x-2*x+6); } (x*x3
大学高数第八章 多元函数微分学习题解课后参考答案及知识总结
第8章多元函数微分学§8.1 多元函数的基本概念内容概要课后习题全解习题8-1★1.设222(,)xy f x y x y =+,求(1,)y f x。
解:222222(1,)1()yy xy x f y x x y x==++★2. 已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy +-。
解: 2(,,)()()xyxf x y x y xy x y xy +-=++★★3.设()z x y f x y =++-,且当0y =时,2z x =,求()f x 。
解:将0y =代入原式得: 20(0)x x f x =++- ,故 2()f x x x =-4.求下列函数的定义域: ★(1)2ln(21)zy x =-+解:要使表达式有意义,必须 2210y x -+>∴ 所求定义域为 2{(,)|210}D x y y x =-+>★(2)z=解:要使表达式有意义,必须0x ≥, ∴{(,)|D x y x =≥★★(3)u=解:要使表达式有意义,必须11-≤≤∴{(,,)|D x y z z =≤≤★★★(4)z = 解:要使表达式有意义,必须 222224010ln(1)0ln1x y x y x y ⎧-≥⎪-->⎨⎪--≠=⎩∴ 222{(,)|01,4}D x y x y y x =<+≤≤★★(5)ln()z y x =-+解:要使表达式有意义,必须220010y x x x y ⎧->⎪≥⎨⎪-->⎩∴ 22{(,)|1,0}D x y x y x y =+<≤<5.求下列极限:★(1)10y x y →→知识点:二重极限。
思路:(1,0)为函数定义域内的点,故极限值等于函数值。
解:1ln 2ln 21y x y →→== ★★(2)00x y →→知识点:二重极限。
思路: 应用有理化方法去根号。
第八章 多元函数微分自测题及答案
第八章 多元函数微分学自测题及解答一、选择题1.若函数) ,(y x f 在点) ,( y x 处不连续,则( C )(A )) ,(lim y x f y y x x→→必不存在; (B )) ,( y x f 必不存在;(C )) ,(y x f 在点) ,( y x 必不可微;(D )) ,( y x f x 、) ,( y x f y 必不存在。
2.考虑二元函数) ,(y x f 的下面4 条性质: ①函数) ,(y x f 在点) ,( y x 处连续;②函数) ,(y x f 在点) ,( y x 处两个偏导数连续; ③函数) ,(y x f 在点) ,( y x 处可微;④函数) ,(y x f 在点) ,( y x 处两个偏导数存在。
则下面结论正确的是( A )(A )②⇒③⇒①;(B )③⇒②⇒①;(C )③⇒④⇒①; D )③⇒①⇒④。
3.设函数⎪⎩⎪⎨⎧=+≠++=0 , 0 0 ,),(2222242y x y x y x yx y x f ,则在)0 ,0(点处( C )(A )连续,偏导数存在; (B )连续,偏导数不存在; (C )不连续,偏导数存在; (D )不连续,偏导数不存在。
解:取2x y =,∵0)0,0(21lim),(lim 4440002=≠=+=→→=→f x x xy x f x x y x ,∴)0,0(f 在)0 ,0(点处不连续,而0)0,0()0,0(==y x f f 。
故应选(C ) 4.设z y x u =,则=∂∂)2,2,3(yu ( C )(A )3ln 4; (B )3ln 8; (C )3ln 324; (D )3ln 162。
5.若函数),(y x f 在区域D 内具有二阶偏导数:22x f ∂∂,22y f ∂∂,y x f ∂∂∂2,xy f∂∂∂2, 则( D ) (A )必有xy f y x f ∂∂∂=∂∂∂22; (B )),(y x f 在D 内必连续; (C )),(y x f 在D 内必可微; (D )以上结论都不对。
(完整版)多元函数微分法及其应用习题及答案
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
高等数学练习册第八章习题参考答案(1)
解 令x a cos t, y a sin t,
I
2 0
1 a2
[a 2
(cos
t
sin
t
)(
sin
t
)
(cos
t
sin
t
)
cos
t
]dt
2
0 dt 2 .
p55. 2.计算 ( x2 2xy)dx ( y2 2xy)dy,其中 L
L为抛物线y x2上从点(1,1)到点(1,1)的一段弧.
C
(2)曲线弧C的重心坐标为
xG
1 x( x, y)ds
MC
,yG
1 y( x, y)ds .
MC
p51.2.设光滑曲线L关于x轴对称, L1是L在x轴上方的部分, (1)若f ( x, y)在L上连续,且关于y为奇函数,则Biblioteka f ( x, y)ds 0 ; L
(2)若f ( x, y)在L上连续,且关于y为偶函数,
(1)当p点从点A(a , 0)经位于第一象限的弧段到 B(0,b)时, F所作的功;
(2)当p点经过全椭圆时,F所作的功.
p56. 解 F | F | F 0 x2 y2 ( x , y ) x2 y2 x2 y2
( x, y),
(1) W F d s ( x)dx ( y)dy
0
22
a2
2
| cos
t
| dt
2a 2
2 cos udu 2a2 .
20
2
0
p52. 3.计算 | xy | ds,其中L :圆周x2 y2 a2. L
解法1
I 4
2
a3
sin t
高数第八章答案
(2) (3)10 兰(x + y)sin —siny x222x y 2sin -原式二 lim 2 -------y :0 (x 2y 2)e xyy ,所以,原式=02 22(/2 lim xyx:0(x 2 y 2)e xy第一节多元函数的概念11.( 1)( x, y )- <e2.( 1)原式二 1叫(\ x 2 y 2 1 1) = 2y >0(2) { ( x, y)2k w x 寸二 2k 1,k= 0,1,2,|||(3)(( x, y )1 £ x 2+y 2 z 2 乞 9(4) 原式二limXT2 y >0xsin(xy)cos(xy) o2xy3.( 1)当沿 y 二kx ,(2)当沿 x = ky 2, 1 - k 20时,原式二 2,极限不存在。
1十k 210时,原式二1,极限不存在。
kx + y 1 < —1 1 —+ — x2 + y 22 y x 1p 0,原式=0 x 4.( 1)考虑当沿y二0时, lim —4 2 = lim — x 0 x y x >0 x y r 0 y —;0k4*x 4 1下极限不存在’不连续。
kx 4(2)不连续,当不沿坐标轴趋近(0,0)时,极限值不等于函数值。
x >(3) 0 乞 kx 2,1 ,lim.(- y y )第二节偏导数1. (1) —-y2(1 xy)y1;二=(1 xy)y[ln(1 xy)1 + xy(2)ycUyzcos(xyz) 2xy; xzcos(xyz)■zxycos(xyz) 6z(3)z(x-y)z1 u_________________ ■ ___ -2z ;1 (x - y) y(x- y)z ln(x- y)z(x- y)z,________________ ■2 z;1 (x- y)2z1 (x- y)2z::z 2.—y (1,1, 3)= y1 x2y2zx x2 3.- 2:z(1,1, 3)_2 2 2x z x - y ■ ____ —_2;一 2 2y x (x2xy 3z_____ ■ ___—2 2 2,2x y (x y ) x y2、2、y )2x(x4 - 2x2y2 - 3y4)2 2(x y )4. f (x,1) = x, f x(x,1p 1 5•由上节知,不连续。
高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 著)
第八章 多元函数积分学
§ 1 重积分的概念及其性质
2 1. r 3 。 3 2.略。
3. sin 2 ( x 2 y 3z )d
D
( x 2 y 3z)
D
2
d 。
4. (1) (2) (3) 5.
2 2 1 I 2; 4 2
32 32 I ; ln 16 ln 4
350 3 3 ; (2)48; (3) 6 。 4 2
§ 10 Gauss 公式和散度 1. (1)
384 2 3 3 3 194 4 ; a b c ; ; (2) ; (3) (4) 32 ; (5) (6) 。 5 2 5 3 5 2. (1)4; (2)36。 3.提示:
F ( xy) dy f ( xy)dxdy ,再对二重积分作变量 y D D
6.提示:利用 Green 公式可得 代换 u xy , v
y 。 x
§ 9 旋度与无旋场 1. (3xz 3x, 3x 2 3 yz, 3z 2) ; (2) ( x 2 2 zx, y 2 2 xy, z 2 2 yz) ; (3) (0, 0, 0) 。 2. 12 。 3. (1) ; (2)0。 4. (1)势函数: sin( xy) cos z c ; (2)势函数: y 2 cos x x 2 cos y c 。 5. (1)原函数: x 2 y c ; (2)原函数: x 3 y 4 x 2 y 2 12 ye y 12e y c 。 6. (1)
3 3 收敛, p 发散。 2 2
3
ab 1 ; (2) ; (3) 2 。 e (q 1)( p q)
第八章(理工)多元函数的微分学
4、过曲面 z − e + 2 xy = 3 上点 (1, 2, 0) 处的切平面方程为 解析:切点的方向向量为 n = (2 y , 2 x,1 − e ) ⇒ n
z
G
G
(1,2,0)
= (4, 2, 0) = (2,1, 0) ,则有点向式 2( x −1) + ( y − 2) = 0
⇒ 2x + y − 4 = 0
∂2 z ∂ 2 w ∂u ∂ 2 w ∂v ∂ 2 w ∂u ∂ 2 w ∂v ∂2w ∂2w ∂2w 2 = − − − − = − − − ∂x 2 ∂u 2 ∂x ∂u∂v ∂x ∂u∂v ∂x ∂v 2 ∂x ∂u 2 ∂u∂v ∂v 2 ∂2 z ∂ 2 w ∂u ∂ 2 w ∂v ∂ 2 w ∂u ∂ 2 w ∂v ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w 2 = − − + + = − + + − = − + − ∂y 2 ∂u 2 ∂y ∂u∂v ∂y ∂u∂v ∂y ∂v 2 ∂y ∂u 2 ∂u∂v ∂u∂v ∂v 2 ∂u 2 ∂u∂v ∂v 2 ∂2 z ∂ 2 w ∂u ∂ 2 w ∂v ∂ 2 w ∂u ∂ 2 w ∂v ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w = 1− 2 − + + = 1− 2 − + + = 1− 2 + 2 ∂x∂y ∂u ∂x ∂u∂v ∂x ∂u∂v ∂x ∂v 2 ∂x ∂u ∂u∂v ∂u∂v ∂v 2 ∂u ∂v ∂2 z ∂2 z ∂2 z ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w ∂2w +2 + = − 2 −2 − + 2(1 − 2 + 2 ) − 2 +2 − =− 4 2 + 2 ∂x 2 ∂x∂y ∂y 2 ∂u ∂u∂v ∂v 2 ∂u ∂v ∂u ∂u∂v ∂v 2 ∂u
数值方法课后习题答案第8章
第八章 数值积分习题8-12.已知函数表x 1.8 2.0 2.2 2.4 2.6f(x) 3.12014 4.42569 6.042418.0301410.46675试用牛顿—柯特斯公式计算4.推导n=3时牛顿—柯特斯公式,并推导误差公式。
习题8-21.分别用复化梯形公式和复化辛普生公式计算积分,并比较结果。
x00.06250.1250.18750.250.31250.37500.0156100.0311280.0464670.615380.0762630.0905660.43750.50.56250.6250.68750.750.81250.10438 0.1176470.1303170.1423490.1537120.1643840.1743500.8750.937510.183607 0.1921540.23.用复化梯形公式求 n=5并估计误差。
解:22x sin x sin x1/(1+ sin x) 00010.20.19866930.0.946950.9620292 0.40.38941830.15164660.8683219 0.50.47942550.22984880.8131081 0.60.56464250.31882120.75825290.80.71735610.51459980.66024041.00.84147100.70807340.5854549习题8-42.n+1个节点的高斯型积分公式的代数精度是多少?会超过2n+1次吗?为什么?n+1个节点的高斯型积分公式的代数精度是2n+1次,不能再增高,因为n+1个节点的高斯型积分公式只有2n+2个自由度,2n+1次多项式恰有2n+2个系数需待定。
3.以二点积分公式为例,说明即使把积分上下限也作为待定系数,也无法构造出具有2n次代数精度的积分公式。
(n为节点个数)上下限必须相等,说明无法构造出一个积分公式达到4 次代数精度。
高等数学下第八章习题及答案
第八章 多元函数微分法及其应用1、求下列函数的定义域: (1) y x z -=; (2))12ln(2+-=x y z ;解:0≥y 且 0≥-y x 解:{}012|),(2>+-=x y y x D得 D =(){}y x y y x ≥≥,0|, (3) 22arccosyx z u +=; (4) 221)ln(yx x x y z --+-=.解:022≠+y x 且22y x z +1≤ 解:⎪⎩⎪⎨⎧>--≥>-010,022y x x x y 得 {}0,|),,(22222≠++≤=y x y x z z y x D . 得 {}1,,0|),(22<+>≥=y x x y x y x D 2、已知函数v u w w u w v u f ++=),,(,试求: ).,,(xy y x y x f -+ 解: x xy xy y x xy y x y x f 2)()(),,(++=-+3、设,),(,),(2222y x y x y x y x f -=+=ϕ求:]),,([2y y x f ϕ. 解: 4222422)(),(]),,([y y x y y x y y x f +-=+=ϕϕ 4、求下列极限: (1) 221)ln(limyx e x y y x ++→→.2ln 01)1ln(220=++=e(2)11lim0-+→→xy xyy x 2)11(lim 00=++=→→xy xy xy y x ;(3)y xy y x )sin(lim 02→→=221sin lim 02=⋅=⋅→→x xy xy y x ; (4) 22)()cos(1lim 222200y x y x e y x y x ++-→→22422sin2lim 2222222200y x y x e y x y x y x +⋅⎪⎪⎭⎫ ⎝⎛++=→→.0021=⋅= 5、证明 2222200)(lim y x y x y x y x -+→→不存在.证明 若点),(y x P 沿直线kx y =趋于()0,0,则22424222220)1(lim)(lim2x k x k x k y x y x y x x kxy x -+=-+→=→22220)1(lim2k x k x k x -+=→⎩⎨⎧≠==1,01,1k k 所以极限不存在.6、求下列函数的偏导数: (1))(cos )sin(2xy xy z +=; 解:=∂∂xz)]2sin()[cos()cos()sin(2)cos(xy xy y xy xy y xy y -=- =∂∂yz)]2sin()[cos()cos()sin(2)cos(xy xy x xy xy x xy x -=- (2) 2yxe z y=;解: =∂∂x z ;2y e y =∂∂y z .212223⎪⎪⎭⎫⎝⎛-=+-y y xe y xe y xe y y y (3)()xy z ln =; 解:=∂∂x z ()()xy x xy y xy ln 21ln 21=⋅; =∂∂y z ()()xy y xy x xy ln 21ln 21=⋅. .(4)z y x u )arctan(-=;解:()()z z y x y x z x u 211-+-=∂∂-; ()()z z y x y x z y u 211-+--=∂∂-; ()()()zz y x y x y x z u 21ln -+--=∂∂ (5)zyx u =解:,1-=∂∂z y x zy x u ,ln 11ln x x z z x x y u z yz y =⋅⋅=∂∂ .ln ln 22x x z y z y x x z u z yz y-=⎪⎭⎫ ⎝⎛-⋅⋅=∂∂7、设 ()()1,-+=y x y x f yxarcsin, 求)1,(x f x '. 解: 因x x f =)1,(,所以 .1)1,(=x f x8、曲线 ⎪⎩⎪⎨⎧=+=4422y y x z 在点(2,4,5)处的切线对于x 轴的倾角是多少?解:=∂∂x z 2x ,1tan )5,4,2(=∂∂=x z α,所以.4πα= 9、设 T = 2πgl, 求证: 0=∂∂+∂∂g T g l T l . 解:g g lg g l g T gl gl l T ππππ-=-=∂∂==∂∂22,212, 0=-=gg lggllππ.10、(1)x y z arctan =, 求: y x z xz ∂∂∂∂∂222,;解: =∂∂xz,112222y x y x y x y +-=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂x z x x z 22,)(2222y x xy +-= ⎪⎭⎫⎝⎛∂∂∂∂=∂∂∂x z y y x z 2.)()(2)(22222222222y x x y y x y y x +-=+-+-= (2))ln(22y x x z ++=, 求: 22xz ∂∂.解: =∂∂x z22222211y x yx x y x x+=++++,⎪⎭⎫⎝⎛∂∂∂∂=∂∂x z x x z 22.)()(22123232222y x x y x x +-=+-= (3)设,),,(222zx yz xy z y x f ++= 求 : )1,0,2(),1,0,0(zzx xx f f .解: ,2),,(2zx y z y x f x += ,2),,(z z y x f xx = .2)1,0,0(=xx f,2),,(2x yz z y x f z +=,0),,(,2),,(==z y x f y z y x f zzx zz .0)1,0,2(=zzx f 11、验证nx ey tkn sin 2-=满足: 22x y k t y ∂∂=∂∂. 证. =∂∂t y nx e kn t kn sin 22--,=∂∂x y ,cos 2nx ne t kn -=∂∂22xy ,sin 22nx e n t kn --所以22x y k t y ∂∂=∂∂. 12、求下列函数的全微分:(1) 22yx y z +=;gT g l T l ∂∂+∂∂解: =∂∂x z,)(22322y x xy +-=∂∂y z =++-+2222222y x y x y y x ,)(23222y x x + dy y zdx x z dz ∂∂+∂∂=.)()(2322y x ydx xdy x +-= (2) zx y z x y u -+=; 解: dz z u dy y u dx x u du ∂∂+∂∂+∂∂=dz z x y dy y z x dx z x y ⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛--=222111. (3) 求函数)1ln(22y x z ++=当2,1==y x 时的全微分. 解: dy y z dx x z dz ∂∂+∂∂=22122y x ydy xdx +++=,.32642)2,1(dydx dy dx dz +=+= 13、求函数 z =xy,当x =2,y =1, △x = 0.1, △y = -0.2时的全增量和全微分。
《C语言程序设计》课后习题答案第八章
8.1 编写两个函数,分别求两个证书的最大公约数和最小公倍数,用主函数调用这两个函数并输出结果,两个整数由键盘输入。
void main(){ int Mgy(int x,int y);int Mgb(int z);int a,b,mgy,mgb;printf("请输入两个数:\n");scanf("%d,%d",&a,&b);mgy=Mgy(a,b);mgb=Mgb(a,b,mgy);printf("两个数的最大公约数为%d,最小公倍数为%d\n",mgy,mgb);}int Mgy(int x,int y){ int r,temp;if(x<y){ temp=x;x=y;y=temp;}while(x%y!=0){ r=x%y;x=y;y=r;}return y;}int Mgb(int x,int y,int z){ return (x*y/z);}8.2 求方程ax²+bx+c=0的根,用三个函数分别求当b²-4ac大于零、等于零和小于零时的根,8.3编写一个判素数的函数,在主函数输入一个整数,输出是否是素数的信息。
#include<math.h>void main(){ int Isprime(int a);int m,temp=0;printf("请输入一个数:\n");scanf("%d",&m);temp=Isprime(m);if(temp==0) printf("%d不是素数。
\n",m);else printf("%d是素数。
\n",m);}int Isprime(int a){ int i,k,flag;if(a==0||a==1) flag=0;else{ k=sqrt(a);for(i=2;i<=k;i++)if(a%i==0) flag=0; }return flag; }8.8 写一个函数,输入一个4位数字,要求输出这4个数字字符,但每两个数字间空一格空8.9编写一个函数,由实参传来一个字符串,统计此字符串中字母、数字、空格和其他字符8.10 写一个函数,输入一行字符,将此字符串中最长的单词输出。
华东师范大学数学分析第8章习题答案
华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。
第八章函数与集合的势
f(i,j)=
1 2
[(i+j)2-i-3j]
1
2
3
4
…
1 (1.1) (1.2) (1.3) (1.4) …
2 (2.1) (2.2) (2.3) (2.4) …
3 (3.1) (3.2) (3.3) (3.4) …
4 (4.1) (4.2) (4.3) (4.4) …
……………
图8.1 两个可数无限集的排列图
36
第八章 函数与集合的势
8.1 函数的基本概念 8.2 函数的复合和可逆函数 8.3 无限集 8.4 集合势大小的比较 8.5 鸽巢原理
37
鸽巢原理
任意取出3个自然数,至少有两个数是同奇偶的 任意11个人各自写出一个幸运数字,则至少有两
人写出的幸运数字相同。 任意13个人说出自己的生日星座,则至少有两人
g(0)=0.a00a01a02a03a04… g(1)=0.a10a11a12a13a14… g(2)=0.a20a21a22a23a24… g(3)=0.a30a31a32a33a34… g(4)=0.a40a41a42a43a44… ……
g(0)=0.a00a01a02a03a04… g(1)=0.a10a11a12a13a14… g(2)=0.a20a21a22a23a24… g(3)=0.a30a31a32a33a34… g(4)=0.a40a41a42a43a44… ……
定理1 自然数集N是无限集。
证明:用反证法,设存在n∊N,使得 |N|=| {0, 1, 2, ⋯, n-1} | 。
令 g: {0, 1, 2, ⋯, n-1} →N是双射。 设
k=1+max{g(0), g(1), ⋯,g(n-1)}, 显然,k∊N,但对于任意的x∊{0, 1, 2, ⋯, n-1},
第八章多元函数微积分
第八章 多元函数微积分试题三一、填空题(2⨯10=20分)1. 母线平行于Y 轴,且通过曲线⎩⎨⎧2x 2+y 2+z 2=16x 2-y 2+z 2=0的柱面方程是 。
[解析]:方程不含y 时,表示母线平行于Y 轴的柱面。
消去y 2得到3x 2+2z 2=16,为所求的柱面方程2. 设(x,y)≠(0,0)时,f(x,y)=(x 2-y 2)-sin2xyx 2+y 2, 则 f(x+y,x-y)= 。
[解析]:f(x+y,x-y)= ((x+y)2-(x-y)2)-sin 2(x+y)(x-y) (x+y)2+(x-y)2 = 4xy-sin 2(x 2-y 2)(x 2+y 2)3. 设f(x,y)= ⎩⎪⎨⎪⎧xy x 2+y 2 当x 2+y 2≠00 当x 2+y 2=0,则 f x '(0,0)= 。
[解析]: f 'x (x 0,y 0)= lim ∆x →0f(∆x+x 0,y 0)-f(x 0,y 0)∆x , f x '(0,0)= lim ∆x →0f(∆x,0)-f(0,0)∆x = lim ∆x →00-0∆x =0 4. 设z=f[x,g(x,y)], y=φ(x),f, g, φ 均为可微函数,则dzdx= 。
[解析]:根据复合函数求导数规则,dzdx = f '1 +f '2 (g 'x +g 'y •φ')5. 已知 xlny+ylnz+zlnx = 1,则∂z ∂x •∂x ∂y •∂y∂z= 。
[解析]:根据隐函数求导数规则,∂z ∂x •∂x ∂y •∂y ∂z = (- F 'x F 'z )•(- F 'y F 'x )•(- F 'zF 'y ) = -16. 设z=f (arctan y x ),f 为可微函数,且f '(x)=x 2, 则 ∂z∂x |(1,1) = 。
第八章 习题答案
第八章 习题解答8-1考虑并回答下面的问题:(a )在确定非线性元件的描述函数时,要求非线性元件不是时间的函数,并要求有斜对称性,这是为什么?(b )什么样的非线性元件是无记忆的?什么样的非线性元件是有记忆的?它们的描述函数各有什么特点?(c )线性元件的传递函数与非线性元件的描述函数,有什么是相同的?有什么是不同的?线性元件可以有描述函数吗?非线性元件可以有传递函数吗?(d )非线性系统线性部分的频率特性曲线与非线性元件的负倒描述函数曲线相交时,系统一定能产生稳定的自激振荡吗? 解:(a )描述函数法只能用来研究非线性定常系统的特性,这要求非线性元件的特性不随时间发生变化。
在用描述函数法研究非线性系统的自振特性时,要求在正弦输入下非线性特性的输出没有直流分量,这要求非线性元件的特性是斜对称的。
(b )一般情况下用代数方程描述的非线性特性是无记忆的,根据非线性环节当前的输入就可以决定非线性环节的输出。
用微分方程描述的非线性特性是有记忆的,不能简单地根据非线性环节当前的输入决定非线性环节的输出。
无记忆非线性特性的描述函数一般为实数,有记忆非线性特性的描述函数一般为复数。
(c )线性元件的传递函数与非线性元件的描述函数都是元件的外部描述。
线性元件的传递函数表述的是元件输出拉氏变换与输入拉氏变换之比,而非线性元件的描述函数表示的是元件在正弦输入下输出基波特性。
由传递函数可以得到系统的频率特性,而描述函数一般不是频率的函数,线性元件可以有描述函数,但传递函数只适用于线性系统,非线性系统没有传递函数。
(d )只有稳定的交点才对应稳定的自激振荡。
8-2设非线性元件的输入、输出特性为35135()()()()y t b x t b x t b x t =++证明该非线性元件的描述函数为2413535()48N A b b A b A =++式中A 为非线性元件输入正弦信号的幅值。
解:由于非线性特性是单值斜对称的,所以10A =,10φ=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷编号:313所属语言:C语言试卷方案:第八章函数试卷总分:100分共有题型:4种一、填空共12题(共计48分)第1题(分)题号:824以下程序运行后输出结果为【1】.(2007年春江苏省二级C) #include""int mystery(int a,int b){if(b==1) retutn a;else return a+mystery(a,b-1);}void main(){ int x=5,y=3; printf("%d\n",mystery(x,y));}答案:=======(答案1)=======15说明:5+(5,2);5+5+(5,1);5+5+5第2题(分)题号:820以下程序运行时,输出结果是【1】.(2006年春江苏省二级C)#include <>main(){ int s,i,sum(int);for(i=1;i<=5;i++)s=sum(i);printf("%d\n", s);}sum(int k){ static int x=0;return x+=k;}答案:=======(答案1)=======15说明:子函数中的x是static,所以是累加,x=0+1+2+3+4+5第3题(分)题号:823以下程序运行后输出结果为【1】.(2007年春江苏省二级C) #include""int a;int m(int a){ static int s; return(++s)+(--a);}void main(){ int a=2; printf("%d",m(m(a)));}答案:=======(答案1)=======3说明:因为static int s,所以s是静态的,要累加,第一次调用m(2),return(++s)+(--a)相当于return (0+1)+(2-1),下一次调用m(m(a))=m(2), return(++s)+(--a)相当于return (1+1)+(2-1)第4题(分)题号:821以下程序运行时,输出结果为【1】.(2006年春江苏省二级C)#include<>main( ){ printf("%d\n",f(21,35));}int f(int a,int b){ if(a==b)return a;elseif(a>b) return f(a-b,b);else return f(a,b-a);}答案:=======(答案1)=======7说明:第一次调用f(21,35),第二次调用 f(21,14),第三次调用f(7,14),第四次调用f(7,7)第5题(分)题号:819以下程序运行时输出的结果的第二行是【1】,第四行是【2】,第六行是【3】.(2005年春江苏省二级C)#include <>void change( int s[3][3] , int d ){ int i , j , k ;if( d== 0 ){ for( i = 0 ; i<3; i++)for( j = i+ 1; j<3 ; j++){ k = s[i][j] ; s[i][j] = s[j][i] ; s[j][i] = k ; }}elsefor( i = 0 ; i<3 ; i++)for( j = 0 ; j<3-i ; j++){ k = s[i][j] ; s[i][j] = s[2-j][2-i] ; s[2-j][2-i] = k ; }}main(){ int s[3][3] = ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) , I , j , k , n ; change( s , 0 ) ;for( i = 0 ; i<3 ; i++){ for( j = 0 ; j<3 ; j++) printf("%4d" , s[i][j]) ;printf("\n") ;}change( s , 1 ) ;for( i = 0 ; i<3 ; i++){ for( j = 0 ; j<3 ; j++) printf("%4d" , s[i][j] ) ;printf("\n") ;}}答案:=======(答案1)=======2 5 8=======(答案2)=======9 8 7=======(答案3)=======3 2 1第6题(分)题号:816在声明局部变量时,不能使用的存储类别标识符是【1】.(2007年春江苏省二级C)答案:=======(答案1)=======extern第7题(分)题号:818以下程序运行时输出结果是【1】.(2004年秋江苏省二级C)#include <>void num(){ extern int x , y ;int a = 15 , b = 10 ;x = a-b ; y = a+b ;}int x , y ;main(){ int a = 7 , b = 5 ;x = a+b ; y = a-b ;num() ;printf("%d,%d \n" , x , y ) ;}答案:=======(答案1)=======5 , 25第8题(分)题号:814一个用C语言编写的程序在运行时,如果没有发生任何异常情况,则只有在执行了【1】函数的最后一条语句或该函数中的return语句后,程序才会终止运行.(2005年春江苏省二级C)答案:=======(答案1)=======main第9题(分)题号:174为了避免嵌套条件语句的二义性,C语言规定else与其前面最近的【1】语句配对.答案:=======(答案1)=======if第10题(分)题号:813若有函数定义int f( ){ int x=4,y=3,z=2;return x,y,z;},则调用函数f后的返回值是【1】.(2004年春江苏省二级C)答案:=======(答案1)=======2第11题(分)题号:817在以下程序的main函数中,语句"fun(x,10);"内的实参x表示数组x的【1】.(2007年春江苏省二级C)void fun(int a[10],int n){ int i;for(i=0;i<n,i++) a[i]++;}main(){ int x[10]={0}; fun(x,10);}答案:=======(答案1)=======第一个元素地址或起始地址或首地址第12题(分)题号:822以下程序运行时,输出结果的第一行是【1】,第二行是【2】.(2006年春江苏省二级C)#include<>void change(int x, int m){ char ch[]={'0','1', '2', '3', '4', '5', '6', '7', '8', '9'},b[80]; int i=0,r;while(x){ r=x%m; x/=m;b[i++]= ch[r];}for(--i; i>=0; i--)printf("%c",b[i]);}main(){ int a,b;change(10,2);printf("\n");change(10,8);}答案:=======(答案1)=======1010=======(答案2)=======12说明:第一行输出为调用change(10,2); 后的输出结果第二行输出为调用change(10,8);后的输出结果二、单项选择共20题(共计40分)第1题(分)题号:2305以下叙述中不正确的是()(2000年秋江苏省二级C)A:一个变量的作用域完全取决于变量说明语句的位置B:外部变量可以在函数以外的任何位置定义C:内部变量的生存期只限于本次函数调用,无法将内部变量的值保存至函数的下一次调用D:用static说明的一个外部变量是为了限制其他编译单位的引用答案:C说明:static说明的变量值可以保留到下一次使用第2题(分)题号:2322已知在函数f中声明了局部变量x,如果希望f函数第一次被调用返回后变量x中存储的数据保持到下次f函数被调用时仍可以使用,则在声明x时必须指定其存储类型为 ().(2007年秋江苏省二级C)A:autoB:registerC:staticD:extern答案:C第3题(分)题号:2308在以下程序中,需要在main函数之后定义一个函数,以下选项中()可以用作该函数的名字. (2003年春江苏省二级C)#define pint y;main(){ int a=1;函数名(a);...... /* 若干执行语句 */}int 函数名(int x){ return x*x; }A:mainB:yC:pD:print答案:D第4题(分)题号:2312以下关于函数形式参数的声明中正确的是().(2004年秋江苏省二级C)A:int a[ ]B:int a[][]C:int a[]={0}D:int a[2][]答案:A说明:二维数组作为形式参数的时候,必须有列。
第5题(分)题号:2323以下函数定义中正确的是().(2009年春江苏省二级C)A:double fun(double x, double y) {}B:double fun(double x;double y) {}C:double fun(double x, double y) ;{}D:double fun(double x, y) {}答案:A第6题(分)题号:2321以下关于C语言源程序的叙述中错误的是().(2007年春江苏省二级C)A:一个C语言源程序由若干个函数定义组成,其中必须有且仅有一个名为main函数定义B:函数定义由函数头部和函数体两部分组成C:在一个函数定义的函数体中允许定义另一个函数D:在一个函数定义的函数体中允许调用另一个函数或调用函数自身答案:C第7题(分)题号:2320若有数组 A和B的声明"static char A[ ] = "ABCDEF",B[ ] = { 'A', 'B', 'C', 'D', 'E', 'F'} ;",则数组A和数组B的长度分别是().(2006年秋江苏省二级C)A:7,6B:6,7C:6,6D:7,7答案:A第8题(分)题号:2317设有下列程序段:static char b=2;void Y ( ){ static float d=4;....... }int a=1;void X ( ){ int c=3; ...... }关于程序段中各变量的属性,以下叙述中错误的是().(2006年春江苏省二级C)A:a是全局变量,函数X可以访问,函数Y不能访问B:b是全局变量,函数X和函数Y都可以访问C:c是动态变量,函数X可访问,函数Y不可访问D:d是静态变量,函数X和函数Y都可以访问答案:D第9题(分)题号:2318若已定义一个有返回值的函数,则以下关于调用该函数的叙述中错误的是().(2006年春江苏省二级C)A:函数调用可以作为独立的语句存在B:函数调用可以出现在表达式中C:函数调用可以作为一个函数实参D:函数调用可以作为一个函数形参答案:D第10题(分)题号:2316已知有函数f的定义如下:int f( int a , int b){ if(a<b) return (a , b) ; else return(b , a) ; }在main函数中若调用函数f(2,3),得到的返回值是().(2005年春江苏省二级C) A:2B:3C:2和3D:3和2答案:B第11题(分)题号:2314已知函数f的定义如下:void f(void){printf("That's great!");}则调用f函数的正确形式是(). (2004年秋江苏省二级C)A:f;B:f( );C:f(void);D:f(1);答案:B第12题(分)题号:2311以下程序运行时输出结果为() .(2004年秋江苏省二级C) int x=1;main( ){printf(″%d″,f(x));}#define x 2intf(int y){return x+y;}A:1B:2C:3D:4答案:C第13题(分)题号:2310以下全局变量声明中正确的是 ().(2004年秋江苏省二级C) A:auto int i=1;B:float a=1,b=,c=a+b;C:char for=1;D:static char ch;答案:D第14题(分)题号:2304C语言中函数返回值的类型是由()决定的. (1998年秋江苏省二级C) A:return语句中的表达式类型B:调用该函数的主函数类型C:定义函数时所指定的函数类型D:传递给函数的实参类型答案:C第15题(分)题号:2309若有函数fun的定义为:void fun (...){ static int a=1;......}则下列叙述中不正确的是()(2004年春江苏省二级C)A:在每次调用fun函数时,变量a的值是上次调用结束时a的值B:在fun函数之外,可以用变量名a直接引用a的值C:在其它函数中,可以出现声明 double a=;D:fun函数的形式参数不能取名为a答案:B第16题(分)题号:2313关于函数返回值,以下叙述中正确的是() .(2004年秋江苏省二级C)A:函数返回值的类型由函数体内return语句包含的表达式的类型决定B:函数返回值的类型由函数头部定义的函数类型决定C:若函数体中有多个return语句,则函数的返回值是排列在最后面的retum语句中表达式的值D:若函数体内没有retum语句,则函数没有返回值答案:B第17题(分)题号:2315以下函数定义中正确的是 () .(2005年春江苏省二级C)A:int fun(int a,b) {}B:int fun(int a[][]) {}C:int fun(void) {}D:int fun(static int a,int b) {}答案:C第18题(分)题号:2307以下关于函数的叙述中,正确的是()(2003年春江苏省二级C)A:在函数体中可以直接引用另一个函数中声明为static类别的局部变量的值B:在函数体中必须至少有一个return语句C:在函数体中可以定义另一个函数D:在函数体中可以调用函数自身答案:D第19题(分)题号:2306在以下程序中,需要在fun函数中声明一个int型的变量,以下选项中()不能用作该变量的名字. (2002年秋江苏省二级C)#include<>int y;main(){ int a=1;fun(a);}int fun(int x){ ; /* int型变量声明语句位置 */...... /* 若干执行语句 */}A:xB:yC:fabsD:fun答案:A说明:同一个函数中不能定义重名x变量。