数值分析模拟试卷1
数值分析模拟试卷1,2,3
数值分析模拟试卷1一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________.2 设,2,1,0,,53)(2==+=k kh x xx f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=10)(dx x xq k ________,=)(2x q ________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001aaa a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f ,(1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性. (2) 若有迭代公式)()()()1(b Axa xxk k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛. 七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟试卷2填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。
数值分析试题与答案
一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析试题与答案
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析练习题加答案(一)
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析题库1
第一章 绪论 2 第二章 函数插值 3 第三章 函数逼近 6 第四章 数值积分与数值微分 10 第五章 解线性方程组的直接解法 13 第六章 解线性方程组的迭代解法 14 第七章 非线性方程求根 16 第九章 常微分方程初值问题的数值解法 19
第一章 绪论
1.1 要使的相对误差不超过0.1%,应取几位有效
解 对y=f(x)的反函数进行三次插值,插值多项式为
+ + + =, 于是有
。
第三章 函数逼近
3.1证明定义于内积空间H上的函数是一种范数。
证明: 正定性当且仅当时; 齐次性 设为数域K上任一数 三角不等式 ;
于是有 故是H上的一种范数。
3.2求,在空间上的最佳平方逼近多项式,并给出 误差。
解: 第一步:构造内积空间上的一组正交基,其中内积: 第二步:计算的二次最佳平方逼近多项式 从第一步已经知道,利用公式得: 误差为:
数字?
解:
的首位数字。 设有 n位有效数字,由定理知相对误差限 令, 解得,即需取四位有效数字.
1.2 序列满足关系式,若,计算到,误差有多
大?这个算法稳定吗?
解:,于是 ,一般地,因此计算到其误差限为,可见这个计算过程是不稳定的。
1.3 计算球的体积,要使相对误差限为1%,问测 量半径R时允许的相对误差限是多少?
4.1、计算积分,若用复化梯公式,问区间应分多 少等份才能使截断误差不超过?若改用复化辛普 森公式,要达到同样的精度,区间应分多少等 份?
解:由于,,,故对复化梯公式,要求 ,
即,.取,即将区间分为等份时,用复化梯公式计算,截断误差不超过. 用复化辛普森公式,要求 ,
即,.取,即将区间等分为8等份时,复化辛普森公式可达精度.
数值分析练习1-3章
数值分析练习1-3章第⼀章绪论⼀、填空题1、已知 71828.2e =,求x 的近似值a 的有效数位和相对误差:题号精确数xx 的近似数aa 的有效数位a 的相对误差⑴ e 2.7 ⑵ e 2.718 ⑶ e/100 0.027 ⑷e/1000.027182、设原始数据x 1,x 2,x 3和x 4的近似值(每位均为有效数字)如下:a 1=1.1021,a 2=0.031,a 3=385.6,a 4=56.430则⑴ a 1+a 2+a 4= ,相对误差界为;⑵ a 1a 2a 3= ,相对误差界为;⑶ a 2/a 4= ,相对误差界为。
⼆、为使20的近似值的相对误差⼩于0.01%,问应取多少位有效数字?三、当x 接近于0时,怎样计算xxsin cos 1-以及当x 充分⼤时,怎样计算x x -+1,才会使其结果的有效数字不会严重损失。
四、在数值计算中,为了减⼩误差,应该尽量避免的问题有哪些?并举出相应的实例.五、对于序列,1,0,9991=+=?n dx x x I nn ,试构造两种递推算法计算10I ,在你构造的算法中,那⼀种是稳定的,说明你的理由;第⼆章插值法1、在互异的n+1个点处满⾜插值条件P(x i )=y i ,(i=0,1,…n)的次数不⾼于n 的多项式是( )的(A)存在且唯⼀ (B)存在 (C)不存在 (D)不唯⼀2、当f(x)是次数不超过n 的多项式时,f(x)的插值多项式是 ( )(A)不确定 (B)次数为n (C)f(x)⾃⾝(D )次数超过n 3、插值基函数的和j jx l)(= ( )(A)0 (B)1 (C)2 (D)不确定4、设f(x)=x 3-x+5,则f[20,21,22,23]= ( ); f[20,21,22,23,24]= ( )(A)0 (B)1 (C)2 (D)不确定5、( )插值⽅法具有公式整齐、程序容易实现的优点,⽽( )插值⽅法计算灵活,如果节点个数变化时,不需要重新构造多项式,它们都是( )的⽅法(A)构造性 (B)解⽅程组 (C)拉格朗⽇ (D)⽜顿6、⼀般地,内插公式⽐外推公式( ),⾼次插值⽐低次插值( ),但当插值多项式的次数⾼于七、⼋次时,最好利⽤( )插值公式 (A)粗糙 (B)精确 (C)分段低次 (D)⾼次7、整体光滑度⾼,收敛性良好,且在外型设计、数值计算中应⽤⼴泛的分段插值⽅法为().(A)分段线性插值(B)分段抛物插值(C)分段三次埃尔⽶特插值(D)三次样条插值。
数值分析模拟试题(XAUT)(15套)
模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。
2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。
3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。
4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使= .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。
四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+=试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。
数值分析练习题附答案
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析模拟题
1. (10分)利用Gauss-Legendre 求积公式 ⎰-++-≈11)7746.0(5556.0)0(8889.0)7746.0(5556.0)(f f f dx x f 导出求积分3()f x dx-⎰的三点高斯型求积公式。
2. (15分)写出求解线性代数方程组 123121322531272x x x x x x x -+=⎧⎪-+=-⎨⎪+=⎩的Gauss-Seidel 迭代格式,并分析此格式的敛散性。
3. (15分)设矩阵21011000201010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎥⎥⎦, (1)试计算||||A ∞。
(2)用Householder 变换阵H 将A 相似约化为上Hessenberg 阵,即HAH 为上Hessenberg 阵。
4. (10分) 求关于点集{}1,2,3,4的正交多项式{}012(),(),()x x x ϕϕϕ。
5. (10分)用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据1.02.03.04.00.8 1.5 1.8 2.0i ix y ⎧⎨⎩6. (20分)给出数据点: 013419156i i x y =⎧⎨=⎩(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算 1.5x =的近似值2(1.5)L 。
(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算 1.5x =的近似值2(1.5)N 。
(3)用事后误差估计方法估计2(1.5)L 、2(1.5)N 的误差。
7.(10分) 设矩阵A 可逆,A δ为A 的误差矩阵,证明:当11A Aδ-<时,A A δ+也可逆。
8.(10分)设()f x 四阶连续可导,0,0,1,2.i x x ih i =+=试建立如下数值微分公式 ''01212()2()()()f x f x f x f x h -+≈,并推导该公式的截断误差。
数值分析试卷及答案
二1求A的LU分解,并利用分解结果求解由紧凑格式故从而故2求证:非奇异矩阵不一定有LU分解证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。
现考虑矩阵,显然A为非奇异矩阵。
若A有LU分解,则故,而,显然不能同时成立。
这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。
3用追赶法求解如下的三对角方程组解设有分解由公式其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有从而有故,,,故,,,4设A是任一阶对称正定矩阵,证明是一种向量范数证明(1)因A正定对称,故当时,,而当时,(2)对任何实数,有(3)因A正定,故有分解,则故对任意向量和,总有综上可知,是一种向量范数。
5 设,,已知方程组的精确解为(1)计算条件数;(2)若近似解,计算剩余;(3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1)(2)(3)由事后误差估计式,右端为而左端这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。
因此,当A病态时,用大小作为检验解的准确度是不可靠的。
6矩阵第一行乘以一数成为,证明当时,有最小值证明设,则又故从而当时,即时,有最小值,且7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。
如果收敛,比较哪一种方法收敛较快,其中解对雅可比方法,迭代矩阵,故雅可比法收敛。
对高斯-赛德尔法,迭代矩阵,故高斯-赛德尔法收敛。
因=故高斯-赛德尔法较雅可比法收敛快。
8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。
解雅可比法的迭代矩阵,故雅可比法收敛的充要条件是。
高斯-赛德尔法的迭代矩阵,故高斯-赛德尔法收敛的充要条件是。
9设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。
证明由于是雅可比法的迭代矩阵,故又,故,即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。
数值分析试题 (1)
一、 填空(每题2分,共12分)1. 近似数x *=0.2433关于真值x =0.2429有 位有效数字.2. 若,()()()(),x x S x x a x b x c x ⎧≤<⎪=⎨-+-+-+≤≤⎪⎩332011111132是三次样条函数,则abc = . 3. 函数2()32f x x x =++在区间[0, 1]上的最佳平方逼近一次多项式为 .4. 当n 给定(2n ≥),,,n i j N ∈(自然数集),则n n i j j i x j i i i j200(13)==≠-⋅++-∑∏ = . 5. 用牛顿法求1b,不使用除法运算的迭代格式为 . 6. 与高阶常微分方程2(1)y y y y '''=--等价的一阶方程组是 .二、(10分) 已知201和200的6位有效数字的近似值分别为14.1774和14.1421,试按200201-=A 和2002011+=A 两种算法求出A 的近似值,并分别求出两种算法所得A 的近似值的绝对误差限,问这两种结果各具有几位有效数字,并请分析结果.三、(10分) 已知f ( x )的函数值以及导数值:5)2(,2)1(,3)1(,2)0(=='==f f f f ,(1) 建立f ( x )的不超过3次的埃尔米特插值多项式)(3x H ,并计算(.)H 315;(2)推导)(3x H 的插值余项;若1)(max )4(20≤≤≤x f x ,求(.)(.)f H -31515.四、(8分)用最小二乘法求形如n y m x=+的经验公式. 五、(10分)(1)证明:形如∑⎰=≈ni i i ba x f A dx x f 0)()(的求积公式至少有n 次代数精度的充要条件是,它是插值型的.(2)已知43,21,41210===x x x ,推导在[0,1]上以这三个点为求积节点的插值型求积公式,并说明对任意的二次多项式用此公式可精确计算定积分.六、(10分)分别用高斯消去法和直接三角分解法解下列非病态方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--345133403312113321x x x 七、(10分)用雅可比迭代法、高斯-塞德尔迭代法直接求解方程组⎩⎨⎧=+=+423322121x x x x 是否收敛?为什么?若不收敛,请你构造出收敛的迭代公式?八、(10分)已知函数方程x x e -=(2)1,(1)确定有根区间[a , b ];(2)构造不动点迭代公式使之对任意初值0[,]x a b ∈,迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求k k x x ---<3110;(4)所给方法的收敛阶是多少?九、(10分)求解常微分方程初值问题(,),[,]()y f x y x x T y x y 000'=∈⎧⎨=⎩的下列公式 n n n n n n n n h y y K K K f x y K f x th y thK K f x t h y t hK +⎧=++⎪⎪=⎪⎨=++⎪⎪=+-+-⎪⎩12312131()2(,)(,)((1),(1)),其中h 是步长, (1) 证明: 对于任意参数t ,该方法是二阶的;(2)对于常微分方程初值问题22,[0, 1](0)1y x y x y '⎧=+∈⎨=⎩用上述方法,取01025 t .,.h ==迭代两步.十、(10分)总结本课程学过的牛顿类型方法和原理.。
数值分析考试题
数值分析考试题一、选择题1. 以下哪个方法不是数值分析中常用的数值积分方法?A. 梯形法则B. 辛普森法则C. 牛顿法D. 龙格-库塔法2. 在求解线性方程组的直接方法中,高斯消元法属于以下哪种类型?A. 列主元消去法B. 行主元消去法C. 完全主元消去法D. 选主元消去法3. 非线性方程求根的二分法属于以下哪种类型的数值方法?A. 迭代法B. 直接法C. 优化算法D. 插值法4. 在数值分析中,用于度量舍入误差的常用指标是:A. 截断误差B. 舍入误差C. 估计误差D. 计算误差5. 插值多项式的最高次数与插值节点的数量关系是:A. 次数多于节点数量B. 次数少于节点数量C. 次数等于节点数量D. 与节点数量无关二、填空题1. 在数值分析中,__________是用来描述一个算法在实际运算中所需步数的度量。
2. 线性方程组的雅可比方法是一种__________消去法。
3. 牛顿法在求解非线性方程时,每次迭代都需要计算__________。
4. 龙格现象是指在数值积分中,由于__________而引起的误差。
5. 在多项式插值中,拉格朗日插值法是通过__________来构建插值多项式的。
三、简答题1. 请简述数值分析中的截断误差和舍入误差的区别。
2. 描述高斯-赛德尔迭代法的基本思想,并与雅可比迭代法进行比较。
3. 解释在数值积分中为什么需要使用自适应方法。
4. 讨论在求解非线性方程时,二分法与牛顿法的适用条件和优缺点。
5. 分析多项式插值与样条插值的主要区别及其各自的应用场景。
四、计算题1. 给定函数f(x) = sin(x),在区间[0, π]上使用梯形法则计算积分的近似值,取4个等分点。
2. 设线性方程组如下:\[\begin{cases}2x + y + z = 6 \\x + 2y + 4z = 14 \\3x + y + 2z = 10\end{cases}\]使用高斯消元法求解该方程组的解。
数值分析试卷
数值分析考试题(一) 满分70分一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nna a a diag D =,若对角阵D非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 11)(--++=(1) 若记b D f U L D B 1111),(--=+= (2)则方程组(1)的迭代形式可写作 )2,1,0(1)(1)1( =+=+k f x B xk k (3) 则(2)、(3)称 【 】(A)、雅可比迭代。
(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。
2、记*x x e k k -=,若0lim1≠=+∞→c ee pk k k (其中p 为一正数)称序列}{k x 是 【 】(A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。
3、牛顿切线法的迭代公式为 【 】(A)、 )()(1kx f x f x x k k k '-=+ (B)、)()())((111--+---=k k k k k k k x f x f x x x f x x1)()()1()()()(x xfxf xf k i k i k i ∂∂+=+ (D)、 )()()()1(k k k x f x x-=+二、填空题:(共2道小题,每个空格2分,共10分)1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商=]1,0[f ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿插值多项式为2、 用二分法求方程01x x )x (f 3=-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间为 。
三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分)1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。
数值分析1-4习题及答案
1、要使11的近似值的相对误差限小于0.10.1%%,要取几位有效数字?要取几位有效数字?( c ) (a) 2 (b) 3 (c) 4 (d) 5 2、若*12.30x =是经过四舍五入得到的近似数,则它有几位有效数字?( c ) (a) 2 (b) 3 (c) 4 (d) 5 3、已知n +1个互异节点(x 0,y 0), (x 1,y 1),),……, (x n ,y n )和过这些点的拉格朗日插值基函数l k (x )(k =0,1,2,=0,1,2,……,n ),且w (x )=(x -x 0) (x -x 1)… (x -x n ).则n 阶差商f (x 0,x 1,…, x n )= ( ) (a) å=nk k k y x l 0)( (b) å=¢nk k k k x l y 0)( (c) å=n k k k x y 0)(w (d) å=¢nk k kx y 0)(w4、已知由数据(0,0),(0.5,y ),(1,3),(2,2)构造出的三次插值多项式33()6 P x x y 的 的系数是,则,则 等于( )(a) -1.5 (b) 1 (c) 5.5 (d) 4.25 5、设(0,1,2,3,4)ix i =为互异结点,()i l x 为拉格朗日插值基函数,则420()()ii i x x l x =-å等于等于( a ) (a) 0 (b) 1 (c) 2 (d) 4 4()[,],()()(),()(),()(), ' () ' (),22()()_________________________f x C a b H x a b a bH a f a H b f b H f H a f a f x H x Î++====-=设是满足下列插值条件的三次多项式:则插值余项 1、 是以0,1,2为节点的三次样条函数,则b=-2,c=3 2、 已知(1)0,(1)3,(2)4,f f f =-=-=写出()f x 的牛顿插值多项式的牛顿插值多项式 2()P x =___2537623x x +-__,其余项表达式R(x)=__()(1)(1)(4) [1,4]6f x x x x x ¢¢¢-+-Î-_______________________3、 确定求积公式10121()(1)(0)'(1)f x dx A f A f A f -»-++ò中的待定参数,使其代数精度尽量高,则A 0=_29__________, A 1=__169________, A 2=_29_______,代数精度=__2_________。
数值分析考试卷及详细答案解答汇总
姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。
2. 十进制123.3转换成二进制为1111011.0而1。
3. 二进制110010.1001转换成十进制为 50.5625 。
4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。
6.1112=0.69314718...,精确到 10一’的近似值是 0.693。
* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。
数值分析试题库与答案解析
y1
y0
h( 2
k1
k2)
2 0. 1 ( 0. 5 0. 5 7 1 4 2 9 )
2. 1 0 7 1 4 2 9
33 5 3 解 设3 5 9
5 9 17
1
d1
1 l21 l31
l21 1
d2
1 l32
l31 l32 1
d3
1
利用矩阵乘法可求得
2
5
d1 3 , d 2 2 , d3
, l 21 1 , l31
7. xk 1 xk xk f (xk ) ; 8. x j ; 9. 1 f (xk)
(B) 1;
10. 1 x3
x2
1 x,
f (4) ( )( x 1)x( x 1)(x 2) / 24
6
6
( 1,2)
二、综合题
1.差商表:
1 15
20
1 15
15
20
7
1 15
22
1
42
8
2 57
30
72
2 57
=
.
5.解初始值问题
y f ( x, y)
的改进的 Euler 方法是
y(x0) y0
阶方法;
5 x1 3 x2 0.1x3 3
6.求解线性代数方程组
2 x1 6 x2 0.7 x3 2 的高斯—塞德尔迭代公式为
,
x1 2 x2 3.5x3 1
若取 x (0) (1, 1,1) , 则 x(1)
.
7.求方程 x f ( x) 根的牛顿迭代格式是
, l 32 2
3
3
解方程组
1
y1
数值分析试题
数值分析试题一、选择题1.数值分析的目的是:– A. 提供数值计算的方法和技巧– B. 解决数值计算中的实际问题– C. 研究数值计算的理论基础– D. 分析和验证已有的数值计算方法2.数值分析中的舍入误差是由以下哪个原因引起的?– A. 人为输入错误– B. 计算机运算精度限制– C. 近似计算方法的局限性– D. 数值计算方法的选择问题3.在数值分析中,下面哪个方法适用于求解非线性方程的根?– A. 二分法– B. 直接法– C. 迭代法– D. 插值法4.数值逼近的基本思想是:– A. 将数值计算转化为代数运算– B. 通过逼近函数来计算数值– C. 求解数值问题的方法– D. 对数值计算进行近似处理5.下列哪个方法不属于数值微分的计算方法?– A. 差商法– B. 导数法– C. 插值法– D. 积分法二、判断题1.数值方法与符号计算方法是相互独立的。
–正确 / 错误2.数值计算方法可以得到精确的数值解。
–正确 / 错误3.数值分析只研究数值计算的精确性,不关注计算效率。
–正确 / 错误4.数值积分是求解定积分近似值的方法。
–正确 / 错误5.数值微分是求解函数导数的近似值的方法。
–正确 / 错误三、简答题1.解释数值分析的基本原理及其应用。
2.什么是舍入误差?其产生的原因有哪些?3.简述求解非线性方程根的迭代法的基本思想。
4.数值逼近的方法有哪些?各自的优缺点是什么?5.分析数值微分方法的优缺点,并举例说明其应用场景。
四、计算题1.使用二分法求方程 f(x) = x^3 - x^2 - 1 的一个实根,给出计算过程和结果。
2.使用差分法求函数 f(x) = x^2 在点 x = 1 处的一阶导数近似值,给出计算过程和结果。
3.使用拉格朗日插值法在已知数据点 (0, 0), (1, 1), (2, 4) 的基础上,求出 f(x) = x^2 的一个三次插值多项式,并计算插值多项式在 x = 1.5 处的近似值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析模拟试卷(一)
一、填空题 (20分)
1).设* 2.40315x =是真值 2.40194x =的近似值,则*
x 有________位有效数字。
2).*x 的相对误差的___________倍。
3).梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。
4).牛顿—柯特斯求积公式的系数和()0n
n k k C ==∑__________________。
二、计算题
1).(12分)用二次拉格朗日插值多项式2()sin0.34L x 计算的值。
插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。
2).(12分)用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个
根,误差限210ε-=。
3).(12分)选取常数a, b, 使得01
max x x e ax b ≤≤--达到最小。
4).(12分)求系数123,,A A A 和使求积公式
1
123111()(1)()()233f x dx A f A f A f -≈-+-+≤⎰对于次数的一切多项式都精确成立。
三、证明题
1).(10分)证明区间[a,b]上带权()()1,2,3n x P x n ρ= 的正交多项式的n 个根都是单根,且位于区间(a,b)内。
2).(10分)设(,)x A x μμ是的近似特征对,证明当取为的Rayleigh 商,即
2,T T x Ax r Ax x r x x μμ==-时残量的范数达到极小。