人教版数学六年级下册鸽巢问题说课稿推荐3篇
人教版数学六年级下册鸽巢问题教案与反思(推荐3篇)
人教版数学六年级下册鸽巢问题教案与反思(推荐3篇) 人教版数学六年级下册鸽巢问题教案与反思【第1篇】《鸽巢问题》教学设计教学内容:教材第68-69页例1、例2。
教学目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生用此原理解决简单的实际问题。
2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、验证、推理等活动的学习方法,渗透数形结合的思想。
3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重点:引导学生把具体问题转化成“鸽巢问题”。
教学难点:找出“鸽巢问题”的解决窍门进行反复推理。
教学准备:课件、扑克、小棒、杯子。
教学过程:一、导入师:(出示刘谦照片)同学们认识他吗?最近刘老师也学会了一个魔术,想看我表演吗?请5个同学配合我一下。
一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。
相信吗?(展示验证,引导初步理解至少)这5个同学是不是我的托呢?再来5名试试!(学生尝试猜,猜后引导理解至少的重要性)师:其实,刚刚的魔术蕴含了一个数学知识--“鸽巢问题”。
今天我们就一起来研究这一类问题。
(板书课题:鸽巢问题)二、探索新知1、板书:鸽(鸽就是鸽子)巢(知道是什么吗?--鸽子的窝)为了方便研究,我们用小棒代替鸽子,用杯子代替巢。
(板书小棒、杯子)2、思考:把4根小棒放进3个杯子里,可以怎样放?一共有几种方法?小组合作摆一摆,注意要有序摆放,小组长要记录好!3、汇报:预设 a.4 0 0 b.3 1 0 c.2 2 0 d.2 1 14、师:同学们看,(引导看每种摆法,圈出2根和2根以上的)无论怎样摆放,总有一个杯子里至少有两根小棒。
(出示发现,齐读)“总有”和“至少”是什么意思?(预设:“总有”一定有、肯定有;“至少”最少。
)5、如果是把5根小棒放进4个杯子里呢?猜一猜,会有怎样的结论呢?(学生猜测:总有一个杯子里至少有2根小棒。
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇推荐文章三年级《数学广角--集合》精品教案范文3篇热度:人教版三年级下册《数学广角--搭配》教案优秀范文热度:小学四年级数学下册《数学广角--鸡兔同笼》教案优秀范文热度:五年级数学上册《数学广角--植树问题》精品教案热度:小学五年级数学下册《数学广角──找次品》教案精选范文三篇热度:历史是时代的见证,真理的火炬,记忆的生命,生活的老师和古人的使者。
下面是小编给大家准备的小学六年级下册数学《数学广角──鸽巢问题》教案范文,供大家阅读。
小学六年级下册数学《数学广角──鸽巢问题》教案范文一教学目标1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点经历抽屉原理的探究过程,并对抽屉原理的问题模式化学生笔记(教师点拨) 学案内容一、知识回顾:(2分钟)二、学生自学:(15分钟)(1)自学例1把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1) 学生思考各种放法。
(2) 第一种放法:第二种放法:第三种放法:第四种放法:教学过程:5÷2=2……1 (至少放3本)7÷2=3……1 (至少放4本)9÷2=4……1 (至少放5本)1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。
为什么?如果每个文具盒只放( )铅笔,最多放( )枝,剩下( )枝还要放进其中的一个文具盒,所以至少有( )铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例21、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。
剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?4. 你能用算式表示以上过程吗?你有什么发现?总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】开场白:尊敬的各位评委老师:大家好!我是面试小学数学教师的3号考生,今天试讲的题目是《数学广角—鸽巢问题》,下面开始我的试讲。
一、导入师:上课!同学们好,请坐!师:玩过“抢椅子”游戏吗?谁能说说游戏规则?你那么高兴,你来说!师:他说将椅子围成一个圈,人也站一个圈,有专门的主持人负责敲鼓,开始敲时人就围着椅子同一方向转,当敲击声停止,就要抢坐在椅子上。
师:那椅子数和人数是怎样的?师:他说椅子数比人数少1。
师:规则说的很详细!大家听明白了吗?想试试吗?师:大家都很踊跃!那就请刚才说游戏规则的同学选出三名同学,一起来玩这个游戏吧!师:老师当主持人,我们玩三次,大家注意观察,看看有什么发现!师:有趣的游戏结束了,你发现了什么?有一名同学没抢到椅子。
师:一个简单的游戏里,又蕴含着什么数学知识呢?你想知道吗?师:就让我们一起来探究:数学广角—鸽巢问题。
二、新授师:大屏幕上,这三名同学在做一个探究活动,找一找其中的数学信息吧!师:你举手最快了,请你!师:他说要把4支铅笔放进3个笔筒里,总有一个笔筒里至少有2支铅笔。
师:声音洪亮,信息找的很完整!师:这里的“总有”和“至少”是什么意思?自己想一想,和同桌说一说。
师:你平时不怎么举手,这次很勇敢,说说你的理解!师:他说“总有”就是总是会有的意思,“至少”是最少的意思。
师:很高兴你能说的这么好!是的,“总有”是总是会有、一定有,“至少”是最少、最低限度。
这句话其实就是说无论怎么放,都会有一个笔筒里最少是2支铅笔。
师:那这句话到底对不对呢?怎样验证呢?师:现在,我们开展小组探究活动,用老师给大家准备的纸杯当笔筒,用你的四支笔,摆一摆、画一画、写一写,把自己的想法表示出来。
师:活动之前,老师想提示大家,一个笔筒里放4支笔,另两个笔筒里没有,这4支笔无论放到哪个笔筒里,都只看做一种情况。
2024年人教版数学六年级下册鸽巢问题说课稿3篇
人教版数学六年级下册鸽巢问题说课稿3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。
2、培养学生分析、归纳等思维能力。
3、激发学生自主学习、积极探索和合作交流的良好习惯。
说教学重点:理解公因数和最大公因数的概念。
说教学难点:理解并掌握求两个数的最大公因数的方法。
教具准备:课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。
说教学过程:一、创设情境,引导动手操作1、情境导入2、出示问题,明确要求。
(理解重点要求,如整分米数,整块)3、学生猜测可选用几分米的地砖。
4、介绍教具,明确活动要求、5、小组活动。
二、自主探索,形成概念1、展示学生作品,得出结果。
2、教师将不同铺法展示到课件上。
3、明确王叔叔对地砖的要求必须符合什么条件。
(地砖的边长必须既是16的因数又是12的因数。
)4、引出公因数和最大公因数的概念,揭示课题。
5、巩固练习课本80页做一做。
三、自主探究,掌握方法1、怎样求两个数的最大公因数。
2、出示例2,独立思考,做在练习本上,指名板演,集体订正。
3、归纳方法,找出公因数和最大公因数的之间的关系。
(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。
)四、巩固练习,总结提升1、81页做一做,独立思考,指名回答,集体订正。
2、总结规律。
(当两个数是倍数关系时,较小的数就是最大公因数。
两个数的公因数只有1时,那他们的最大公因数就是1。
)五、小结谈谈本节课有什么收获。
〖人教版数学六年级下册鸽巢问题说课稿第【2】篇〗教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鸽巢原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
2024年人教版数学六年级下册第27课鸽巢问题说课稿3篇
人教版数学六年级下册第27课鸽巢问题说课稿3篇〖人教版数学六年级下册第27课鸽巢问题说课稿第【1】篇〗教学内容审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握说教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
数学人教版六年级下册鸽巢问题(说课)
《鸽巢问题》说课稿一、说教材我今天的教学内容是数学广角《鸽巢问题》。
主要教学任务是用直观的演示方法,介绍、论证《鸽巢问题》的两种简单形式,帮助学生通过说理和简单计算的方式来理解《鸽巢问题》,体会数学中的普遍“存在现象”,进一步提高学生的逻辑思维能力和概括能力。
二、说教学目标结合教学实际我制定了一下教学目标。
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用鸽巢原理解决简单的实际问题。
2、过程与方法:通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
三、说教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:1、“总有一个”“至少”这两个关键词的理解。
2、为了达到“至少”而进行“平均分”的思路。
3、把什么看作鸽子,把什么看作鸽巢,这样一个数学模型的建立。
四、说教法学法教法:本节课主要采用了设疑激趣法、实践操作法、讲授法。
学法上学生主要采用了自主、合作、探究式的学习方式。
五、说教学流程为了达成预设的教学目标,有效的突破重难点我设计了以下四个教学环节:游戏导入——操作探究,感知规律——探究归纳,形成规律——解决问题。
先通过导入部分浅显易懂的小游戏,让学生对鸽巢问题蕴含的规律有一个初步了解,为进一步深入探究鸽巢问题打下基础。
紧接着用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,说起来生涩拗口,而且抽象难以理解,通过直观的操作,便于学生理解这句话的意思。
最后,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】说教学目标:(一)知识与技能:1、通过观察、猜测、实验等活动,使学生初步了解并找出简单事物的组合数;2、使学生获得一些初步的数学实践活动经验。
(二)过程与方法:1、培养学生初步观察、分析推理能力以及有序地、全面地思考总是的方法和意识;2、感受数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题。
(三)情感、态度和价值观:1、通过活动培养学生学习数学的兴趣和合作意识;2、初步学会表达解决总是的大致过程和结果。
说教学重点:简单的排列组合的方法。
说教学难点:有序的思考问题。
教学任务分析:“实践与综合应用”是数学课程内容标准中的四个领域之一。
在第一学段中,要特别加强实践活动,“搭配中的学问”是本册书的四个专题活动之一。
通过这一专题让学生感受数学与现实生活的联系,培养学生的实践能力。
通过本节课的教学重在训练学生有序思考能力,这种能力对学生今后学习数学乃至其他学科,以及解决生活中的实际问题都起着重要的作用。
说学情分析:学生对新奇的具体的事物感兴趣,爱动、好问,注意力不够稳定,而不善于记忆抽象的内容等。
同时对身边的数学有浓厚的兴趣,乐于探究生活中的数学;有较强的语言表达能力、动手操作能力,初步具备了用所学知识解决实际问题的能力;思维活跃,能多角度思考问题,富有创新精神。
因此我在数学广角这一主题中安排了五个板块进行教学,循序渐进,螺旋上升。
说教学过程:一、创设情况,提出搭配中的问题谈话:今天我感到很高兴,因为有这样难得的机会和大家在一起学习,希望在这节课中我们能够成为好朋友!今天我们初次见面,我给你们先讲个“田忌赛马”的故事,想听吗?(教师讲故事,大屏幕播放连环画)(学生聚精会神地边听故事边看画面。
)谈话:故事讲完了,你知道孙膑是如何帮助田忌反败为胜的吗?田忌赛马是用到了数学中的什么学问,学习了今天的知识,你就能揭开这其中的奥秘,也能成为聪明的军事家孙膑。
人教版数学六年级下册鸽巢问题教案模板(推荐3篇)
人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解 决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇
人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。
人教版数学六年级下册鸽巢问题教案范文推荐3篇
人教版数学六年级下册鸽巢问题教案范文推荐3篇〖人教版数学六年级下册鸽巢问题教案范文第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
人教版六年级下学期数学《 鸽巢问题》说课稿-
人教版六年级下学期数学《鸽巢问题》说课稿-一. 教材分析鸽巢问题是数学中的一个经典问题,它涉及到组合计数和概率论的初步概念。
人教版六年级下学期数学教材中引入了鸽巢问题,旨在让学生通过解决实际问题,进一步理解整数和分数的概念,以及培养学生的逻辑思维和解决问题的能力。
二. 学情分析六年级的学生已经掌握了基本的数学知识,具备了一定的逻辑思维和解决问题的能力。
但是,对于鸽巢问题这种涉及组合计数和概率论的问题,可能还需要进一步的引导和培养。
因此,在教学过程中,我将会根据学生的实际情况,逐步引导学生理解和掌握鸽巢问题的解法。
三. 说教学目标1.知识与技能目标:通过解决鸽巢问题,让学生进一步理解整数和分数的概念,掌握鸽巢问题的解法。
2.过程与方法目标:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生勇于探索、积极思考的学习态度。
四. 说教学重难点1.教学重点:让学生掌握鸽巢问题的解法,培养学生运用数学知识解决实际问题的能力。
2.教学难点:对于复杂情况的鸽巢问题,如何引导学生理解和运用概率论的知识。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握鸽巢问题的解法。
2.教学手段:利用多媒体教学,通过生动的动画和图示,帮助学生形象地理解鸽巢问题。
六. 说教学过程1.导入:通过一个实际问题,引发学生对鸽巢问题的思考,激发学生的学习兴趣。
2.探究:引导学生通过小组合作,共同探讨鸽巢问题的解法,培养学生合作学习的能力。
3.讲解:在学生探究的基础上,进行讲解,让学生理解鸽巢问题的解法,并能够运用到实际问题中。
4.练习:设计一些相关的练习题,让学生通过练习,巩固所学知识,提高解决问题的能力。
5.总结:通过总结,让学生理解鸽巢问题的解法,并能够运用到实际问题中。
七. 说板书设计板书设计要简洁明了,能够突出鸽巢问题的关键点,包括鸽巢问题的定义、解法等。
2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇
人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用正字法法收集和整理数据。
2、初步认识条形统计图(1个格子表示两个单位)和统计表,能根据统计图表中的数据提出并回答简单的问题。
3、通过身边有趣事例的的调查活动,激发学习的兴趣,培养学合作意识和实践能力。
说教学重点:体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用正字法收集和整理数据;认识条形统计图(1个格子表示两个单位)和统计表。
说教学难点:认识条形统计图(1个格子表示两个单位)和统计表,能根据统计图表中的数据提出并回答问题。
教学方法:讨论法、观察法、情景法、分小组合作学习法教具准备:操行统计表、水彩笔说教学过程:一、设情景问题置疑,引入新课。
师:同学们,六一儿童节就要来了,我们班上要出两个节目,大家觉得我们可以出什么呢?生:唱歌、跳舞、绘画、走时装步。
师:不错,合唱、舞蹈、小品、乐器我们可以考虑一下,我们可以从这四类节目中选出两个,我们怎么决定出哪两个节目呢?这就要用到我们一年级时所学的统计知识。
老师想让大家投票来决定,下面老师请每组讨论出两个节目,等会投票。
说板书课题:“统计”二、探究新知(随时注意给表现突出的大组或个人加五星和红旗)1、收集数据的过程师:我们要知道哪两个节目的票数第一步就需要我们来收集数据。
说板书“收集数据”师:小组讨论收集数据的方法。
(教师行间巡视,对方法收集好的小组和合作愉快的小组加五星)师:下面请各小组汇报交流各种方法,并说说本小组认为最简单的记录方法,谈谈为什么?师:老师今天给大家带来一个新的方法正字法,下面组长就把讨论结果在黑板上按“正”字的书写顺序画一笔画。
(学生按大组顺序上台投票配上音乐伴奏曲)2、整理数据的过程师:请大家整理好每种节目的票数,再填到统计表中,我们数“正”字笔画的过程,就是我们整理数据的过程。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】教学内容:教材第70页例3及练习十三相关题目。
说教学目标:1.在理解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2.经历把实际问题转化为鸽巢问题的过程,了解用“鸽巢原理”解题的一般步骤,恰当运用“鸽巢原理”解决问题。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
说教学重点:能运用“鸽巢原理”解决实际问题。
说教学难点:能根据题意设计“鸽巢”。
说教学准备:多媒体课件。
说教学过程学生活动(二次备课)一、说复习导入1.课件出示下列问题。
(1)把5只鸽子放进4个笼子里,总有一个笼子里至少放进()只鸽子。
(2)把7本书放进4个抽屉里,总有一个抽屉里至少放进()本书。
(3)体育课上,10个小朋友进行投篮练习,他们共投进51个球。
有一个小朋友至少投进几个球?2.导入新课:上节课我们了解了“鸽巢原理”,这节课我们就用“鸽巢原理”解决问题。
二、预习反馈点名让学生汇报预习情况。
(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)三、探索新知1.课件出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?学生提出猜想。
分组讨论:如何把这道题转化为“鸽巢问题”?这道题其实就是把摸出的球(鸽子)放在两种颜色的“鸽巢”中,结论就是有一个颜色“鸽巢”中至少有2个。
根据“鸽巢原理”(一),只要摸出的球的个数比它们的颜色种数多1,就能保证一定有2个球是同色的,所以答案是至少要摸出3个球。
有两种颜色,只要摸出的球比它们的颜色至少多1,就能保证有两个球同色。
2.引导学生总结用“鸽巢原理”解决问题的一般步骤。
(1)确定什么是鸽巢及有几个鸽巢。
(2)确定分放的物体。
(3)用倒推的方法找到答案。
四、巩固练习1.完成教材第70页“做一做”第2题。
2023人教版数学六年下册《数学广角-鸽巢问题》说课稿(共二篇)
人教版数学六年下册《数学广角-鸽巢问题》说课稿(一)我说课的内容是人教版六年级数学下册第五单元的数学广角《鸽巢问题》。
我将从以下几方面进行说课。
说教材。
《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。
我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。
说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。
说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
会用“鸽巢原理”解决简单的实际问题。
通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
说重点难点教学重点:经历“鸽巢原理”的探究过程,建立数学模型。
教学难点:理解“鸽巢原理”。
在“说理”中体会“鸽巢原理”的简单应用。
说教法学法教法:主要采用探究发现法、实践操作法和讲授法,并充分运用多媒体教学手段,帮助学生理解并建立数学模型。
学法:主要采用动手实践、自主探索、合作交流的学习方法,通过多方面数学活动获得知识,得到全面发展。
说教学过程我本着以学定教的设计理念,设计四个环节:游戏导入,激发兴趣——自主操作,探究新知——巩固应用,提升认识——全课总结,畅谈感受。
接下来,我具体谈谈这四个环节的教学:第一环节游戏导入,激发兴趣课的开始我设计了5个同学抢坐4把椅子的游戏,激发兴趣,启迪思考。
【设计意图:创设贴近生活的数学情境,让学生初步体验“总有什么至少怎么样”的说法,激起学生探究其中原理的兴趣,为学习新知做了铺垫。
】第二环节自主操作,探究新知。
根据学生认知规律,我设计了两个活动活动一,动手操作,初识原理出示例1,把4支铅笔放在3个笔筒里,不管怎么放,总有一个笔筒里至少有两支笔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗一、说教材。
1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。
2、教材地位及作用。
本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。
实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
就课时划分而言,《鸽巢问题》的例1和例2既可以用一课时完成,又可以分两课时完成,我之所以选择后者,是因为在《鸽巢问题》中,“总有”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度。
而且例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“鸽巢问题”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,才能更好地学习鸽巢问题(二),才能灵活运用这一原理解决各种实际问题。
二、说学情。
1、年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。
因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。
三、说说教学目标。
根据《数学课程标准》和教材内容以及学生的学情,我确定本节课说说学习目标如下:知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。
能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。
情感性目标:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,感受到数学的魅力。
四、说教学重、难点。
说教学重点:引导学生把具体问题转化成“鸽巢问题”。
说教学难点:找出“鸽巢问题”解决的窍门进行反复推理。
五、说教法、学法。
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
根据六年级学生的理解能力和思维特征,为使课堂生动、高效,课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。
学法上主要采用了自主合作、探究交流的学习方式。
体现数学知识的形成过程,让学生在自己的经验中通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提高解决问题的能力,感受数学学习的乐趣。
六、说教学流程。
在说教学设计上,我本着“以学定教”的设计理念,把说教学过程分四环节进行:设疑导入,激发兴趣——自主操作,探究新知——归纳小结,形成规律——回归生活,灵活应用。
一)设疑导入,激发兴趣。
在导入部分,通过抽扑克牌“魔术”,激发学生的兴趣,引入新知。
二)自主操作,探究新知。
根据学生学习的困难和认知规律,我在探究部分设计了三个层次的数学活动。
(一)实物操作,初步感知。
学生通过例1要求通过“把4枝铅笔放入3个笔筒”的实际操作,解决3个问题:1、怎样放?重点是让学生明确如果只是放入每个笔筒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的运用扫清障碍。
2、共有几种放法?这里主要是孕伏对“不管怎样放”的理解。
3、认识“总有一个”的意义。
通过观察笔筒中铅笔枝数,找出4种放法中铅笔枝数最多的笔筒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个笔筒放的枝数是最多的,分别是2枝,3枝和4枝。
(二)脱离具体操作,由形抽象到数。
通过“思考:把5枝铅笔放入4个笔筒,又会出现怎样的情况?”由学生直接完成表格,达成三个目的:1、理解“至少”的含义,准确表述现象。
(1)通过观察表格中枝数最多的笔筒里的数据,让学生在“最多”中找“最少”。
(2)学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒”时,总有一个笔筒里至少放入2枝铅笔的结论。
2、理解“平均分”的思路,知道为什么要“平均分”。
抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个笔筒里至少是几枝的方法——就是按照笔筒数平均分,只有这样才能让最多的笔筒里枝数尽可能少。
3、抽象概括,小结现象。
通过“4枝放入3个笔筒”、”5枝放入4个笔筒”等不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识鸽巢原理。
(三)学生自选说问题探究。
首先设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。
三)归纳小结,形成规律。
在学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。
让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体。
四)回归生活,灵活应用。
研究的问题来源于生活,还要还原到生活中去。
在教学的最后,请学生用这节课学的鸽巢原理解释课始老师的魔术问题,进行首尾的呼应;再让学生应用“鸽巢原理”解决的生活中简单有趣的实际问题,激发学生的兴趣,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”,让学生体会抽屉的形式是多种多样的。
同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。
五)说板书的设计。
〖人教版数学六年级下册鸽巢问题说课稿第【2】篇〗《鸽巢问题》说课稿我说课的内容是人教版六年级数学下册第五单元的数学广角《鸽巢问题》。
我将从以下几方面进行说课。
说教材。
《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。
我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。
说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。
说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
会用“鸽巢原理”解决简单的实际问题。
通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
说重点难点教学重点:经历“鸽巢原理”的探究过程,建立数学模型。
教学难点:理解“鸽巢原理”。
在“说理”中体会“鸽巢原理”的简单应用。
说教法学法:教法:主要采用探究发现法、实践操作法和讲授法,并充分运用多媒体教学手段,帮助学生理解并建立数学模型。
学法:主要采用动手实践、自主探索、合作交流的学习方法,通过多方面数学活动获得知识,得到全面发展。
说教学过程:我本着以学定教的设计理念,设计四个环节:游戏导入,激发兴趣——自主操作,探究新知——巩固应用,提升认识——全课总结,畅谈感受。
接下来,我具体谈谈这四个环节的教学:第一环节游戏导入,激发兴趣课的开始我设计了5个同学抢坐4把椅子的游戏,激发兴趣,启迪思考。
【设计意图:创设贴近生活的数学情境,让学生初步体验“总有什么至少怎么样”的说法,激起学生探究其中原理的兴趣,为学习新知做了铺垫。
】第二环节自主操作,探究新知。
根据学生认知规律,我设计了两个活动,活动一,动手操作,初识原理出示例1,把4支铅笔放在3个笔筒里,不管怎么放,总有一个笔筒里至少有两枝笔。
为什么?我先启发学生利用准备的学具用枚举法来验证。
先独立思考:1、可以怎么放?2、共有几种不同摆法?3、你是怎样比较得到至少数的?再小组内交流,汇报验证过程。
根据学生汇报情况,我利用课件再现分的过程,帮助学生加深对“总有”和“至少”的理解。
重点理解“至少”,是从放笔最多的笔筒中比较出至少数。
以此突破难点。
接着优化验证方法,启发不用一一枚举,用假设法直接得到至少数。
叙述分的过程,引出平均分和平均分的算式。
顺向思考,把6枝笔放到5个笔筒里呢?把10枝笔放到9个笔筒里呢?把100枝笔放到99个笔筒里呢?你发现了什么规律?这时学生有的认为是商+1,有的认为是商加余数。
最后设疑,如果余数不是1 ,那么这个至少数会是多少呢?【设计意图:引导学生积极参与到实践活动中,结合课件的形象展示,帮助学生突破理解难点。
由最后的质疑在学生心中产生冲突,把探究引向深入。
】活动二,深入探究,完善原理借助“7只鸽子飞入5个鸽巢”来解决余数不是1的情况,从而完善对原理的认识。
这里我会尊重学生的个性思考,让学生就商+1,还是商加余数,展开辩论,通过假设法的摆放,证明当余数不是1时,要把余数进行二次平均分,来实现鸽巢里的鸽子为至少数。
最后揭示这类问题就是数学上有名的“鸽巢问题”,介绍这一问题的发现者—-德国数学家狄里克雷。
【设计意图:我注重了教学的直观性原则,让学生的动手操作贯穿于探究说理的全过程,加深了学生对商+1的理解,建立了数学模型,突破了教学重点。
】第三环节巩固应用,提升认识我把练习设计为A组和B组。
A组主要是面对全体学生的,B组是面向学有余力的学生的。
【设计意图:渗透“数学来源于生活,又还原与生活的理念”,通过练习既让学生对所学的知识加深理解,形成技能。
尊重学生的个体差异性,让每一个学生都能在学习中得到发展。
】第四环节全课总结,畅谈感受通过让学生畅谈收获,培养学生自我总结的能力,了解学生在学习过程中的得与失。
说板书设计鸽巢原理(抽屉原理)4 ÷ 3 = 1 ……1 1 +1=26 ÷ 5 = 1 ……1 1 +1=27 ÷ 5 = 1 ……2 1 +1=2物体数÷抽屉数 = 商……余数至少数=商 +1【设计意图:整个板书是在教学的过程中动态生成的,让教学环节依次呈现,突出重点,突破难点,起到画龙点睛的作用。
】说教学反思:反思这节课,可取之处有:1、着重让学生经历知识的产生、形成的过程,恰当引导,建立模型。
2、瞄准学生的认知障碍,力求让学生知其然并知其所以然。
3、灵活使用教材,达成教学目标。
遗憾之处一是感觉老师仍在牵着学生走,不敢放手,二是对于“总有……至少……”的精炼说法,一定还有学生理解不到位。