场论初步

合集下载

第04讲预备知识-场论2

第04讲预备知识-场论2
Δl
ΔS
M
n
Δl
ΔS
存在,称其为a在该点沿n向的环量面密度。由于Δl具 有任意性,所以过M点有无穷多个环量面密度。
旋度
旋度(Rotation)是这样的向量,它的模为环量面密度的最大值,方向是 环量面密度取得最大值的方向,记作rot a,旋度在直角坐标系中的表达式 为:
i ∂a y ∂a x ∂ ∂a z ∂a y ∂a z ∂a x rota = i ( ) + j( ) + k( )= − − − ∂y ∂x ∂x ∂z ∂y ∂z ∂x ax j ∂ ∂y ay k ∂ = ∇×a ∂z az
4.3 正交曲线坐标系中常用表达式
哈密尔顿算子∇ 有微分和向量双重运算性质: 对后面的量发生微分作用 对前面的量不起微分作用 运算顺序为先微分运算,后向量运算 哈密尔顿算子:
∇ = e1
梯度:
∂ ∂ ∂ ∂ + e2 + e3 = ei h1∂q1 h2 ∂q2 h3∂q3 hi ∂qi
∇ϕ = e1
代入弧微分方程得:
⎫ ∂x dq1 ⎪ dx = ∂q1 ⎪ ∂y ⎪ dy = dq1 ⎬ ∂q1 ⎪ ∂z dz = dq1 ⎪ ⎪ ∂q1 ⎭
ds 1 =
(
∂x 2 ∂y 2 ∂z 2 ) +( ) +( ) dq 1 ∂ q1 ∂ q1 ∂ q1
同理,当弧微分ds仅是坐标曲线q2上的微分弧长ds2、或仅是坐标曲线 q3上的微分弧长ds3时,有:
直角坐标系中的弧微分ds可表示为: ds = dx2 + dy2 + dz2 若曲线坐标(q1,q2,q3) 和直角坐标(x,y,z)之间存在函数及反函 数关系:

化工数学-第6章-场论初步

化工数学-第6章-场论初步

9
6.2 向量的导数.
6.2.1 向量对于一个纯量的导数
(1)向量函数 v 是纯量t的函数,v = v(t) 。
dv (t )
v(t + Dt)- v(t)
= lim

dt
Dt? 0
Dt
在直角坐标系中 v = vxi + vy j + vzk
(6-1)

dv = dvx i + dvy j + dvz k
若 r = r (x, y, z), S = S(x, y, z) ,则

抖 抖x (r ? S)
r? S x
?r ?x
?
S

抖 抖x (r ? S)
r? S x
?r ?x
?
S
抖2
抖x
(r ? S) y
抖x 轾 犏 犏 臌抖y (r ? S)
抖x
轾 犏 犏 臌r ?
抖S y
?
r y
?
S
抖2 S
r 抖S
dt
dt dt dt
d(a ? b) da ? b a ? db
dt
dtБайду номын сангаас
dt
(6 - 5) (6 - 6)
(6 - 7) (6 8)
2019/9/9
化工数学-第六章-场论初步
d(j a) = dj a + j da 其中j = j (t)是数量函数
dt
dt
dt
13
(6-9)
d(a? b) da ? b a? db
a = a1? a2
ijk 2 3 4 = - 14i + 8 j + k 1 2 -2

一、场的概念

一、场的概念

Yunnan University
§3. 场论初步
Yunnan University
§3. 场论初步
Yunnan University
§3. 场论初步
Yunnan University
§3. 场论初步
Yunnan University
Yunnan University
§3. 场论初步
定义:曲面积分 a cos n, x a cos n, y a cos n, z dS x y z S 称为向量a通过曲面S在所选择的那一侧的流量。



可表为
a dS
n S
式中an为a在n上的投影。
a 3 x y z
2 2 2 2
2


1 2
i 20 x y z
2 2
2


1 2
j
15 x y z
1 2 2

k
1 2 1 2 1 2
a x 3 x
2
y z
2 2 222来自 a y 20 x
Yunnan University
i rot grad u( M ) x yz
Yunnan University
j y xz
k 0. z xy
§3. 场论初步
Yunnan University
§3. 场论初步
Yunnan University
§3. 场论初步
Yunnan University
§3. 场论初步
Yunnan University
§3. 场论初步
即 i rot a x ax j y ay k z az

斯托克斯公式、场论初步

斯托克斯公式、场论初步

其中曲线和曲面的方向由右手法则确定。
斯托克斯公式
GP d x Qd y Rd z
R Q P R d yd z z z x S y Q P d xd y d zd x x y
R Q Q P P R cos cos d S cos β z x x y S y z 其中曲线和曲面的方向由右手法则确定。
第 30 讲
斯托克斯公式、场论初步
区域和其边界上积分的关系
D

DP d x Q d y
Q P d xd y y D x
格林公式

P d y d z Q d z d x R d x d y
P Q R dv y z x

R2 x 2 y 2 d x d y

2 x x y
D
R2 x 2 y 2 y

dx dy
区域 D 关于 x 轴对称, 故
I 2 x d x d y 2 π 2 d 0
D
π2
R cos
r 2 cos d r
πR3 . 4
二重积分
Green
第一型 第二型
曲线积分 Stokes 第一型 第二型
三重积分
Gauss
曲面积分
x y z 2 z x y R R R S
dS.
记 S 在 xoy 面的投影区域为 D .
则 I L
2 RD
x
x y z P d x Q d y R d z 2 z x y R R R S

工程电磁场知识点总结

工程电磁场知识点总结

工程电磁场知识点总结第一章矢量分析与场论1 源点是指。

2 场点是指。

3 距离矢量是,表示其方向的单位矢量用表示。

4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。

5 梯度是研究标量场的工具,梯度的模表示梯度的方向表示。

6 方向导数与梯度的关系为7 梯度在直角坐标系中的表示为?u?。

8 矢量A在曲面S上的通量表示为?? 9 散度的物理含义是 10 散度在直角坐标系中的表示为??A?。

11 高斯散度定理。

12 矢量A沿一闭合路径l的环量表示为。

13 旋度的物理含义是 14 旋度在直角坐标系中的表示为??A?。

15 矢量场A在一点沿el方向的环量面密度与该点处的旋度之间的关系为。

16 斯托克斯定理17 柱坐标系中沿三坐标方向er,e?,ez的线元分别为,18 柱坐标系中沿三坐标方向er,e?,e?的线元分别为,19 ?1111???'??2eR?2e'R RRRR???20 ??????'??'???????4??(R)?R??R??11?0(R?0)( R?0)第二章静电场1 点电荷q在空间产生的电场强度计算公式为。

2 点电荷q 在空间产生的电位计算公式为。

3 已知空间电位分布?,则空间电场强度E。

4 已知空间电场强度分布E,电位参考点取在无穷远处,则空间一点P处的电位?P。

5 一球面半径为R,球心在坐标原点处,电量Q均匀分布在球面上,?则点?,,??处的电位等于。

222??RRR6 处于静电平衡状态的导体,导体表面电场强度的方向沿7 处于静电平衡状态的导体,导体内部电场强度等于 8处于静电平衡状态的导体,其内部电位和外部电位关系为 9 处于静电平衡状态的导体,其内部电荷体密度为 10处于静电平衡状态的导体,电荷分布在导体的。

11 无限长直导线,电荷线密度为?,则空间电场E。

12 无限大导电平面,电荷面密度为?,则空间电场E。

13 静电场中电场强度线与等位面14 两等量异号电荷q,相距一小距离d,形成一电偶极子,电偶极子的电偶极矩p= 。

第03讲预备知识-场论1

第03讲预备知识-场论1

e3
顺时针为负
置换符号说明: i、j 、k取值不同值时, εijk取1 或-1(6个),其余分量(21个)为零。即:
e2 e1 逆时针为正
ε 123 = ε 231 = ε 312 = 1
ε 132 = ε 213 = ε 321 = −1
置换法则:任意2个自由指标对换后差一个负号 正负取值规律:按右图中,逆时针取值为正,顺时针取值为负。
a = ax i + a y j + az k
任意一点M的矢径 矢径微分
r = xi + yj + z k
M z y o x
a
dr = dxi + dyj + dzk
dr × a = 0
r
叉积为零:
这就是向量线的微分方程(Differential Equation) 在直角坐标系(System Of Rectangular Coordinates)当中表示为
可以列表表示:
e1
′ e1
e2
e3
α 11 α12 α13 α 21 α22 α23
α 31 α 32 α 33
ei′ = α ij e j ei = α ji e ′j
e′ 2
′ e3
上述关系可简写为:
同理,老坐标的单位向量可用新坐标的单位向量表示:
根据上述单位向量的性质和关系可导出:
ei ⋅ e j = e′ ⋅ e′j i
a ⋅ bc = (a ⋅ b)c = (b ⋅ a )c = c (a ⋅ b)
ab ⋅ cd = a (b ⋅ c )d = (b ⋅ c )ad = ad (c ⋅ b) c ⋅ ab ⋅ d = (c ⋅ a )(b ⋅ d ) = (b ⋅ d )(c ⋅ a )

高等数学《曲线积分与曲面积分》习题课

高等数学《曲线积分与曲面积分》习题课

L( A,B)
b
f (x, y)
1 y2dx
a
曲顶柱体的表面积
如图曲顶柱体,
z z f (x, y)
S
(1
1
f2 x
f
2 y
)d
D
f ( x, y)ds L
o
y
x
D L
2
2
例 3 求柱面 x 3 y 3 1在球面 x2 y2 z 2 1内
的侧面积.
解 由对称性
S 8Lzds 1 x2 y2ds
2

z
y 1绕y轴旋转面方程为
x 0
y 1 z2 x2
(如下图)
欲求
I
(8
y
1) xdydz
2(1
2
y
)dzdx
4
yzdxdy
z
且有 I
* *
P Q R
*
(
x
y
z
)dxdydz
x
2
o1
*
y
3
(8 y 1 4 y 4 y)dxdydz dv
3
2
2
3
dxdz
D
8
a 0 dx (e x m) 0 0, OA 0
M
A(a,0) x
I
m a2 0 m a2.
AMOA OA
8
8
曲面面积的计算法
z
z f (x, y) S
z
z f (x, y)
o
Dxy
y
a
bo
A
s LB
y
x S dS
1
z
2 x
z
2 y

9-7(场论初步)

9-7(场论初步)

因此重力场也是无旋场
4/7
3.调和场 调和场 如果向量场A = A( M )( M ∈ Ω) 既是无源场又是无 旋场, 旋场,即对任一点 M ∈ Ω ,有
divA( M ) = 0
则称向量场 A 为调和场
rotA( M ) = 0
重力场 F = {0,0,−mg } 显然是调和场
5/7
4.有势场 有势场 对于向量场A = A( M )( M ∈ Ω) ,如果存在单值函 数 u = u( M )( M ∈ Ω),使得 ∂u ∂u ∂u A = ∇u = , , ∂x ∂y ∂z 为有势场, 则称向量场 A 为有势场,称 u 为 A 的势函数 5.保守场 保守场 对于向量场 A = A( M )( M ∈ Ω),如果曲线积分
1.
A是一个无旋场,即在 Ω 内恒有 是一个无旋场,
∂R ∂Q ∂P ∂R ∂Q ∂P = , = , = ∂y ∂z ∂z ∂x ∂x ∂y
2. 沿 Ω内任一简单闭曲线 Γ 均有环量
∫ A ⋅ dl = ∫ Pdx + Qdy + Rdz = 0 3. A是保守场,即在 Ω 内曲线积分 ∫ A(M) ⋅ dl与路径无关 是保守场,
∫ A( M ) ⋅ dl
B A
内与路径无关, 为保守场, 在 Ω 内与路径无关,则称 A 为保守场,其中 A, B 为 Ω 内任意两点
6/7
下面的定理说明了无旋场、 下面的定理说明了无旋场、有势场与保守场是等价的
定理: 定理:设 Ω 为一维单连通域 A = {P , Q , R} ,其中
P , Q , R 在 Ω 内一阶偏导数连续,则以下四个命题等价 内一阶偏导数连续,
第七节 场论初步
几类特殊的场

流体力学-第一讲 场论与张量分析初步

流体力学-第一讲 场论与张量分析初步

ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk

第一章-场论及张量初步分析

第一章-场论及张量初步分析

全国范围内温度场分布
速度场
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.2 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
rotxa
az y
a y z
rot y a
ax z
az x
rot z a
a y x
ax y
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
i jk
rota
x y z
ax ay az
1.6 环量. 旋度. 斯托克斯定理
矢量线:线上每一点的切线方向与该 点的矢量方向重合
dr
r r
根据矢量定义有: a dr 0
直角坐标形式:
1.3 梯度-标量场不均匀性的量度
对于给定标量场 (r,t),用它的梯度
来表明在任一时刻标量场中每点邻域 内的函数变化。
函数在M点上沿曲线S方 向的方向导数:
表明函数φ(r,t)在M点上 沿曲线S方向的变化率
p31
p13
1 2
p23
p32
0
二阶反对称张量
2 1
0
张量分解定理
二阶张量可以唯一地分解成为一个对称张 量和一个反对称张量之和。
P
1 2
P
Pc
1 2
P
Pc

「第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2」

「第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2」

§2 场论初步一、 场论的基本概念及梯度、散度与旋度[标量场] 空间区域D 的每点M (x ,y ,z )对应一个数量值ϕ(x,y ,z ),它在此空间区域D 上就构成一个标量场,用点M (x,y,z )的标函数ϕ(x ,y ,z )表示.若M 的位置用矢径r确定,则标量ϕ可以看作变矢r 的函数ϕ=ϕ(r ).例如温度场u (x ,y,z ),密度场),,(z y x ρ,电位场e(x ,y ,z )都是标量场.[矢量场] 空间区域D 的每点M (x ,y,z )对应一个矢量值R (x ,y,z),它在此空间区域D 上就构成一个矢量场,用点M (x ,y ,z )的矢量函数R(x ,y,z)表示.若M 的位置用矢径r 确定,则矢量R 可以看作变矢r的矢函数R (r):R (r )=X(x ,y,z )i +Y(x ,y ,z )j +Z (x ,y,z )k例如流速场 υ(x ,y ,z ),电场E (x,y,z ),磁场H (x ,y ,z )都是矢量场.与标量场的情况一样,矢量场概念与矢函数概念,实质上是一样的.沿用这些术语(标量场、矢量场)是为了保留它们的自身起源与物理意义.[梯度]grad ϕ=(x ∂∂ϕ,y ∂∂ϕ,z ∂∂ϕ)=∇ϕ=x ∂∂ϕi +y ∂∂ϕj+z∂∂ϕk 式中∇=ix ∂∂+jy ∂∂+kz∂∂称为哈密顿算子,也称为耐普拉算子.gr ad ϕ有的书刊中记作de lϕ.grad ϕ的方向与过点(x ,y ,z )的等量面ϕ=C的法线方向N重合,并指向ϕ增加的一方,是函数ϕ变化率最大的方向,它的长度等于N∂∂ϕ. 梯度具有性质:grad(λϕ+μψ)=λ gr ad ϕ+μgrad ψ (λ、μ为常数)grad(ϕψ)=ϕ grad ψ+ψ gr ad ϕ gra dF (ϕ)=()ϕϕgrad F ' [方向导数]l ∂∂ϕ=l·g ra dϕ=x ∂∂ϕcos α+y ∂∂ϕcos β+z∂∂ϕc os γ式中l =(cos α,c os β,cos γ)为方向l 的单位矢量,α,β,γ为其方向角.方向导数为ϕ在方向l 上的变化律,它等于梯度在方向l 上的投影. [散度]d iv R =x X ∂∂+y Y ∂∂+zZ ∂∂=∇·R =div (X , Y , Z) 式中∇为哈密顿算子. 散度具有性质:d iv (λa +μb)=λ div a +μdi vb (λ、μ为常数) div(ϕa )=ϕdiv a+a g rad ϕ div(a ×b )=b·ro t a-a ·rot b[旋度]rot R =(z Y y Z ∂∂-∂∂)i +(xZ z X ∂∂-∂∂)j +(y X x Y ∂∂-∂∂)k =∇×R=ZYXz y x ∂∂∂∂∂∂k j i式中∇为哈密顿算子,旋度也称涡度,rot R有的书刊中记作cu rl R .旋度具有性质:r ot(λa +μb )=λ rot a +μro t b (λ、μ为常数) rot(ϕa )=ϕrot a +a ×grad ϕro t(a ×b )=(b ·∇)a -(a ·∇)b +(div b )a -(di v a)b[梯度、散度、旋度混合运算] 运算g rad 作用到一个标量场ϕ产生矢量场grad ϕ,运算d iv 作用到一个矢量场 R产生标量场d iv R,运算rot 作用到一个矢量场R 产生新的矢量场r ot R .这三种运算的混合运算公式如下:d iv rot R =0 rot gr ad ϕ=0div gr adϕ=22x ∂∂ϕ +22y∂∂ϕ+22z ∂∂ϕ=∆ϕg rad di v R=∇(∇R ) ro t rot R =∇×(∇×R )div gra d(λϕ+μψ)=λ d iv g rad ϕ+μdiv gra dψ (λ、μ为常数)d iv grad(ϕψ)=ϕd iv g rad ψ+ψdiv grad ϕ+2gra dϕ·grad ψg rad div R-ro t ro t R =∆R式中 ∇为哈密顿算子,∆=∇·∇=∇2为拉普拉斯算子.[势量场(守恒场)] 若矢量场R (x,y ,z )是某一标函数ϕ(x ,y ,z )的梯度,即R =gra dϕ 或 X=x ∂∂ϕ,Y =y ∂∂ϕ,Z =z∂∂ϕ则R称为势量场,标函数ϕ称为R 的势函数.矢量场R 为势量场的充分必要条件是:rot R =0,或y X ∂∂ =x Y ∂∂,z Y ∂∂=y Z ∂∂,x Z ∂∂=zX∂∂ 势函数计算公式ϕ(x,y ,z )=ϕ(x0,y 0,z 0)+()⎰xx x z y x X 0d ,,00+()⎰yy y z y x Y 0d ,,0+()⎰zz z z y x Z 0d ,,[无散场(管形场)] 若矢量场R 的散度为零,即div R =0,则R 称为无散场.这时必存在一个无散场T,使R=r ot T,对任意点M有T =14π⎰V r d rot R式中r为d V到M的距离,积分是对整个空间进行的.[无旋场] 若矢量场R 的旋度为零,即r ot R =0,则R 称为无旋场.势量场总是一个无旋场,这时必存在一个标函数ϕ,使R =grad ϕ,而对任意点M 有ϕ=-14π ⎰V r d div R式中r 为d V 到M 的距离,积分是对整个空间进行的.二、 梯度、散度、旋度在不同坐标系中的表达式1.单位矢量的变换[一般公式] 假定x =f(ξηζ,,),y =g (ξηζ,,),z =h (ξηζ,,)把(ξηζ,,)空间的一个区域 一对一地连续映射为(x,y ,z )空间的一个区域D ,并假定f ,g ,h 都有连续偏导数,因为对应是一对一的,所以有ξ=ϕ(x ,y ,z ),()()ηψζχ==x y z x y z ,,,,,再假定ϕψχ,,也有连续偏导数,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=ζζηηξξζζηηξξζζηηξξd d d d d d d d d d d d z z z z y y y y x x x x 或逆变换⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=z z y y x x z z y y x x z z y y x x d d d d d d d d d d d d ζζζζηηηηξξξξ沿d x,dy ,d z 方向的单位矢量记作i ,j ,k ,沿ζηξd ,d ,d 方向的单位矢量记作ζηξe e e ,,,则有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=222222222ζζζζζζηηηηηηξξξξξξζηξz y x z y x z y x zy x z y x z y x k j i e k j i e kj i e [圆柱面坐标系的单位矢量] 对于圆柱面坐标系(图8.11)⎪⎩⎪⎨⎧===z z y x ϕρϕρsin cos ()002≤≤∞≤<-∞<<∞ρϕπ,,z 单位矢量为⎪⎩⎪⎨⎧=+-=+=k e j i e j i e zϕϕϕϕϕρcos sin sin cos 它们的偏导数为000=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂zz z zzze e e e e e e e e e e ϕρϕρρϕϕρρρρϕϕϕ,,[球面坐标系的单位矢量] 对于球面坐标系(图8.12)⎪⎩⎪⎨⎧===θϕθϕθcos sin sin cos sin r z r y r x ()0020≤<∞≤<≤≤r ,,ϕπθπ单位矢量为⎪⎩⎪⎨⎧+-=-+=++=j i e k j i e k j i e ϕϕθϕθϕθθϕθϕθϕθcos sin sin sin cos cos cos cos sin sin cos sin r它们的偏导数为θϕϕθϕϕθθϕθθθϕθϕθϕθθθe e e e e e e 0e e e e e 0e e e cos sin ,cos ,sin ,,--=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂=∂∂=∂∂=∂∂r rr rr rr r 2.矢量的坐标变换[一般公式] 一个由(x ,y ,z)坐标系所表达的矢量可以用(ξηζ,,)坐标系来表达:υ=(x υ,υy,υz)=x υi+υy j +υz k=ζζηηξξυυυe e e ++式中⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=222222222222222222222222222ζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζηξζηξζηξz y x z z y x z z y x z z y x yz y x y z y x y z y x x z y x x z y x x z y x[圆柱面坐标系与直角坐标系的互换] 由圆柱面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧=+=-=z zy x υυϕυϕυυϕυϕυυϕρϕρcos sin sin cos 由直角坐标系到圆柱面坐标系的变换公式⎪⎩⎪⎨⎧=+-=+=z zy x y x υυϕυϕυυϕυϕυυϕρcos sin sin cos [球面坐标系与直角坐标系的互换] 由球面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧-=++=-+=θυθυυϕυϕθυϕθυυϕυϕθυϕθυυθϕθϕθsin cos cos sin cos sin sin sin cos cos cos sin r zr y r x 由直角坐标系到球面坐标系的变换公式⎪⎩⎪⎨⎧+-=-+=++=ϕυϕυυθυϕθυϕθυυθυϕθυϕθυυϕθγcos sin sin sin cos cos cos cos sin sin cos sin y x z y x z y x 3.各种算子在不同坐标系中的表达式设U =U (x,y ,z )是一个标函数,V =V (x ,y ,z )是一个矢函数. [在圆柱面坐标系中各种算子的表达式]哈密顿算子 ~∇=ρρ∂∂e +ϕρϕ∂∂1e +zz ∂∂e梯 度 grad U = ~∇U=ρρ∂∂U e +ϕρϕ∂∂U 1e +z U z ∂∂e散 度 di vV = ~∇·V =()zz ∂∂+∂∂+∂∂υϕυρρυρρϕρ11 旋 度 ro tV= ~∇×V =ρϕυϕυρe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z 1+ϕρρυυe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z +()z e ⎪⎪⎭⎫⎝⎛∂∂-∂∂ϕυρρρυρρϕ11拉普拉斯算子 ∆U =d iv grad U =2222211z UU U ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂ϕρρρρρ [在球面坐标系中各种算子的表达式]哈密顿算子 ~~∇=r r ∂∂e +θθ∂∂r 1e +ϕθϕ∂∂sin r 1e梯 度 grad U= ~~∇U =r U r ∂∂e +θθ∂∂U r 1e +ϕθϕ∂∂U r sin 1e散 度 di v V=~~∇·V =()()ϕυθθυθθυϕθ∂∂+⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂sin sin sin r r r r r r 11122 旋 度 rot V = ~~∇×V=()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ϕυθυθθθϕsin sin r 1r e +()⎥⎦⎤⎢⎣⎡∂∂-∂∂ϕυϕυθr r r r r 11sin θe +()⎥⎦⎤⎢⎣⎡∂∂-∂∂θυυθr r rr r 11ϕe 拉普拉斯算子 ∆U =d iv g rad U=2222221111ϕθθθθθ∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂U r U r r r U r r rsin sin sin三、 曲线积分、曲面积分与体积导数[矢量的曲线积分及其计算公式] 矢量场R (r )沿曲线Γ的曲线积分定义为⎰ΓR (r )·d r =∑=∞→→ni n r 1lim∆R(i r ~)·∆ri-1 式中∆ri -1=ri -r i -1,右边极限与i r ~的选择无关,曲线 Γ由A 到B (图8.13)若矢函数R (r )是连续的(就是它的三个分量是 连续函数), 曲线Γ也是连续的, 且有连续转动的切线, 则曲线积分()⎰⋅Γr r R d存在.若R (r)为一力场,则P=()⎰⋅Γr r R d 就等于把一质点沿着Γ 移动时力R 所作的功. 矢量曲线积分的计算公式如下: ()⎰Γ⋅r r R d =()⎰++z Z y Y x X d d d Γ()⎰+⋅21ΓΓr r R d =()⎰⋅1Γr r R d +()⎰⋅2Γr r R d (图8.14)()⎰⋅Γr r R d =-()⎰-⋅Γr r R d()()[]⎰⋅+Γr r T r R d =()⎰⋅Γr r R d +()⎰⋅Γr r T d()⎰⋅Γr r R d k =k ()⎰⋅Γr r R d(k 为常数)[矢量的环流] 如果Γ为一闭曲线,则沿曲线Γ 的曲线积分()⎰⋅Γr r R d =()⎰++Γz Z y Y x X d d d 称为矢量场R (r )沿闭曲线Γ 的环流.势量场沿任何闭曲线的环流都等于零.如果R(r)为一势量场,且它的势函数为ϕ时,则曲线积分()⎰⋅Γr r R d =()⎰⋅B Ar r R d =ϕ(B )-ϕ(A )与连接A ,B 两点的路径无关,只依赖于A,B 两点的 位置(图8.15).[矢量的曲面积分] 设S 为一曲面,令N =()cos ,cos ,cos αβγ表示在曲面S 上一点的法线单位矢量, 而dS =N d S表示面积矢量元素.又设ϕ(r)=ϕ(x , y ,z )是定义在曲面S 上的连续标函数,R (r )=(X(x , y,z),Y (x , y ,z ), Z (x, y ,z ))是定义在曲面S上的连续矢函数,这里规定法线单位矢量与曲面分布在切面的两侧.则曲面积分有如下的三种形式:1标量场的通量(或流量)ϕS⎰⎰dS =ϕS yz⎰⎰d y d z i +ϕS zx ⎰⎰d z d x j +ϕS xy⎰⎰d x d y k式中S yz ,S zx ,Sxy 分别表示曲面S 在Oyz 平面,Oz x平面, O xy平面上的投影.Sx y的正负号规定如下:当从z轴正方 向看去时,看到的是曲面S 的正面,认为S xy 为正,如果 看到的是曲面的反面,则认为S xy 为负(图8.16).2矢量场的标通量S⎰⎰R ·d S =S yz⎰⎰X d yd z +S zx ⎰⎰Y d z d x+S xy⎰⎰Z d xd y式中S yz 等的意义同1.3矢量场的矢通量S⎰⎰R ×d S=S yz⎰⎰(Z j-Yk )dy d z +S zx ⎰⎰(X k-Z i)dz d x +S xy⎰⎰(Y i -Xj )d x d y式中S y z等的意义同1.[矢量的体积导数] 如果S 是包围体积V 的闭曲面,并包含点r,则沿闭曲面S 的曲面积分(S⎰ϕd S ,S⎰R ·dS,S⎰R ×d S )与体积V之比,当V 趋于零时(即它的直径→0)的极限称为标量场ϕ(或矢量场R )在点r 处的体积导数(或空间导数). 1标量场ϕ的体积导数就是它的梯度:grad ϕ=VSV ⎰→Sd limϕ02矢量场R的体积导数之一是它的散度:div R=VSV ⎰⋅→SR d lim3矢量场R 的另一个体积导数是它的旋度: rot R=-V S V ⎰⨯→S R d lim四、 矢量的积分定理[高斯公式]⎰⎰⎰V div R dV =S ⎰⎰R ·d S=S⎰⎰R ·N d S 即()⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SS Z Y X z y x z Z y Y x X d cos cos cos d d d γβα 式中S 为空间区域V 的边界曲面,N =()cos ,cos ,cos αβγ为在S 上一点的法线单位矢量,R(r)=(X (x , y,z ),Y (x , y,z ),Z (x , y ,z ))在V +S上有连续偏导数.[斯托克斯公式] S ⎰⎰r ot R ·dS=S ⎰⎰rot R ·N d S =L⎰R ·d r 即y x y X x Y x z x Z z X z y z Y y Z S d d d d d d ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ = ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S S y X x Y x Z z X z Y y Z d cos cos cos γβα = ⎰++L z Z y Y x X d d d式中S 为一定曲面的一侧,L 为曲面S 的闭边界曲线(L 的正向与N 构成右手系).S的每点有切面,其方向连续地依赖于曲面上的点,而边界曲线L上的每点都有切线(图8.17). R (r )=(X (x , y ,z ),Y (x , y ,z ),Z (x , y,z ))在曲面的所有点单值,并在与S 足够靠近的点处有连续偏导数.[格林公式]⎰⎰S ψϕgrad ·dS =()⎰⎰⎰⋅+VV d grad grad Δψϕψϕ ()⎰⎰-S ϕψψϕgrad grad ·d S =()⎰⎰⎰∆-∆VV d ϕψψϕ式中S 为空间区域V 的边界曲面,ϕψ,为两个标函数,在S上具有连续偏导数,且在V 上具有二阶连续偏导数,∆为拉普拉斯算子,特别⎰⎰S ϕgrad ·d S =⎰⎰⎰∆V V d ϕ 即⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂+∂∂+∂∂S V V z y x y x z x z y z y x d d d d d d d 222222ϕϕϕϕϕϕ。

数学分析22.4场论初步(含习题及参考答案)

数学分析22.4场论初步(含习题及参考答案)

第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。

高等流体力学—场论及张量初步

高等流体力学—场论及张量初步
diva lim
Vz diva lim V 0 x y z Q
1.4 矢量的通量.散度.奥高定理
a x a y a z diva lim V 0 x y z Q
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
az a y rotx a y z a x a z rot y a z x a y ax rotz a x y
1.6 环量. 旋度. 斯托克斯定理
grad i j k x y x
dr dxi dyj dzk
梯度的主要性质
grad i j k x y z
dr dxi dyj dzk
dr grad
dx dy dz x y z
an:矢量a在法线方向的投影 an dS:矢量a通过面积元dS的通量
1.4 矢量的通量.散度.奥高定理
在整个曲面上积分,得矢量a通过S面的通量
a dS n
s
实质上相当于函数的面积分
1.4 矢量的通量.散度.奥高定理
当S面为封闭曲面时,通量为:
a dS n
s
1.4 矢量的通量.散度.奥高定理
S 0
a dr
L
S
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系
a dr a dx a dy a dz x y z
L L
a z a y cos(n, x) s z y
i rota x ax j y ay k i z x az x j y y k 0 z z

第一章 场论和张量初步

第一章 场论和张量初步

第一章 场论和张量初步1.1 场的定义及分类设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。

均匀场:同一时刻内各点函数的值都相等。

反之为不均匀场。

定常场:场内函数值不依赖于时间。

反之为不定常场。

1.2场的几何表示标量场:等位线。

矢量场:矢量线的微分方程:(,,,)(,,,)(,,,)x y z dx dy dza x y z t a x y z t a x y z t ==积分,将t 看成参数,即得矢量线的分析表达式。

1.3梯度——标量场不均匀性的量度梯度:大小为n ϕ∂∂,方向为n ,的矢量称为标量函数ϕ的梯度,以grad n n ϕϕ∂=∂表之。

在s 方向上的方向导数等于梯度矢量在s 方向上的投影。

梯度grad ϕ在直角坐标系中的表达式为grad i j k x y z ϕϕϕϕ∂∂∂=++∂∂∂总结起来,梯度的主要性质是:1)梯度grad ϕ描写了场内任一点M 领域内函数ϕ的变化状况,它是标量场不均匀性的量度。

2)梯度grad ϕ的方向与等位面的法线重合,且指向ϕ增长的方向,大小是n 方向上的方向导数n ϕ∂∂;3)梯度矢量grad ϕ在任一方向s 上的投影等于该方向的方向导数;4)梯度grad ϕ的方向,即等位线的法线方向是函数ϕ变化最快的方向。

定理1 梯度grad ϕ满足关系式d dr grad ϕϕ=∙定理2 若a grad ϕ=,且ϕ是矢径r 的单值函数,则沿任一封闭曲线L 的线积分La dr⋅⎰等于零,反之,若矢量a 沿任一封闭曲线L 的线积分La 0dr ⋅=⎰则矢量a 必为某一标量函数ϕ的梯度。

例:计算仅与矢径大小r 有关的标量函数ϕ(r )的梯度ϕgrad 。

I )利用性质(2),标量函数=ϕϕ(r )的等位面是以坐标原点为心的球面,而球面的法线方向,即矢径r 的方向,故ϕgrad 的方向就是矢径r 的方向其次的大小是=r r ϕϕ∂∂’()于是rii )利用性质(5),显然x d r dr x ϕϕ∂∂=∂∂,d r y dr y ϕϕ∂∂=∂∂,z d rdr z ϕϕ∂∂=∂∂因222r x y z =++故r x x r ∂=∂,r y y r ∂=∂,r z z r ∂=∂于是x d x r dr ϕϕ∂=∂,y d y r dr ϕϕ∂=∂,z z d r dr ϕϕ∂=∂而=r r xi yj zk d grad ij k x y z r dr ϕϕϕϕϕϕϕ∂∂∂++∂=++==∂∂∂∂’()iii )利用定理1,r r dr rdrrϕϕϕ=’’()d (r)=()因2r r r ⋅=微分得r dr rdr ⋅=于是r d r drrϕϕ=⋅’()根据定理1r最后我们指出,写成a grad ϕ=的矢量场亦称位势场,ϕ称为位势函数。

数学分析简明教程22 各种积分间的联系与场论初步

数学分析简明教程22 各种积分间的联系与场论初步

第二十二章 各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ⎰-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(⎰-++Ldy y x dx y x L 同(1);(3)dy y xdx y x L)()(222+-+⎰, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+⎰y x L dy y x dx y x L为取正向;(5),sin sin ydy exdx e xLy-+⎰L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e L xy+++++⎰其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x yDD⎰⎰⎰⎰+=--2222)(=ab()r dr r b r a d ⎰⎰+122222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b a ab +=+⎰πθθθπ.(2)⎰-++Ldy y x dx y x )()(=⎰⎰=-Ddxdy 0)11(.(3)原式 ⎰⎰+-=Ddxdy y x x ))(22(⎪⎪⎭⎫ ⎝⎛+-=-=⎰⎰⎰⎰⎰⎰-+-+215231143124322yy y y D dx ydy dx ydy ydxdy9143))5(127)(47(2252221-=-+--=⎰⎰dy y y dy y y .(4)原式π23)(3)33(2222-=+-=--=⎰⎰⎰⎰DD dxdy y x dxdy y x . (5)原式 dxdy x e y e Dy x ⎰⎰--=-)cos sin ( )cos sin (⎰⎰⎰⎰+-=-bad cdcydy b axe dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee cd b a --+--=.(6))]cos(sin [),(y x xy y e y x P xy ++=,)]cos(sin [),(y x xy x e y x Q xy++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=∂∂ )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=∂∂ )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=∂∂-∂∂, 所以,原式⎰⎰+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域. 2.利用格林公式计算下列曲线所围成的面积: (1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2⋅=,π≤≤20t . 解(1)⎰⎰⎰⎰==12||D Ddxdy dxdy D ⎰-⨯=L ydx xdy 212 ⎰=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===⎰⎰--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成. (2)作代换,tx y =则得曲线的参数方程为313tatx +=,3213t at y +=.所以, dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=, 从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为 D =⎰C x y y x d -d 21=dt t t a ⎰∞++02322)1(29=223a .(3)D =⎰-cydx xdy 21= {}⎰-++⋅--⋅+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dtt t t t t a t t a t t t a t t a{}⎰π-++⋅--⋅+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+⎰π=24a π 3.利用高斯公式求下列积分:(1)y x z x z y z y x sd d d d d d 222++⎰⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

就反映了流体关于 L 所围面积的平均环流密度. 当 D M 0 时, (6) 式右边这个极限, 就是流速场 A 在 点 M 0 处按右手法则绕 n 的环流密度. rot A n 另一方面, (6) 式左边的 是 rot A( M 0 ) M0 在 n ( M 0 )上的投影. 由此可见, 当所取的 n ( M 0 ) 与
z 2 2 2 3/ 2 z ( x 返回
因此引力场 F 在每一点处的散度都为零 ( 除原点没
有定义外 ).
前页 后页 返回
设 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
f f ( u) u .
5. 若 f f ( u1 , u2 ,, um ) , ui ui ( x , y , z ) , 则
f f ui . i 1 ui
m
这些公式读者可利用定义来直接验证.
前页 后页 返回
例1 设质量为 m 的质点位于原点, 质量为 1 的质点 位于 M ( x , y , z ), 记 r OM x 2 y 2 z 2 , m 试求 的梯度 . r m x y z m 2 , , . 解 r r r r r 若以 r0 表示 OM 上的单位向量, 则有 m m 2 r0 . r r
一、场的概念
若对全空间或其中某一区域 V 中每一点 M, 都有一
个数量 (或向量) 与之对应, 则称在 V 上给定了一个
数量场 (或向量场). 例如: 温度和密度都是数量场, 重力和速度都是向量场. 在引进了直角坐标系后, 点 M 的位置可由坐标确定. 因此给定了某个数量场就 等于给定了一个数量函数 u( x , y , z ), 在以下讨论中
这个等式可以看作是散度的另一种定义形式.

(2)
散度的物理意义 联系本章§2中提到的, 流速为 A
的不可压缩流体, 经过封闭曲面 S 的流量是 A dS .
S 于是(2)式表明 div A( M 0 ) 是流量对体积 V 的变化率, 并称它为 A 在点 M 0 的流量密度. 若 div A( M 0 ) 0, 说明在每一单位时间内有一定数


(5)
这个等式也可以看作是旋度的另一种定义形式. 为了由 (5) 式直观描述旋度的物理意义, 不妨将其 中 的曲面块 S 改换为平面区域 D ( 图 22-12 ), 这时 (5)
前页 后页 返回
rot A( M 0 )
n0
M0

D
L
图 22 12
式又被改写为 rot A n
( u v ) u(v ) (u)v .
特别地有
(u2 ) 2u(u) .
前页 后页 返回
3. 若 r ( x , y , z ) , ( x , y , z ) , 则
d dr .
4. 若 f f ( u) , u u( x , y, z ) , 则
四、旋 度 场
为 V 上的一个向量场. 称如下向量函数: R Q P R Q P F ( x, y, z ) i+ j+ k y z z x x y 为 A 的旋度. F 是由向量场 A 派生出来的一个向量
当把它作为运算符号来看待时, 梯度可写作
grad u u .
前页 后页 返回
注 通常称为哈密顿 (Hamilton) 算符(或算子), 读 作 “Nabla”.
梯度有以下一些用 表示的基本性质:
1. 若 u, v 是数量函数, 则
( u v ) u v .
2. 若 u, v 是数量函数, 则
3. 若 ( x , y , z ) 是一数量函数, 则
2 2 2 2 2 2 . x y z
算符 的内积 常记作 (拉普拉斯算符) , 于是
.
前页 后页 返回
m x y z 例2 求例1中引力场 F 2 , , 所产生的散 r r r r 度场.
前页 后页 返回
量的流体流出这一点, 则称这一点 M 0 为 “源”. 若 div A( M 0 ) 0, 说明流体在这一点 M 0 被吸收, 则 称这点为 “汇”.
若在每一点都有 div A 0, 则称 A 为 “无源场”. A 的散度也可表示为矢性算符 与 A 的数性积: div A A .


前页 后页 返回
S L
(4)
对上式中的曲面积分应用中值定理, M S , 使得
前页 后页 返回
rot A n d S rot A n
S


M

S
L
A t ds .
在 S 上任取一点 M 0 . 令 S 收缩到 M 0 ( 记作 S M 0 ), 则同时有 M M 0 , 对上式取极限, 得到 1 rot A n lim A t ds . L S M 0 S M0
n 设 (cos , cos , cos ) 为曲面 S 在各点的单位 法向量,记 dS n dS , 称为 S 的面积元素向量. 于是
高斯公式可写成如下向量形式: div AdV A dS .
V S
*§4 场论初步
在物理学中 , 曲线积分和曲面积分有着广 泛的应用 . 物理学家为了既能形象地表达有 关的物理量 , 又能方便地使用数学工具进行 逻辑表达和数据计算 , 使用了一些特殊的术 语和记号, 在此基础上产生了场论.
一、场的概念 二、梯度场 三、散度场 四、旋度场 五、管量场与有势场
前页 后页 返回
(1)
M V , 使得 对上式中的三重积分应用中值定理, div A d V div A ( M ) V A dS ,
V
S
在 V 中任取一点 M 0 . 令 V 收缩到 M 0 ( 记作 V M0 ),
前页 后页 返回
则同时有 M M 0 , 对上式取极限, 得到 1 div A( M 0 ) lim A dS . V M 0 V S
1 lim A t ds . (6) L D M0 D M0 A t 在流速场 A 中, 曲线积分 L ds 是沿闭曲线 L


前页 后页 返回
的环流量, 它表示流速为 A 的不可压缩流体, 在单位 1 A t ds 时间内沿曲线 L 流过的总量. 这样, D L
解 因为 r 2 x 2 y 2 z 2 , 所以
F m ( x, y, z ) , 2 2 2 32 (x y z )
x F m 2 2 2 3/ 2 x ( x y z )
y 2 y ( x y 2 z 2 )3 / 2
前页 后页 返回
它表示两质点间的引力, 方向朝着原点, 大小与质量 的乘积成正比, 与两点间距离的平方成反比. m 这说明了引力场是数量场 的梯度场, 因此常称 r m 为引力势. r
前页 后页 返回
设 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
三、散 度 场
为 V 上的一个向量场. 称如下数量函数:
P Q R D( x , y , z ) x y z 为 A 的散度. 这是由向量场 A 派生出来的一个数量
场, 也称散度场, 记作
P Q R div A . x y z
前页 后页 返回
j y Q
k . z R
类似于用散度表示的高斯公式 (1), 现在可用旋度来 表示斯托克斯公式:
rot A dS A ds .
S L
(3)
前页 后页 返回
其中 d S 为前述对于曲面 S 的面积元素向量; 而 d s
容易由定义直接推得散度的以下一些基本性质:
前页 后页 返回
1. 若 A, B 是向量函数, 则 ( A B) A B . 2. 若 是数量函数, A 是向量函数, 则 ( A) A A .
总是设它对每个变量都有一阶连续偏导数.同理,每
前页 后页 返回
个向量场都与某个向量函数 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
相对应. 这里 P, Q, R 为所定义区域上的数量函数, 并假定它们有一阶连续偏导数. 设 L 为向量场中一条曲线. 若 L 上每点 M 处的切线 方向都与向量函数 A 在该点的方向一致, 即
dx dy dz , P Q R
前页 后页 返回
则称曲线 L 为向量场 A 的向量场线. 例如电力线、
磁力线等都是向量场线.
注 场的性质是它本身的属性, 和坐标系的引进无关.
引入或选择某种坐标系是为了便于通过数学方法来 进行计算和研究它的性质.
前页 后页 返回
二、梯度场
在第十七章§3 中我们已经介绍了梯度的概念, 它 是由数量函数 u( x , y , z ) 所定义的向量函数 u u u grad u i j k. x y z grad u 是由数量场 u 派生出来的一个向量场, 称为 梯度场. 由前文知道, grad u 的方向就是使方向导 数 u l 达到最大值的方向, grad u 就是在这个方 方向上的方向导数.
相关文档
最新文档