数学分析课件 场论初步

合集下载

数学分析课件

数学分析课件

长度的计算
利用定积分可以计算曲线的长度,以及物体的周长。
06
高阶导数与高阶积分
高阶导数的计算与性质
高阶导数的计算方法
定义法:根据导数的定义,对函数进行多次求 导,适用于简单的函数。
莱布尼茨法则:利用已知的导数公式,通过递 推关系计算高阶导数,适用于较复杂的函数。
高阶导数的计算与性质
线性性质:若$f(x)$和$g(x)$的$n$阶导数存在 ,则$(a f+b g)^{(n)}=a f^{(n)}+b g^{(n)}$ 。
数学分析课件
目录
• 数学分析概述 • 数学分析的基本性质 • 极限理论及其应用 • 微分学及其应用 • 定积分及其应用 • 高阶导数与高阶积分 • 数学分析中的重要定理与问题
01
数学分析概述
定义与意义
定义
数学分析是研究函数、序列、极限、 微积分等概念与方法的分支,是数学 的基础学科。
意义
数学分析在数学领域中占据重要地位 ,为其他数学分支提供基础理论和工 具,也是许多实际应用领域的基础。
THANKS。
积分的基本性质
积分具有可加性、可减性、可乘性和可除性 。
积分的基本公式
积分的基本公式包括求导公式、微分公式、 乘积公式、幂函数公式等。
积分的方法
积分的方法包括换元法、分部积分法、有理 函数积分法等。
积分的应用:面积、体积、长度
面积的计算
利用定积分可以计算曲线下面积,以及平面图 形面积。
体积的计算
利用定积分可以计算旋转体的体积,以及立体 的体积。
分区求和法:将积分区间划分为若干小区间,在每个小 区间上应用牛顿-莱布尼茨公式计算积分,再求和得到 总积分值。

数学分析_郇中丹_01_集合论初步

数学分析_郇中丹_01_集合论初步

集合运算的性质 (II)
• • • • • 9. =E, E= 10. (aAa)= aAa 11. (aAa)= aAa 12. AB=(A\B)(B\A) 证明举例:3, 4, 5, 8, 10. 强调
– 如何证明集合相等 – 利用运算的定义
• 习题:6,7,9,11,12
集合的交
• 集合A和B的交是由所有A和B的公共元素 组成的集合, 记为A B, 也就是 A B={x | xA且xB} • 集合交运算的性质:
– 交换律 A B= B A – 结合律A (B C)= (A B) C
• 集合族{Aa : aI}的交: aIAa=aAa={x | "aI, xAa} • I为自然数时的记法
集合的并
• 集合A和B的并是由A或B的所有元素组成 的集合, 记为AB, 也就是 AB={x | xA或xB} • 集合并运算的性质:
– 交换律 A B= B A – 结合律A (B C)= (A B) C
• 集合族{Aa : aI}的并: aIAa=aAa={x | aI, xAa} • I为自然数时的记法
与映射相关的术语
• 考虑映射f: AB. 有"xA, ! yB使得 (x,y)f.
– – – – – – 元素y叫做x在映射F下的像, 并且记为y=f(x) 元素x叫做元素y在映射f下的一个原像 A叫做映射f的定义域 f(A)={yB | xA, y=f(x)}叫做f的值域 xA叫做自变量的值(简称自变量) y=f(x)叫做函数在x处的值
现代数学方法:集合论+公理化
• 集合是定义任何数学对象的原始概念。 数学上说,任何数学概念都是用集合定 义的,简单地说,任何数学对象都是某 种类型的集合。 • 数学系统都以公理化的形式和精神来陈 述的探索的。

场论初步课件

场论初步课件

m r
为引力势.
数学分析 第二十二章 曲面积分
高等教育出版社
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
散度场 ur 设 A( x, y, z) P( x, y, z) i Q( x, y, z) j R( x, y, z) k
为 V 上的一个向量场. 称如下数量函数:
D( x, y, z) P Q R
则同时有 M M0 , 对上式取极限, 得到
Ò ur
div A(M0 )
lim V M0
1 V
ur uur A dS .
S
(2)
这个等式可以看作是散度的另一种定义形式.
数学分析 第二十二章 曲面积分
高等教育出版社
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
ur 散度的物理意义 联系本章§2中提到的, 流速为 A
后退 前进 目录 退出
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
相对应. 这里 P, Q, R 为所定义区域上的数量函数,
并假定它们有一阶连续偏导数.
设 L 为向量场中一条曲线. 若 L 上每点 M 处的切线 ur
方向都与向量函数 A 在该点的方向一致, 即
dx dy dz ,
方向上的方向导数.
数学分析 第二十二章 曲面积分
高等教育出版社
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
因为数量场 u( x, y, z) 的等值面 u( x, y, z) c 的法线
方向为
u x
,
u y
,

数学分析PPT

数学分析PPT

从而 r r ∫ a dl = ∫∫ rota dS .
L S
Yunnan University
§3. 场论初步
注:散度与坐标的选择无关. r r r u r 例1. 设a = 3i + 20 j − 15k , 对下列数量场ϕ 分别求出
gradϕ 及div (ϕ a ) , 其中ϕ = ( x 2 + y 2 + z
2 2
3 − 2 2
)
+ 15 z ( x + y + z
2 2
3 − 2 2
)
例 2.
设 u ( x , y , z ) = xyz .
(1)求u ( x , y , z ) 在点P1 ( 0, 0, 0 ) , P2 ( 1,1,1) 及P3 ( 2,1,1) 处 r r r u r 沿b = 2i + 3 j − 4k的方向导数。
( )
( )
( )
∂P ∂Q ∂R = ∫∫∫ + + dV x ∂y ∂z V ∂
r ∂P ∂Q ∂R 向量 + + 称为向量a的散度,它形成一个数量场,记为 ∂x ∂y ∂z r ∂P ∂Q ∂R . diva = + + ∂x ∂y ∂z
Yunnan University
( )
( )
( )
r ∂R ∂Q ∂P ∂R ∂ Q ∂R , , 称向量 − − − 为向量a的旋度, ∂y ∂z ∂z ∂x ∂x ∂y r 记为rot a .
Yunnan University
§3. 场论初步
即 r i r ∂ rot a = ∂x P r j ∂ ∂y Q r u k ∂ . ∂z R

《数学分析》课件

《数学分析》课件

函数与极限
函数
函数是数学分析中的基本概念之一,它是一个从定义域到值域的映射。根据定义域和值域的不同,函数可以分为 不同的类型,如连续函数、可微函数等。
极限
极限是数学分析中描述函数在某一点的行为的工具。极限的定义包括数列的极限和函数的极限,它们都是描述函 数在某一点附近的行为。极限的概念是数学分析中最重要的概念之一,它是研究函数的连续性、可导性、可积性 等性质的基础。
复合函数的导数
复合函数的导数是通过对原函数进行 求导,再乘以中间变量的导数得到的 。
微分及其应用
微分的定义
微分是函数在某一点附近的小变化量 ,可以理解为函数值的近似值。
微分的应用
微分在近似计算、误差估计、求切线 、求极值等方面有着广泛的应用。例 如,在求极值时,可以通过比较一阶 导数在极值点两侧的正负性来确定极 值点。
数列的极限
总结词
数列极限的定义与性质
详细描述
数列极限是数学分析中的一个基本概念,它描述了数列随 着项数的增加而趋近于某个固定值的趋势。极限具有一些 重要的性质,如唯一性、四则运算性质、夹逼定理等。
总结词
数列极限的证明方法
详细描述
证明数列极限的方法有多种,包括定义法、四则运算性质 、夹逼定理、单调有界定理等。这些方法可以帮助我们证 明数列的极限并理解其性质。
含参变量积分的概念与性质
含参变量积分的概念
含参变量积分是指在积分过程中包含一个或多个参数的积分。这种积分在处理一些具有参数的物理问题时非常有 用。
含参变量积分的性质
含参变量积分具有一些重要的性质,如参数可分离性、参数连续性、参数积分区间可变性等。这些性质使得含参 变量积分在解决实际问题时更加灵活和方便。
反常积分与含参变量积分的计算方法

场论初步

场论初步
线的方向余弦和向量线上的成比例从而得到向量线应满足的微分方程在向量不为零的条件下由线性微分方程组的理论可知所考虑的整个场被向量线所填满而通过场中每一点由一条且只有一条这样的曲线且过不同的点的两条向量线没有公共点
§4.场论初步
向量场的散度与旋度
1’向量线
如果在空间或某一部分空间的每一点处都确定一个向
曲线积分只与起点和终点有关,而与所沿途径无关, 物理学中称这种场叫保守场。
利用斯托克斯公式,可以推出,一个向量场 a 为空 间保守场的充要条件是
az ay 0, y z
ax az 0, z x
ay ax 0, x y
亦即
rota 0
旋度为零的场称为无旋场,因此保守场也就是无旋场。


az y

ay z
i


ax z

az x

j

ay ax k rota, x y
2 grad div grad
由此可以看出,算子 的作用在于把微分运算化为关于算 子 的向量代数运算。
根据定义,向量场在一给定处的散度是一数量,散度 的全体构成一数量场。
上面所给出的散度的定义好像与坐标的选择有关,其
实不然。为了说明这个事实,我们可给散度另一形式的定 义,设 M 为区域中任一点,在这点周围任取一含有这点 的区域 V ,令 S 为 V 的表面,则有高斯公式
an dS divadV
其中 , 是任意常数,这个性质可由定义直接验证。
关于各种乘积有以下的计算公式,其中 x, y, z
是函数,a axi ay j azk 和 b bxi by j bzk 是向量,

场论初步

场论初步

yz zx,
函数u在点M处最大的方向导数和它的方向。
梯度的性质:
1 grad (u v ) gradu gradv; 2 grad (u v ) ugradv vgradu; 3 gradf (u ) f (u ) gradu.
2、散度
设有一个稳定流动的流体速度场
Ax dx Ay dy Az dz
C
可以改写为以下形式:
C S
其物理意义是:向量场 A 沿闭曲线C的环量等于
展布在以C为边界的曲面S上每一点绕法线的旋 度之和。
A( P) l ds rot A( P) ndS.
Green公式,Guass公式,Stokes公式之 间的关系
S V
奥-高公式的物理意义:向量场通过闭曲面的总 流量等于闭曲面所围成的体内的每一点的散度的 总和。
奥-高公式表述了流量和散度之间的关系。流 量刻画的是向量场的整体性质,而散度刻画 的是向量场的局部性质。此二者之间存在密 切关系。
3 3 3 例2、求向量场 A( x , y , z ) x i y j z k
设 l (cos , cos , cos ) 是射线l的单位向
量,则 f f f f ( , , ) (cos , cos , cos ) l x y z gradf ( P ) l gradf ( P ) l cos gradf ( P ) cos .
结论:梯度方向是函数f(x,y,z)在点P变化率最 大的方向,即函数值增加或减少最快的方向。
等值面:曲面f(x,y,z)=C(C为常数)称为等值面。
场f(x,y,z)中过点 P0 ( x0 , y0 , z0 ) 有且仅有一 个等值面,等值面在 P0 的法线方程为

场论初步

场论初步

设有向量场 A( x , y , z ) ,在场内作包围点 M 的闭曲面 Σ ,Σ 包围的区域为V ,记体积为V .若 当V 收缩成点 M 时,
限 极 lim
∫∫ A⋅ dS Σ
Σ
V→M
V
在 存 ,
称 极 值 度, 为 则 此 限 为A在 M 处 散 , 记 divA. 点 的 度
散度在直角坐标系下的形式
h ( x , y , z ) = const
(c值不同对应不同等值面) 值不同对应不同等值面
ϕ = c1 ϕ = c2
ϕ = c3
等值线
等值面 等值面
数量场u=u u=u(x,y,z)在点M(x,y,z)处 在点M 定义 数量场u=u 在点 处 的梯度是向量
∂u ∂u ∂u gradu = i+ j+ k ∂x ∂y ∂z ∂u ∂u ∂u 其中, , , 取点M的值。 ∂x ∂y ∂z
由于数量场u=u(M)中每一点都对应着一个梯度 gradu,故gradu形成一个向量场,叫做数量场u(M) 的梯度场 梯度场. 梯度场 根据梯度在直角坐标系的表示式,求数量场的梯 度是一种求导运算,有类似于求导运算的一些法则:
∇u = grandu
1、gradC = 0
3、grad(u ± v) gradu ± gradv = 4、grad(uv) vgradu + ugradv = u 1 5、grad( ) 2 (vgradu − ugradv) = v v 6、gradf(u) f ' (u ) gradu =
c = ∫ A ⋅ dl
称为 A 沿该曲线L的环量或流量。 的环量或流量。
2、旋度: 旋度: 那么 设想将闭合曲线缩小到其内某一点附近, 设想将闭合曲线缩小到其内某一点附近,

数学分析22.4场论初步(含习题及参考答案)

数学分析22.4场论初步(含习题及参考答案)

第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。

数学物理方法课件:场论的基本概念

数学物理方法课件:场论的基本概念

的模,称矢量G(M)为函数u在点M处的梯度
u |{u , u , u}| cos({cos , cos , cos },l0 )
l x y z
G gradu {u , u , u} x y z
G gradu u i u j u k x y z
i, j, k 分别是x, y, z方向的单位矢量。
间形成的电势场)
u 1
q
4 x2 y2 z2
求解任意点M(x, y, z)的梯度。
引力场: u M
1
G x2 y2 z2
求解任意点M(x, y, z)的梯度。
方向导数、梯度的数理含义
数学含义: 数量场中每一点M处的梯度,必垂直于过该点的场 函数的等值面u(x, y, z)=c(常数), 并指向函数增大 的方向。
场论的基本概念
《数理方法》课程必备基础; 在弹性力学、流体力学、电磁学等学科中具有应 用广泛; 掌握场论基本概念及其计算方法,对数理方程的 学习至关重要;
场的概念
场 如果在全空间或部分空间中的每一点,都对应 着某个物理量的一个确定的值,就称这空间里确定 了该物理量的场。
场的实例 温度场、密度场、电势场; 重力场、流场、加速度场;
x2 y2 z2
1
2k
a
3
x2 y2 z2
1 2
x
a
20
x2 y2 z2
grad及div a ,其中
x2 y2 z2
1. 2
解:grad i j k
x y z
x
x2 y2 z2
3
2 i y
x2 y2 z2
3
2j
z
x2 y2 z2
3
2k

22_4 场论初步

22_4 场论初步
第3节
第22章
场论初步
一、场的概念 二、梯度场 三、散度场 四、旋度场 五、管量场与有势场
一、场的概念
•若对全空间或其中某一区域V 中每一点M,都有
一个数量(或向量)与之对应,则称在V上给定了一 个数量场(或向量场)。
数量场 (数性函数) 函数 场
如: 温度场, 电位场等
向量场(矢性函数) 如: 力场,速度场等
( P cos Q cos R cos ) d s

数学分析
目录 上页 下页 返回 结束
12
令 A ( P, Q, R) , 引进一个向量
记作
rot A
x y z P Q R
i
j
k
于是得斯托克斯公式的向量形式 :

rot A n d S A d s (rot A) n d S A d s P d x Q d y R d z A d s 称为向量场A
13
定义:
沿有向闭曲线 的环流量. 向量 rot A 称为向量场 A 的 旋度 .
数学分析
目录 上页 下页 返回 结束
旋度的力学意义: 设某刚体绕定轴 l 转动, 角速度为 , M为刚体上任一 点, 建立坐标系如图,则 z
(0, 0, ), r ( x, y, z )
点 M 的线速度为
在场中点 M(x, y, z) 处
A n d S 为向量场 A 通过
P Q R 记作 div A x y z
称为向量场 A 在点 M 的散度.
数学分析
目录 上页 下页 返回 结束
9
说明: 由引例可知, 散度是通量对体积的变化率, 且

(完整版)数学分析全套课件(华东师大)

(完整版)数学分析全套课件(华东师大)

证明
由于x
<
y, 故存在非负整数n,使得x n
< yn.令r
1 2
(xn
yn
)
则r为有理数,且有x xn < r < yn y,即得x < r < y.
例2 设a,b R,证明: 若对任何正数e有a < b e ,则a b.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b,则e为正数且a b e , 这与假设 a < b e矛盾.从而必有a b.
§3 函数概念
1.函数概念
❖定义
设数集DR, 则称映射f : D R为定义在D上的函数, 通常简记为
yf(x), xD, 其中x称为自变量, y称为因变量, D称为定义域, 记作Df, 即DfD.
说明:
记为函号了数f叙的和述记f(x方号)的便是区可, 常别以用:任前记意者号选表“取示f(的x自), 变除x量了Dx用”和或f因“外变y, 还量f(可xy)之,用x间“D的g””对来 应表、法示“则 定F”义,、而在“后D者”上表等的示,函此与数时自, 函这变数时量就应x对记理应作解的y为函g由(数x它)、值所.y确F定(x的)、函y数f(x.)
的集合, RR常记作R2.
3.实数集 ❖两个实数的大小关系
• 定义1
给定两个非负实数
x a0.a1a2 Lan L, y b0 .b1b2 Lbn L,其中a0 ,b0为非负整数, ak ,bk (k 1,2,L)为整数,0 ak 9,0 bk 9. 若有ak bk , k 1,2,L,则称x与y相等,记为x y;
称有理数xn a0.a1a2 Lan为实数x的n 位不足近似,

数学分析课件 场论初步

数学分析课件  场论初步

则是对于曲线 L 的弧长元素向量. 对后者说明如下: 设 t (cos ,cos ,cos ) 是曲线 L 在各点处的正向 单位切向量, 弧长元素向量即为 ds t ds .
把公式 (3) 改写成 rot A n d S A t ds .
当把它作为运算符号来看待时, 梯度可写作
grad u u .
前页 后页 返回
注 通常称为哈密顿 (Hamilton) 算符(或算子), 读 作 “Nabla”.
梯度有以下一些用 表示的基本性质:
1. 若 u, v 是数量函数, 则
( u v ) u v .
2. 若 u, v 是数量函数, 则


前页 后页 返回
z 2 2 2 3/ 2 z ( x y z )
0.
前页 后页 返回
因此引力场 F 在每一点处的散度都为零 ( 除原点没
有定义外 ).
前页 后页 返回
设 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
S L
(4)
对上式中的曲面积分应用中值定理, M S , 使得
前页 后页 返回
rot A n d S rot A n
S


M

S
L
A t ds .
在 S 上任取一点 M 0 . 令 S 收缩到 M 0 ( 记作 S M 0 ), 则同时有 M M 0 , 对上式取极限, 得到 1 rot A n lim A t ds . L S M 0 S M0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、散 度 场
为 V 上的一个向量场. 称如下数量函数:
P Q R D( x , y , z ) x y z 为 A 的散度. 这是由向量场 A 派生出来的一个数量
场, 也称散度场, 记作
P Q R div A . x y z
前页 后页 返回
就反映了流体关于 L 所围面积的平均环流密度. 当 D M 0 时, (6) 式右边这个极限, 就是流速场 A 在 点 M 0 处按右手法则绕 n 的环流密度. rot A n 另一方面, (6) 式左边的 是 rot A( M 0 ) M0 在 n ( M 0 )上的投影. 由此可见, 当所取的 n ( M 0 ) 与


前页 后页 返回
前页 后页 返回
因为数量场 u( x , y , z ) 的等值面 u( x , y , z ) c 的法线
u u u 方向为 , , , 所以 grad u 恒与 u 的等值面 x y z 正交.
引进符号向量
, , , x y z
j y Q
k . z R
类似于用散度表示的高斯公式 (1), 现在可用旋度来 表示斯托克斯公式:
rot A dS A ds .
S L
(3)
前页 后页 返回
其中 d S 为前述对于曲面 S 的面积元素向量; 而 d s
一、场的概念
若对全空间或其中某一区域 V 中每一点 M, 都有一
个数量 (或向量) 与之对应, 则称在 V 上给定了一个
数量场 (或向量场). 例如: 温度和密度都是数量场, 重力和速度都是向量场. 在引进了直角坐标系后, 点 M 的位置可由坐标确定. 因此给定了某个数量场就 等于给定了一个数量函数 u( x , y , z ), 在以下讨论中
(1)
M V , 使得 对上式中的三重积分应用中值定理, div A d V div A ( M ) V A dS ,
V
S
在 V 中任取一点 M 0 . 令 V 收缩到 M 0 ( 记作 V M0 ),
前页 后页 返回
则同时有 M M 0 , 对上式取极限, 得到 1 div A( M 0 ) lim A dS . V M 0 V S


(5)
这个等式也可以看作是旋度的另一种定义形式. 为了由 (5) 式直观描述旋度的物理意义, 不妨将其 中 的曲面块 S 改换为平面区域 D ( 图 22-12 ), 这时 (5)
前页 后页 返回
rot A( M 0 )
n0
M0

D
L
图 22 12
式又被改写为 rot A n
z 2 2 2 3/ 2 z ( x y z )
0.
前页 后页 返回
因此引力场 F 在每一点处的散度都为零 ( 除原点没
有定义外 ).
前页 后页 返回
设 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
则是对于曲线 L 的弧长元素向量. 对后者说明如下: 设 t (cos ,cos ,cos ) 是曲线 L 在各点处的正向 单位切向量, 弧长元素向量即为 ds t ds .
把公式 (3) 改写成 rot A n d S A t ds .
解 因为 r 2 x 2 y 2 z 2 , 所以
F m ( x, y, z ) , 2 2 2 32 (x y z )
x F m 2 2 2 3/ 2 x ( x y z )
y 2 y ( x y 2 z 2 )3 / 2
总是设它对每个变量都有一阶连续偏导数.同理,每
前页 后页 返回
个向量场都与某个向量函数 A( x , y , z ) P ( x , y , z ) i Q( x , y , z ) j R( x , y , z ) k
相对应. 这里 P, Q, R 为所定义区域上的数量函数, 并假定它们有一阶连续偏导数. 设 L 为向量场中一条曲线. 若 L 上每点 M 处的切线 方向都与向量函数 A 在该点的方向一致, 即
*§4 场论初步
在物理学中 , 曲线积分和曲面积分有着广 泛的应用 . 物理学家为了既能形象地表达有 关的物理量 , 又能方便地使用数学工具进行 逻辑表达和数据计算 , 使用了一些特殊的术 语和记号, 在此基础上产生了场论.
一、场的概念 二、梯度场 三、散度场 四、旋度场 五、管量场与有势场
前页 后页 返回
n 设 (cos , cos , cos ) 为曲面 S 在各点的单位 法向量,记 dS n dS , 称为 S 的面积元素向量. 于是
高斯公式可写成如下向量形式: div AdV A dS .
V S
dx dy dz , P Q R
前页 后页 返回
则称曲线 L 为向量场 A 的向量场线. 例如电力线、
磁力线等都是向量场线.
注 场的性质是它本身的属性, 和坐标系的引进无关.
引入或选择某种坐标系是为了便于通过数学方法来 进行计算和研究它的性质.
前页 后页 返回
二、梯度场
在第十七章§3 中我们已经介绍了梯度的概念, 它 是由数量函数 u( x , y , z ) 所定义的向量函数 u u u grad u i j k. x y z grad u 是由数量场 u 派生出来的一个向量场, 称为 梯度场. 由前文知道, grad u 的方向就是使方向导 数 u l 达到最大值的方向, grad u 就是在这个方 方向上的方向导数.
场, 也称旋度场, 记作 R Q P R Q P rot A i + j+ k. z x x y y z
前页 后页 返回
为便于记忆起见, 可用行列式形式来表示旋度:
i rot A x P
3. 若 ( x , y , z ) 是一数量函数, 则
2 2 2 2 2 2 . x y z
算符 的内积 常记作 (拉普拉斯算符) , 于是
.
前页 后页 返回
m x y z 例2 求例1中引力场 F 2 , , 所产生的散 r r r r 度场.
当把它作为运算符号来看待时, 梯度可写作
grad u u .
前页 后页 返回
注 通常称为哈密顿 (Hamilton) 算符(或算子), 读 作 “Nabla”.
梯度有以下一些用 表示的基本性质:
1. 若 u, v 是数量函数, 则
( u v ) u v .
2. 若 u, v 是数量函数, 则
( u v ) u(v ) (u)v .
பைடு நூலகம்
特别地有
(u2 ) 2u(u) .
前页 后页 返回
3. 若 r ( x , y , z ) , ( x , y , z ) , 则
d dr .
4. 若 f f ( u) , u u( x , y, z ) , 则
1 lim A t ds . (6) L D M0 D M0 A t 在流速场 A 中, 曲线积分 L ds 是沿闭曲线 L


前页 后页 返回
的环流量, 它表示流速为 A 的不可压缩流体, 在单位 1 A t ds 时间内沿曲线 L 流过的总量. 这样, D L
容易由定义直接推得散度的以下一些基本性质:
前页 后页 返回
1. 若 A, B 是向量函数, 则 ( A B) A B . 2. 若 是数量函数, A 是向量函数, 则 ( A) A A .
四、旋 度 场
为 V 上的一个向量场. 称如下向量函数: R Q P R Q P F ( x, y, z ) i+ j+ k y z z x x y 为 A 的旋度. F 是由向量场 A 派生出来的一个向量
f f ( u) u .
5. 若 f f ( u1 , u2 ,, um ) , ui ui ( x , y , z ) , 则
f f ui . i 1 ui
m
这些公式读者可利用定义来直接验证.
前页 后页 返回
例1 设质量为 m 的质点位于原点, 质量为 1 的质点 位于 M ( x , y , z ), 记 r OM x 2 y 2 z 2 , m 试求 的梯度 . r m x y z m 2 , , . 解 r r r r r 若以 r0 表示 OM 上的单位向量, 则有 m m 2 r0 . r r
S L
(4)
对上式中的曲面积分应用中值定理, M S , 使得
前页 后页 返回
rot A n d S rot A n
S


M

S
L
A t ds .
在 S 上任取一点 M 0 . 令 S 收缩到 M 0 ( 记作 S M 0 ), 则同时有 M M 0 , 对上式取极限, 得到 1 rot A n lim A t ds . L S M 0 S M0
这个等式可以看作是散度的另一种定义形式.
相关文档
最新文档