数学物理方程资料

合集下载

数学物理方程

数学物理方程
2u( x, t ) u( x dx, t ) u( x, t ) = T gdx dx 2 x x t
2 u ( x, t ) a t 2
ds dx
u( x dx, t ) u( x, t ) u( x, t ) 2u( x, t ) 其中: dx dx = 2 x x x x x
例4、热传导
当导热介质中各点的温度分布不均匀时,有热量从高温处流 向低温处,求温度随空间时间变化的规律。 所要研究的物理量: 温度 u ( x, y, z, t ) 根据热学中的傅立叶实验定律 在单位时间内从dS流入V的热量为: u ˆ ˆ dS ku dS d Q w dS k dS k u n n 在单位时间内通过S流入V的热量为
H Jc B E t D v B 0 D t
在自由空间:
Jc 0, v 0
D E B H
E H t H E t E 0 H 0
例5、静电势
确定所要研究的物理量: 电势u
根据物理规律建立微分方程: 1 ˆ E E dS dV 0 V 0 S
u E
对方程进行化简:
E (u) u 2u / 0
2u / 0
V
M
S
热场
u 温度发生变化需要的热量为:Q c dV t V
Q1 Q2 Q
u k udV FdV c dV t V V V u k 2 F u 2 u k u c F 热传导方程 t c c t
2
u0
2u 0

数学物理方程的重点

数学物理方程的重点

一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。

数学物理方程3篇

数学物理方程3篇

数学物理方程文1:傅里叶变换傅里叶变换是数学分析中常用的一种变换方法,用于将一个函数或信号从时域(时间域)转换到频域(频率域)。

在物理学和工程学中,傅里叶变换的应用非常广泛,如图像处理、声音处理、通信系统等领域。

傅里叶变换的定义为:$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$其中,$f(t)$表示原始函数,$F(\omega)$表示经过傅里叶变换后得到的函数,$\omega$表示频率。

傅里叶变换可以将一个不易处理的函数在频域中分解成若干个简单的正弦和余弦函数的叠加,进而便于分析处理。

傅里叶变换具有以下性质:1. 线性性:$F\{\alpha f(t)+\beta g(t)\}=\alphaF\{f(t)\}+\beta F\{g(t)\}$2. 积移性:$F\{f(t-a)\}=e^{-i\omega a}F\{f(t)\}$3. 周期性:若$f(t)$是周期性函数,则$F(\omega)$也是周期性函数4. 对称性:$F\{f(-t)\}=F^{*}\{\omega\}$其中,$F^{*}\{\omega\}$表示$F(\omega)$的共轭对称,即$F^{*}\{\omega\}=F(-\omega)$。

傅里叶逆变换可以将一个复杂的函数在频域中分解成若干个简单的正弦和余弦函数的反叠加,进而便于重构原始函数。

$$f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega$$ 通过傅里叶变换和傅里叶逆变换,我们可以在时域和频域之间自由转换,便于处理和分析各种信号和系统。

文2:波动方程波动方程是描述波动现象的数学模型,常用于分析各种波动现象,如机械波、电磁波等。

波动方程的一般形式为:$$\frac{\partial^2u}{\partial t^2}-c^2\nabla^2u=0$$其中,$u(x,y,z,t)$表示波的振动位移,$c$表示波速,$\nabla^2u$表示波的散度。

数学物理方程归纳总结

数学物理方程归纳总结

数学物理方程归纳总结数学和物理方程是科学研究中的重要工具,广泛应用于各个领域。

本文将对一些常见的数学物理方程进行归纳总结,分析其数学意义和物理应用,并探讨其背后的原理和推导过程。

1. 一维运动方程一维运动是物理学中最简单的情形之一,其运动状态只涉及一个方向的变化。

常见的一维运动方程有:- 位移公式:$S = V_0t + \frac{1}{2}at^2$- 速度公式:$V = V_0 + at$- 速度与位移的关系:$V^2 = V_0^2 + 2aS$这些方程描述了质点在匀加速度下的运动规律,其中$S$ 表示位移,$V_0$ 表示初始速度,$a$ 表示加速度,$t$ 表示时间,$V$ 表示末速度。

这些方程在解决一维运动问题时具有重要的应用价值,可以帮助我们计算物体的位移、速度和加速度等物理量。

2. 牛顿力学方程牛顿力学是经典力学的基础理论,在描述宏观物体运动和相互作用时非常重要。

牛顿三定律是牛顿力学的核心,其表述为:- 第一定律(惯性定律):物体在不受外力作用时保持静止或匀速直线运动。

- 第二定律(运动定律):物体受到的合力等于质量乘以加速度,即 $F = ma$。

- 第三定律(作用与反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。

根据牛顿第二定律,我们可以推导出一些重要的等式,用于解决各种力学问题。

例如,结合万有引力定律,我们可以得到开普勒第三定律 $T^2 = \frac{4\pi^2}{GM}r^3$,其中 $T$ 是行星公转周期,$G$ 是引力常数,$M$ 是太阳的质量,$r$ 是行星与太阳的平均距离。

3. 麦克斯韦方程组麦克斯韦方程组是电磁学的基础方程,描述了电磁场的产生和传播规律。

麦克斯韦方程组包括四个方程:- 高斯定律:$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$- 安培定律:$\nabla \cdot B = 0$- 法拉第电磁感应定律:$\nabla \times E = -\frac{\partial B}{\partial t}$- 完整的麦克斯韦方程:$\nabla \times B =\mu_0J+\mu_0\varepsilon_0\frac{\partial E}{\partial t}$其中,$E$ 和 $B$ 分别表示电场和磁场,$\rho$ 表示电荷密度,$J$ 表示电流密度,$\varepsilon_0$ 是真空中的介电常数,$\mu_0$ 是真空中的磁导率。

数学物理方程

数学物理方程

三、方程的化简
步骤:第一步:写出判别式 断方程的类型;
a122 a11a22 ,根据判别式判
第二步:根据方程(1)写如下方程
a11 ( dy 2 dy ) 2a12 a22 0 dx dx (2)
称为方程(1)的特征方
程。方程(2)可分解为两个一次方程
dy a12 dx a11 (3)
二阶常微分方程含有两个任意常数。
第二章 行波法
第一节 定解问题
一、定义
1.我们把描述一个物理过程的偏微分方程称为泛定方 程。 2.一个过程中发生的具体条件称为定解条件。 3.泛定方程带上适当的定解条件,就构成一个定解问 题。 4.用来表示初始状态的条件称为初始条件; 用来描述边界上的约束情况的条件称为边界条件。 注意:初始条件的个数与方程中出现的未知函数u对时 间变量t的导数的阶数有关。
三、其他cauchy问题
例1. uxx 2uxy 3u yy 0,
解:
2
u ( x,0) sin x, u y ( x,0) x.
y 3x c1 , du du 2 3 0 y x c dx dx 2
y 3x, yx
称为特征方程,其解为特征线。
( x, y) c1 , ( x, y) c2 .
设这两个特征线方程的特征线为 令 ( x, y), ( x, y).
第三步(1)当 0 时,令 ( x, y), ( x, y). 以 , 为
新变量方程(1)化为标准形 u Au Bu Cu D,
注意:在偏微分方程中可以不含未知函数u,但必须含有 未知函数u的偏导数。

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。

本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。

一、微积分微积分是数学和物理学中非常重要的一个分支。

其中,微分和积分是微积分的两个基本概念。

微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。

微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。

二、向量向量是几何学和物理学中非常重要的概念。

向量具有大小和方向两个属性,可以表示物理量的大小和方向。

向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。

三、力学力学是物理学中研究物体运动和相互作用的学科。

其中,牛顿三大定律是力学的基础。

牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。

四、热力学热力学是物理学中研究热量和能量转化的学科。

其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。

热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。

五、波动波动是物理学中研究波的传播和相互作用的学科。

其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。

波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。

数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。

这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。

数学物理方程总结

数学物理方程总结

试证:圆锥形枢轴的纵振动方程为2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ其中h 为圆锥的高。

并求通解及它的初值问题:0:(),()ut u x x tϕψ∂===∂的解。

(1)证明:在圆锥形枢轴内取出],[x x x ∆+一小段来研究。

端面丛向位移为),(t x u [,][(,),(,)]x x x u x t u x x t +∆→+∆ 在时刻t,端面的相对延伸为),(t x u 与),(t x x u ∆+根据胡克定律为),(t x ESux-及),(t x x ESu x ∆+由牛顿第二定律有合力为:),(t x x ESu x ∆+),(t x ESu x -x Su tt ∆=ρ又因为 2222[()t a n ]()()S r h x h x t a nππαπα==-=- 2[()tan ](,)x E h x x u x x t πα--∆+∆),(]tan )[(2t x u x h E x απ--x u x h tt∆-=2]tan )[(αρπttx u x h xu x h E 22)()(-=∂-∂ρππ tt x u x h x u x h E 22)()(-=∂-∂ρ 即:2222222222[(1)](1)1[(1)](1)E ()x u x uE x h x h t x u x u x h x a h t a ρρ∂∂∂-=-∂∂∂∂∂∂-=-∂∂∂=令。

(5分)(2)设(,)()(,)v x t h x u x t =-(5分) 2()()x x v h x v u h x -+=-2222222[(1)]()1[(1)](1)()x x ux h x v h x v x x ux h h x a h t ∂∂-∂∂-+∂∂=-=-∂-∂ 2222221()()v u h x h x x a t ∂∂-=-∂∂ ∴ 2222221[()][()]h x u h x u x a t∂∂-=-∂∂ (5分) 即:222221v v x a t∂∂=∂∂, 或22222v v a t x ∂∂=∂∂则其通解为:()()()h x u v F x at G x at -==-++ (5分)2.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x u a t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0) 所以 F(x)=)2(x ψ-G(0). G (x )=)2(x ϕ-F(0). 且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2at x ++)2(atx -ψ-).0(ϕ 即为古尔沙问题的解。

数学物理方程数学物理第一章

数学物理方程数学物理第一章

偏分方程中所有最高阶 偏导数都是线性的,而 其系数
本课遇到一二阶线性偏微分方程的一般表达形式 一阶线性偏微分方程的一般表达形式
u u a( x, y ) b( x, y ) c( x, y )u f ( x, y ) x y
二阶线性偏微分方程的一般表达形式
2u 2u 2u A( x, y ) 2 2 B( x, y ) C ( x, y ) 2 x xy y u u D( x, y ) E ( x, y ) F ( x, y )u G ( x, y ) 0 x y
在数学物理方程中,我们特别强调通过分析过程推测可能得到 的结论!而对结论的严格论证则常给予略去。这种做法并不意 味着可以取消综合过程,而是意味着分析过程从方法到结论都 能给我们一些新的结论,而验证结论的正确性原则上没有什么 困难。
正因为分析过程的任务在于探求新结论,而结论的确实成立与 否还需另行证明,所以在分析过程的推理中,并不要求十分严 格,特别的不要由于某些定理的条件限制而束缚自己的思路, 这是本课程中应该注意的。
2
2u
二阶线性非齐次的
三阶非线性
2
3u x y
2
ln u 0
§2方程及定解问题的物理推导
2.1、弦振动方程 2.1.1、物理模型
设有长为 l一 根 拉 紧 的 均 匀 柔 软 弦 细, 两 端 被 固 定 在 O, A 两 点 , 且 在 单 位 长 度受 上到 垂 直 于 OA向 上 的 力 F作 用 当 它 在 平 衡 位 置 附 近垂 作直 于 OA方 向 的 微 小 横 向 振 动
18世纪著名数学家、物理学家 达朗贝尔(1717-1783欧拉(1707-1783))
弦振动的研究先驱

数学物理方程公式总结

数学物理方程公式总结

数学物理方程公式总结数学和物理是自然科学的两个重要分支,它们在研究自然界的规律时不可分割。

在数学和物理的学习过程中,我们经常会遇到大量的方程和公式。

这些方程和公式帮助我们理解和解决问题,归纳总结这些方程和公式有助于我们更好地掌握它们。

下面是一些数学物理方程公式的总结。

1.牛顿力学相关方程:- 运动方程: F = ma,其中 F 表示作用力,m 表示物体的质量,a 表示物体的加速度。

-牛顿第一定律:F=0,一个物体若无外力作用,则物体保持静止或匀速直线运动。

- 牛顿第二定律: F = ma,物体的加速度与作用力成正比,与物体的质量成反比。

-牛顿第三定律:F12=-F21,两个物体之间的作用力大小相等,方向相反。

2.热力学相关方程:-热力学第一定律:ΔU=Q-W,系统内部能量的变化等于吸热减去对外界做功。

-热力学第二定律:ΔS≥0,隔离系统内部的熵不会减少,或者说熵的增加不可逆。

-热力学第三定律:绝对零度时,熵为零。

3.电磁学相关方程:-库仑定律:F=k*(Q1*Q2)/r^2,两个点电荷之间的力与电荷大小成正比,与距离的平方成反比。

-高斯定律:Φ=E*A=Q/ε0,电场通过任意闭合曲面的通量与该曲面内的电荷成正比。

-法拉第电磁感应定律:ε=-ΔΦ/Δt,电磁感应产生的电动势与磁通量的变化率成正比。

4.波动与光学相关方程:-波速公式:v=λ*f,波速等于波长乘以频率。

- 光的折射定律: n1 * sin(θ1) = n2 * sin(θ2),光线从一种介质进入另一种介质时,入射角和折射角与两种介质的折射率成正比。

5.直流电路相关方程:-欧姆定律:V=I*R,电压与电流和电阻的关系。

- 串联电阻的总电阻: R_total = R1 + R2 + ...,串联电阻的总电阻等于各个电阻之和。

- 并联电阻的总电阻: 1/R_total = 1/R1 + 1/R2 + ...,并联电阻的倒数总电阻等于各个电阻的倒数之和。

数学物理方程知识点总结

数学物理方程知识点总结

数学物理方程知识点总结一、牛顿运动定律牛顿的运动定律是经典物理力学的基础,它描述了物体在力的作用下的运动规律。

牛顿的三大运动定律分别是:1. 第一定律:一个物体如果受力作用,将保持静止或匀速直线运动,直到受到外力的作用而改变其状态。

2. 第二定律:物体的加速度与作用力成正比,与质量成反比。

即F=ma。

3. 第三定律:作用力与反作用力大小相等,方向相反,且在同一直线上。

这三个定律描述了物体在受力作用下的运动规律,它们被广泛应用于物体的运动研究和工程设计中。

二、电磁场方程电磁场方程描述了电荷和电磁场之间的相互作用。

其中,麦克斯韦方程组是最基本的电磁场方程,它包括了电荷产生的电场和电流产生的磁场,并描述了它们随时间和空间的变化规律。

麦克斯韦方程组包括了4个方程,分别是:1. 静电场高斯定律:描述电荷产生的静电场。

2. 静磁场高斯定律:描述磁场的产生和分布。

3. 安培定律:描述电流产生的磁场。

4. 法拉第电磁感应定律:描述磁场的变化产生感应电场。

这些方程组成了电磁场的基本描述,它们被广泛应用于电磁场的研究和工程技术中。

三、热传导方程热传导方程描述了物体内部的热传导过程。

热传导方程可以描述物体内部温度分布和热量的传导规律。

通常情况下,热传导方程是一个偏微分方程,它描述了温度场随时间和空间的变化规律。

热传导方程一般形式为:δT/δt = αΔT其中,T表示温度场,t表示时间,α为热传导系数,ΔT为温度梯度。

这个方程被广泛应用于热传导问题的研究和工程设计中。

四、波动方程波动方程描述了机械波和电磁波在空间中的传播规律。

波动方程是一个偏微分方程,它描述了波动场随时间和空间的变化规律。

波动方程的一般形式为:∂^2ψ/∂t^2 = v^2∇^2ψ其中,ψ表示波动场,t表示时间,v为波速,∇^2为拉普拉斯算符。

波动方程描述了波动在空间中的传播和幅度变化规律,它被广泛应用于波动现象的研究和工程设计中。

总之,数学与物理方程是自然科学研究和工程技术发展的基础。

现代数学物理方程

现代数学物理方程

这就是微分方程的适定性问题。
2、验证
u( x , y, t )
2
1 t x y
2 2
在锥
t x y 0
2 2 2
中都满足波动方程
u
2
t
2

u
2
x
2

u
2
y
2
.
证明:在该锥内
u t
2
(t x y )
2 2 2

3 2
t
3 2 5 2

sin 1 tg 1 sin 2 tg 2
u( x x , t )
.
于是得运动方程
x
u
2
t
2
g [ l ( x x )]
u( x x , t ) x
[l x ]
u( x , t ) x

u
2
[ l ( x x )] g
u( x , 0) t aF '( x at ) aG '( x at ) t 0 aF '( x ) aG '( x ) ( x ).
aF '( x ) aG '( x ) ( x ).
两边对 x 积分:
aF ( x ) aG ( x ) C
u
2
t
2
c u
2
这里c 通常是一个固定常数,代表波的传播速率。 在针对实际问题的波动方程中,一般都将波速表 示成可随波的频率变化的量,这种处理对应真实 物理世界中的色散现象。
(2)方程的导出 均匀弦的微小横振动 理想化假设:

数学物理方程

数学物理方程

⎧y ⎪
t=0
=d
= v0

⎪⎩ y t=0 = d ' = 0
⇒ vy = v0 − gt

y
=
v0t

1 2
gt 2
(2) 对斜向上抛:
⎧⎪x t=0 = v0 cosθ = c
⎨ ⎪⎩x
t=0
=
c'
=
0
⇒ vx = v0 cosθ ⇒ x = (v0 cosθ )t
⎧y ⎪
t =0
=
d
=
v0
sin θ
x
= SY[∂u(x + dx,t) − ∂u ] = SY ∂ [u(x + dx,t) − u(x,t)]= SY
∂ [u(x + dx,t) − u(x,t) dx] = SY
∂x
dx
∂2u ∂x2
dx
由牛顿第二定律: ma = F (a = ∂2u , m = ρdv = ρ sdx)
⇒ vy = v0 sinθ − gt
⎨ ⎪⎩ y t=0 = d ' = 0

y
=
v0
sin θ
t

1 2
gt 2
5
结论:不同的初始条件 ⇒ 不同的运动状态,但都服从
牛顿第二定律。
综上所述,定解问题的完整提法: 在给定的边界条件和初始条件下,根据已知的物理
规律,解出某个物理量u 在给定的区域里随着地点(x,y,z) 和时刻t怎样变化,即求u(x,y,z,t)。
20
(3) 第三类边界条件:给出边界上未知数u及其法向导 数之间的线性关系
例:杆在x=0端固定,在x=l端受到弹性系数为k的弹簧 的拉力,其边界条件为

数学物理方程总复习

数学物理方程总复习

⎤ ⎥⎦

ρ
gdx

ρ
∂ 2u ( x, ∂t 2
t)
dx
T
⎡ ⎢⎣
∂u(x + dx,t) ∂x

∂u( x, t ) ∂x
⎤ ⎥⎦

ρ
gdx

ρ
∂ 2u( x, t ) ∂t 2
dx
∂u ( x,t )
由于x产生dx的变化而引起的 用微分近似代替,即
∂x
的改变量,可
∂u(x + dx,t) ∂x
现在考虑弧段MM’在t时刻的受力情况
由于假定弦是柔软的,所以在任一点张力 的方向总是沿着弦在该点的切线方向。
t时刻 位移NM记作u u(x,t)
弧段 Mq M ' 两端
所受的张力记作T,T’
根据牛顿第二定律 F = ma
在x轴方向弧段 Mq M ' 受力的总和为
T 'cos a '− T cos a = 0
行的外力,且假定在时刻t弦上x点处的外力密度为F(x,t),
显然
T 'cos a '− T cos a = 0
Fds

T
sin
a
+
T
'
sin
a
'−
ρ
gds

ρ
ds
∂2u ∂t 2
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
+
f
( x, t )
弦的强迫振动方程
∂2u ∂t 2
=
a2
∂2u ∂x2
dx

数学物理方程小结

数学物理方程小结

解 法 二 : Fourier Fourier 法
数学物理方程小结
1.6‘定解问题
utt − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), ut ( x, 0) = 0 (−∞ < x < +∞)
utt (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % Fourier变换 % Fourier % % 定解问题: u (λ , 0) = ϕ (λ ), ut (λ , 0) = 0 %
方程具有傅立叶正弦级数解
nπ x u ( x, t ) = ∑ Tn (t ) sin l n =1

nπ at nπ at nπ x u ( x, t ) = ∑ An cos + Bn sin sin l l l n =1

数学物理方程小结
1.2定解问题
utt − a 2u xx = 0 u x (0, t ) = 0, u x (l , t ) = 0 (t > 0) u ( x, 0) = ϕ ( x), u ( x, 0) = ψ ( x) (0 < x < l ) t
数学物理方程小结
解 法 二 : Fourier Fourier 变 换 法 2.6’定解问题
ut − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), (−∞ < x < +∞)
Fourier 定解问题 解 Fourier
ut (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % % % % u (λ , 0) = ϕ (λ ),

数学物理方程复习资料

数学物理方程复习资料

l0
l
0,1, 2,3, ).
3. Fourier 变换的微分性质
若函数 f (x) 的傅里叶变换为 f (x) ,且其导函数 f ′(x) 的傅里叶变换存在,则有 f ′(x) = iλ f (x) , 即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 iλ 。更一般地,若 f (x) 的 n 阶导数 f (n) (x)
x
)(x

C),
其中
∫ = an
1= l f (x) cos nπ xdx (n
l −l
l
1, 2,3, ),
∫ = bn
1= l f (x) sin nπ xdx (n
l −l
l
1, 2,3,).
=C
= x f (x)
1[ 2
f
(x−) +
f
(x+ )]
∑ ∫ 当 f (x) 为奇= 函数时, f (x)
uxx = (iλ)2 u (x, t) = −λ 2U (λ, t)
∫ = [ ∂u ] = ∞ ∂u e−iλxdx ∂ [ u(x, t)]
∂t −∞ ∂t
∂t
同理,[ ∂∂2tu2 ]
=
∂2 ∂t 2
[ u( x, t )]
M3 特征线法 写出二阶偏微分方程的特征方程 解特征方程得到两族积分曲线 作特征变换,求通解 代入边界条件求解
二阶线性偏微分方程
A
∂2u ∂x2
+
2B
∂2u ∂x∂y
+
C
∂2u ∂y 2
+D
∂u ∂x
+E
∂u ∂y
+Fu
= 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方程考点一. 分离变量法:知识点见课本1618P P -1.已知初边值问题:20000,0,000,sin 2tt xxx x x l t t t u a u x l t u u x u u l π====⎧⎪-=<<>⎪⎪==⎨⎪⎪==⎪⎩(1) 求此问题的固有函数(特征函数)与固有值(特征值);(2) 求此初边值问题的解。

解:(1)令 (,)()()u x t X x T t = (1.1),其中(,)u x t 不恒零,将其代入方程得到: ''2''()()()()0X x T t a X x T t -=将该式分离变量并令比值为λ-有: ''''2()()()()T t X x a T t X x λ==- 则有: ''2()()0T t a T t λ+= (1.2) ''()()0X x X x λ+= (1.3) 由原初边值问题的边界条件知: 方程(1.3)满足边界条件 '(0)0,()0X X l == (1.4) ()I 当0λ<时,方程(1.3)的通解为12()X x C C e =+,由边界条件(1.4)知:1200C C C C +=⎧⎪⎨-=⎪⎩ ⇒ 120C C =⎧⎨=⎩()0X x ∴= 由(1.1)知:(,)0u x t =,0λ<应舍去;()II 当0λ=时,方程(1.3)的通解为 12()X x C C x =+,由边界条件(1.4)知:120C C =⎧⎨=⎩ 同理0λ=应舍去;()III 当λ>0时,则方程的通解为:12X()x C C =+由边界条件(0)0X =知:10C = 即2()X x C =又由'()0X l =知:0C = , 令20C ≠,则0=即2n ππ=+ ,所以固有值为 2(21),0,1,2n n n l πλ+⎡⎤==⎢⎥⎣⎦L 将其代入通解中,得到固有函数:(21)()sin,0,1,2n n n X x C x n lπ+==L(2)将固有值n λ代入方程(1.2),可得到此方程的通解: (21)(21)()cossin ,0,1,22n n n n a n aT t A t B t n l lππ++=+=L则原初边值问题的形式解为 :(21)(21)(21)(,)()()(cossin )sin ,0,1,222n n n n n n a n a n u x t X x T t a t b t x n l l lπππ+++==+=L 则:(21)(21)(21)(,)(cossin )sin ,0,1,222n n n n a n a n u x t a t b t x n l l lπππ∞=+++=+=∑L 由初始条件 00t u==,0sin2tt xu lπ== 知: 0n a =0204(21)(21)sin sin (21)2201,2ln l n n x x n ab dx n a l l n ππππ⎧=+⎪+==⎨+⎪=⎩⎰L ∴ 原初边值问题的解为: 2(,)sin sin (21)22l a xu x t t n a l lπππ=+二. 特殊方程的边界齐次化:知识点见2122P P -2.已知初边值问题:20000,0,0,0,0tt xx x x l t t t u a u x l t u A u B u u ====⎧-=<<>⎪⎪==⎨⎪==⎪⎩将此定解问题的边界齐次化。

解:令 (,)(,)()u x t v x t w x =+ (1),则tt tt u v =,''xx xx u v w =+,故原初边值问题等价于22000''(0),()(),0tt xx x x l t t t v a v a w xv A w v B w l v w x v ====⎧-=+⎪⎪=-=-⎨⎪=-=⎪⎩ (I )将定解问题(I )边界齐次化,即令2''0(0)()a w x w A w l B ⎧+=⎪=⎨⎪=⎩3222()()66x B A l w x x A a l a-⇒=-+++将()w x 代入(I ),则可得到边界齐次化后的初边值问题为:23200220(),0660tt xx t t t x x l v a v x B A l v x A v a l a v v ====⎧-=⎪⎪-=-+-=⎨⎪⎪==⎩ (II )然后用分离变量法求初边值问题(II )得到(,)v x t ,将其代入(1)式即可求出(,)u x t 。

三. 能量不等式证明解的唯一性:知识点见9495P P -3.证明方程2tt xx t u a u cu f =-+的初边值问题解的唯一性。

证明:假设此方程有两个不同解1u ,2u ,令12u u u =-,则(,)u x t 满足的定解问题为:200000,0tt xx t x x l t t t u a u cu u u u u ====⎧=-⎪⎪==⎨⎪==⎪⎩一维波动方程的能量公式为: 222()()lt x E t u a u dx =+⎰ 则有:20'()2()lt tt x xt E t u u a u u dx =+⎰()()202l t tt x t t xx x u u a u u u u dx ⎡⎤=+-⎣⎦⎰ ()()220220lt tt xx x t l u u a u dx a u u =-+⎰202lt cu dx =-⎰由0c >知:'()E t ≤0,能量()E t 是时间t 的减函数,又知初始时刻2220(0)()0lt x t E u a u dx==+=⎰又有 ()(0)0E t E ≤=,且 ()0E t ≥ ,则()0E t ≡ ,即有 0x t u u ==u C ∴≡ ,其中C 为常数. 又初始条件为 (,0)0u x =(,)0u x t ∴= 即 12u u =,此与假设矛盾,故该方程初边值问题解具有唯一性。

四. 给出物理背景,列出定解问题:4.长度为l 的均匀细杆的初始温度为0C 。

,端点0x =保持常温0u ,而在x l =和侧面上,热量可以发散到周围的介质去,介质的温度为0C 。

,且此杆单位体积内单位时间吸收热量与温度函数(,)u x t 成正比,比例为k ,且k>0,求杆上温度函数(,)u x t 所满足的定解问题。

解:杆上温度函数(,)u x t 所满足的定解问题为:2000,0,()00t xx x x l t u a v ku k u u u u n u δ===⎧=->⎪∂⎪=+=⎨∂⎪⎪=⎩五. 利用傅立叶变换求解柯西问题(初值问题):5.见课本5658P P -中“热传导方程柯西问题的求解”,该部分实际上就是一个例题,课后习题没有合适的例子,弄懂此例即可。

六. 格林函数:6.写出格林函数公式及满足的条件,并解释其物理意义。

解:(1)格林函数公式(三维)为:G (M ,M 0)=14MM r π— g (M ,M 0) M ∈Ω其中函数g 满足的条件为:001|4MM g M g rπΓΓ∆=∈Ω⎧⎪⎨=⎪⎩式中Γ为区域Ω的边界曲面(2)格林函数的物理意义:在某个闭合导电曲面Γ内M 0点处放一个单位正电荷,则有它在该导电曲面内一点M 处产生的电势为14MM r π(不考虑电介常数),将此闭合导电曲面接地,又静电平衡理论,则M 0将在该导电曲面上产生负感应电荷,其在M 处的电势 — g (M ,M 0),并且导电面上的电势恒等于0,即有|g Γ=014MM r πΓ七. 调和方程的验证:7.已知极坐标表示的函数(,)cos nu r r n θθ=,验证其满足调和方程。

解:由(,)u r θ的表达式知:r u =n 1n r -cos n θ rr u =n(n-1) 2n r -cos n θ u θ= -n n r sinn θ u θθ= -2n n r cos n θ则有xx u +yy u =rr u +1r r u +21ru θθ =n(n-1) 2n r-cos n θ+1r n 1n r -cos n θ+21r( -2n nr cos n θ) =[n(n-1)+n-2n ]2n r -cos n θ=0即xx u +yy u =0, 所以u (r,θ)满足调和方程八. 特征方程的化简:只须掌握二元双曲型方程8.见课本100P 例1。

九. 求二阶特征方程的的特征方向:9.求方程112233tt x x x x x x u u u u =++的特征方向。

解:设特征方向为(0123,,,αααα),则有特征方程为222212300αααα++-=又知222212301αααα+++=,则有:2002222221231232112()12αααααααα⎧=⎪⎧=⎪⎪⇒⎨⎨++=⎪⎪⎩++=⎪⎩ 令参数,θϕ,其中0θπ≤≤, πϕπ-≤≤,则此方程的特征方向为:cos sin )θϕθϕθ或(,sin cos ,sin ,cos )2222θϕθϕθ-十. 一维达朗贝尔公式:知识点见课本10P10.见课本11P 例子。

十一.二阶线性偏微分方程的解的渐进性:11.在三大类方程中,哪两类方程具有解衰减性,其衰减的速度如何?答:1.波动方程解的衰减性:(1)初边值问题解及一维柯西问题解不具有衰减性;(2)在初始条件有紧支集时,二维柯西问题解以12t-速度衰减;(3)在初始条件有紧支集时,三维柯西问题解以1t -速度衰减。

2.热传导方程解的衰减性:(1)初边值问题以负指数的速度衰减; (2)初值问题以2n t-速度衰减,其中n 为空间变量的维数。

3.调和方程解与时间无关,故其解不具有衰减性。

相关文档
最新文档