1.3平行线的判定公理

合集下载

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

1.3 平行线的性质(2)

1.3 平行线的性质(2)

课内练习
B A
1、如图:在墙面上安装一管道需经两次C 拐弯,拐
弯后的管道与拐弯前的管道平行。若第一个弯道处
∠B=142o,那么第二个弯道处∠C为多少度?为什
么?
2、如图:已知AB∥CD,AD∥BC.填空:
(1)∵ AB∥CD,
∴∠1=___∠_D_(两直线平行,内错角相等。)
(2)∵AD∥BC(已知),
ab 12 c
3
4d
(1)如图1,AB∥CD, ∠1=45°, ∠D= ∠C,依
次求出∠D, ∠C, ∠B的度数.
D
C
A1 B
(2)在下图所示的3个图中,a∥b,分别计
算∠1的度数.
1a
36° a
1 a
2b 1
b
120° b
能力挑战:
如图,已知AB//CD,∠B=40°,∠D= 15°则∠BED = __5_5_°___
如图,已知∠ABC+∠C=180° ,BD平分∠ABC。 ∠CBD与∠D相等吗?请说明理由。
温馨提示:
(1)由已知BD平分∠ABC可以推出什么? (2)由所求,需要说明哪两个角相等?
能转换成说明∠ABD=∠D,需说明什么? (3)由图知,要说明∠ABD=∠D,需说明什么? (4)根据什么条件说明AB∥CD?依据是什么?
作业:
1、作业本1.3(2) 2、课内作业
A B
左图是梯形有上底的部分, 已量得∠A=115°,∠C=100°,
C 求:梯形另外两个角各是多少度?
D
已知:直线a∥b, c∥d, ∠1=115°, 求: ∠2、∠3的度数
c
d
a
1
2
3b
已知: ∠ 1=130 °, ∠4=45 °, ∠3=50 °, 求:∠2等于多少度?

平行线的判定及性质

平行线的判定及性质

授课主题平行线教学目的1.理解平行线的概念;掌握平行公理及其推论;2.掌握平行线的判定方法及性质;并能进行简单的推理3. 掌握命题的定义;知道一个命题是由“题设”和“结论”两部分组成;对于给定的命题;能找出它的题设和结论;教学重点平行线的判定及性质教学内容知识梳理要点一、平行线1.定义:在同一平面内;不相交的两条直线叫做平行线;如果直线a与b平行;记作a∥b.要点诠释:1平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交;三者缺一不可;2有时说两条射线平行或线段平行;实际是指它们所在的直线平行;两条线段不相交并不意味着它们就平行.3在同一平面内;两条直线的位置关系只有相交和平行两种.特别地;重合的直线视为一条直线;不属于上述任何一种位置关系.2.平行公理:经过直线外一点;有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行;那么这两条直线也互相平行.要点诠释:1平行公理特别强调“经过直线外一点”;而非直线上的点;要区别于垂线的第一性质.2公理中“有”说明存在;“只有”说明唯一.3“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等;两直线平行.如上图;几何语言:∵∠3=∠2∴AB∥CD同位角相等;两直线平行判定方法2:内错角相等;两直线平行.如上图;几何语言:∵∠1=∠2∴AB∥CD内错角相等;两直线平行判定方法3:同旁内角互补;两直线平行.如上图;几何语言:∵∠4+∠2=180°∴AB∥CD同旁内角互补;两直线平行要点诠释:平行线的判定是由角相等或互补;得出平行;即由数推形.要点三、平行线的性质性质1:两直线平行;同位角相等;性质2:两直线平行;内错角相等;性质3:两直线平行;同旁内角互补.要点诠释:1“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容;切不可忽视前提“两直线平行”.2从角的关系得到两直线平行;是平行线的判定;从平行线得到角相等或互补关系;是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线;并且夹在这两条平行线间的线段的长度;叫做这两条平行线的距离.要点诠释:1求两条平行线的距离的方法是在一条直线上任找一点;向另一条直线作垂线;垂线段的长度就是两条平行线的距离.2两条平行线的位置确定后;它们的距离就是个定值;不随垂线段的位置的改变而改变;即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句;叫做命题.要点诠释:1命题的结构:每个命题都由题设、结论两部分组成;题设是已知事项;结论是由已知事项推出的事项.2命题的表达形式:“如果……;那么…….”;也可写成:“若……;则…….”3真命题与假命题:真命题:题设成立结论一定成立的命题;叫做真命题.假命题:题设成立而不能保证结论一定成立的命题;叫做假命题.2.定理:定理是从真命题公理或其他已被证明的定理出发;经过推理证实得到的另一个真命题;定理也可以作为继续推理的依据.3.证明:在很多情况下;一个命题的正确性需要经过推理;才能作出判断;这个推理过程叫做证明.要点诠释:1证明中的每一步推理都要有根据;不能“想当然”;这些根据可以是已知条件;学过的定义、基本事实、定理等.2判断一个命题是正确的;必须经过严格的证明;判断一个命题是假命题;只需列举一个反例即可.要点六、平移1. 定义:在平面内;将一个图形沿某个方向移动一定的距离;图形的这种移动叫做平移.要点诠释:1图形的平移的两要素:平移的方向与平移的距离.2图形的平移不改变图形的形状与大小;只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离;平移不改变线段、角的大小;具体来说:1平移后;对应线段平行且相等;2平移后;对应角相等;3平移后;对应点所连线段平行且相等;4平移后;新图形与原图形是一对全等图形.典型例题类型一、平行线例1.下列说法正确的是A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内;不相交的两条直线叫做平行线.答案D例2.在同一平面内;下列说法:1过两点有且只有一条直线;2两条直线有且只有一个公共点;3过一点有且只有一条直线与已知直线垂直;4过一点有且只有一条直线与已知直线平行..其中正确的个数为:A.1个B.2个C.3个D.4个答案B解析正确的是:13.变式1下列说法正确的个数是1直线a、b、c、d;如果a∥b、c∥b、c∥d;则a∥d.2两条直线被第三条直线所截;同旁内角的平分线互相垂直.3两条直线被第三条直线所截;同位角相等.4在同一平面内;如果两直线都垂直于同一条直线;那么这两直线平行.A.1个 B .2个C.3个D.4个答案B类型二、两直线平行的判定例3. 如图;给出下列四个条件:1AC=BD; 2∠DAC=∠BCA;3∠ABD=∠CDB;4∠ADB=∠CBD;其中能使AD∥BC的条件有.A.12 B.34 C.24 D.134答案C变式2一个学员在广场上驾驶汽车;两次拐弯后;行驶的方向与原来的方向相同;这两次拐弯的角度可能是A.第一次向左拐30°;第二次向右拐30°B.第一次向右拐50°;第二次向左拐130°C.第一次向右拐50°;第二次向右拐130°D.第一次向左拐50°;第二次向左拐130°例4.如图所示;已知∠B=25°;∠BCD=45°;∠CDE=30°;∠E=10°.试说明AB∥EF的理由.解法1:如图所示;在∠BCD的内部作∠BCM=25°;在∠CDE的内部作∠EDN=10°.∵∠B=25°;∠E=10°已知;∴∠B=∠BCM;∠E=∠EDN等量代换.∴AB∥CM;EF∥DN内错角相等;两直线平行.又∵∠BCD=45°;∠CDE=30°已知;∴∠DCM=20°;∠CDN=20°等式性质.∴∠DCM=∠CDN等量代换.∴CM∥DN内错角相等;两直线平行.∵AB∥CM;EF∥DN已证;∴AB∥EF平行线的传递性.解法2:如图所示;分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°;∴∠NCB=135°.∵∠B=25°;∴∠CNB=180°-∠NCB-∠B=20°三角形的内角和等于180°.又∵∠CDE=30°;∴∠EDM=150°.又∵∠E=10°;∴∠EMD=180°-∠EDM-∠E=20°三角形的内角和等于180°.∴∠CNB=∠EMD等量代换.所以AB∥EF内错角相等;两直线平行.变式3已知;如图;BE平分∠ABD;DE平分∠CDB;且∠1与∠2互余;试判断直线AB、CD的位置关系;请说明理由.解:AB∥CD;理由如下:∵BE平分∠ABD;DE平分∠CDB;∴∠ABD=2∠1;∠CDB=2∠2.又∵∠1+∠2=90°;∴∠ABD+∠CDB=180°.∴AB∥CD同旁内角互补;两直线平行.变式4已知;如图;AB⊥BD于B;CD⊥BD于D;∠1+∠2=180°;求证:CD//EF.答案证明:∵AB⊥BD于B;CD⊥BD于D;∴AB∥CD.又∵∠1+∠2=180°;∴AB∥EF.∴CD//EF.类型三、平行线的性质例5.如图所示;如果AB∥DF;DE∥BC;且∠1=65°.那么你能说出∠2、∠3、∠4的度数吗为什么.解:∵DE∥BC;∴∠4=∠1=65°两直线平行;内错角相等.∠2+∠1=180°两直线平行;同旁内角互补.∴ ∠2=180°-∠1=180°-65°=115°.又∵ DF ∥AB 已知;∴ ∠3=∠2两直线平行;同位角相等.∴ ∠3=115°等量代换.变式5如图;已知1234//,//l l l l ;且∠1=48°;则∠2= ;∠3= ;∠4= .答案48°;132°;48°变式6如图所示;直线l 1∥l 2;点A 、B 在直线l 2上;点C 、D 在直线l 1上;若△ABC 的面积为S 1;△ABD 的面积为S 2;则A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定答案B类型四、命题例6.判断下列语句是不是命题;如果是命题;是正确的 还是错误的①画直线AB ;②两条直线相交;有几个交点;③若a ∥b;b ∥c;则a ∥c ;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等;那么这两个角不是对顶角.答案①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.变式8把下列命题改写成“如果……;那么……”的形式.1两直线平行;同位角相等;2对顶角相等;3同角的余角相等.答案解:1如果两直线平行;那么同位角相等.2如果两个角是对顶角;那么这两个角相等.3如果有两个角是同一个角的余角;那么它们相等.类型四、平移例7.湖南益阳如图所示;将△ABC 沿直线AB 向右平移后到达△BDE 的位置;若∠CAB =50°;∠ABC =100°;则∠CBE 的度数为________.答案30°变式9 上海静安区一模如图所示;三角形FDE 经过怎样的平移可以得到三角形ABCA .沿EC 的方向移动DB 长B .沿BD 的方向移动BD 长C .沿EC 的方向移动CD 长D .沿BD 的方向移动DC 长答案A类型五、平行的性质与判定综合应用例8、如图所示;AB∥EF;那么∠BAC+∠ACE+∠CEF=A.180°B.270°C.360°D.540°答案C解析过点C作CD∥AB;∵CD∥AB;∴∠BAC+∠ACD=180°两直线平行;同旁内角互补又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°两直线平行;同旁内角互补又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°课后作业一、选择题1.下列说法中正确的有①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b;c∥d;所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上;另一边互相平行;则这两个角A.相等B.互补C.互余D.相等或互补3.如图;能够判定DE∥BC的条件是A.∠DCE+∠DEC=180°B.∠EDC=∠DCBC.∠BGF=∠DCB D.CD⊥AB;GF⊥AB4.一辆汽车在广阔的草原上行驶;两次拐弯后;行驶的方向与原来的方向相同;那么这两次拐弯的角度可能是.A.第一次向右拐40°;第二次向右拐140°.B.第一次向右拐40°;第二次向左拐40°.C.第一次向左拐40°;第二次向右拐140°.D.第一次向右拐140°;第二次向左拐40°.5.如图所示;下列条件中;不能推出AB∥CE成立的条件是A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.绍兴学习了平行线后;小敏想出了过已知直线外一点画这条直线的平行线的新方法;她是通过折一张半透明的纸得到的如图;1—4:从图中可知;小敏画平行线的依据有①两直线平行;同位角相等.②两直线平行;内错角相等.③同位角相等;两直线平行.④内错角相等;两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7. 在同一平面内的三条直线;它们的交点个数可能是________.8.如图;DF平分∠CDE;∠CDF=55°;∠C=70°;则________∥________.9.规律探究:同一平面内有直线a1;a2;a3…;a100;若a1⊥a2;a2∥a3;a3⊥a4…;按此规律;a1和a100的位置是________.10.已知两个角的两边分别平行;其中一个角为40°;则另一个角的度数是11.直线l同侧有三点A、B、C;如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行;则A、B、C三点;其依据是12.如图;AB⊥EF于点G;CD⊥EF于点H;GP平分∠EGB;HQ平分∠CHF;则图中互相平行的直线有.三、解答题13.如图;∠1=60°;∠2=60°;∠3=100°;要使AB∥EF;∠4应为多少度说明理由.14.小敏有一块小画板如图所示;她想知道它的上下边缘是否平行;而小敏身边只有一个量角器;你能帮助她解决这一问题吗15.如图;把一张长芳形纸条ABCD沿AF折叠;已知∠ADB=20°;那么∠BAF为多少度时;才能使AB′∥BD16.如图所示;由∠1=∠2;BD平分∠ABC;可推出哪两条线段平行;写出推理过程;如果推出另两条线段平行;则应将以上两条件之一作如何改变答案与解析一、选择题1. 答案A解析只有④正确;其它均错.2. 答案D3. 答案B解析内错角相等;两直线平行.4. 答案B5. 答案B解析∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 答案C解析解决本题关键是理解折叠的过程;图中的虚线与已知的直线垂直;过点P的折痕与虚线垂直.二、填空题7. 答案0或1或2或3个;8. 答案BC; DE;解析∠CFD=180°-70°-55°=55°;而∠FDE=∠CDF=55°;所以∠CFD=∠FDE.9. 答案a1∥a100;解析为了方便;我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100;因为a1⊥a2∥a3;所以a1⊥a3;而a3⊥a4;所以a1∥a4∥a5.同理得a5∥a8∥a9;a9∥a12∥a13;…;接着这样的规律可以得a1∥a97∥a100;所以a1∥a100.10.答案40°或140°11.答案共线;平行公理;解析此题考查是平行公理;它是论证推理的基础;应熟练应用.12.答案AB∥CD;GP∥HQ;解析理由:∵AB⊥EF;CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°;∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 解析解:∠4=100°.理由如下:∵∠1=60°;∠2=60°;∴∠1=∠2;∴AB∥CD又∵∠3=∠4=100°;∴CD∥EF;∴AB∥EF.14.解析解:如图所示;用量角器在两个边缘之间画一条线段MN;用量角器测得∠1=50°;∠2=50°;因为∠1=∠2;所以由内错角相等;两直线平行;可知画板的上下边缘是平行的.15. 解析解:要使AB′∥BD;只要∠B′AD=∠ADB=20°;∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.解析解:可推出AD∥BC.∵BD平分∠ABC已知.∴∠1=∠DBC角平分线定义.又∵∠1=∠2已知;∴∠2=∠DBC等量代换.∴AD∥BC内错角相等;两直线平行.。

初中数学 平行线的判定定理有哪些

初中数学  平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。

在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。

同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。

1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。

2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。

即如果l||n且m||n,则l||m。

3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。

即如果l∠n且m∠n,则l||m。

4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。

5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。

即如果l||m且m||n,则l||n。

6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。

即如果l∠n且∠A=90°,则l||m。

7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。

8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。

9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。

以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。

八年级数学平行线的定义及平行公理;平行线的判定公理人教版知识精讲

八年级数学平行线的定义及平行公理;平行线的判定公理人教版知识精讲

七年级数学平行线的定义及平行公理;平行线的判定公理人教四年制【同步教育信息】一. 本周教学内容:平行线的定义及平行公理;平行线的判定定理二. 重点、难点分析:1. 重点:平行线的判定定理。

2. 难点:用平行线判定定理证明两条直线平行。

三. 1. 如图:若AB 平行于即AB 与''C B 异面。

2. 3. 4. 例如:AB//CD 且EF//CD ,则AB//EF 。

5. 平行线的判定公理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

【典型例题】[例1] 若a//b ,b//c ,则a//c 有依据为( C )A. 平行公理B. 等量代换C. 平行于同一条直线的两条直线平行D. 以上都不对因为a//b ,b//c ,即a 、c 都与b 平行。

所以根据平行于同一条直线的两条直线平行,应选C 。

[例2] 如图,填空∵21∠=∠(已知) ∴ // ( ) ∵32∠=∠(已知) ∴ // ( ) ∴42∠=∠( ),21∠=∠(已知)∴41∠=∠ ∴ // ( )∴c a //(同位角相等,两直线平行) (2)b a //理由:∵︒=∠+∠18043(已知) 46∠=∠(对顶角相等) ∴︒=∠+∠18063(等量代换)∴1∠=∠BDE 2∠=∠D A F (角分线定义) 又∵21∠=∠(已知)∴DAF BDE ∠=∠(等量代换) ∴DE//AF (同位角相等两直线平行) 答:DF//AC∵BDF BAC ∠=∠∠=∠211212(角分线定义) 又∵21∠=∠(已知) ∴BDF BAC ∠=∠2121(等量代换)∴BDF BAC ∠=∠ B D F B D F B ∠-∠-︒=∠180 BAC B C ∠-∠-︒=∠180 ∴C DFB ∠=∠∴DF//AC (同位角相等两直线平行)【模拟试题】一. 填空题:1. 如果直线a 与b 在同一平面内,且a 与b 无公共点,那么直线a 与b 的位置关系是 。

平行线的判定例题与讲解

平行线的判定例题与讲解

3 平行线的判定1.平行线的判定公理(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.如图,推理符号表示为:∵∠1=∠2,∴AB∥CD.谈重点同位角相等,两直线平行①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.(2)平行公理的推论:①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.【例1】工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.2.平行线的判定定理(1)判定定理1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单记为:同旁内角互补,两直线平行.符号表示:如下图,∵∠2+∠3=180°,∴AB∥CD.谈重点同旁内角互补,两直线平行①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内角,使哪两条直线平行.(2)判定定理2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.符号表示:如上图,∵∠2=∠4,∴AB∥CD.【例2-1】如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.答案:内错角相等【例2-2】如图,下列说法中,正确的是().A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD .因为∠A+∠C=180°,所以AB∥CD错解:A或B或D错解分析:判定直线平行所需要的内错角或同旁内角找不准.条件不能推出结论.正解:C正解思路:∠A与∠D是直线AB和CD被直线AD所截得到的同旁内角.因为∠A+∠D =180°,所以AB∥CD.3.平行线的判断方法平行线的判定方法主要有以下六种:(1)平行线的定义(一般很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)如果两条直线都和第三条直线平行,那么这两条直线平行.析规律如何选择判定两直线平行的方法①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.【例3】如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.解析:本题主要是考查平行线的三种判定方法.若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°…4.平行线判定的应用(1)平行线的生活应用数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求……对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.(2)平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.释疑点判定平行的关键判定两直线平行,关键是确定角的位置关系及大小关系.【例4-1】如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°.∴AB∥CD.∴这个零件合格.答案:合格【例4-2】已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.解:AD与BC的位置关系是平行.理由:∵四边形ABCD的内角和是360°,∴∠A+∠B+∠C+∠D=360°.∵∠A=∠D,∠B=∠C,∴∠A+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。

浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)

浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)

专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及3个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。

几何语言:∵∠1=∠2∴AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。

∵∠2=∠3∴AB∥CD(内错角相等,两直线平行)判定方法(3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简单说成:同旁内角互补,两直线平行。

∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典例分析】【考点1:平行线公理及推论】【典例1】(2023秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【变式1】(2023秋•奉化区校级期末)下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线【典例2】(2023春•麒麟区期末)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【变式2-1】(2023春•阳春市校级月考)下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个A B.2个C.3个D.4个【变式2-2】(2023春•饶平县校级期中)若AB∥CD,AB∥EF,则∥,理由是.【考点2:平行线判定】【典例3】(2023秋•香坊区校级期中)如图,下列各组条件中,能得到AB∥CD 的是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°【变式3-1】(2023春•台江区校级期中)如图,过直线外一点作已知直线的平行线,其依据是()A.两直线平行,同位角相等B.内错角相等,两直线平行C.同位角相等,两直线平行D.两直线平行,内错角相等【变式3-2】(2023•德保县二模)如图,能判定AD∥BC的条件是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠2=∠4【变式3-3】(2023春•宾阳县期中)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①②③④D.①③④【典例4】(2023春•重庆月考)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又∵∠1=∠B()∴()∴∠AFB=∠AOE()∴∠AFB=90°()又∵∠AFC+∠AFB+∠2=(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴(内错角相等,两直线平行)【变式4-1】(2023秋•社旗县期末)〖我阅读〗“推理”是数学的一种基本思想,包括归纳推理和演绎推理.演绎推理是一种从一般到特殊的推理,它借助于一些公认的基本事实及由此推导得到的结论,通过推断,说明最后结论的正确.〖我会做〗填空(理由或数学式)已知:如图,∠1=∠E,∠B=∠D.求证:AB∥CD.证明:∵∠1=∠E()∴()∴+∠2=180° ()∵∠B=∴+=180°∴AB∥CD()【变式4-2】(2023春•岳池县期末)把下面的说理过程补充完整:已知,如图,直线AB,CD被直线EF所截,点H为CD与EF的交点,GH ⊥CD于点H,∠2=30°,∠1=60°.试说明:AB∥CD.解:∵GH⊥CD(),∴∠CHG=90°()又∵∠2=30°(),∴∠3=()∴∠4=60°()又∵∠1=60°()∴∠1=∠4()∴AB∥CD()【变式4-3】(2023春•宁远县期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【典例5】(2023春•大埔县期末)如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点D在线段EC上,求证:AB∥CD.【变式5-1】(2023秋•西乡县期末)如图,已知∠A=∠ADE,∠C=∠E.求证:BE∥CD.【变式5-2】(2023春•宣恩县期末)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。

平行线的判定与性质

平行线的判定与性质

平行线的判定与性质平行线是几何学中一个重要的概念,它在许多数学问题中起着重要的作用。

本文将介绍平行线的判定方法以及平行线的一些性质。

一、平行线的判定判定两条直线是否平行,可以通过以下几种方法进行判断:1. 两线的斜率相等:设有两条直线L1和L2,它们的斜率分别为k1和k2。

如果k1=k2,那么L1和L2是平行线。

2. 两线的倾斜角相等:直线的倾斜角是指与x轴夹角的大小。

如果两条直线L1和L2的倾斜角相等,那么它们是平行线。

3. 两线的截距比相等:设有两条直线L1和L2,它们的截距分别为b1和b2。

如果b1/b2=k,k为常数,那么L1和L2是平行线。

二、平行线的性质平行线有以下几个重要的性质:1. 平行线上的任意一对对应角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。

2. 平行线上的内角和为180度:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB+∠CBA=180度。

3. 平行线上的外角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠ADB=∠EBC。

4. 平行线与直角线的关系:如果两条直线L1和L2相互垂直,而且L1和L2中的任意一条与第三条直线L3(横切线)平行,那么L1和L2也是平行线。

5. 平行线与三角形的性质:如果一条直线与一个三角形的两边分别平行,那么这条直线与第三边也平行。

三、实例分析举个例子来说明平行线的判定和性质。

设有两条直线L1:y=2x+1和L2:y=2x+5。

首先,我们可以通过比较两条直线的斜率,发现它们的斜率相等,即k1=k2=2,因此L1和L2是平行线。

根据平行线的性质,我们可以得到一系列结论:1. 如果L1和L2是平行线,那么它们上的对应角必定相等,即∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。

2. 如果L1和L2是平行线,那么它们上的内角和为180度,即∠CAB+∠CBA=180度。

平行线的判定、性质公理及定理

平行线的判定、性质公理及定理

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

考点一平行线的判定:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3. 两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.注意:证明两直线平行,关键是找到与特征结论相关的角.例1.如下图,当∠1=∠3时,直线a、b平行吗?当∠2+∠3=180°时,直线a、b平行吗?为什么?你有几种方法。

例2.请将下面的空补充完整1.如右图,若∠1=∠2,则_______∥_______()若∠3=∠4,则_________∥_________()若∠5=∠B,则_________∥_________()若∠D+∠DAB=180°,则______∥_______()2.如右图,∠1+∠2=180°(已知)∠3+∠2=180°()∴∠1=_________∴AB∥CD()课堂练习:1.如图6-21,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.2.已知,如下图(1),(2),直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1) (2) 3.如图,如果AB∥CD,求角α、β、γ与180º之间的关系式.4.如图,已知CD 是∠ACB 的平分线,∠ACB = 500,∠B = 700,DE ∥BC,求:∠EDC 和 ∠BDC 的度数。

达标训练: 一.选择题1.下列命题中,不正确的是( )A .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C .两条直线被第三条直线所截,那么这两条直线平行D .如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如右图,直线a 、b 被直线c 所截,现给出下列四个条件: ( ) (1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°, 其中能判定a ∥b 的条件是( ) A .(1)(3) B .(2)(4) C .(1)(3)(4) D .(1)(2)(3)(4) 3.如右图,如果∠1=∠2,那么下面结论正确的是( ) A .AD ∥BC B .AB ∥CD C .∠3=∠4 D .∠A =∠C4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来 的方向相同,这两次拐弯的角度可能是( ) A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° 二.填空题αγβED C BAAB D E12FOCABDE5.如右图,∠1=∠2=∠3,则直线l 1、l 2、l 3的关系是________.6.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________ . 7.同垂直于一条直线的两条直线________. 8.根据图形及上下文的含义推理并填空. (1)∵∠A =_______(已知)∴AC ∥ED ( ) (2)∵∠2=_______(已知)∴AC ∥ED ( ) (3)∵∠A +_______=180°(已知) ∴AB ∥FD ( ) 三.解答题9.已知:如图7,∠1=∠2,且BD 平分∠ABC . 求证.AB ∥CD .10、.如图,∠A BC =∠BCD, ∠1=∠2,求证:BE ∥CF.11.如图,是大众汽车的标志图案,其中蕴涵着许多几何知识. 根据下面的条件完成证明.已知:如图,BC//AD ,BE//AF . (1) 求证:B A ∠=∠;(2) 若︒=∠135DOB ,求A ∠的度数.12.已知:如图,∠3与∠1互余,∠3与∠2互余.求证:AB ∥CD.考点二:1.平行线的性质.公理:两直线平行,同位角相等. 定理:两直线平行,内错角相等.CFDEBAOHG321ED C BA定理:两直线平行,同旁内角互补.例1.如图,BE∥DF,∠B =∠D,求证.AD∥BC.课堂作业:1.如上图,AB∥CD,AD∥BC则下列结论成立的是( )A.∠A+∠C=180°B.∠A+∠B=180°C.∠B+∠D=180°D.∠B=∠D2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是( )A.相等B.互补C.相等或互补D.相等且互补3.如右图,已知∠1=∠2,∠BAD=57°,则∠B=________.4.已知:如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.5.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写你的猜想,并说明理由6、如图所示:已知:AB∥DE。

平行线的判定公理

平行线的判定公理

平行线的判定公理(定理)(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简称“同位角相等,两直线平行”).(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简称“内错角相等,两直线平行”).(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简称“同旁内角互补,两直线平行”).2.平行线的性质公理(定理)如果两条平行线被第三条直线所截,那么(1)同位角相等(简称“两直线平行,同位角相等”).(2)内错角相等(简称“两直线平行,内错角相等”).(3)同旁内角含有未知数的等式叫方程。

等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式。

则:〔1〕a+c=b+c 〔2〕a-c=b-c 等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。

3若a=b,则b=a(等式的对称性)。

4若a=b,b=c则a=c(等式的传递性)。

【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。

方程有整式方程和分式方程。

整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。

分式方程:分母中含有未知数的方程叫做分式方程。

编辑本段一元一次方程人教版7年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到。

定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。

通常形式是kx+b=0(k,b为常数,且k≠0)。

一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。

⒉去括号一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。

⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。

平行线的判定与性质

平行线的判定与性质

平行线的判定与性质平行线在几何学中起着重要的作用,它们有着独特的性质和判定方法。

本文将介绍平行线的判定方法以及与平行线相关的性质。

一、平行线的判定方法1. 垂直判定法:如果两条线段相交,且相交的角度为90度,则这两条线段是平行线。

这是最基本的平行线判定方法,根据垂直直角的定义可以简单明了地判断两条线段是否平行。

2. 共垂线判定法:如果两条线段分别与一条直线相交,且这两条线段在相交处的对应角相等,则这两条线段平行。

这个方法利用了共垂线的性质,通过对应角相等关系来确定两条线段是否平行。

3. 锐角判定法:如果两条与一直线相交的线段,在直线的一侧分别作锐角,则这两条线段平行。

这个方法需要注意的是锐角的存在,通过作锐角可以确定线段的平行关系。

4. 曲线描点法:在平面上任意取一点,通过画出与已知直线相切的曲线,再经过已知点和曲线上的该点画一条直线,若该直线与已知直线平行,则已知曲线与已知直线平行。

这个方法常用于曲线与直线的平行关系判断。

二、平行线的性质1. 对应角相等性质:如果两条平行线被一条横截线所切,那么所得到的对应角是相等的。

这是平行线最基本的性质之一,也是平行线判定方法中常用的性质。

2. 内错角互补性质:如果两条平行线被一条横截线所切,那么所得到的内错角之和为180度。

这个性质是平行线性质中比较重要的一个,它可以用来证明一些平行线的性质。

3. 平行线的平移性质:平行线之间可以进行平移。

如果平行线上有一个点向某个方向平移,那么整条平行线也会向同一个方向平移同样的距离。

这个性质在几何证明中经常被应用,它帮助我们理解平行线的运动规律。

4. 平行线的比例性质:如果一条直线与一组平行线相交,那么相交线段之间的比例保持不变。

这个性质可以用来求解平行线上的线段长度比例,它是解决一些几何问题的重要思路。

总结:平行线是几何学中的重要概念,通过不同的判定方法可以准确地确定平行线的存在。

同时,平行线具有一系列的性质,这些性质在几何学推理中扮演着重要的角色。

平行线的判定及性质

平行线的判定及性质

授课主题平行线教学目的1.理解平行线的概念,掌握平行公理及其推论;2.掌握平行线的判定方法及性质,并能进行简单的推理3.掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容知识梳理要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:1平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;2有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.3在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:1平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.2公理中“有”说明存在;“只有”说明唯一.3“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD同位角相等,两直线平行判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD内错角相等,两直线平行判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD同旁内角互补,两直线平行要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:1“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.2从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:1求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.2两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:1命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.2命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”3真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题公理或其他已被证明的定理出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:1证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.2判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1.定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:1图形的平移的两要素:平移的方向与平移的距离.2图形的平移不改变图形的形状与大小,只改变图形的位置.2.性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:1平移后,对应线段平行且相等;2平移后,对应角相等;3平移后,对应点所连线段平行且相等;4平移后,新图形与原图形是一对全等图形.典型例题类型一、平行线例1.下列说法正确的是A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内,不相交的两条直线叫做平行线.答案D例2.在同一平面内,下列说法:1过两点有且只有一条直线;2两条直线有且只有一个公共点;3过一点有且只有一条直线与已知直线垂直;4过一点有且只有一条直线与已知直线平行;其中正确的个数为:A.1个B.2个C.3个D.4个答案B解析正确的是:13.变式1下列说法正确的个数是1直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.2两条直线被第三条直线所截,同旁内角的平分线互相垂直.3两条直线被第三条直线所截,同位角相等.4在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个个C.3个D.4个答案B类型二、两直线平行的判定例3.如图,给出下列四个条件:1AC=BD;2∠DAC=∠BCA;3∠ABD=∠CDB;4∠ADB=∠CBD,其中能使AD∥BC的条件有.A.12B.34C.24D.134答案C变式2一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°例4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°已知,∴∠B=∠BCM,∠E=∠EDN等量代换.∴AB∥CM,EF∥DN内错角相等,两直线平行.又∵∠BCD=45°,∠CDE=30°已知,∴∠DCM=20°,∠CDN=20°等式性质.∴∠DCM=∠CDN等量代换.∴CM∥DN内错角相等,两直线平行.∵AB∥CM,EF∥DN已证,∴AB∥EF平行线的传递性.解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB =180°-∠NCB-∠B =20°三角形的内角和等于180°.又∵∠CDE =30°,∴∠EDM =150°.又∵∠E =10°,∴∠EMD =180°-∠EDM-∠E =20°三角形的内角和等于180°.∴∠CNB =∠EMD 等量代换.所以AB ∥EF 内错角相等,两直线平行.变式3已知,如图,BE 平分ABD,DE 平分CDB,且1与2互余,试判断直线AB 、CD 的位置关系,请说明理由. 解:AB ∥CD,理由如下:∵BE 平分∠ABD,DE 平分∠CDB,∴∠ABD =2∠1,∠CDB =2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB =180°.∴AB ∥CD 同旁内角互补,两直线平行.变式4已知,如图,ABBD 于B,CDBD 于D,1+2=180°,求证:CD 1234//,//l l l l 答案48°,132°,48°变式6如图所示,直线l 1∥l 2,点A 、B 在直线l 2上,点C 、D 在直线l 1上,若△ABC 的面积为S 1,△ABD 的面积为S 2,则A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不确定答案B 类型四、命题例6.判断下列语句是不是命题,如果是命题,是正确的还是错误的①画直线AB ;②两条直线相交,有几个交点;③若a ∥b,b ∥c,则a ∥c ;④直角都相等;⑤相等的角都是直角;⑥如果两个角不相等,那么这两个角不是对顶角.答案①②不是命题;③④⑤⑥是命题;③④⑥是正确的命题;⑤是错误的命题.变式8把下列命题改写成“如果……,那么……”的形式.1两直线平行,同位角相等;2对顶角相等;3同角的余角相等.答案解:1如果两直线平行,那么同位角相等.2如果两个角是对顶角,那么这两个角相等.3如果有两个角是同一个角的余角,那么它们相等.类型四、平移例7.湖南益阳如图所示,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为________.答案30°变式9上海静安区一模如图所示,三角形FDE 经过怎样的平移可以得到三角形ABCA .沿EC 的方向移动DB 长B .沿BD 的方向移动BD 长C .沿EC 的方向移动CD 长D .沿BD 的方向移动DC 长答案A类型五、平行的性质与判定综合应用例8、如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=A.180°B.270°C.360°D.540°答案C解析过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°两直线平行,同旁内角互补又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°两直线平行,同旁内角互补又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°课后作业一、选择题1.下列说法中正确的有①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角A.相等B.互补C.互余D.相等或互补3.如图,能够判定DE∥BC的条件是A.∠DCE+∠DEC=180°B.∠EDC=∠DCBC.∠BGF=∠DCBD.CD⊥AB,GF⊥AB4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是.A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是A.∠A=∠ACEB.∠B=∠ACEC.∠B=∠ECDD.∠B+∠BCE=180°6.绍兴学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图,1—4:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B.②③C.③④D.④①二、填空题7.在同一平面内的三条直线,它们的交点个数可能是________.8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C 三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.如图,∠1=60°,∠2=60°,∠3=100°,要使AB∥EF,∠4应为多少度说明理由.14.小敏有一块小画板如图所示,她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗15.如图,把一张长芳形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变答案与解析一、选择题1.答案A解析只有④正确,其它均错.2.答案D3.答案B解析内错角相等,两直线平行.4.答案B5.答案B解析∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6.答案C解析解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7.答案0或1或2或3个;8.答案BC,DE;解析∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9.答案a1∥a100;解析为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.答案40°或140°11.答案共线,平行公理;解析此题考查是平行公理,它是论证推理的基础,应熟练应用.12.答案AB∥CD,GP∥HQ;。

1.3平行线的判定(1)

1.3平行线的判定(1)

6、某人骑自行车从A地出发,沿正东方向前 进至B处后,右转15°,沿直线向前行驶到 C处,这时他仍想按正东方向行驶,那么他 应怎样调整行驶方向?请画出他继续行驶 的路线,并说明理由。
平行线判定方法:同位角相等,两 直线平行。
(1)上面的画法可以 看做是怎样的图形变换? (2) 把图中的直线 l , l 1 2 看成被尺边 AB 所截,那 么在画图过程中,什么角 始终保持相等?由此你能 发现画两直线平行方法 的依据吗?
A
l1 l2
B
一般地,判断两直线平行有下面 的方法:
两条直线被第三条直线所截 ,如果同 位角相等, 那么这两条直线平行.
1
2
l3
1
l1 l2
2
(第 3 题)
能力挑战:
1、如图,不能判定 l (A)∠2=∠3 (C)∠1=∠2
1 // l2
的是 ( D ) (B)∠1=∠4
(D)∠1=∠3
1 3
l1
l2
4 2
能力挑战:
2、如图,∠1=∠2,则下列结论正确的是( C ) (A)AD//BC (B)AB//CD
E A
1 2
如图,已知∠1+∠2=180º ,AB与 CD平行吗?为什么?
E C D
2
1
A F
B
1.如图1,∠C=57°, 当∠ABE= 57 °时,就能使BE∥CD. 2.如图2 , ∠1=120°,∠2=60°. 问a与b的关系? a∥b
A a b 2 c
B
C
E
D
1 3
图1
图2
3、如图,已知直线 l , l 被直线 l 所截, 1 2 1 2 3 判断 l 与 l 是否平行 , 并说明理由.

平行线的判定推论

平行线的判定推论

平行线的判定推论
平行直线的判定推论是在几何学中一种基本的思考方式,也是解决复杂问题的根本步骤之一。

在给定条件下,可以轻易地通过判定推论来做出正确的结论。

平行直线一般可以定义为两条直线,其交点位于无穷远处,且它们所在的平面上没有公切线。

一、直线平行的条件
1、统一斜率条件:如果两条直线的斜率相同,则它们必定俩平行。

比如,令直线l1: y=2x+1,l2: y=2x-3,由于l1和l2的斜率都等于2,因此可知:l1和l2是平行线。

二、平行线的性质
1、重要性质:两条相互平行的直线总是在同一平面上,而在任意一点处,其交点距
离非常之远。

所以,可以将它俩视为一条单独的直线。

2、模拟性质:平行直线可以模拟两个事物存在一种永恒不变的相隔关系。

比如在物
理世界中,平行定律可以描述同一方向的力间的作用是均衡的。

1、推论一:如果两条射线之间的夹角为充分小的角,则它们会趋近于完全对齐,而
产生平行线;如果两条射线之间的夹角为充分大的角,则它们将会逐渐偏离而不能为平行线。

2、推论二:平行直线之间的夹角永远都是零度,它们永远不会交叉,而且它们可以
无穷连接,不论在何处两条相交,它们也都总是垂直的。

三、结论
从上文总结出,在几何学中,判定直线是否平行,一般有两种情况:第一种是判断它们的斜率是否相同;另一种是判断它们的垂直矢量之间是否存在等量关系。

一旦满足这两种情况,则可以推断出这两条直线是平行的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
l2
∵l1⊥l3, l2⊥l3 ∴∠1=∠3=90°
l3
l1∥ l2
1
街道两侧路灯的柱子是否
l1
互相平行? 为什么?
“在同一平面内,垂直于同一条直线的 两条直线互相平行”。
练一练
1、如图,不能判定 l1 // l2 的是 ( D )
(A)∠2=∠3
(B)∠1=∠4
(C)∠1=∠2
(D)∠1=∠3
l2
l1
课内练习
2.某人骑自行车从 A 地出发,沿正东方向前进至
B 处后,右转 150,沿直线向前行驶到C处(如图).这
时他想仍按正东方向?请画出他应怎样调整行驶
的路线,并说明理由.
A
B
150
C
P10L2
“在同一平面内,垂直于同一条直线的两条直线 互相平行”是否可以看做平行线判定方法的特殊情
形?
1.3平行线的判定(1)
1、下列各图中的∠1和∠2是什么关系?
A、同位角
B、内错角
C、同旁内角 D、以上都不是
E
F
1
2
M
N
C
1M E
N
F2
G
D
E
G
12
FA
H
E
M
12 G
F
BN
E
H
1 2
F BG
H
1
E
FP
M

2
N
GD
合作学习
我们已经学习过 用三角尺和直尺画平 行线的方法.

一、贴
二、靠
三、移
四、画
请按图所示方法画两条平行线,然后讨
论下面的问题:
(1)在画图过程中,
A
怎样操作才能使画出的
l1
直线平行?
(2) 把图中的直线l1 , l2 看成被直尺 AB所截,那
l2
么在画图过程中,什么角
始终保持相等?由此你能 发现判定两直线平行的
B
方法吗?
一般地,判断两直线平行有下面 的方法:
两条直线被第三条直线所截 ,如果同 位角相等, 那么这两条直线平行.简单地说, 同位角相等,两直线平行.
l1 l2
1
3 4
2
2、如图,哪些直线平行,哪些直线不平行?
l4
50o
120o 60 o
l3
60 o
l2
l1
l3 与 l4平行, l1 与 l2 不平行
课内作业
3.如图,已知直线 l1, l2 被直线AB所截,AC l2于 点C.若 1 500 , 2 400 , 则 l1与 l2平行吗?
请说明理由.
A 1 l1
2
B C
l2
(第 2 题)
这堂课我们一起学习了哪些知识? 哪个知识点给你留下深刻印象? 你能提出哪些问题?
l3
2
1
3
l2
l1
图1- 6
练习1:已知直线 l1, l 2被 l3 所截(如图) ,
1 2 180 判断 l1与l2是否平行,
并说明理由.
2
1 l3
3
l2
l1
练习2:已知直线 l1, l 2被 l3 所截(如图) , 1 2
判断 l1与l 2是否平行,并说明理由.
1 l3
2
3
如图,哪两个角相等能 判定直线AB∥CD?
A
3
B
12
4
C
D
如果∠123 =∠254 , 能判定 哪两条直线平行?
E
A1 3
2 C
G
B
4
5
D
F
H
几何语言:
c
a
b
1
∵∠1=∠2(已知) ∴a∥b(同位角相等,两直线平行)
已知直线 l1, l2被 l3所截 (如图1-6),1 450
2 1350 判断 l1与 l2是否平行,并说明理由.
相关文档
最新文档